

SEMICONDUCTOR TECHNOLOGY ASSOCIATES, Inc

FEATURES

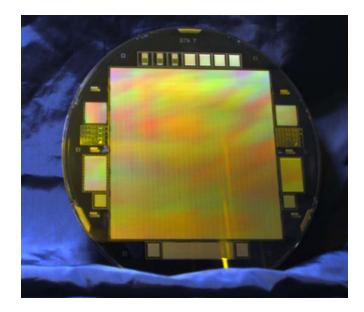
- 10560 x 10560 Photosite Full Frame CCD Array
- 9 μm x 9 μm Pixel
- 95.22mm x 95.05mm Image Area
- 100% Fill Factor
- Readout Noise Less Than 20 Electrons at 10MHz
- Dynamic Range > 75dB
- 16 Two Stage Source Follower Output Channels
- Three-Phase Buried Channel NMOS Image area
- Three-Phase Buried Channel Readout Registers
- Multi-Pinned Phase (MPP) optional

GENERAL DESCRIPTION

The STA1600 is a 10560 x 10560 image element solid state Charge Coupled Device (CCD) Full Frame sensor. This CCD is intended for use in high-resolution scientific, space based, industrial, and commercial electro-optical systems. The STA1600 is organized in two halves each containing an array of 10560 horizontal by 5280 vertical photosites. The pixel spacing is 9µm x 9µm. For dark reference, each readout line is proceeded by 8 dark pixels. This imager is available in a full frame transfer configuration (shown) or a split frame transfer configuration with shield metalization covering half of the imager. The split frame transfer architecture allows higher frame rate operation through four readout quadrants, whereas the single-sided approach allows readout through two readout quadrants. The STA1600 is offered as a backside illuminated version for increased sensitivity and UV response in the same package configuration.

FUNCTIONAL DESCRIPTION

The following functional elements are illustrated in the block diagram:


Image Sensing Elements: Incident photons pass through a transparent polycrystalline silicon gate structure creating electron hole pairs. The resulting photoelectrons are collected in the photosites during the integration period. The amount of charge accumulated in each photosite is a linear function of the localized incident illumination intensity and integration period.

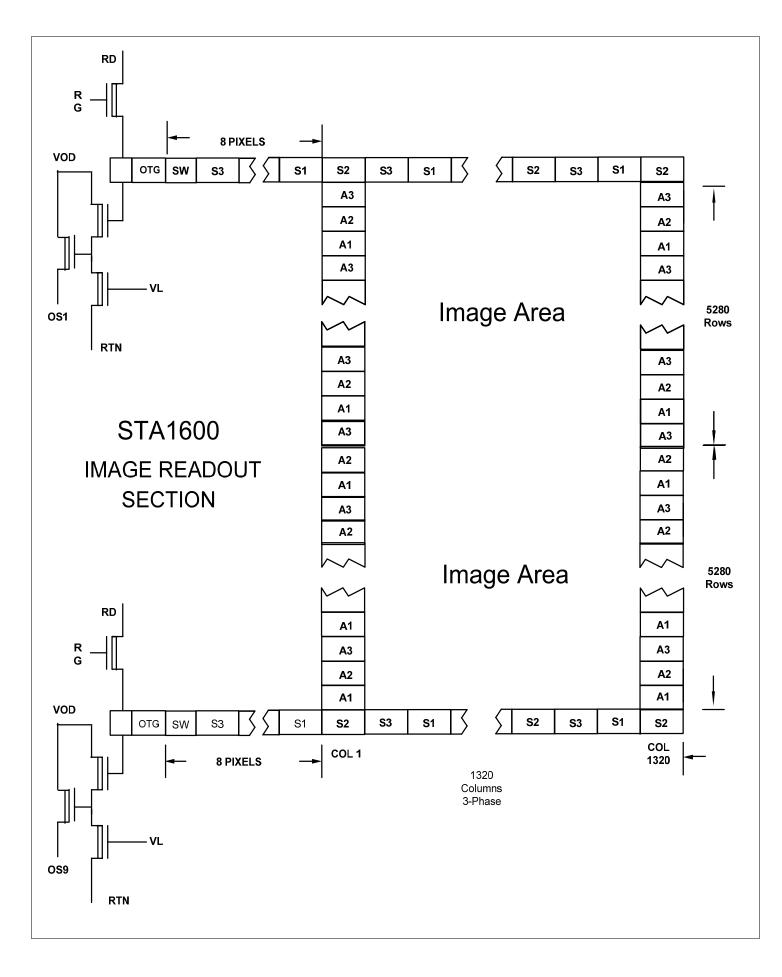
The photosite structure is made up of contiguous CCD elements with no voids or inactive areas. In addition to sensing light, these elements are used to shift image data vertically. Consequently, the device needs to be shuttered during readout.

