
Magnum 1
Programmer’s

Manual

2/27/09
© 2004 Nextest Corporation

LIMITED REPRODUCTION RIGHTS
For Nextest Customers

Use, reproduction or distribution of this document is restricted to Nextest customers
solely for internal use by the Customer's employees whose responsibilities include Nextest equipment.

CREDITS AND TRADEMARKS
Magnum™ is a trademark of Nextest Systems Corporation.
Lightning™ is a trademark of Nextest Systems Corporation.

Maverick/Maverick-II/Magnum Software© is copyrighted by Nextest Systems Corporation.
Maverick/Maverick-II/Magnum Diagnostics © Software is copyrighted by Nextest Systems Corporation.

All other trademarks belong to their respective owners.

The material in this document is subject to change without notice. Nextest Systems Corporation assumes no
responsibility for any errors which may be contained in this document.

Nextest Systems Corporation
875 Embedded Way
San Jose, CA 95138

(408)-960-2400
 2/27/09 Pg-2

Revision History

Date Type Details

8/19/01 Add Initial Document

1/15/04 Add
Update

Parallel Test Operation

Note: many incremental changes were made between the date above and below.

4/4/26

Change set_results(), get_results() were renamed to
results_set(), results_get().

Add

result_set(), result_get(),
ecr_fast_image_write(), ecr_fast_image_read(),
MULTI_DUT_CALL_BLOCK(). Static Error Choice Functions,
Branch-on-error, Test Patterns, Functional Tests, User Variables,
Host / Site / Tool Communication, Resources, User Tools, User
Dialogs, Excel Related Functions, Debug Hook and Pin Status
Hook, MonitorApp, Environmental Variables, DUT Board TDR
Functions, Miscellaneous.

6/7/04
Update Data Buffer Memory (DBM).

Add New Magnum-only versions of xtopo() and ytopo() (2 ea).
Data Buffer Memory Software (DBM) section.

6/24/04 Add Controlling PE Levels from the Test Pattern.

6/30/04 Correct Corrected chapter numbering problem.

7/23/04 Update
Add

Added 4th PE driver mode (Dclk Mode) to Magnum PE Driver
Modes, Double Clock Mode and pe_driver_mode_set(),
pe_driver_mode_get(). Updated Double Data Rate (DDR)
Mode section. Updated Pattern Attributes.

8/4/04 Add Timing and Formatting Functions.

8/16/04 Add
Update

Added APFP Tool-bar and LVM Branch/Label Limitations.
Updated the PE Driver model in Pin Electronics (PE) Block
Diagram and PE Driver Block Diagram.

8/17/04 Add
Added Magnum GUI images to the following sections:
SummaryTool, TimingTool, FrontPanelTool, ECRTool, Voltage and
Current Tool.
 2/27/09 Pg-3

8/23/04 Add DUT Manager.

10/8/04 Add
Update

Add DPS Operating Area and updated DPS Force Voltage Range.
Added ±4A range to DPS Test/Measure Current Ranges for DPS
in DPS Current Sharing mode.

10/19/04 Update Updated Binning, Test Bin Functions, Test Bin Group Functions.

12/3/04 Update
First-pass effort in clarifying that Logic Vector Memory (LVM) and
Scan Vector Memory (SVM) are the same physical memory. Initial
draft version of Redundancy Analysis (RA) documentation.

12/8/04 Correct
Corrected operational descriptions and added boolean
expressions to most of the MAR Multi-DUT Branch-condition
Operands.

12/13/04 Add Added ecr_cache_enable().

1/17/05 Update
Add

Redundancy Analysis (RA) documentation is complete.
Added a separate Data Inversion Logic diagram, APG Data
Inversion Enable Functions, APG Data Inversion Bank Select
Functions, bit2fen() and APG Background Bank-A, Bank-B
Inversion. Various changes to other data inversion topics to
support the two-bank data inversion hardware and software.
Corrected PMU Built-in Force Voltage Settling Time and DPS
Built-in Settling Time (ranges vs. times were reversed).
Substantial additions to WafermapTool, including WafermapTool
Die-Bitmap Support and related subsections. Added
ui_BitmapFailColor, ui_BitmapPassColor.

1/19/05 Deleted
Deleted ecr_fail_signal_mux_set() and
ecr_fail_signal_mux_get(). The software will use the
original fail_signal_mux() function.

2/3/05 Deleted
Deleted cs_receive_only(): it has never worked in Maverick-
I/-II or Magnum and equivalent functionality is readily obtained
from the test pattern.

2/7/05 Update
Add

Updated Scan Test Patterns, added SCANDEF Compiler Directive
and SVEC Pattern Instruction.

2/14/05 Update Setting DUT Pin State (setpin()).

Date Type Details
 2/27/09 Pg-4

3/4/05 Add
APG User RAM, APG User RAM Functions and USERRAM
Instruction with USERRAM Operation Operands, USERRAM
SourceA Operands, USERRAM SourceB Operands.

3/7/05 Add
Update

Added Multi-DUT Shmoos.
Updated ui_ShmooOutputFile, ui_OutputFile and
ui_OutputFormat.

3/14/05 Add
Update

Added ecr_ddr_mode_set(), ecr_ddr_mode_get().
Updated PTU Current Force, Test & Measure Ranges, PTU
Voltage Clamp Range.

3/18/05 Add
Update

Added ra_spare_repaired_errors_get(). Added the INCR
operand to the list of logic pattern VCOUNT Function Operands.
Rewrite Mixed Memory/Logic Patterns section, and describe the
mixedsync Pattern Type Attributes.

3/24/05 Correct Corrected argument types in several APG User RAM Functions
and examples.

4/1/05 Add
Important Note: (and Note:) regarding a new scan test pattern vs.
DUT pin usage rule. This affects future DUT board and test
program compatibility.

4/18/05 Correct
Change

Significant changes in v1.0.27:
When Controlling Magnum 1 Levels from the Test Pattern, it is
now legal to specify a pin scramble selection in a LEVELSET
instruction. Previously this was not allowed. Magnum VAR
counters now can be incremented (INCR) and decremented-by-2
(DEC2).

Date Type Details
 2/27/09 Pg-5

4/21/05
Delete

Change
Add

These changes were required to eliminate out-of-memory
situations when performing Redundancy Analysis (RA) on DUTs
with large segments with many errors. The ra_scan() function is
replaced by ra_scan_area_callback() which operates
somewhat
differently than ra_scan(). Similarly, the RaScanAreaFunc
Call-back Function was replaced by
RaScanRCFunc Call-back Function. Replaced
ra_scan_area_func_set() with
ra_scan_area_callback_func_set() and
ra_scan_area_func_get() with
ra_scan_area_callback_func_get().
One argument type changed for the ra_config_set() and
ra_config_get() functions.

4/25/05 Update
Add

Reorganized information relating to APG branch logic, to correctly
reflect that some of the hardware is shared by the memory pattern
controller (MAR Engine) and logic pattern controller (VAR Engine).
Moved the block diagrams from the Test Pattern MAR instruction
section to Branch-on-error Logic in the hardware section. Updated
MAR Error-choice Operands and Static Error Choice Functions,
Branch-on-error. Added VAR Multi-DUT Branch-condition
Operands.

4/29/05 Add

Added four tables describing the operation of each APG branch
operand vs. each combination of static error choice (see Static
Error Choice Functions, Branch-on-error) and MAR Error-choice
Operands. These tables are sequential, starting with Branch
Operand Operation: t_errmode1. Simplified the descriptions in
MAR Multi-DUT Branch-condition Operands and VAR Multi-DUT
Branch-condition Operands and added references to MAR Error-
choice Operands.

4/29/05 Add Added Double Data Rate (1/29/08 replaced by MUX, Super-MUX
and DDR).

Date Type Details
 2/27/09 Pg-6

5/6/05
Add

Update
Correct

Add Shmoo Call-back Function, Shmoo Call-back GUI Controls,
Shmoo Symbols Dialog to the Multi-DUT Shmoos section. Two
new call-backs and call-back registration functions were also
added: shmoo_duts_int_callback/
shmoo_duts_int_callback_set(),
shmoo_duts_string_callback/
shmoo_duts_string_callback_set(). Updated all GUI/
dialog images in the ShmooTool / SearchTool section to use latest
design. Corrected the dates of the previous 5 entries in this
Revision History. All had 5/xx/05 dates and should have been 4/
xx/05.

5/20/05 Add Added documentation for the RTC timing format.

5/30/05 Correct Corrected range vs. value data in PMU Built-in Force Voltage
Settling Time and DPS Built-in Settling Time. Order was reversed.

6/1/05 Add
Added Double Data Rate (DDR) section (1/29/08 replaced by
MUX, Super-MUX and DDR). Added active_dut_get(),
all_hv(), no_hv().

6/30/05 Update
Clarified example in RA Pseudo-Code Example. Updated DPS
Compensation Capacitors description. Updated legal boilerplate
page and changed title/chapter page graphics.

7/8/05 Add
Added a note to ecr_config_set() and ecr_all_clear()
that executing ecr_config_set() also executes
ecr_all_clear(). This was not previously documented.

7/18/05 Add

Added Note: and Note: to PMU: Testing HV Pins: it is a fatal error
to attempt a PMU-on-HV test with a negative force voltage
(vpar_force()) or negative test limits (vpar_high(),
vpar_low()).

8/3/05 Add

Shared Tester Pins and ecr_dut_number_set(),
ecr_dut_number_get(). In Per Pin Error Status, added
DutPin versions of test_pin() and test_pin(). These were
not previously documented.

8/15/05 Correct Corrected the Redundancy Analysis (RA) call-back example code
in Example 4: and Example 5:.

8/23/05 Add Magnum 1/2/2x Simulation Setup (replacing the Maverick
instructions which don’t work using Magnum).

Date Type Details
 2/27/09 Pg-7

5/25/05 Correct

Corrections were made to details in: APG Interrupt Timer, MAR
Interrupt Operands (for INTEN and INTENADR), and the
operational description of the example in APG Instruction
Execution.
Additional details were added to the description of the RELOAD#
operand in the COUNT Counter Operands section.

9/27/05
Add

Update
Fixed

Updated Environmental Variables by adding Nextest Environment
Variables table. Updated various other topics which reference
Environmental Variables. Fixed and updated Pattern Load PATH
(the information has been corrupted for some time).

10/23/05 Correct Corrected DBM size vs. cycle period information in DBM Memory
Size Options, and related information in DBM Usage Rules.

1/11/06 Update
Change

Changed the title of the section titled, “Registering User Variables
with UI” to Intercepting User Variables. Substantial updates to
Intercepting User Variables content.

1/20/06 Add Added testerpin_value(), testerpin_offset() and Pin
Iteration.

1/30/05 Change Corrected the description of the test pattern MAR CLEARERR
instruction/operand, to match the hardware implementation.

2/6/06 Add Retrieving the Nextest Software Version (current_release()).

Date Type Details
 2/27/09 Pg-8

2/8/06
Add

Update
Correct

Significant changes in software release h1.1.23:
Completed Error Pipeline Requirements for Magnum.
Added DUT Board TDR Functions for Magnum.
Shmoo Functions: shmoo_title_get(), shmoo_type_get(),
shmoo_direction_get(), shmoo_axis_params_get(),
shmoo_param_get(), shmoo_param_pointval_get(),
shmoo_duts_subtitle_set(),
shmoo_duts_subtitle_get(), search_results_get().
Added information about StartUI.exe in Starting UI from Windows.
Added enhancements to WafermapTool: Die Field Display and
Subtitle (wmap_set() with wmap_subtitle).
Added ui_HideTool, ui_Show and updated ui_ShowTool.
Added a related comment to the ToolLauncher introduction.
Added ui_ShowTool / ui_HideTool Support to the
ToolLauncher section.
Rewrite Logic Error Catch (LEC) for Magnum, including new
APIs (Maverick users should review the entire section). Added
LVMTool and LEC Tool documentation. Added RBoot Client File,
used in multi-site situations to set environment variables and/or
execute commands on the Site computers at boot-time. Update
and additions to Magnum 1/2/2x Simulation Setup. Added new
overload of label_offset() to support logic patterns. Updated
Sequential Test Block, Conflict List and Conflict List Macros. The
need for the dbm_pattern_use() function was eliminated, see
Note:. Added the hardware JAM RAM option (see JAM Logic) and
related functions (see APG JAM Logic Configuration Functions).
Also added new JAM RAM-related operands the DATGEN
Dataout Operands table.
...continued...

Date Type Details
 2/27/09 Pg-9

2/8/06
Add

Update
Correct

... continues...
Significant changes in software release h1.1.23:
The documentation section previously titled ActiveDutIterator was
renamed Active DUTs Set Iterators, added
SoftwareOnlyActiveDutIterator, and documented changes and
enhancements to ActiveDutIterator. Documented ECRTool,
which includes enhancements noted in ECRTool Next Error
Search and the tool dialog controls. Added DUT Board Status
Check and ui_DutBoardStatusCheckDisable. New
Measurement Average Count Functions to support static DC test
measurement averaging. Includes new overloads of
test_supply() and ptu_partest() and enhancements to
partest() and hv_test_supply(). Added ui_SiteDone
and updated related information in ui_TestDone. Corrected PTU
table of RL Values to include the nominal 50Ω series FET switch.
This includes the RL Values table, the Useful RL Combinations
table and the RL Values table.

2/8/06 Change
Add

Changed the order that UI tools are arranged in the document to
alphabetical, by name. Added UI Tool Persistence.

2/10/06 Update

Updated Active DUTs Set (ADS) text to correctly reflect how
Parking Blocks operate, including examples and minor related
changes/clarifications to Parking Blocks and Overview. Added
Note:, Note:, Note:, Note: and Note: regarding test pattern RESET
to STROBE rquirements. Note that the previous restriction was
subsequently removed in software release h2.2.7/h1.2.7.

2/23/06 Correct
Corrected the DPS Built-in Settling Time table and PMU Built-in
Force Voltage Settling Time: the range values were reversed vs.
the settling time values.

2/27/06 Add Added DC Level Response Time information to Controlling
Magnum 1 Levels from the Test Pattern.

3/10/06 Deleted Deleted the text in Program Migration to MsDev 6.0. Added a
reference to the appnote which retains this information,

3/21/06 Change
Changed all references to t_na to a_na or b_na to correct
potential problems in future software releases. Magnum test
programs should not use t_na.

Date Type Details
 2/27/09 Pg-10

3/31/06 Add
Correct

Added ui_ShmooDone and related information in
search_results_get(). Added dmain(), dbase()
functions. Added a Note: indicating that the drive_only()
functon prevents pins from reacting to the VIHH signal from the
test pattern; i.e. drive-only pins cannot be set to the VIHH drive
level. Corrected details regarding APG Data Register Fill-bit
operation during SHLDR/SHRDR instructions (the fill-bit does not
come directly from the UDATA bit-36, as previously documented,
but rather from a separate register which can be loaded from
UDATA as desired). Added documentation describing that the APG
Data Generator DMAIN and DBASE registers have separate shift/
fill bits and how these bits are modified by various DATGEN
instruction options. See Data Register Fill-bit.

