Pixel Size Selection Criteria

Richard Crisp <u>rdcrisp@earthlink.net</u> <u>www.narrowbandimaging.com</u> May 25, 2011

Pixel size considerations

- Key issues are
 - matching the pixel size to the expected spot size from the optical system
 - Diffraction limited case is the smallest spot size, that's the limiting best case but is seldom encountered in terrestrial-based astrophotography
 - For terrestrial-based astrophotography "seeing" FWHM typically determines the spot size and is variable.
 - understanding the relationship among pixel size , optics and rate at which signal builds

Optics and the Airy Disk: Focal ratio: Sets spot size for diffraction limited optics

Nyquist Sampling of Airy Disk Pixel Pitch: Sized to fit Airy Disk (spot):

JJUTITI LESI WAVELENGIN							
Pixel size				Airy Diameter		Optical resolution	
(microns)	(Optimum	F#	(microns))	LP/mm	
	0.75		1.12	1	.5		667
	0.9		1.34	1	.8		556
	1		1.49		2		500
	1.1		1.64	2	2.2		455
	1.25		1.86	2	2.5		400
	1.4		2.09	2	2.8		357
	1.5		2.24		3		333
	1.75		2.61	3	6.5		286
	2		2.98		4		250
	2.25		3.35	4	5		222
	2.5		3.73		5		200
	2.75		4.10	5	5.5		182
	3		4.47		6		167
	3.5		5.22		7		143
	4		5.96		8		125

FEO pm tost wavalangth

• Exact Nyquist Sampling: 2 pixels to cover Airy Diameter (spot)

For Seeing-Limited spot size, the FWHM of the seeing sets the spot size and should still be covered by two pixels for proper sampling.

Pixel Geometry: How many photons is your pixel receiving?

Delivering photons to the sensor: the impact of Imaging Lens F# and magnification

How much does the lens spread the light flux? (magnification)

Incident Luminance at Sensor

Sensitivity vs Pixel size considering system noise impact

100% optical transmission f/3 optics Lens magnification of 0.001* QE = 25% Full well = 40Ke-PRNU = 1% 550nm wavelength Exposure time = 30msec

> * For magnification of 0.001, something that is 10 mm tall will fill a 10 micron pixel ie: a lens that makes a 10 x 10 meter FOV fill a 1000 x 1000 pixel sensor with 10 micron pixel size

F#, system noise impact