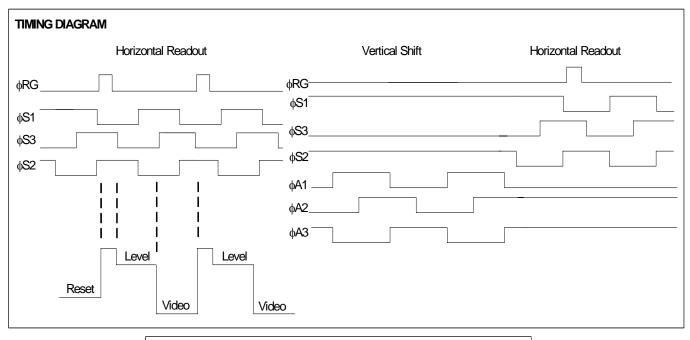
Vertical Charge Shifting: The Full Frame architecture of the STA1600 provides video information as a single sequential readout of 5280 lines containing 1330 photosite. At the end of an integration period the ϕA_1 , ϕA_2 , and ϕA_3 clocks are used to transfer charge vertically through the CCD array to the horizontal readout register. Vertical columns are separated by a channel stop region to prevent charge migration.

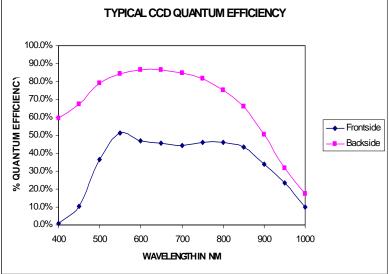
The imaging area is divided into an Upper and Lower half. Each 10580 x 5280 halve may be clocked independently or together. Horizontal Transport registers along the top and bottom permit simultaneous readout of both halves. The STA1600 may be clocked such that the full array is readout by the Upper or Lower Transport registers.

STA1600A 10600 x 10600 Element Image Area Full Frame CCD Image Sensor

vertical binning. For both frame transfer configurations, the charge may be read out through the eight amplifiers at the bottom or top of the image frame storage region


The transfer of charge into the horizontal register is the result of a vertical shift sequence. This register has 8 additional register cells between the first pixel of each line and the output amplifier. The output from these locations contains no signal and may be used as a dark level reference.


The last clocked gate in the Horizontal registers is twice as large as the others and can be used to horizontally bin charge. This gate requires its own clock, which may be tied to ϕ H₂ for normal full resolution readout.


The reset FET in the horizontal readout, clocked appropriately with ϕR , allows binning of adjacent pixels.

Output Amplifier: The STA1600 has one output amplifier at the end of each Horizontal register. They are dual FET floating diffusion amplifiers with a reset MOSFET tied to the input gate.

Charge packets are clocked to a pre-charged capacitor whose potential changes linearly in response to the number of electrons delivered. When this potential is applied to the input gate of an NMOS amplifier, a signal at the output V_{out} pin is produced. The capacitor is then reset via the reset MOSFET with ϕ RG to a pre-charge level prior to the arrival of the next charge packet except when horizontally binning. The output amplifier drain is tied to VDD. The source is connected to an external load resistor to ground and constitutes the video output from the device.

DEFINITION OF TERMS

Charge-Coupled Device A charge-coupled device is a monolithic silicon structure in which discrete packets of electron charge are transported from position to position by sequential clocking of an array of gates.

Vertical Transport Clocks ϕA_1 , ϕA_2 , ϕA_3 the clock signals applied to the vertical transport register.