4/10/06 Add

Changes in software release h2.0.xx. Note that these changes are
all rather minor except for the increase in the maximum number of
Sites-per-Controller from 4 to 10. The Release Notes for h2.0.xx
discuss this in some detail but that information is mostly not
included in this document.

4/17/06 Correct Corrected numerous table formatting errors (effected display only)

4/24/06 Add
Added previously undocumented rules regarding memory pattern
branch operation vs. MAR error choice selection. See Note: and
Note:

5/8/06 Correct Corrected DPS Current Measurement Ranges to remove range7
and correctly describe range6 operation.

5/9/06 Correct
Corrected PMU Measure Voltage Ranges (HW) and PMU
Measure Voltage Ranges (SW) to include the 2nd voltage range
usable on PE pins.

5/12/06 Correct
Corrected the variable type of the following UI User Variables:
ui_TestStarted, ui_SiteLoaded, ui_SiteUnloaded,
ui_ProgLoaded,

7/17/06 Correct Fixed missing links in Test Pattern Programming section.

7/18/06 Add Added ui_DbmDialogDecMode, ui_ECRDialogDecMode.
Added new overloads of vecdata() which support DDR use.

7/19/06 Add Significant changes in software release h2.0.yy. Review the
Release Notes for details.

Date Type Details
 2/27/09 Pg-11

7/24/06 Add

Added Note: (and several like it in other locations) to note that, “In
any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF
directive is required (not optional) in any test patterns containing
logic instructions.”

8/9/06
Add

Move
Rename

Moved the section previously titled, PE Error Logic to Branch-on-
error Logic in the Algorithmic Pattern Generator (APG) hardware
section. Added MAR BOE Type Operands and added related
references several key places in the document (first available in
software release h2.0.9).

8/8/06 Change

Changed the default value of ui_BitmapRowsChunk from 512 to
1024, to improve the display update performance of BitmapTool.
This change is first available in software releases h1.0.25 and
h2.0.10.

9/22/06 Update

Added information regarding how ptu_partest() limits
partime() to 5mS maximum. See Parametric Settling
Time. Clarified purpose of min/max limit arguments for db_tdr()
and updated Example.

10/2/06 Update

Updated Over-programming Controls and Parallel Test and
consolidated information on this topic. This affected Control of
Branch on Error Flag, Over-programming Control Stimulus
Selection and includes minor changes to DPS Output Mode,
VPulse Function, VIHH Voltage.

10/10/06 Add Added DUT-specific Pin Lists.

10/16/06 Correct Corrected the requirements for updating the Units Passed counter
in FrontPanelTool (page 2013).

10/20/06 Add
Added 2Gig ECR info to Magnum ECR Memory Size Options.
The 2Gig ECR is first supported in software releases h2.0.12/
h1.0.27.

10/31/06 Change
Support for ECR absolute write mode (t_abs_write) was
un-documented. This mode was never implemented due to
hardware limitations.

Date Type Details
 2/27/09 Pg-12

11/8/06 Correct

Corrected the PTU current range selected when the background
voltage is used during PMU tests. See Background Voltage
Functions. Added several notes indicating that proper operation of
the test pattern branch-on-abort (or -no-abort) requires that all
DUTs be in the Active DUTs Set (ADS). For example, see Note:,
Note: and Note:.

11/17/06 Add
Correct

Added Note:, Note:, Note:, Note: and Note: to warn users that test
results will be invalid when executing pattern-triggered DC tests in
which the test pattern fails to generate a vcomp trigger. This
applies to hv_ac_test_supply(), ac_partest(),
ac_test_supply() and ptu_ac_partest() (the latter when
measurements are enabled). Corrected the description of how the
Active DUTs Set (ADS) affects the operation of test_pin() and
test_pin_first_error().

11/17/06 Add

Added the following previously undocumented versions of DBM
functions. These all have an HSBBoard argument, usable when
Sites-per-Controller > 1: dbm_config_set(),
dbm_config_get(), dbm_segment_set(),
dbm_segment_get(), dbm_fill(), dbm_write(),
dbm_read(), dbm_file_image_write(),
dbm_file_image_read(), dbm_masks_set(),
dbm_masks_get(), dbm_num_segments_get().

Date Type Details
 2/27/09 Pg-13

12/4/06 Correct
Add

Corrected several errors related to RL Values which affects the
following:
- The 50-ohm FET switch resistance, previously described as
 being a per-RL-resistor adjustment, actually represents the
 resistance of the FET switch which connects a PTU to the DUT.
 The text was corrected and the various RL values were adjusted.
- PE Driver: added columns and corrected errors in the RL Values
 table.
- PE Load Reference Voltage: VZ: added 2 columns and
corrected
 errors in the RL Values table. Moved the the adjoining graph to a
 separate location (below the table) and corrected the values.
- Deleted the table titled Useful RL Combinations.
- Corrected the operational description for rl_get(): it returns
 the last programmed bit-wise mask used to select RL values, not
 the resulting RL resistance.

12/29/06 Correct Corrected the variable type of ui_ProgLoaded from
CSTRING_VARIABLE to VOID_VARIABLE.

1/11/07 Add
Added Note: and references to it, to clarify which TesterFunc
enumerated type scan-related values are valid for Maverick vs.
Magnum.

1/18/07 Add Added rule-9. to the Magnum Timing Rules, to correct and clarify
the valid range of edge times.

Date Type Details
 2/27/09 Pg-14

1/24/07 Add
Update

Significant changes in software release h2.2.7/h1.2.7.
Pin Frequency Measurement (PFM), including Pin Frequency
Measurement Operation, Pin Frequency Measure Software
(pin_frequency_meas(), pin_frequency_meas_get()).
Added Save/Load Sequence/Binning Table Modifications. New
icons and icon combinations were added to UI’s UI Sequence and
Binning sub-window and the STOP action was added to Modifying
the Sequence and Binning Table options. Added information
related to Address Cross-over Bits, including Address Cross-over
Bit Functions and changes to APG Y Address Generator Block
Diagram (and text near it) and Address TOPO RAM Block
Diagram. Added Changing Dialog Button Text. Added
ui_BreakPointRemoveAll.Added Waveform Functions and
WaveformTool (MSWT). Added DUT-specific Pin Lists. Added Run
Buttons in Breakpoint Monitor. Add support for pattern triggered
DC measurements via DPS Dynamic Current Test Functions,
PMU Dynamic Test Functions, HV Dynamic Test Functions.
Complete re-write of Dynamic DC Tests. Added the More(BOOL
wrap) member function to SoftwareOnlyActiveDutIterator, to
improve iteration performance when
SoftwareOnlyActiveDutIterator is used within an outer loop. A new
DBM configuration option was added (DBM Sequential Mode)
which required reorganizing information in Data Buffer Memory
(DBM) and DBM Architecture hardware sections and additions to
dbm_config_set(). In addition, the Data Buffer Memory
Software (DBM) section was updated to add an Overview and
new DBM Interleave Mode, DBM Sequential Mode and DBM
Usage Rules sections. Complete re-write of DBMTool
documentation, including new features, including DBM segment
selection.

1/29/07 Correct
Corrected rule-2. in DBM Usage Rules to properly state the rule
which applies when using the DBM in t_dbm_slow_speed
mode.

Date Type Details
 2/27/09 Pg-15

2/14/07 Change
Update

Additional analysis and testing indicates that, in a test pattern, it is
legal to strobe in a cycle after MAR/VAR RESET. The restriction
which was added on 2/10/06 was removed from this manual (5
places). This restriction also appeared in the h2.0.11/h1.1.26
release notes. Notice of this change was included in the
h2.2.7/h1.2.7 release notes.

Revised some details in DBM & Multiple Sites-per-controller and
dbm_file_image_read() and
dbm_file_image_write()regarding the the use of the
HSBBoard argument when Sites-per-Controller > 1.

2/27/07 Updated
Correct

Updated the list of supported PatStopCond options and corrected
the description of several in Pattern Execution Stop Condition
Options, Pattern Execution Stop Condition Options, Pattern
Execution Stop Condition Options, Pattern Execution Stop
Condition Options, etc. Corrected Example 3: in
SCRAMBLE_32DUT Work-around.

3/2/07 Change
Changes to DBMTool segment selection controls to delete
segment tabs (which don’t work well when there are many
segments).

3/20/07 Update
Updated Pin Frequency Measurement (PFM) to add a 3rd range
(adds 32 counts to the original 80/5000 count options) which
lowers the minimum measurable frequency.

3/26/07 Correct Corrected errors in example code for gpio_direction_set()
and spi_cmd().

3/28/07 Change
Changed the type of the ui_TestStarted (see UI User
Variables) from VOID_VARIABLE to UINT64_VARIABLE. This is
backwards compatible.

4/9/07 Change
Changed the minimum window strobe width from 6nS to 5nS, to
match the Magnum product specification. See Timing
Specifications.

Date Type Details
 2/27/09 Pg-16

7/6/07 Delete

The use of “Functions, MACROs & Keywords” was removed
throughout the document. These only ever existed due to a
limitation in the documentation authoring program, to allow links to
individual words, tokens, etc. An alternative method has been
developed to allow these link targets to be inserted at the desired
locations.

8/8/07 Delete

The documentation of the APG User RAM, the USERRAM
Instruction and related sections were modified to remove all
references to features which are not currently supported by the
Magnum hardware and software.

9/14/07 Add
Added a new rule affecting Data Buffer Memory (DBM) use in test
patterns which are to be paused (MAR PAUSE) and restarted,
using restart() or restart_and_wait(). See page 1444.

9/20/07

Add
Change
Update
Delete

Significant changes in software release h2.2.11/h1.2.11.
Automated Pattern File Processing (APFP) was completely re-
implemented. DO read about this. User Variables Tool was
completely redesigned. Changed the value returned by
all_dps(), no_dps(), all_hv() and no_hv() to FALSE
(was TRUE) when the passed pin list is NULL or contains no pins.
Added all_pe() and no_pe(). Added Test Flow
Synchronization and related information. Added
rl_ohms_get(). In MixedSync Pattern Rules, added a new rule
(rule-8.) and updated rule-7. UseRel was modified to prompt the
user whether to execute StartServer. The use of
PTU_IRANGE_2UA through PTU_IRANGE_32MA is deprecated.
These were defined as equivalents to the less self-documenting
enum Range tokens (range1, range2, etc.). But, because future
system types will have similar but different ranges, the use of
these equivalents will create problems when, for example,
PTU_IRANGE_128UA equates to range4 on one system type and
range5 on another system type. This difference in range
selection affects the actual range of the voltage/current parameter,
with associated effects on resolution and accuracy. All references
to these equivalent tokens were removed from this document.

11/5/07 Correct Corrected information about which UDATA bits are used for X vs.
Y addresses in the table titled UDATA Bit Applications.

3/5/08 Add Added SimulationMode().

Date Type Details
 2/27/09 Pg-17

3/18/08 Add
Delete

Added Pattern Sets documentation. Deleted references to the
MAR READUDATAV and READUDATAZ operands; they were not
implemented.

3/26/08 Add
Updated

Complete re-write of MUX, Super-MUX and DDR documentation
(Super-MUX applies to Magnum 2 only). This includes adding a
separate timing diagram for Magnum 1/2 in DDR Strobe Timing &
Formats section.
Updated Magnum 1/2/2x Simulation Setup to support Magnum 2
(and 2x). This clarified some Magnum 1 details too.

4/8/08
Correct
Updated

Add

Corrected the description of how Pattern Sets operate when a
non-loaded test pattern is executed. All functions which execute
patterns and return PASS/FAIL return FAIL if a non-loaded test
pattern is executed (a warning is also issued). Previous
documentation incorrectly indicated that the test would return
PASS. Corrected the maximum number of supported VIHH Maps
from 128 to 64 (the Magnum hardware only ever supported 64
VIHH maps, the software allowed up to 128).
Updated the description of pmu_connect_at() operation to
include information about how PMU connections may be made in
force-voltage mode even when subsequent operation uses force-
current mode. Added information to Error Pipeline Requirements,
starting with Note:. This applies to logic patterns in which multiple
branch decisions are made based on errors which have already
been pipelined to the branch logic. Updated DBM DRAM
Interleaving, DBM Sequential Mode, DBM Usage Rules,
dbm_config_set() and dbm_config_get().

4/25/08 Add
Updated

Significant changes in software release h2.3.xx/h1.3.xx.
ecr_rams_update() operation was enhanced to stop tracking
ECR modifications after 16K changes using
ecr_error_delete(), ecr_error_set() and
ecr_area_clear(). See ecr_rams_update().
The function hold_pattern_state() is now silently ignored.
The related operation is now controlled by hardware, see Note:.
Added WaveTool (this tool is still evolving, as noted in the
documentation).

Date Type Details
 2/27/09 Pg-18

4/30/08 Add
Moved

Added Setting a Static Pin-state using Level Sets and related text
in Pin DC Static State Functions and Magnum 1/2/2x Test Pattern
Set/Tweak Parameter List. Moved Logical vs. Physical, vs.
Electrical Addresses to the Manipulating Tester Hardware section
from the Redundancy section.,

5/5/08 Add
Added a new rule to APG Timer Functions, page 1322, “If the
timer() function is used in Pattern Initial Conditions it must be
the last function specified.”.

6/2/08 Correct

Corrected the maximum negative DPS voltage to -15V, to match
the product specification. See DPS Force Voltage Range.
Corrected the voltage resolution of the Parametric Background
Voltage, to match the product specification. See Background
Voltage Range.

7/22/08 Update

Complete rewrite (updated) of the section [newly] titled DUT-pin to
Tester-pin Connection Requirements. This section was previously
titled, “DUT-to-Pin Connection Requirements“. The new version is
much simpler and better explains what is involved.

7/29/08 Add

Added Note: which explains the following APFP rule:

Note: APFP expects that the file name of test program
executable file (i.e. .../Debug/myProg.exe) matches the
file name of the Visual Studio project file (i.e. .../
myProg.dsp). If these file names do not match, APFP
execution will enter an end-less loop, continuously
compiling test patterns in stub mode.

Date Type Details
 2/27/09 Pg-19

8/4/08

Add
Update
Correct
Delete

Added the following note to the documentation for
pe_driver_mode_set(), pe_driver_mode_get(), “the
pe_driver_mode_set() function will not affect pins which are not
currently connected. This is an issue when pe_driver_mode_set()
is used in the Site Begin Block. The system software
automatically connects all PE pins in the Site Begin Block, but this
does not occur until after all user-code has been executed. For
this reason, it is recommended that pe_driver_mode_set() be
executed in a Before-testing Block or Test Block.“.
The COUNT Counter Operands section has been rewritten to
clarify and correct the operational description of related pattern
operands, most significantly the RELOAD# operand. These
changes also call attention to a difference in operation between
Maverick-I/-II and Magnum 1 vs. Magnum 2/2x.
Un-documented (deleted) the VAR Interrupt Operands for
Magnum 1. The related functionality will not be implemented. All
APG Interrupt Timer use requires the use of related MAR
Instructions which requires either a Memory Test Pattern or Mixed
Memory/Logic Pattern. Clarified logic pattern rules in Pattern Sets.

8/19/08 Add

Added ecr_configured_get(), lec_configured_get().
Added Note: to the Pattern Sets which states, “when a pattern set
includes a logic test pattern from a given .pat file then all patterns
in that .pat file must be included in the pattern set. This is required
even when some patterns in the file are not subsequently used or
executed. Proper pattern operation may not occur if this rule is
violated.“. Added Magnum System Type Get Function
(is_magnum()).

8/27/08 Update Updated the maximum frequency which can be measured using
Pin Frequency Measurement (PFM) from 83.3MHz to 113Mhz.

9/8/08 Add

Added a new rule to Error Pipeline Requirements, page 1272,
which applies in any test pattern which uses LVM (i.e. Logic Test
Patterns and Mixed Memory/Logic Patterns). The rule states,
"When using Logic Vector Memory (LVM) (i.e. in Logic Test
Patterns or Mixed Memory/Logic Patterns), all error pipeline
cycles must be executed using a single instruction which executes
immediately prior to the branch instruction. This rule was added 9/
8/2008.”.

Date Type Details
 2/27/09 Pg-20

10/14/08 Delete
The ecr_x_y_data_set() function was un-documented as a
way of deprecating its use. Use ecr_config_set(), to ensure
all dependent hardware and software is correctly configured.

10/22/08 Correct

Corrected the legal values for the address argument to
apg_user_ram_address_set(). Previously, the first value = 1,
now = 0. Similarly, the upper value was reduced by 1. Note that in
the pattern language the URAM1 token is equivalent to the
address value 0 when using apg_user_ram_address_set().

11/10/08 Add Added ecr_interleave_get(), ECR Hardware Size
Functions.

11/12/08 Change

“Magnum-III” was renamed to “Magnum 2x”
“Magnum-II” was renamed to “Magnum 2”
“Magnum-I” was renamed to “Magnum 1”.
The corresponding files on disk were also renamed.
Consolidated two sections with the same title into one location:
Mixed Memory/Logic Patterns.

12/1/08 Add Added information regarding the drive capabilies of SPI Port &
GPIO Port pins. See page 170.

1/4/08 Add Significant changes in software release h2.3.19.
Added STDF Software.

2/9/09 Correct Corrected the resolution value for the 8mA range in PTU Current
Force, Test & Measure Ranges (was 8uA, now 4uA).

2/12/09 Correct

Magnum 1’s maximum DBM read access rate in
t_dbm_sequential mode was incorrectly stated to be
20nS/50MHz. This was corrected to 30nS/33MHz in two places:
DBM Usage Rules and dbm_config_set().

2/26/08 Delete
Correct

Removed the “Note: not usable on Magnum 1” comments from
the VAR OVER, VCOMP and VPULSE operands, VEC/RPT OVER,
VCOMP, VPULSE and operands and VPINFUNC OVER, VCOMP,
VPULSE and operands. In the VAR Instruction section, corrected
how operands are grouped in VAR Error-control Operands and
VAR Misc Operands (some operands moved from one set to the
other). This has no effect on test program operation.

Date Type Details
 2/27/09 Pg-21

Table of Contents
Revision History ...3

Table of Contents..22

List Of Illustrations ...60

Chapter 1 Magnum System Overview ..67

1.1 Magnum Configurations ..69

1.2 Multi-Site System Architecture..70

1.3 Site Assembly Board..71

1.4 PE Sub-site Architecture ..72

1.5 Pin Electronics (PE) ...73
1.5.1 PE Driver ...76
1.5.2 PE Comparators ...80
1.5.3 Per-pin Parametric Test Unit (PTU) ..83
1.5.4 Error Flag vs. Error Latch..88
1.5.5 DC-only Pins..91

1.6 DC Sub-System..92
1.6.1 DUT Power Supply (DPS)...94
1.6.2 High Voltage Source/Measure Unit (HV) ...98
1.6.3 Parametric Measurement Unit (PMU)...100
1.6.4 Parametric Background Voltage ..104
1.6.5 DC Test and Measure System..105
1.6.6 DC Source Select MUX...107

1.6.6.1 DC Comparators and Error Logic.......................................108
1.6.6.2 DC A/D Converter ..109

1.7 Pattern and Timing System ..111
1.7.1 Overview..111
1.7.2 Pin Scramble MUX..112
1.7.3 Pin Scramble RAM..114
1.7.4 Timing & Formatting...115
1.7.5 System Clock ...123
 2/27/09 Pg-22

1.8 Algorithmic Pattern Generator (APG) ...123
1.8.1 APG Controller Engine..126

1.8.1.1 uRAM ...133
1.8.1.2 vRAM ...134

1.8.2 Branch-on-error Logic ...135
1.8.3 APG Address Generator ..141

1.8.3.1 Address TOPO RAM..144
1.8.4 APG Data Generator ..146

1.8.4.1 Data Inversion Logic ..147
1.8.4.2 JAM Logic ..149

1.8.5 APG Chip Selects ..151
1.8.6 APG Interrupt Timer..151
1.8.7 APG User RAM...153

1.8.7.1 User RAM Address Index Register155
1.8.8 Data Buffer Memory (DBM)...156

1.8.8.1 DBM Architecture ..157

1.9 Logic Vector Memory (LVM) ...157

1.10 Scan Vector Memory (SVM) ...160

1.11 Error Catch RAM (ECR) ...161
1.11.1 ECR Error Counters...165
1.11.2 ECR Mini-RAM ..166

1.12 DUT Board I/O Ports ...168
1.12.1 I2C Bus ..168
1.12.2 SPI Port & GPIO Port ..169

Chapter 2 Magnum 1, 2 & 2x Parallel Test.......................................171

2.1 Overview ..172
2.1.1 Multi-DUT Test Program ..173
2.1.2 Parallel Test Operation ..174
2.1.3 Using Getter Functions ..178

2.2 Types, Enums, etc. ...179

2.3 Active DUTs Set (ADS)...179
2.3.1 ADS Save/Modify/Restore Example ...185
2.3.2 active_duts_enable() ..186
 2/27/09 Pg-23

2.3.3 active_duts_disable() ...188
2.3.4 active_dut_get() ...191
2.3.5 active_duts_get()..191
2.3.6 max_dut()...193
2.3.7 multi_dut_features()...194
2.3.8 Active DUTs Set Iterators..194

2.4 Ignored DUTs Set (IDS) ..200
2.4.1 ignored_duts_enable() ...201
2.4.2 ignored_duts_disable()...204
2.4.3 ignored_duts_get() ...205

2.5 Multi-DUT Test Results...207
2.5.1 result_set(), result_get() ...210
2.5.2 results_set(), results_get() ..211
2.5.3 all_results_match()...213
2.5.4 any_results_match()...214

2.6 Functional Test Pattern Execution ...214

2.7 Functional Pin-pairs ...215

Chapter 3 Software..217

3.1 Software Architecture Overview..218
3.1.1 Test Program Overview ...218
3.1.2 Test Program Wizards ...219

3.1.2.1 Test Program Wizard Files ...219
3.1.3 Program Loading and Execution Order ...222
3.1.4 DUT Board Status Check ..224
3.1.5 Program Un-Loading and Execution Order.......................................226
3.1.6 Program Working Directory ..226
3.1.7 Retrieving the Nextest Software Version ..227

3.2 Test System Macros ...227
3.2.1 Macro Syntax...227

3.3 Specifying Units...228
3.3.1 MKS Units ...232

3.4 Special Data Types...237
 2/27/09 Pg-24

3.4.1 __int64 ...237

3.5 Types, Enums, etc. ...237

3.6 Magnum System Type Get Function ...240

3.7 output(), warning(), fatal(), vFormat() ...241
3.7.1 Output/Warning/Fatal Text Format Options......................................243
3.7.2 Redirecting Output Messages ..247

3.8 Configuring the Tester to the DUT ..252
3.8.1 DUT Board Connection Considerations ..253
3.8.2 DUT Pins ...254

3.8.2.1 dutpin_info() ...255
3.8.3 Pin Assignment Table ..256

3.8.3.1 ASSIGN_64DUT Work-around ...264
3.8.3.2 Sites-per-Controller ..266
3.8.3.3 Shared Tester Pins ..268
3.8.3.4 testerpin_name() ...269
3.8.3.5 testerpin_value() ...270
3.8.3.6 testerpin_offset() ...271
3.8.3.7 Pin Iteration...272

3.8.4 Pin Lists ...273
3.8.4.1 DUT-specific Pin Lists ...277
3.8.4.2 pinlist_create(), pinlist_destroy()..278
3.8.4.3 pin_info() ..279
3.8.4.4 all_dps() ..281
3.8.4.5 no_dps() ..282
3.8.4.6 all_hv()..283
3.8.4.7 no_hv()..284
3.8.4.8 all_pe() ..284
3.8.4.9 no_pe() ..285

3.9 Program Execution Control..287
3.9.1 Overview..287
3.9.2 Execution Context Functions...290
3.9.3 Configuration Macros ..292

3.9.3.1 Single Resource Types..294
3.9.3.2 Single Resource Runtime Selection....................................295

3.9.4 Host Begin Block...297
3.9.4.1 Host Waiting for Site to Load...298
 2/27/09 Pg-25

3.9.5 Host End Block..299
3.9.6 Site Begin Block ..299
3.9.7 Site End Block ...301
3.9.8 Tool Begin Block...302
3.9.9 Tool End Block..302
3.9.10 Initialization Hook ...303
3.9.11 Sequence & Binning Table ..305

3.9.11.1 Sequence & Binning Table Creation306
3.9.11.2 Sequence & Binning Test Flow..308
3.9.11.3 Multiple Sequence & Binning Tables.................................319
3.9.11.4 Modifying Sequence & Binning Tables320

3.9.12 Parking Blocks...321
3.9.13 Test Flow Synchronization ..323
3.9.14 Test Blocks ..328

3.9.14.1 Overview...328
3.9.14.2 Test Block Macros ..329
3.9.14.3 current_test_block() ..331
3.9.14.4 Sequential Test Block ...332
3.9.14.5 Test Block Integer Return Values.......................................333
3.9.14.6 Before-testing Block, After-testing Block334
3.9.14.7 Conflict List ..337
3.9.14.8 Conflict List Macros ...337
3.9.14.9 Test Numbers ..341
3.9.14.10Setup Numbers..342

3.9.15 Delay() ...344
3.9.16 Error Line Reset from CPU: reset_error() ...344
3.9.17 Control of Branch on Error Flag..345
3.9.18 Over-programming Control Stimulus Selection347
3.9.19 Binning...350

3.9.19.1 Test Bins ...351
3.9.19.2 Test Bin Groups ..352
3.9.19.3 Test Bin Functions ..354
3.9.19.4 Test Bin set()/get() Functions ...354
3.9.19.5 Test Bin increment()/decrement() Functions......................355
3.9.19.6 Test Bin reset_all_bins() Function......................................357
3.9.19.7 Test Bin total_all_bins() Function357
3.9.19.8 Test Bin set_bin()/get_bin() Functions358
3.9.19.9 Test Bin invoke() Function ...359
3.9.19.10Test Bin Group Functions...360
3.9.19.11Test Bin Group group_reset() Function..............................360
3.9.19.12Test Bin Group group_total() Function361
 2/27/09 Pg-26

3.9.19.13Test Bin Group group_bin() Function362

3.10 DC Functions ...364
3.10.1 Overview..364
3.10.2 Static DC Tests ..365
3.10.3 Dynamic DC Tests...366
3.10.4 Types, Enums, etc. ...369
3.10.5 Parametric Settling Time ...370

3.10.5.1 Built-in Settling Time ...372
3.10.6 measure() ...374
3.10.7 Measurement Average Count Functions..375
3.10.8 Retrieving DC Test Results ...377

3.11 DPS Functions..382
3.11.1 Overview..382
3.11.2 Types, Enums, etc. ...384
3.11.3 DPS Connect/Disconnect Functions ..384
3.11.4 DPS Voltage Programming Functions...386
3.11.5 DPS Output Mode..392
3.11.6 DPS Current Test Limit Functions ..394
3.11.7 DPS Static Current Test Functions ..398
3.11.8 DPS Dynamic Current Test Functions...401
3.11.9 DPS Vpulse Enable Functions...407
3.11.10 VPulse Function...409
3.11.11 DPS Current Sharing ...411
3.11.12 DPS Compensation Capacitors ..416
3.11.13 DPS 300mA/600mA DPS Option..419

3.11.13.1dps_ilimit_set(), dps_ilimit_get()419

3.12 High Voltage Source/Measure Unit (HV) Functions.....................422
3.12.1 Overview..422
3.12.2 HV Connect/Disconnect Functions ...423
3.12.3 HV Voltage Programming Functions ..424
3.12.4 HV Current Test Limit Functions..426
3.12.5 HV Voltage PASS/FAIL Limit Functions...428
3.12.6 HV Static Test Functions...430
3.12.7 HV Dynamic Test Functions ...434

3.13 PMU Functions ..442
3.13.1 Overview..443
3.13.2 Types, Enums, etc. ...445
 2/27/09 Pg-27

3.13.3 PMU Connect/Disconnect Functions...445
3.13.4 PMU Force Current Functions...445
3.13.5 PMU Current Test Limit Functions ...449
3.13.6 PMU Force Voltage Functions ..452
3.13.7 PMU Voltage Test Limit Functions...455
3.13.8 PMU Voltage Clamp Functions...459
3.13.9 Background Voltage Functions ...461
3.13.10 PMU Static Test Functions ..465
3.13.11 PMU Dynamic Test Functions ..472
3.13.12 start_ac_partest(), stop_ac_partest() ..481
3.13.13 ac_partest_results_store() ..484
3.13.14 PMU: Testing DPS Pins ..485
3.13.15 PMU: Testing HV Pins ..489
3.13.16 parametric_mode()...493
3.13.17 PMU as Voltage/Current Source ...494
3.13.18 PMU Compensation Capacitors...500

3.14 PTU Functions ...503
3.14.1 Overview..503
3.14.2 PTU Usage...505
3.14.3 PTU Connect/Disconnect Functions..506
3.14.4 PTU Force-current Functions ..506
3.14.5 PTU Current Test Limit Functions ..509
3.14.6 PTU Force-voltage Functions..512
3.14.7 PTU Voltage Test Limit Functions..514
3.14.8 PTU Voltage Clamp Functions..516
3.14.9 PTU Static Test Functions ...519
3.14.10 PTU Dynamic Test Functions..525
3.14.11 PTU as Voltage/Current Source ..535