Horizontal Transport Clocks ϕS_1 , ϕS_2 , ϕS_3 the clock signals applied to the horizontal transport registers.

Dynamic Range The ratio of saturation output voltage to RMS noise in the dark. The peak-to-peak random noise is 4-6 times the RMS noise output.

Saturation Exposure The minimum exposure level that produces an output signal corresponding to the maximum photosite charge capacity. Exposure is equal to the product of light intensity and integration time.

Responsivity The output signal voltage per unit of exposure.

Spectral Response Range The spectral band over which the response per unit of radiant power is more than 10% of the peak response.

Photo-Response Non-Uniformity The difference of the response levels between the most and the least sensitive regions under uniform illumination (excluding blemished elements) expressed as a percentage of the average response.

Dark Signal The output signal is caused by thermally generated electrons. Dark signal is a linear function of integration time and an exponential function of chip temperature.

Vertical Transfer Gate #VTG Gate structures adjacent to the end row of photosites and the horizontal transport registers. The charge packets accumulated in the photosites are shifted vertically through the array. Upon reaching the end row of photosites, the charge is transferred in parallel via the transfer gates to the horizontal transport shift registers whenever the transfer gate voltage goes low.

Pixel Picture element or sensor element, also called photo element or photosite

DC OPERATING CHARACTERISTICS

SYMBOL	PARAMETER		RANGE		UNIT	REMARKS
		MIN	NOM	MAX		
V _{OD}	DC Supply Voltage		+25.0		V	
V _{RD}	Reset Drain Voltage		16.0		V	
V _{OTG}	Output Voltage	-2.0	1.0	2.0	V	
V _{VLD}	Output Load Voltage		+3.0		V	
V _{RTN}	Output Return Voltage		+2.0		V	
V _{SC}	Scupper Voltage		+20.0		V	
V _{SUB}	Substrate Ground		0.0		V	

TYPICAL CLOCK VOLTAGES

SYMBOL	PARAMETER	HIGH	LOW	UNIT	REMARKS
V\$\$(1,2,3)	Horizontal Multiplexer Clock	+5.0	-5.0	V	Note 1
Vφ _{sw}	Summing Gate Clock	+5.0	-5.0	V	Note 1
V\$ _{V(1,2,3)}	Vertical Array Clocks	+3.0	-10.0	V	Note 1
Vφ _{RG}	Reset Array Clock	+5.0	-5.0	V	Note 1

Note 1: ϕ H = 200pF, ϕ V = 15,000pF. All clock rise and fall times should be > 10 ns.

AC CHARACTERISTICS Standard test conditions are nominal MPP clocks and DC operating Voltages, 1 MH_z Horizontal Data Rate, 6µSec Vertical shift cycle.

SYMBOL	PARAMETER		RANGE		UNIT	REMARKS
		MIN	NOM	MAX		
V _{ODC}	Output DC Level		16.0		V	
Z	Suggested Load Register	1.0	5.0	20.0	kΩ	

PERFORMANCE SPECIFICATIONS

SYMBOL	PARAMETER	RANGE		UNIT	REMARKS	
		MIN	NOM	MAX		
VSAT	Saturation Output Voltage Full Well Capacity		700		mV	Note 1
	Output Amp Sensitivity	70K	80K	100K	e-	
			7.0		μV/e-	
PRNU	Photo Response Non- Uniformity Peak-to-Peak		10		%V _{SAT}	
DSNU	Dark Signal Non-Uniformity Peak-to-Peak			1.0	mV	
DC	Dark Current	0.025	<1.0	2.0	nA/cm ²	Note 2
R	Responsivity		1.0		Vµj/cm ²	
rms	Noise		5 -20		e-	

Note 1: Maximum well capacity is achieved in Buried Channel Mode. Note 2: Values shown are for 25°C. Dark current doubles for every 5°-7°C.

QUANTUM EFFICIENCY ENHANCEMENTS

The STA1600 CCD area arrays can be backside thinned for increased QE. The incident illumination enters through the backside of the array, and since no photons are absorbed in the polysilicon gate structures, the QE is increased. Also available are front side illuminated devices which can be coated with a fluorescent dye that absorbs UV light and fluoresces in the visible range. This provides CCD response at wavelengths less than 400nm.