3.15 Pin Electronics Voltages/Currents ...541
3.15.1 Pin Electronics Levels ...541
3.15.2 Types, Enums, etc. ...542
3.15.3 PE: Drive Voltages: VIH/VIL ...543
3.15.4 VIHH Voltage..546
3.15.5 PE Comparator Voltages: VOH/VOL ...548
3.15.6 PE Load Reference Voltage: VZ ...551
3.15.7 rl_set(), rl_get() ..556
3.15.8 rl_bitmask_get()...557
3.15.9 rl_ohms_get()...559
3.15.10 50-ohm Termination Voltage: VTT...560
 2/27/09 Pg-28

3.15.11 pe_driver_mode_set(), pe_driver_mode_get()561
3.15.12 PE Connect/Disconnect Functions...563

3.16 Pin Scramble Functions & Macros ..567
3.16.1 Overview..567
3.16.2 Pin Scramble Macros ...568

3.16.2.1 SCRAMBLE_32DUT Work-around577
3.16.3 Default Pin Scramble Map...579

3.17 VIHH Maps..582
3.17.1 Types, Enums, etc. ...585
3.17.2 VIHH Map Macros ..585

3.18 Timing and Formatting Functions..588
3.18.1 Overview..588
3.18.2 Magnum Timing Rules ..591
3.18.3 Time-sets (TSET) ..596
3.18.4 Types, Enums, etc. ...597
3.18.5 Timing Generator Modes...598
3.18.6 Cycle Time Functions..599
3.18.7 Timing Formats..601

3.18.7.1 Supported Timing Formats ...601
3.18.7.2 Window Strobe, Edge Strobe Modes..................................604
3.18.7.3 Drive Format vs. Strobe Format Selection605
3.18.7.4 APG Chip Select Drive Format Selection606
3.18.7.5 I/O Timing and Control ..606
3.18.7.6 Double Clock Mode..611

3.18.8 Programming Timing & Formats ..612
3.18.8.1 settime() ..612
3.18.8.2 setedge(), getedge()...617
3.18.8.3 Per-edge Functions: Drive/Strobe.......................................622
3.18.8.4 Per-edge Functions: I/O Edges ...626
3.18.8.5 getformat() ..629

3.18.9 Timing Examples ...631

3.19 MUX, Super-MUX and DDR ..632
3.19.1 Overview..633
3.19.2 Single Data Rate Mode (SDR)...636
3.19.3 Double Data Rate (DDR) Mode ..638

3.19.3.1 DDR Overview ...638
3.19.3.2 DDR Hardware Details ...641
 2/27/09 Pg-29

3.19.3.3 DDR Pin Scramble..643
3.19.3.4 DDR Test Patterns ..644
3.19.3.5 DDR Logic Vectors ..645
3.19.3.6 DDR Scan Vectors..647
3.19.3.7 DDR Memory Patterns ...647
3.19.3.8 DDR Timing ...649
3.19.3.9 DDR I/O Timing...655
3.19.3.10DDR Fail Signal MUX ...659
3.19.3.11DDR Fail Signal MUX: Logic Error Catch663
3.19.3.12DDR Fail Signal MUX: Memory Error Catch....................665

3.19.4 MUX Mode..668
3.19.5 Super-MUX Mode ...671
3.19.6 ECR in DDR, MUX and Super-MUX Modes671
3.19.7 MUX, Super-MUX & DDR Software ...671

3.19.7.1 Types, Enums, etc. ..672
3.19.7.2 mux_mode_set(), mux_mode_get()....................................672
3.19.7.3 mux_mode(), mux_mode_disable()....................................674
3.19.7.4 fail_signal_mux()..677

3.20 Pin Frequency Measurement (PFM) ..683
3.20.1 Overview..683
3.20.2 Pin Frequency Measurement Operation ..684
3.20.3 Pin Frequency Measure Software ..692

3.20.3.1 Types, Enums, etc. ..693
3.20.3.2 pin_frequency_meas() ..693
3.20.3.3 pin_frequency_meas_get()..695

3.21 Test Patterns ...697

3.22 Functional Tests ...700
3.22.1 Executing Functional Tests..701

3.22.1.1 Per Pin Error Status...704
3.22.1.2 Pattern Execution Start Vector, Stop Vector705

3.22.2 Patterns That Loop Forever ...707
3.22.3 Checking Pattern Execution State..709
3.22.4 Stopping Pattern Execution ...710
3.22.5 Restarting Paused Patterns...710
3.22.6 Testing for Stopped/Paused Patterns ...712
3.22.7 Holding State Between Patterns ..712

3.23 Manipulating Tester Hardware ..714
 2/27/09 Pg-30

3.23.1 Types, Enums, etc. ...714
3.23.2 Setting DUT Pin State..715
3.23.3 Pin DC Static State Functions..717
3.23.4 Setting DUT Address Pins State ..719
3.23.5 Setting DUT Data Pins States ..720
3.23.6 Setting DUT Chip Select Pin States ..721
3.23.7 Memory-pattern Related Functions ...722

3.23.7.1 APG Counter Functions..723
3.23.7.2 APG Reload Register Functions ...724
3.23.7.3 APG Reload Register Mode Functions...............................725
3.23.7.4 dmain(), dbase() ..726
3.23.7.5 APG Data Strobe Control ...727
3.23.7.6 APG Data Register Functions...734
3.23.7.7 APG Jam Register Functions..735
3.23.7.8 APG XMAIN & YMAIN Register Functions735
3.23.7.9 APG XBASE & YBASE Register Functions736
3.23.7.10APG XFIELD & YFIELD Register Functions...................737
3.23.7.11APG AMAIN, ABASE, AFIELD Set/Get Functions.........738
3.23.7.12Address Cross-over Bit Functions740
3.23.7.13APG Timer Interrupt Address Functions............................742
3.23.7.14find_label()..742
3.23.7.15APG Y-Index Register Functions744
3.23.7.16set_chip_select(), get_chip_select()....................................745
3.23.7.17set_adhiz(), get_adhiz() ..747
3.23.7.18set_invsns(), get_invsns() ...749
3.23.7.19get_jca(), set_jca() ..751
3.23.7.20set_ps(), get_ps()...758
3.23.7.21set_tset(), get_tset()...760
3.23.7.22set_udata(), get_udata() ..762
3.23.7.23set_vihh(), get_vihh()..764
3.23.7.24Get APG Fail Information ..766
3.23.7.25actualdata()..768
3.23.7.26expectdata()...770
3.23.7.27lvm_error_mode() ...771
3.23.7.28errmar() ...771
3.23.7.29find_mar() ...772
3.23.7.30find_by_mar(), find_by_var() ...774
3.23.7.31addrs() ...776
3.23.7.32label_offset() ...776
3.23.7.33Clearing APG Pipelines ..778
3.23.7.34Single-stepping APG Patterns ..778
 2/27/09 Pg-31

3.23.8 Logic Pattern Related Functions..779
3.23.8.1 VAR Counter Functions ...780
3.23.8.2 errvar() ..781
3.23.8.3 find_var() ..781
3.23.8.4 vecdata()..783
3.23.8.5 addrs() ...785
3.23.8.6 var_pinfunc() ..787

3.23.9 Scan Pattern Related Functions ...789
3.23.9.1 errsar(), prevsar(), dutsar()..789
3.23.9.2 find_sar()...790
3.23.9.3 scandata() ..791
3.23.9.4 get_scanpatterns() ...791
3.23.9.5 load_scan_from_file()...791

3.23.10 Board Functions...792
3.23.10.1BoardPresent() ..792
3.23.10.2board_type()..793
3.23.10.3SerialNumber() ...793

3.23.11 DUT Board I/O Port Functions..793
3.23.11.1Types, Enums, etc. ..793
3.23.11.2I2C Bus Functions ..794
3.23.11.3gpio_mode_set() ...797
3.23.11.4gpio_direction_set() ..798
3.23.11.5gpio_value_set(), gpio_value_get()799
3.23.11.6spi_cmd() ..800

3.23.12 Loadboard Board Data Bits ...801
3.23.13 DUT Board ID and DUT Board User Data Area...............................803

3.23.13.1PWA/PWB Number and Revision Get Functions803

3.24 Data Buffer Memory Software (DBM)..805
3.24.1 Overview..806
3.24.2 DBM DRAM Interleaving ...808
3.24.3 DBM Sequential Mode ..809
3.24.4 DBM Usage Rules ...811
3.24.5 DBM Data Widths ...813
3.24.6 Masked vs. Un-masked DBM Operations ...814
3.24.7 DBM & Multiple Sites-per-controller ...815
3.24.8 DBM Configuration Tables ...817
3.24.9 Types, Enums, etc. ...817
3.24.10 dbm_config_set() ...818
3.24.11 dbm_config_get()...821
3.24.12 DBM Segment Selection ...822
 2/27/09 Pg-32

3.24.13 dbm_num_segments_get()...824
3.24.14 dbm_fill() ...825
3.24.15 dbm_write() ...827
3.24.16 dbm_read()...831
3.24.17 dbm_file_image_write() ..836
3.24.18 dbm_file_image_read()..838
3.24.19 DBM Data File Format ..839
3.24.20 DBM Address Masks...843
3.24.21 dbm_pattern_use() ...845
3.24.22 datbuf()...846

3.25 Error Catch RAM Software ...848
3.25.1 Overview..848
3.25.2 ECR Functions...850

3.25.2.1 Types, Enums, etc. ..851
3.25.2.2 ecr Data Type..853
3.25.2.3 PointFailure Structure ...853
3.25.2.4 PointFailure Memory Management854
3.25.2.5 ecr_all_clear() ...856
3.25.2.6 ecr_any_overflow_get()..857
3.25.2.7 ecr_column_ram_scan()..858
3.25.2.8 ecr_compare_reg_set(), ecr_compare_reg_get()860
3.25.2.9 ecr_config_set() ..862
3.25.2.10ecr_config_get()..868
3.25.2.11ecr_configured_get()...870
3.25.2.12ecr_interleave_get() ..871
3.25.2.13ECR Hardware Size Functions ...872
3.25.2.14ecr_counters_config_set(), ecr_counters_config_get()873
3.25.2.15ecr_dut_number_set(), ecr_dut_number_get()875
3.25.2.16ecr_fast_image_write(), ecr_fast_image_read()877
3.25.2.17ecr_file_image_write(), ecr_file_image_read()879
3.25.2.18ecr_main_ram_scan()..880
3.25.2.19ecr_cache_enable() ...886
3.25.2.20ecr_miniram_config_set(), ecr_miniram_config_get()887
3.25.2.21ecr_miniram_scan() ..892
3.25.2.22ecr_overflow_get()..894
3.25.2.23ecr_row_ram_scan() ...895
3.25.2.24ecr_write_mode_set(), ecr_write_mode_get()....................897
3.25.2.25ecr_area_clear() ..897
3.25.2.26ecr_col_ram_read() ...900
3.25.2.27ecr_col_ram_write()..901
 2/27/09 Pg-33

3.25.2.28ecr_counters_clear()..903
3.25.2.29ecr_error_add() ...904
3.25.2.30ecr_all_tecs_get(), ecr_all_ioc_get()906
3.25.2.31ecr_error_counter_set(), ecr_error_counter_get()907
3.25.2.32ecr_error_delete()..908
3.25.2.33ecr_error_get() ..910
3.25.2.34ecr_error_set()...911
3.25.2.35ecr_miniram_read() ..912
3.25.2.36ecr_miniram_write() ...914
3.25.2.37ecr_rams_clear() ...916
3.25.2.38ecr_rams_update() ..917
3.25.2.39ecr_row_ram_read()..919
3.25.2.40ecr_row_ram_write() ..920
3.25.2.41ecr_scramble_bank_set(), ecr_scramble_bank_get()..........922
3.25.2.42ecr_scramble_ram_write(), ecr_scramble_ram_read()923
3.25.2.43ecr_x_y_data_set()..924

3.25.3 ECR DDR Functions ...924
3.25.3.1 ecr_ddr_mode_set(), ecr_ddr_mode_get()..........................925

3.25.4 ECR Simulation ...926
3.25.4.1 Magnum 1 vs. Maverick ECR Functions............................927

3.26 Logic Error Catch (LEC) ...930
3.26.1 Overview..930
3.26.2 LEC Counters ..931
3.26.3 VAR/SAR Description ..934
3.26.4 LEC Mode..937
3.26.5 LEC Capture Options...938
3.26.6 DDR LEC Operation ...939
3.26.7 Types, Enums, etc. ...940
3.26.8 lec_config_set() ...941
3.26.9 lec_config_get() ...942
3.26.10 lec_configured_get() ..944
3.26.11 lec_mode_set(), lec_mode_get()..945
3.26.12 lec_scan() ...947
3.26.13 LEC Capture Data..949
3.26.14 Magnum 1/2/2x vs. Maverick-I/-II LEC Software Compatibility955

3.27 Waveform Functions..956
3.27.1 Waveform Overview..958
3.27.2 Waveform* Attributes ...958
3.27.3 Waveform Terminology ..961
 2/27/09 Pg-34

3.27.4 Waveform Mathematical View..962
3.27.5 Decibel (dB)...963
3.27.6 Waveform File Formats ...967

3.27.6.1 Nextest Waveform File Format (.nwav)968
3.27.6.2 .nwav Grammar Description...968

3.27.7 Types, Enums, etc. ...969
3.27.8 Waveform Sample Value Notations ..972
3.27.9 Waveform Units...975

3.27.9.1 Units Applications ..979
3.27.10 Waveform Macros ...979
3.27.11 waveform_create(), waveform_destroy() ..982
3.27.12 waveform_invalidate()...983
3.27.13 Waveform Generate Functions ..984

3.27.13.1waveform_generate_triangle_wave()984
3.27.13.2waveform_generate_sine_wave()986
3.27.13.3waveform_generate_ramp()..988
3.27.13.4waveform_generate_square_wave()990
3.27.13.5waveform_generate_gaussian_noise()................................992
3.27.13.6waveform_generate_white_noise().....................................993
3.27.13.7waveform_generate_periodic_white_noise()......................995
3.27.13.8waveform_generate_periodic_pink_noise()996
3.27.13.9waveform_generate_DC() ..998
3.27.13.10waveform_constant_fill()..999
3.27.13.11waveform_randomize(), waveform_reset_random_seed()1000

3.27.14 Waveform File Write/Read Functions ...1001
3.27.15 waveform_fetch(), waveform_send() ..1003
3.27.16 Waveform Name, Date, Type and Version Information1004