COSMETIC GRADING

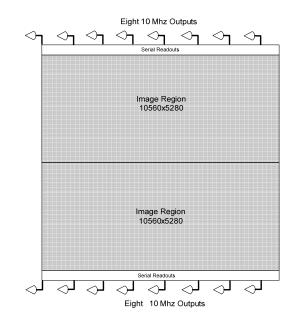
Device grading helps to establish a ranking for the image quality that a CCD will provide. Blemishes are characterized as spurious pixels exceeding 10% of V_{SAT} with respect to neighboring elements. Blemish content is determined in the dark, at various illumination levels, and for different device temperatures.

The STA1600 is available in various standard grades, as well as custom selected grades. Consult Semiconductor Technology Associates for available grading information and custom selections.

WARRANTY

Within twelve months of delivery to the end customer Semiconductor Technology Associates will repair or replace, at our option, any image sensor product if any part is found to be defective in materials or workmanship. Contact Semiconductor Technology Associates for assignment of warranty return number and shipping instructions to ensure prompt repair or replacement.

CERTIFICATION


Semiconductor Technology Associates certifies that all products are carefully inspected and tested prior to shipment and will meet all of the specification requirements under which it is furnished

STA1600 Image Sensor Connector Pin Designation

J3

J1	Label	J2	Label
1	OD4	1	A3-4
2	RTN4	2	A1-4
3	VLD4	3	A3-3
4	OS4	4	A1-3
5	OD3	5	SC
6	RTN3	6	S1
7	VLD3	7	S3
8	OS3	8	RG
9	OD2	9	RD
10	RTN2	10	OTG8
11	VLD2	10	OS8
12	OS2	12	RTN8
13	002 0D1	13	OD8
14	RTN1	14	OTG7
14	VLD1	15	0107 0S7
16	OS1	16	VLD7
17	OTG1	10	RTN7
18	RD	17	OD7
10	RG	18	OD7 OS6
20	S3	20	VLD6
		20	
21	S1		RTN6
22	SC	22	OD6
23	A1-1	23	OS5
24	A3-1	24	VLD5
25	A1-2	25	RTN5
26	A3-2	26	OD5
27	GND	27	A2-4
28	OTG4	28	GND
29	GND	29	A2-3
30	GND	30	GND
31	GND	31	GND
32	GND	32	S2
33	OTG3	33	SW
34	GND	34	GND
35	GND	35	GND
36	GND	36	VLD8
37	GND	37	GND
38	OTG2	38	GND
39	GND	39	GND
40	GND	40	GND
41	GND	41	GND
42	GND	42	GND
43	GND	43	GND
44	GND	44	GND
45	SW	45	GND
46	S2	46	GND
47	GND	47	GND
48	GND	48	OTG6
49	A2-1	49	OTG5
50	GND	50	GND
51	A2-2	51	GND

Label	J4	Label
A3-5	1	OD13
A1-5	2	RTN13
A3-6	3	VLD13
A1-6	4	OS13
SC	5	OD14
S1	6	RTN14
S3	7	VLD14
RG	8	OS14
RD	9	OD15
OTG9	10	RTN15
OS9	11	VLD15
RTN9	12	OS15
OD9	13	OD16
OTG10	14	RTN16
OS10	15	VLD16
VLD10	16	OS16
RTN10	17	OTG16
OD10	18	RD
OS11	19	RG
VLD11	20	S3
RTN11	21	S1
OD11	22	SC
OS12	23	A1-8
VLD12	24	A3-8
RTN12	25	A1-7
OD12	26	A3-7
A2-5	27	GND
GND	28	OTG13
A2-6	29	GND
GND	30	GND
GND	31	GND
S2	32	GND
SW	33	OTG14
GND	34	GND
GND	35	GND
VLD8	36	GND
GND	37	GND
GND	38	OTG15
GND	39	GND
GND	40	GND
GND	41	GND
GND	42	GND
GND	43	GND
GND	44	GND
GND	45	SW
GND	46	S2
GND	40	GND
OTG11		GND
OTG11 OTG12	48 49	A2-8
GND		GND
GND	50 51	A2-7
GND	51	HZ-1