3.27.16.1waveform_dump() ..1005
3.27.16.2waveform_get_date(), waveform_set_date()1005
3.27.16.3waveform_get_name() ..1006
3.27.16.4waveform_get_typename() ...1007
3.27.16.5waveform_get_version() ...1008
3.27.16.6Waveform Set/Get X/Y Units Functions1009
3.27.16.7reciprocal()..1010

3.27.17 Waveform Sample Programming ..1011
3.27.17.1waveform_set_rrect()..1012
3.27.17.2waveform_get_rrect() ...1015
3.27.17.3waveform_set_rlong()...1017
3.27.17.4waveform_get_rlong() ..1020
3.27.17.5waveform_set_crect() ...1022
3.27.17.6waveform_get_crect() ...1024
 2/27/09 Pg-35

3.27.17.7waveform_set_polar() ...1026
3.27.17.8waveform_get_polar() ..1028
3.27.17.9waveform_get_x_start()..1029
3.27.17.10waveform_get_x_increment()...1030
3.27.17.11waveform_set_x_scale() ...1030
3.27.17.12waveform_get_size() ..1032
3.27.17.13waveform_get_element(), waveform_set_element()1032
3.27.17.14waveform_set_signal_spread(),

waveform_get_signal_spread()...1034
3.27.17.15waveform_zero_pad() ...1035

3.27.18 Waveform Manipulation Functions ...1036
3.27.18.1waveform_absolute_value()..1037
3.27.18.2waveform_add()..1038
3.27.18.3waveform_clamp()..1041
3.27.18.4waveform_concat() ...1042
3.27.18.5waveform_copy()..1043
3.27.18.6waveform_decimate() ...1044
3.27.18.7waveform_differencing() ..1046
3.27.18.8waveform_divide()..1047
3.27.18.9waveform_double_strided_copy()1050
3.27.18.10waveform_integerize()..1053
3.27.18.11waveform_join_complex()..1054
3.27.18.12waveform_join_polar() ...1055
3.27.18.13waveform_lookup() ..1055
3.27.18.14waveform_make_complex() ...1056
3.27.18.15waveform_multiply() ..1057
3.27.18.16waveform_negate() ...1060
3.27.18.17waveform_polar_to_rectangular()1061
3.27.18.18waveform_reciprocal()..1062
3.27.18.19waveform_rectangular_to_polar()1063
3.27.18.20waveform_replace_subset() ..1064
3.27.18.21waveform_resample() ...1065
3.27.18.22waveform_rescale() ..1066
3.27.18.23waveform_reverse() ..1068
3.27.18.24waveform_rotate_left(), waveform_rotate_right()..........1068
3.27.18.25waveform_sort()..1070
3.27.18.26waveform_split()...1071
3.27.18.27waveform_strided_copy() ...1072
3.27.18.28waveform_subset()..1075
3.27.18.29waveform_subtract() ...1076
3.27.18.30waveform_sum() ...1079
 2/27/09 Pg-36

3.27.18.31waveform_summing()...1079
3.27.19 Waveform Equality Functions ...1080

3.27.19.1waveform_gt() ..1080
3.27.19.2waveform_lt() ...1082
3.27.19.3waveform_ge()..1083
3.27.19.4waveform_le()...1085
3.27.19.5waveform_eq()..1086
3.27.19.6waveform_within_bounds()..1089

3.27.20 Waveform Conversion Functions ..1091
3.27.20.1waveform_binary_to_gray_code()....................................1092
3.27.20.2waveform_gray_code_to_binary()....................................1093
3.27.20.3waveform_binary_to_bcd() ..1094
3.27.20.4waveform_bcd_to_binary() ..1096
3.27.20.5waveform_binary_to_ones_complement()1096
3.27.20.6waveform_ones_complement_to_binary()1098
3.27.20.7waveform_binary_to_twos_complement()1099
3.27.20.8waveform_twos_complement_to_binary()1100
3.27.20.9waveform_binary_to_offset_binary()1101
3.27.20.10waveform_offset_binary_to_binary()1103
3.27.20.11waveform_binary_to_sign_and_magnitude()1103
3.27.20.12waveform_sign_and_magnitude_to_binary()1105

3.27.21 Waveform Boolean Functions ...1106
3.27.21.1Waveform Logical Functions ...1106
3.27.21.2waveform_select_indices() ...1108
3.27.21.3waveform_select_elements() ..1110
3.27.21.4waveform_selective_merge()..1112
3.27.21.5waveform_reorder() ..1114

3.27.22 Waveform Bitwise Functions ..1116
3.27.22.1waveform_bitwise_or()...1116
3.27.22.2waveform_bitwise_and() ..1117
3.27.22.3waveform_bitwise_xor()...1119
3.27.22.4waveform_bitwise_shift_left()..1120
3.27.22.5waveform_bitwise_shift_right()1121
3.27.22.6waveform_bitwise_rotate_left()..1122
3.27.22.7waveform_bitwise_rotate_right()1124
3.27.22.8waveform_bitwise_reverse() ..1125
3.27.22.9waveform_bitwise_reorder() ..1127

3.27.23 Waveform Logrithmic Functions...1129
3.27.23.1waveform_log(), waveform_log10()1129
3.27.23.2waveform_exp(), waveform_exp10()1131
3.27.23.3waveform_power()..1132
 2/27/09 Pg-37

3.27.24 Waveform Window Functions...1133
3.27.24.1waveform_apply_window()..1135
3.27.24.2Waveform Windowing Coefficient Functions..................1136
3.27.24.3waveform_dolph_chebyshev_window_coefficients()1137

3.27.25 Waveform Convolution/Corrleation Functions1138
3.27.25.1waveform_convolve_linear()..1139
3.27.25.2waveform_convolve_partial()...1140
3.27.25.3waveform_convolve_circular()...1141
3.27.25.4waveform_correlate_linear() ..1142
3.27.25.5waveform_correlate_circular() ...1143
3.27.25.6waveform_autocorrelate_circular()1144
3.27.25.7waveform_covariance() ..1145

3.27.26 Waveform Wierd Functions...1147
3.27.26.1vecmem_modify()...1147
3.27.26.2waveform_enob()..1149
3.27.26.3waveform_index_to_time() ..1150
3.27.26.4waveform_settling_time()...1151

3.27.27 Waveform Compression Functions ...1152
3.27.27.1waveform_mu_law_encode() ...1153
3.27.27.2waveform_mu_law_decode() ...1154
3.27.27.3waveform_a_law_encode()...1155
3.27.27.4waveform_a_law_decode()...1156

3.27.28 Waveform FFT Functions..1158
3.27.28.1waveform_complex_fft(), waveform_complex_ifft()1158
3.27.28.2waveform_real_fft(), waveform_real_ifft()1159
3.27.28.3waveform_real_ifft_even(), waveform_real_ifft_odd() ...1161
3.27.28.4waveform_set_odd_flag(), waveform_get_odd_flag()1162
3.27.28.5FFT Aliasing ...1163

3.27.29 Waveform Analysis Functions...1163
3.27.29.1waveform_average() ...1164
3.27.29.2waveform_arithmetic_mean()...1165
3.27.29.3waveform_clip_upper(), waveform_clip_lower()1166
3.27.29.4waveform_deinterleave() ..1167
3.27.29.5waveform_eq()..1168
3.27.29.6waveform_geometric_mean() ...1169
3.27.29.7waveform_histogram()..1170
3.27.29.8waveform_interleave()..1172
3.27.29.9waveform_linear_regression() ..1173
3.27.29.10waveform_magnitudes() ...1174
3.27.29.11waveform_median()..1175
3.27.29.12waveform_min_max() ..1176
 2/27/09 Pg-38

3.27.29.13waveform_quantize() ..1177
3.27.29.14waveform_rms()..1179
3.27.29.15waveform_sfdr() ...1179
3.27.29.16waveform_signals_and_noise()1181
3.27.29.17waveform_sinad() ...1182
3.27.29.18waveform_snr()...1184
3.27.29.19waveform_standard_deviation()1185
3.27.29.20waveform_sum_of_squares()..1186
3.27.29.21waveform_thd() ..1187
3.27.29.22waveform_variance() ..1188

3.27.30 INL & DNL Functions...1189
3.27.30.1waveform_adc_ramp_inl_dnl() ..1192
3.27.30.2waveform_adc_sine_inl_dnl() ..1194
3.27.30.3waveform_dac_ramp_inl_dnl() ..1196

Chapter 4 Test Pattern Programming ..1199

4.1 Overview ..1201

4.2 Magnum 1/2/2x Pattern Features ..1205
4.2.1 Magnum 1/2/2x Memory Pattern Instructions.................................1206
4.2.2 Magnum 1/2/2x Logic Vector Instructions......................................1208

4.3 Adding a New Pattern File to the Project.....................................1210
4.3.1 Automated Pattern File Processing (APFP).....................................1211

4.3.1.1 Overview...1212
4.3.1.2 APFP Dialog ...1213
4.3.1.3 Build (Compile) Operation ...1218
4.3.1.4 APFP Migrating from Older Versions..............................1223

4.4 Use of #include pattern.h file(s)...1226

4.5 Pattern Files and Folders/Directories ...1227
4.5.1 Pattern Sub-directory Contents ..1227

4.6 Compiling Test Patterns...1228

4.7 Pattern Loading ..1229
4.7.1 Pattern Load PATH ...1230
4.7.2 Pattern Sets ..1231

4.8 Pattern Overview and Naming ...1242
 2/27/09 Pg-39

4.8.1 Pattern Attributes ...1243
4.8.1.1 Pattern System Attributes ..1247
4.8.1.2 Pattern Rate Attributes..1248
4.8.1.3 Pattern Type Attributes..1250
4.8.1.4 Setting Attributes Directly ..1251
4.8.1.5 Setting Attribute Defaults ...1251

4.8.2 Pattern Instruction Identifier (%) ...1252
4.8.3 Comments in Test Patterns ..1252
4.8.4 Pattern Initial Conditions ...1253
4.8.5 Pattern Labels ..1255
4.8.6 Pattern #Include Files ..1257
4.8.7 C Preprocessor Support ...1257

4.8.7.1 #define ..1259
4.8.7.2 Newline in Test Pattern Macros..1260

4.8.8 Test Pattern Line Continuation Character1261

4.9 MAR DONE and/or VAR DONE..1261

4.10 Pattern Subroutines ..1265

4.11 Error Pipeline Requirements ..1269

4.12 Algorithmic Pattern Generator (APG) Configuration..................1275
4.12.1 Types, Enums, etc. ...1276
4.12.2 APG Address Mask Functions...1277
4.12.3 YMAX, XMAX, and AMAX ..1280
4.12.4 Fast Address Axis ..1281
4.12.5 APG Chip Select Polarity Control Function....................................1282
4.12.6 APG Chip Select Drive/Strobe Polarity Functions..........................1284
4.12.7 APG Data Generator I/O Control Function1286
4.12.8 APG Drive/Expect Data Latency Functions....................................1286
4.12.9 PE Channel Forced I/O State ...1289
4.12.10 APG Data Register Width Selection Function1290
4.12.11 APG JAM Logic Configuration Functions......................................1292

4.12.11.1apg_jam_mode_set(), apg_jam_mode_get()1292
4.12.11.2apg_jam_ram_set(), apg_jam_ram_get()..........................1293
4.12.11.3apg_jam_ram_address_set(), apg_jam_ram_address_get()1295

4.12.12 APG User RAM Functions ..1296
4.12.12.1apg_userram_value_set(), apg_userram_value_get()1297
4.12.12.2apg_user_ram_address_set(), apg_user_ram_address_get()1299

4.12.13 APG Data Buffer Memory Configuration1300
 2/27/09 Pg-40

4.12.14 APG Data Inversion Enable Functions ..1300
4.12.15 APG Data Inversion Bank Select Functions....................................1302
4.12.16 APG Background Data Inversion Function1304
4.12.17 APG Bit-2 Data Inversion Function ..1307
4.12.18 APG Background Bank-A, Bank-B Inversion.................................1308
4.12.19 APG Data Topological Inversion (DTOPO) Function1312
4.12.20 APG Data TOPO RAM Load Functions ...1314
4.12.21 Logical vs. Physical, vs. Electrical Addresses.................................1317
4.12.22 APG Address Topo RAM Load Functions......................................1320
4.12.23 APG Timer Functions..1322

4.13 Memory Test Patterns ..1324
4.13.1 Overview..1325
4.13.2 Memory Pattern Instruction Format ..1326
4.13.3 Default Memory Pattern Instruction ..1328
4.13.4 APG Instruction Execution..1328
4.13.5 APG Address Generator Overview..1330
4.13.6 YALU Instruction ..1331
4.13.7 XALU Instruction ..1334

4.13.7.1 YALU/XALU SourceA/SourceB Operands1337
4.13.7.2 YALU/XALU Carry/Borrow Operands1339
4.13.7.3 YALU/XALU Function Operands....................................1343
4.13.7.4 YALU/XALU Destination Operands1344
4.13.7.5 YALU/XALU Addressout Operands................................1346

4.13.8 COUNT Instruction ..1347
4.13.8.1 COUNT Counter Operands ..1349
4.13.8.2 COUNT Function Operands ...1351
4.13.8.3 COUNT Autoreload Operands ...1352

4.13.9 MAR Instruction ..1354
4.13.9.1 MAR Default Pattern Instruction......................................1359
4.13.9.2 MAR Branch Condition Operands1360
4.13.9.3 MAR Address Operand ..1377
4.13.9.4 MAR Strobe Control Operands ..1377
4.13.9.5 MAR Interrupt Operands ..1379
4.13.9.6 MAR Timer Operands ..1381
4.13.9.7 MAR Misc Operands ..1382
4.13.9.8 MAR BOE Type Operands...1385
4.13.9.9 MAR Error-choice Operands..1388
4.13.9.10Static Error Choice Functions, Branch-on-error...............1416
4.13.9.11DUT-pin to Tester-pin Connection Requirements............1418

4.13.10 CHIPS Instruction..1420
 2/27/09 Pg-41

4.13.10.1CHIPS Chip-select-control Operands...............................1421
4.13.10.2CHIPS Misc Operands..1424

4.13.11 DATGEN Instruction...1425
4.13.11.1DATGEN Source Operands..1430
4.13.11.2DATGEN Dest Operand...1431
4.13.11.3DATGEN Drfunc Operand...1432
4.13.11.4DATGEN Yindex Operands ...1435
4.13.11.5DATGEN Equality Function Operands............................1436
4.13.11.6DATGEN Background Function Operands......................1440
4.13.11.7DATGEN Invert Sense Operand1442
4.13.11.8DATGEN Dataout Operand..1443
4.13.11.9DATGEN Udatajam Operands ...1446
4.13.11.10DATGEN Dbmwr Operand ..1447

4.13.12 UDATA Instruction ...1448
4.13.13 PINFUNC Instruction ..1451
4.13.14 USERRAM Instruction...1455

4.13.14.1USERRAM Operation Operands......................................1457
4.13.14.2USERRAM SourceA Operands..1458
4.13.14.3USERRAM SourceB Operands ..1459

4.13.15 Minmax Pattern Example ..1460
4.13.16 Adaptive Programming Pattern Example ..1462
4.13.17 Over-programming Controls and Parallel Test................................1466

4.14 ...Logic Test Patterns1571
4.14.1 Overview..1571
4.14.2 Logic Vector Syntax ..1573

4.14.2.1 Logic Vector Bit Codes ..1576
4.14.2.2 3-bits per Pin...1578

4.14.3 Magnum 1/2/2x Logic Pattern Rules ...1579
4.14.3.1 LVM Branch/Label Limitations1580

4.14.4 VECDEF Compiler Directive..1582
4.14.4.1 VECDEF per Pin Assignment Table1586

4.14.5 VEC Pattern Instruction...1587
4.14.6 RPT Pattern Instruction ...1588
4.14.7 Optional VEC/RPT Instruction Parameters1589
4.14.8 STARTLOOP / ENDLOOP Logic Vector Instructions1594
4.14.9 VAR Instruction...1596

4.14.9.1 VAR Branch-condition Operands.....................................1599
4.14.9.2 VAR Address Operand ...1612
4.14.9.3 VAR Interrupt Operands...1613
4.14.9.4 VAR Error-control Operands..1613
 2/27/09 Pg-42

4.14.9.5 VAR Misc Operands...1616
4.14.10 VCOUNT Instruction ..1618

4.14.10.1VCOUNT Counter Operands..1621
4.14.10.2VCOUNT Function Operands ..1621
4.14.10.3VCOUNT Autoreload Operands1622

4.14.11 VPINFUNC Instruction ...1623
4.14.12 VUDATA Instruction ..1628
4.14.13 Sync Loops ..1629

4.15 Scan Test Patterns ..1630
4.15.1 Overview..1631
4.15.2 SCANDEF Compiler Directive ...1634
4.15.3 SVEC Pattern Instruction...1637
4.15.4 Datalogging Scan Failures ...1639

4.16 Mixed Memory/Logic Patterns ...1639

4.17 Controlling PE Levels from the Test Pattern1648
4.17.1 Controlling Magnum 1 Levels from the Test Pattern1649

4.17.1.1 LSENABLE Pattern Instruction1658
4.17.1.2 LEVELSET Pattern Instruction ..1662
4.17.1.3 Setting a Static Pin-state using Level Sets........................1666
4.17.1.4 changes_voltages()..1669
4.17.1.5 level_set_value_change()..1670

Chapter 5 Redundancy Analysis (RA) ..1674

5.1 Overview and Concepts ...1675
5.1.1 RA Pseudo-Code Example ..1679
5.1.2 RA Data and Lists..1683
5.1.3 RaErrorPosition ...1685
5.1.4 RA vs. Magnum 1/2 Parallel Test..1688
5.1.5 Must-repair vs. Sparse-repair...1690

5.2 Spares For Repair ...1691
5.2.1 Spare Rows, Spare Columns..1691
5.2.2 Per I/O Spares ..1693
5.2.3 Per-I/O Spare Mask ...1697
5.2.4 Rows-Used-Together(RUT), Columns-Used-Together(CUT)........1700
5.2.5 Spare Segments..1702
 2/27/09 Pg-43

5.3 RA Software...1703
5.3.1 Types, Enums, etc. ...1704
5.3.2 RA Configuration ..1706

5.3.2.1 ra_config_set() ..1706
5.3.2.2 ra_config_get()..1709

5.3.3 RA Segment ...1710
5.3.3.1 Linked Segments...1711
5.3.3.2 ra_segment_make()...1713
5.3.3.3 ra_segment_config_get() ..1715
5.3.3.4 ra_segment_count_get()..1717
5.3.3.5 ra_segment_get() ..1718
5.3.3.6 ra_segment_id_get() ...1719
5.3.3.7 ra_segment_lookup() ..1720
5.3.3.8 ra_max_bad_segments_set(), ra_max_bad_segments_get()1721
5.3.3.9 ra_segment_linkage_count_get()......................................1722

5.3.4 RA Spares ..1723
5.3.4.1 ra_spare_row_make(), ra_spare_col_make()....................1724
5.3.4.2 ra_spare_add() ..1729
5.3.4.3 ra_spare_config_get() ...1730
5.3.4.4 ra_usable_set() ..1732
5.3.4.5 ra_unusable_set() ..1733
5.3.4.6 ra_spare_row_count_get(), ra_spare_col_count_get()1734
5.3.4.7 ra_spare_row_get(), ra_spare_col_get()1736
5.3.4.8 ra_spare_id_get() ..1737
5.3.4.9 ra_spare_row_lookup(), ra_spare_col_lookup()...............1738
5.3.4.10 ra_spare_rows_get(), ra_spare_cols_get()1739
5.3.4.11 ra_spare_colnum_set(), ra_spare_colnum_get()...............1740
5.3.4.12 ra_spare_rownum_set(), ra_spare_rownum_get()1740
5.3.4.13 ra_spare_position_set(), ra_spare_position_get()1742
5.3.4.14 ra_spare_mask_count_get() ..1743
5.3.4.15 ra_spare_mask_get() ...1744
5.3.4.16 ra_spare_current_mask_set(), ra_spare_current_mask_get()1745
5.3.4.17 ra_shortest_spare_row_get(), ra_shortest_spare_col_get()1747

5.3.5 RA Execution And Results ..1748
5.3.5.1 ra_execute() ..1749
5.3.5.2 ra_result_get() ...1754
5.3.5.3 ra_error_count_get() ...1755
5.3.5.4 ra_dump()..1756
5.3.5.5 ra_segment_dump() ..1760
5.3.5.6 ra_spare_dump() ...1762
5.3.5.7 ra_must_repair()..1763
 2/27/09 Pg-44

5.3.5.8 ra_must_repair_needed() ..1764
5.3.5.9 ra_reset() ...1765
5.3.5.10 ra_segment_reset()..1766
5.3.5.11 ra_repair_done()..1767
5.3.5.12 ra_spare_use() ...1768
5.3.5.13 ra_bad_segments_count_get() ..1770
5.3.5.14 ra_bad_segment_get()...1770
5.3.5.15 ra_segment_repair_done() ..1771
5.3.5.16 ra_error_add() ...1772
5.3.5.17 ra_scan_area_callback()..1773
5.3.5.18 ra_scan_area_callback_func_set() ,
ra_scan_area_callback_func_get()1774
5.3.5.19 ra_scan_rc_func_set(), ra_scan_rc_func_get()1775
5.3.5.20 ra_worst_row_get(), ra_worst_col_get()1777
5.3.5.21 ra_best_row_wipeout(), ra_best_col_wipeout()1779
5.3.5.22 ra_wipeout_get() ...1782
5.3.5.23 ra_spare_rows_required(), ra_spare_cols_required()1783
5.3.5.24 ra_failed_rows_count_get(), ra_failed_cols_count_get() .1785
5.3.5.25 ra_failed_rows_get(), ra_failed_cols_get().......................1787
5.3.5.26 ra_worst_rows_get(), ra_worst_cols_get()1792
5.3.5.27 ra_row_wipeout(), ra_col_wipeout()1793

5.3.6 Repair List Functions...1797
5.3.6.1 ra_repaired_row_count_get(), ra_repaired_col_count_get()1798
5.3.6.2 ra_repaired_row_get(), ra_repaired_col_get()..................1799
5.3.6.3 ra_repaired_rows_get(), ra_repaired_cols_get()...............1801
5.3.6.4 ra_what_repaired_row_get(), ra_what_repaired_col_get()1803
5.3.6.5 ra_spare_repaired_errors_get() ...1805

5.3.7 Redundancy Call-back Functions ..1806
5.3.7.1 RaRowAvailableFunc & RaColAvailableFunc Call-back Func-
tion 1807
5.3.7.2 RaSparseFunc Call-back Function....................................1809
5.3.7.3 RaEvalFunc Call-back Function.......................................1813
5.3.7.4 RaRepairFunc Call-back Function....................................1815
5.3.7.5 RaRowUseOK & RaColUseOK Call-back Functions......1817
5.3.7.6 RaMustRepairFunc Call-back Function1819
5.3.7.7 RaScanRCFunc Call-back Function1820
5.3.7.8 RaScanAreaCallbackFunc Call-back Function1821

5.4 Magnum RA vs. Maverick-I/-II RA...1823
5.4.0.1 Magnum vs. Maverick RA Functions...............................1824
 2/27/09 Pg-45

Chapter 6 Interactive Tools ...1831

6.1 UI - User Interface ...1831
6.1.1 UI Overview ..1832
6.1.2 Before Starting UI..1832

6.1.2.1 ui.ini File ...1834
6.1.3 Starting UI from Windows ..1835
6.1.4 Starting UI from a Command Line ..1836
6.1.5 Magnum 1/2/2x Simulation Setup ...1836

6.1.5.1 SimulationMode() ...1844
6.1.6 UI Initial Display ...1845
6.1.7 UI Advanced Option Controls ...1846
6.1.8 UI Main Display ..1847

6.1.8.1 UI File Menu...1848
6.1.8.2 UI Window Hide and Dock ..1852

6.1.9 UI Sequence and Binning sub-window ...1853
6.1.9.1 Modifying the Sequence and Binning Table1856
6.1.9.2 Save/Load Sequence/Binning Table Modifications1860
6.1.9.3 Executing the Sequence and Binning Table1864
6.1.9.4 Starting the Breakpoint Monitor1865

6.1.10 Ui View Menu ...1865
6.1.10.1 UI Output Window ...1868

6.1.11 Ui Tools Menu ...1869
6.1.12 User Menus in UI...1870
6.1.13 User Icons in UI Tool Bar..1874
6.1.14 Host/Site/Tool Debug Mode(s)..1878

6.1.14.1 User Tool Debug...1885

6.2 UI Tool Persistence ..1887

6.3 BitmapTool ..1891
6.3.1 ECR Setup..1894
6.3.2 Invoking BitmapTool...1895
6.3.3 BitmapTool Control Dialog ...1896

6.3.3.1 BitmapTool Display Mode ...1899
6.3.4 BitmapTool Zoom Controls...1902
6.3.5 BitmapTool Separate Window Option ..1904
6.3.6 BitmapTool Visible Fail Count Display ..1906
6.3.7 Fail Count Enable Controls..1906
6.3.8 BitmapTool Callback Macros ...1907
6.3.9 BitmapTool UI Variables...1912
 2/27/09 Pg-46

6.3.10 Bitmap Schemes ..1913
6.3.10.1 Overview...1914
6.3.10.2 Built-in Bitmap Schemes ..1918
6.3.10.3 Bitmap Segment Positioning ..1922
6.3.10.4 Bitmap Scheme Functions and Data Types1924
6.3.10.5 bitmap_scheme Data Type..1925
6.3.10.6 make_bitmap_scheme() ..1926
6.3.10.7 add_segment()...1927
6.3.10.8 register_bitmap_scheme()...1928
6.3.10.9 dump()...1929
6.3.10.10permutation Data Type ...1930
6.3.10.11Permutation Memory Management1932
6.3.10.12make_permutation()..1932
6.3.10.13reverse() ..1936
6.3.10.14rotate()...1938
6.3.10.15swap()..1939
6.3.10.16append() ..1939
6.3.10.17insert() ...1941
6.3.10.18set() ...1942
6.3.10.19for_each()..1943
6.3.10.20filter() ..1944
6.3.10.21get() ...1946
6.3.10.22size()..1946
6.3.10.23bitmap_scheme_translate() ...1947
6.3.10.24bitmap_scheme_lookup()..1949

6.3.11 Bitmap Overlays ..1950
6.3.11.1 Overview...1950
6.3.11.2 Creating Bitmap Overlays ..1951
6.3.11.3 Bitmap Overlay Colors ...1953
6.3.11.4 Bitmap Overlay Penstyles...1955
6.3.11.5 Using Overlays to Locate Information in BitmapTool1956
6.3.11.6 Bitmap Overlay Example Device1958
6.3.11.7 bitmap_overlay_names() ..1959
6.3.11.8 bitmap_overlay_add() ...1960
6.3.11.9 bitmap_overlay_delete() ...1969
6.3.11.10bitmap_overlay_lookup()..1970
6.3.11.11bitmap_overlay_setup() ..1971
6.3.11.12bitmap_overlay_enable() ..1973
6.3.11.13bitmap_overlay_draw()...1973

6.4 Breakpoint Monitor ..1976
 2/27/09 Pg-47

6.4.1 Overview..1976
6.4.2 Starting the Breakpoint Monitor ..1978
6.4.3 Breakpoint Attributes...1978
6.4.4 Breakpoint Actions ..1979
6.4.5 Breakpoint Removal ..1980
6.4.6 Breakpoint Definition File ...1980
6.4.7 Single-stepping ..1982
6.4.8 Run to Fail ...1983
6.4.9 Breakpoint Usage...1984

6.4.9.1 Breakpoints on Test Functions ...1984
6.4.9.2 Breakpoints on C Functions..1985
6.4.9.3 Breakpoint Macros..1987
6.4.9.4 Looping and Single-stepping ..1990

6.4.10 Run Buttons ...1991

6.5 DBMTool ...1993
6.5.1 Overview..1994
6.5.2 Starting DBMTool ...1995
6.5.3 DBMTool Controls ..1996
6.5.4 DBM Data Modification..1999
6.5.5 DBM File Read/Write..2000

6.6 DUT Manager ..2002

6.7 ECRTool ..2006
6.7.1 ECRTool Next Error Search ..2011

6.8 FrontPanelTool...2012

6.9 LEC Tool..2014

6.10 LVMTool ...2017
6.10.1 Starting LVMTool ...2018
6.10.2 LVMTool Tool-bar ..2018
6.10.3 LVMTool Use..2019
6.10.4 PINFUNC Field Display & Edit ..2023
6.10.5 Copy/Paste LVM Pattern Data ..2024
6.10.6 DDR LVMTool..2027
6.10.7 LVMTool in Simulation Mode ..2028
6.10.8 LVMTool Limitations..2028
 2/27/09 Pg-48

6.11 WaveformTool (MSWT) ...2029
6.11.1 Overview..2029
6.11.2 MSWT Usage Model ...2030
6.11.3 MSWT Look & Feel ..2031
6.11.4 MSWT Toolbar File Menu ..2032

6.11.4.1 File->Generate Menu..2033
6.11.4.2 File Generate Constant Dialog..2035
6.11.4.3 File Generate Gaussian Noise Dialog...............................2036
6.11.4.4 Generating Multi-tone Waveforms...................................2037
6.11.4.5 File Generate Pink/White Noise Dialog2039
6.11.4.6 File Generate Ramp/Triangle Dialog................................2040
6.11.4.7 File Generate Sine Waveform Dialog...............................2042
6.11.4.8 File Generate Square Waveform Dialog...........................2044
6.11.4.9 File->Compare Waveforms Dialog2047

6.11.5 MSWT Toolbar View Menu..2049
6.11.5.1 View->Compare Controls...2050
6.11.5.2 View->Cursor Controls...2052
6.11.5.3 View->Graph Controls ...2053
6.11.5.4 View->Properties Dialog ..2055

6.11.6 MSWT Toolbar Tester Menu ..2057
6.11.6.1 Tester->Read Waveform Dialog.......................................2058
6.11.6.2 Tester->Set Waveform Dialog..2060

6.11.7 MSWT Toolbar Window Menu...2061
6.11.8 Waveform Synchronization ...2061
6.11.9 Waveform Calculator...2062

6.11.9.1 Overview...2062
6.11.9.2 Calculator Controls ...2064
6.11.9.3 Calculator Math Menu ..2065
6.11.9.4 Calculator DSP Menu ...2068
6.11.9.5 Calculator Convert Menu..2071
6.11.9.6 Calculator Compare Menu..2073
6.11.9.7 Calculator Stack Menu..2074
6.11.9.8 Calculator Stack Pick Dialog..2075
6.11.9.9 Calculator Stack PushDoubleVariable Dialog..................2077
6.11.9.10Calculator Stack PushIntVariable Dialog2078
6.11.9.11Calculator Stack PushResource Dialog2079
6.11.9.12Calculator Stack PushWaveform Dialog2079
6.11.9.13Calculator Stack Roll Dialog ..2080
6.11.9.14Calculator Encode Menu ..2082
6.11.9.15Calculator Twiddle Menu ...2083
6.11.9.16Calculator Twiddle Bitwise/Logical Dialogs2086
 2/27/09 Pg-49

6.11.9.17Calculator Twiddle Rotate/Shift Dialogs..........................2086
6.11.9.18Calculator Dialogs/RPN Option2088

6.11.10 Response to UI User Variable Signals...2088
6.11.11 MSWT Programming Functions..2089

6.11.11.1Types, Enums, etc. ..2090
6.11.11.2mswt_present()..2091
6.11.11.3mswt_start() ..2091
6.11.11.4mswt_minimize() ..2092
6.11.11.5mswt_restore() ..2092
6.11.11.6mswt_always_on_top() ...2093
6.11.11.7mswt_close_windows() ..2094
6.11.11.8mswt_display_file() ..2094
6.11.11.9mswt_display_waveform() ...2095
6.11.11.10mswt_synchronize()..2096
6.11.11.11mswt_auto_synchronize() ...2096
6.11.11.12mswt_set_timeout() ..2097
6.11.11.13mswt_view_graph_controls() ...2098
6.11.11.14mswt_view_calculator_controls()...................................2098
6.11.11.15mswt_view_compare_controls().....................................2099
6.11.11.16mswt_view_cursor_controls() ..2100
6.11.11.17mswt_reset_graph_controls()..2100
6.11.11.18mswt_angles_as_degrees() ...2101
6.11.11.19mswt_set_x_axis_mode(), mswt_set_y_axis_mode()2101
6.11.11.20mswt_set_y_axis_reference() ...2102
6.11.11.21mswt_set_plot_mode()..2103
6.11.11.22mswt_set_trace_width()..2104
6.11.11.23mswt_display_grid() ...2104
6.11.11.24mswt_set_axis_units() ..2105
6.11.11.25mswt_set_y_range ..2106

6.12 PatternDebugTool ..2107

6.13 Resource Manager..2108

6.14 ScanTool ..2109

6.15 ShmooTool / SearchTool ...2110
6.15.1 Overview..2110
6.15.2 Starting ShmooTool ...2111
6.15.3 Search Output ..2111
6.15.4 Shmoo Output ..2111
 2/27/09 Pg-50

6.15.5 ShmooTool Help..2114
6.15.6 Defining Shmoos & Searches ..2115

6.15.6.1 ShmooTool: Search Controls..2117
6.15.6.2 ShmooTool: Shmoo Controls ...2118

6.15.7 Shmoo Functions ...2124
6.15.7.1 Types, Enums, etc. ..2124
6.15.7.2 shmoo_title_get() ..2125
6.15.7.3 shmoo_type_get() ...2126
6.15.7.4 shmoo_direction_get() ..2127
6.15.7.5 shmoo_axis_params_get() ..2128
6.15.7.6 shmoo_param_get() ..2129
6.15.7.7 shmoo_param_pointval_get() ...2130
6.15.7.8 shmoo_duts_subtitle_set(), shmoo_duts_subtitle_get()....2132
6.15.7.9 search_results_get() ..2133

6.15.8 Multi-DUT Shmoos ...2135
6.15.9 Shmoo/Search Execution...2141

6.15.9.1 Executing Shmoos and Searches Interactively2141
6.15.9.2 Executing Shmoos and Searches Programmatically.........2146

6.15.10 Shmoos and Searches using User Variables2148
6.15.11 Shmoo Definition File ...2153

6.16 SummaryTool...2155

6.17 TimingTool ..2158

6.18 User Variables Tool ...2160
6.18.1 Overview..2161
6.18.2 Starting User Variables Tool ...2162
6.18.3 User Variable Prompt String..2162
6.18.4 User Variables Tool Controls ..2162
6.18.5 Built-in User Variables ..2167

6.19 Voltage and Current Tool...2171

6.20 WaveTool...2173
6.20.1 Example Display..2173
6.20.2 Overview..2174
6.20.3 Starting WaveTool ...2175
6.20.4 WaveTool Tool-bar Controls...2176
6.20.5 WaveTool Setup Files..2181
6.20.6 WaveTool Setup Controls..2181
 2/27/09 Pg-51

6.20.6.1 Setup Signals Dialog...2182
6.20.6.2 Setup Headers Dialog ...2184
6.20.6.3 Setup Acquire Dialog..2187
6.20.6.4 Setup Acquire Input Controls ...2189
6.20.6.5 Setup Acquire Execute Controls.......................................2191
6.20.6.6 Setup Acquire LEC Controls ..2194

6.20.7 WaveTool Run Controls ..2196
6.20.8 WaveTool Timing Format Symbols ..2199
6.20.9 WaveTool Color Schemes ...2205
6.20.10 WaveTool Zoom Controls ...2206
6.20.11 WaveTool Mouse Track Controls..2208
6.20.12 Creating WaveTool Trace Files ...2208
6.20.13 History RAM ...2209

6.21 WafermapTool ...2211
6.21.1 Overview..2211
6.21.2 WafermapTool Communication Architecture2213
6.21.3 Starting WaferMapTool ...2215
6.21.4 WafermapTool Persistence ..2215
6.21.5 WaferMapTool Configuration ...2217

6.21.5.1 Configuration File...2217
6.21.6 User Interface & Controls..2225
6.21.7 Die Attributes...2233

6.21.7.1 Die Display Options..2233
6.21.7.2 Marked Die ...2240

6.21.8 WaferMapTool Software ...2241
6.21.8.1 Types, Enums, etc. ..2241
6.21.8.2 wmap_set(), wmap_get() ..2242
6.21.8.3 WafermapTool File Access Rules2246
6.21.8.4 wmap_die_set(), wmap_die_get()2247
6.21.8.5 wmap_cmd_start(), wmap_cmd_end()2250
6.21.8.6 wmap_die_cmd_start(), wmap_die_cmd_end()2252
6.21.8.7 wmap_onclick_set()..2254

6.21.9 WafermapTool Die-Bitmap Support ...2255
6.21.9.1 Dynamically Defined Monochromatic Images.................2255
6.21.9.2 Dynamically Defined Color Images2257
6.21.9.3 Statically Defined Images ...2260
6.21.9.4 UI BitmapTool Images ...2260

6.21.10 Die Field Display ...2261

Chapter 7 Advanced Topics ..2266
 2/27/09 Pg-52

7.1 User Variables..2267
7.1.1 Overview..2267
7.1.2 Usage ...2269
7.1.3 User-defined User Variables..2270
7.1.4 Invoking User Variable Body Code...2273
7.1.5 User Variable Command Line Initialization....................................2274
7.1.6 User Variable Batch File Initialization ..2275
7.1.7 User Variable Text File Initialization ..2277
7.1.8 Modifying ONEOF Variables..2282
7.1.9 Intercepting User Variables ...2283
7.1.10 Built-in User Variables ..2286

7.1.10.1 builtin_what_exe...2286
7.1.10.2 Loading DLLs...2288
7.1.10.3 RBoot Client File ..2289

7.1.11 UI User Variables ..2290
7.1.11.1 UI User Variable Scope ..2290
7.1.11.2 UI User Variables Categories ...2291
7.1.11.3 Callback UI User Variable..2301
7.1.11.4 Reload ...2303
7.1.11.5 Paths, File Names, Default Extensions, etc.2304
7.1.11.6 ui_BatchFile..2305
7.1.11.7 ui_BitmapCrossHair ...2306
7.1.11.8 ui_BitmapDialogDecMode...2307
7.1.11.9 ui_BitmapDisplay ...2308
7.1.11.10ui_BitmapDisplayMode..2309
7.1.11.11ui_BitmapDisplaySeparateZoomWindow2310
7.1.11.12ui_BitmapDisplayTotalCount ...2311
7.1.11.13ui_BitmapDisplayVisibleCount..2312
7.1.11.14ui_BitmapdutNo..2313
7.1.11.15ui_BitmapFailColor, ui_BitmapPassColor2314
7.1.11.16ui_BitmapMainSize ..2315
7.1.11.17ui_BitmapMaxErrors ..2316
7.1.11.18ui_BitmapMoveTo..2317
7.1.11.19ui_BitmapPageHScroll, ui_BitmapPageVScroll,

ui_BitmapLineHScroll, ui_BitmapLineVScroll2319
7.1.11.20ui_BitmapPan..2320
7.1.11.21ui_BitmapRowsChunk..2321
7.1.11.22ui_BitmapRulers ...2322
7.1.11.23ui_BitmapTotalFailBitCount ..2323
7.1.11.24ui_BitmapTotalVisibleFailBitString.................................2324
7.1.11.25ui_BitmapTotalFailBitString ..2326
 2/27/09 Pg-53

7.1.11.26ui_BitmapVisibleFailBitString ...2327
7.1.11.27ui_BitmapVisibleSize ...2329
7.1.11.28ui_BitmapZoom2 ..2330
7.1.11.29ui_BreakPointFile ...2331
7.1.11.30ui_BreakPointRemoveAll ...2332
7.1.11.31ui_ClearAtProgramLoad...2332
7.1.11.32ui_ClearAtTestStart ..2334
7.1.11.33ui_Close ..2335
7.1.11.34ui_CloseAfterRun ...2336
7.1.11.35ui_Controller ...2337
7.1.11.36ui_CurrentBitmapScheme...2341
7.1.11.37ui_DbmDialogDecMode...2342
7.1.11.38ui_DutBoardStatusCheckDisable2343
7.1.11.39ui_ECRDialogDecMode...2344
7.1.11.40ui_EngineeringMode ..2345
7.1.11.41ui_ExcelAppEvent ..2347
7.1.11.42ui_Exit...2348
7.1.11.43ui_ExitAfterRun..2349
7.1.11.44ui_HideTool ..2350
7.1.11.45ui_HostDebug ...2350
7.1.11.46ui_HostModeCommandLine ..2352
7.1.11.47ui_HostTimeOut ...2355
7.1.11.48ui_LoadTimeOut...2356
7.1.11.49ui_LoadedMask ..2358
7.1.11.50ui_MonitorPort..2359
7.1.11.51ui_MonitorTimeOut..2361
7.1.11.52ui_NoLogo ..2362
7.1.11.53ui_Open...2363
7.1.11.54ui_OutputAutoOpen..2364
7.1.11.55ui_OutputFile ..2366
7.1.11.56ui_OutputFormat...2369
7.1.11.57ui_OutputOpen..2372
7.1.11.58ui_ProgLoaded..2373
7.1.11.59ui_ProgUnloaded ..2388
7.1.11.60ui_ResourceInitialized ..2389
7.1.11.61ui_RunTestProgram ..2391
7.1.11.62ui_ShmooDone ...2393
7.1.11.63ui_ShmooInput..2394
7.1.11.64ui_ShmooOutputFile...2395
7.1.11.65ui_ShowOutputTab...2398
7.1.11.66ui_Show ..2399
 2/27/09 Pg-54

7.1.11.67ui_ShowTool...2400
7.1.11.68ui_ShutDown ..2402
7.1.11.69ui_SiteDebug ..2403
7.1.11.70ui_SiteDone ..2405
7.1.11.71ui_SiteLoaded ...2406
7.1.11.72ui_SiteMask ..2407
7.1.11.73ui_SiteModeCommandLine..2410
7.1.11.74ui_SiteUnloaded..2413
7.1.11.75ui_StartTest ...2414
7.1.11.76ui_StartTool ..2416
7.1.11.77ui_StopTest ...2417
7.1.11.78ui_TestDone..2418
7.1.11.79ui_TestProgConfiguration ..2420
7.1.11.80ui_TestProgDirPath ..2422
7.1.11.81ui_TestProgName ...2423
7.1.11.82ui_TestStarted ...2425
7.1.11.83ui_TimingToolPinLists ...2426
7.1.11.84ui_ToolLoaded..2429
7.1.11.85ui_ToolModeCommandLine ..2430
7.1.11.86ui_ToolUnloaded ..2433
7.1.11.87ui_UserVarSiteMode ..2434
7.1.11.88ui_UserVariableTimeout ..2436

7.2 Host / Site / Tool Communication ...2437
7.2.1 remote_signal(), remote_wait() ...2437
7.2.2 remote_send() ..2440
7.2.3 remote_fetch()..2443
7.2.4 remote_set(), remote_get()...2446
7.2.5 Transferring Multiple User Variables..2449
7.2.6 Transferring User-defined Data Structures (Serialization)2452
7.2.7 SiteMask() Support ..2461

7.3 Resources ...2466
7.3.1 Overview..2466
7.3.2 Resource Types..2467
7.3.3 Resource Name Functions ...2471
7.3.4 Resource Find Functions ...2474
7.3.5 Resource Control Functions...2476

7.3.5.1 resource_deallocate() ..2478
7.3.5.2 resource_initialize() ..2479
7.3.5.3 resource_ignore() ..2480
 2/27/09 Pg-55

7.3.6 Resource Use Functions...2481
7.3.7 resource_select() ..2483
7.3.8 invoke() ..2484

7.4 User Tools ..2488
7.4.1 Overview..2488
7.4.2 Creating User Tools ...2491
7.4.3 Starting/Terminating User Tools ...2495

7.4.3.1 Single Instance Code Example ...2497
7.4.4 User Tool Output Messages...2498
7.4.5 User Tool Initialization..2499
7.4.6 User Tool Functions...2500

7.4.6.1 get_all_tools() ...2500
7.4.7 User Tool Example ..2501
7.4.8 ToolLauncher...2508

7.4.8.1 Tool Registration Requirements2508
7.4.8.2 Operation ..2509
7.4.8.3 Required Functions ...2509
7.4.8.4 setup_menus() ...2510
7.4.8.5 setup_toolbars() ..2511
7.4.8.6 site_loaded()..2513
7.4.8.7 ui_ShowTool / ui_HideTool Support2514
7.4.8.8 MenuLayout.cpp ...2515
7.4.8.9 ToolLauncher DLL Setup...2517
7.4.8.10 Example User Tool ...2523

7.5 User Dialogs...2527
7.5.1 Overview..2527
7.5.2 Supported Dialog Components ..2528
7.5.3 Creating a User Dialog ..2530

7.5.3.1 Creating the Dialog C-code ..2530
7.5.3.2 Creating the Dialog Graphic ...2533
7.5.3.3 Adding Dialog Components to the Dialog2535
7.5.3.4 IDCANCEL and IDOK ..2536

7.5.4 Setting Tab Order...2538
7.5.4.1 Dialog Editor Tips ..2539

7.5.5 Changing Dialog Button Text..2539
7.5.6 Creating Bitmap Dialog Components..2540
7.5.7 Bitmap Usage...2543
7.5.8 Dialog Progress Resource ..2548
7.5.9 Radio Buttons and ONEOF User Variables2550
 2/27/09 Pg-56

7.5.10 Sliders & Scroll-bars..2554
7.5.11 User Dialog Functions ...2559

7.5.11.1 Transferring Values to/from Dialog Resources2559
7.5.11.2 for_each()..2561
7.5.11.3 top_most() ...2562

7.5.12 Grid Usage ...2564
7.5.12.1 Overview...2564
7.5.12.2 Adding a Grid to a Dialog...2570
7.5.12.3 GRID_CONTROL() Macro..2573
7.5.12.4 ONINITDIALOG: Defining the Grid...............................2575
7.5.12.5 Grid Functions ..2578
7.5.12.6 Types, Enums, etc. ..2578
7.5.12.7 grid_create()..2579
7.5.12.8 grid_setup() ...2580
7.5.12.9 grid_fixed_col_width_set()...2581
7.5.12.10grid_fixed_row_height_set() ..2582
7.5.12.11grid_column_pixel_width_set()..2583
7.5.12.12grid_row_pixel_height_set()...2584
7.5.12.13grid_initialize() ...2585
7.5.12.14grid_update()...2586
7.5.12.15grid_focus_cell_get() ..2588
7.5.12.16grid_reset()..2588
7.5.12.17Grid Call-back Functions..2589
7.5.12.18GridCellTextCallback Call-back Function2589
7.5.12.19GridCellFormatCallback Call-back Function...................2591
7.5.12.20GridTextColorCallback Call-back Function.....................2592
7.5.12.21GridSelectedTextColorCallback Call-back Function2593
7.5.12.22GridCellClickedCallback Call-back Function2595
7.5.12.23GridBackgndColorCallback Call-back Function..............2596
7.5.12.24GridSelectedBackgndColorCallback Call-back Function 2597
7.5.12.25GridFocusBackgndColorCallback Call-back Function2598

7.6 STDF Software...2600
7.6.1 Overview..2601
7.6.2 STDF Record Types ..2603
7.6.3 Data Type Codes and Representation..2605
7.6.4 STDF File Functions..2606

7.6.4.1 stdf_file_open()...2607
7.6.4.2 stdf_file_write() ..2608
7.6.4.3 stdf_file_close() ..2609

7.6.5 STDF Record Add Functions ..2610
 2/27/09 Pg-57

7.6.5.1 stdf_ATR_add() ..2611
7.6.5.2 stdf_BPS_add() ...2612
7.6.5.3 stdf_DTR_add() ..2613
7.6.5.4 stdf_EPS_add() ...2614
7.6.5.5 stdf_FTR_add()...2614
7.6.5.6 Generic Data Record (GDR) Functions............................2616
7.6.5.7 stdf_HBR_add()..2618
7.6.5.8 stdf_MIR_add() ..2619
7.6.5.9 stdf_MPR_add()..2621
7.6.5.10 stdf_MRR_add() ...2623
7.6.5.11 stdf_PCR_add() ..2624
7.6.5.12 stdf_PGR_add() ..2626
7.6.5.13 stdf_PIR_add()..2627
7.6.5.14 stdf_PLR_add()...2628
7.6.5.15 stdf_PMR_add()..2629
7.6.5.16 stdf_PRR_add() ..2631
7.6.5.17 stdf_PTR_add()...2632
7.6.5.18 stdf_RDR_add()..2634
7.6.5.19 stdf_SBR_add() ..2635
7.6.5.20 stdf_SDR_add() ..2636
7.6.5.21 stdf_TSR_add()...2637
7.6.5.22 stdf_WCR_add() ...2639
7.6.5.23 stdf_WIR_add() ..2640
7.6.5.24 stdf_WRR_add() ...2642

7.6.6 STDF Code Example ...2643

7.7 Excel Related Functions...2651
7.7.1 Overview..2651
7.7.2 InvokeExcelEx() ..2653
7.7.3 OpenWorkBookEx() ..2656
7.7.4 AddWorkBook() ..2656
7.7.5 AddWorkSheet() ..2657
7.7.6 SelectWorkSheet() ...2658
7.7.7 GetActiveSheet() ...2659
7.7.8 GetActiveCell()..2660
7.7.9 GetSelectionRange() ..2660
7.7.10 UpdateScreen() ..2661
7.7.11 RunMacro()..2662
7.7.12 SaveAs()...2662
7.7.13 ReleaseExcel(), QuitExcel() ..2663
7.7.14 Excel Value Set/Get Functions ..2665
 2/27/09 Pg-58

7.7.14.1 SetColumnWidth()..2665
7.7.14.2 AddVal() ...2666
7.7.14.3 GetVal() ..2666
7.7.14.4 AddArray()..2667
7.7.14.5 GetArray()...2668

7.7.15 Excel Event Detection ...2669
7.7.15.1 EnableExcelAppEvents()..2669

7.8 Debug Hook and Pin Status Hook ...2670
7.8.1 install_debug_hook() ...2671

7.8.1.1 current_setup() ..2676
7.8.1.2 current_test() ...2677

7.8.2 install_pinstatus_hook()...2678

7.9 MonitorApp..2682
7.9.1 Terminating & Restarting MonitorApp..2683

7.10 Environmental Variables..2683
7.10.1 Nextest Environment Variables ...2684
7.10.2 Environmental Variable Scope ..2685
7.10.3 Setting Environment Variables ..2687

7.11 Invoking a File Browser...2690
7.11.1 Obsolete: current_dialog() ...2691

7.12 DUT Board TDR Functions ...2692
7.12.1 TDR_BLOCK() ...2694
7.12.2 db_tdr() ..2698
7.12.3 db_read_tdr() ...2699
7.12.4 db_write_tdr() ..2701
7.12.5 db_set_tdr(), db_get_tdr() ..2702
7.12.6 db_get_pins() ...2703
7.12.7 db_get_date() ...2704

7.13 Miscellaneous...2705
7.13.1 WhatRelease ..2705
7.13.2 UseRel..2705
7.13.3 UseDLLs..2706
7.13.4 Automatic Stack Trace Generator..2707

Index ...2718
 2/27/09 Pg-59

List Of Illustrations
Figure-1: Magnum System Configuration Options...70

Figure-2: Site Assembly Board Block Diagram..71

Figure-3: Pin Electronics (PE) Block Diagram...75

Figure-4: PE Driver Block Diagram..79

Figure-5: PE Comparators and Error Logic Block Diagram...82

Figure-6: PTU Operating Area...86

Figure-7: PE Error Flag vs. Error Latch Diagram...88

Figure-8: Error Flag OR Logic ...90

Figure-9: DC Sub-System Block Diagram ...93

Figure-10: DPS Operating Area...96

Figure-11: Magnum DPS Output Block Diagram...98

Figure-12: Magnum HV Output Block Diagram ...100

Figure-13: PMU Operating Area..102

Figure-14: DC Test and Measure System Block Diagram...106

Figure-15: Magnum Pattern & Timing System...112

Figure-16: Pin Scramble Block Diagram..113

Figure-17: Timing Generator Block Diagram...119

Figure-18: Non-DDR Waveform Format Options...122

Figure-19: DDR Waveform Format Options ..122

Figure-20: APG Block Diagram ...125

Figure-21: MAR/VAR Engine Block Diagram ..129

Figure-22: APG uRAM Architecture Block Diagram ..134

Figure-23: APG vRAM Architecture Block Diagram ..135

Figure-24: Branch Error Choice Logic ...137

Figure-25: Branch Decode Error Logic ..140

Figure-26: APG Y Address Generator Block Diagram...143

Figure-27: Address TOPO RAM Block Diagram..144
 2/27/09 Pg-60

Figure-28: APG Data Generator Block Diagram..146

Figure-29: APG Data Inversion Block Diagram ...147

Figure-30: JAM Logic Block Diagram ..149

Figure-31: APG User RAM Simplified Block Diagram ...154

Figure-32: Magnum Logic Vector Memory Architecture ..159

Figure-33: Magnum ECR Block Diagram ..162

Figure-34: I2C Bus Architecture ..168

Figure-35: Example Test Flow Diagram ..181

Figure-36: Example Output..243

Figure-37: Multi-DUT Test Program Pin Assignments (pin_pairs).................................259

Figure-38: Simplified DPS Model...388

Figure-39: Magnum 1/2 PMU on DPS Block Diagram...486

Figure-40: Magnum 1/2 PMU-on-HV Block Diagram...490

Figure-41: Parallel RL Values..553

Figure-42: Single Data Rate Block Diagram..637

Figure-43: DDR Block Diagram ...640

Figure-44: DDR Hardware Architecture...642

Figure-45: Fail Signal MUX Block Diagram ...661

Figure-46: Fail Signal MUX Block Diagram: Logic Error Catch664

Figure-47: Fail Signal MUX Block Diagram: Memory Error Catch.................................666

Figure-48: MUX Mode Block Diagram...669

Figure-49: Frequency Measure Simplified Block Diagram ..685

Figure-50: Frequency Measure Logic Detailed Block Diagram686

Figure-51: Operational Timing Diagram ..688

Figure-52: Test Pattern Data Source Hardware Architecture ..728

Figure-53: ECR Simplified Model ..849

Figure-54: Mini-RAM Example Configuration ..891

Figure-55: AC Waveform Terminology ..961

Figure-56: Waveform Sample value Notation..973
 2/27/09 Pg-61

Figure-57: Waveform Encoding Schemes...1001

Figure-58: waveform_double_strided_copy() User Model1051

Figure-59: waveform_select_indices() User Model ..1109

Figure-60: waveform_select_elements() User Model..1111

Figure-61: waveform_selective_merge() User Model..1113

Figure-62: waveform_reorder() User Model ..1115

Figure-63: waveform_histogram() User Model...1171

Figure-64: APFP Dialog for Magnum 1..1214

Figure-65: APFP Warning Dialog ..1223

Figure-66: Test Pattern Data Source Hardware Architecture1326

Figure-67: Magnum 1 DUT-pin to Tester-pin Connection Rules (see Note:)...............1419

Figure-68: Example Adaptive Programming Flow Chart ...1463

Figure-69: Test Pattern Data Source Hardware Architecture1572

Figure-70: Test Pattern Data Source Hardware Architecture1631

Figure-71: BitmapTool Display ..1892

Figure-72: Example BitmapTool Display with Overlays...1951

Figure-73: BitmapTool Atom vs. Overlay Rectangle Size..1952

Figure-74: Bitmap Overlay Color XOR Example ...1954

Figure-75: Overlay using bitmap_scheme_translate()...1957

Figure-76: Bitmap Overlay Example Device Scheme..1958

Figure-77: DBMTool ..1994

Figure-78: DBMTool Controls ..1996

Figure-79: MSWT Main Display...2031

Figure-80: File->Generate Menu ...2034

Figure-81: Generate Constant Waveform Dialog ...2035

Figure-82: Generate Gaussian Noise Waveform Dialog ..2036

Figure-83: Create MultiTone Waveform Dialog ..2037

Figure-84: Generate Pink/White Noise Waveform Dialog ..2040

Figure-85: Generate Ramp/Triangle Waveform Dialog ..2041
 2/27/09 Pg-62

Figure-86: Generate Sine Waveform Dialog ...2043

Figure-87: Generate Square Waveform Dialog ..2045

Figure-88: File->Compare Dialog ..2047

Figure-89: Compare Waveform Result ..2048

Figure-90: File->View Menu ..2049

Figure-91: View->Compare Controls ..2050

Figure-92: View->Cursor Controls ..2052

Figure-93: View->Graph Controls ...2053

Figure-94: View->Properties Dialog...2056

Figure-95: Scope Properties Dialog...2057

Figure-96: Tester Menu ..2058

Figure-97: Tester->Read Waveform Dialogs...2059

Figure-98: Tester->Set Waveform Dialog & Confirmer..2060

Figure-99: Window Menu...2061

Figure-100: Waveform Calculator Example...2063

Figure-101: Calculator Controls ..2064

Figure-102: Calculator Math Menu ...2066

Figure-103: Calculator DSP Menu ..2069

Figure-104: Calculator Convert Menu ...2071

Figure-105: Calculator Stack Menu ..2074

Figure-106: Calculator Stack Pick Dialog ..2076

Figure-107: Calculator Stack Push Double Variable Dialog ..2077

Figure-108: Calculator Stack Push Integer Variable Dialog ..2078

Figure-109: Calculator Stack Push Resource Variable Dialog2079

Figure-110: Calculator Stack Push Waveform Dialog ...2080

Figure-111: Calculator Stack Roll Dialog...2081

Figure-112: Calculator Encode Menu ...2082

Figure-113: Calculator Twiddle Menu ...2084

Figure-114: Calculator Twiddle Rotate/Shift Dialogs ...2087
 2/27/09 Pg-63

Figure-115: Example Shmoo Output ...2112

Figure-116: Shmoo Output Window Controls ..2113

Figure-117: Shmoo/Search Help ...2115

Figure-118: Initial Shmoo/Search Dialog ...2116

Figure-119: Search Controls..2118

Figure-120: Shmoo Controls..2119

Figure-121: Shmoo Controls..2120

Figure-122: Example Shmoo Parameter Options..2121

Figure-123: Shmoo Call-back Controls..2136

Figure-124: Example Shmoo Integer Output ...2138

Figure-125: Shmoo Breakpoint Monitor Controls ..2142

Figure-126: Shmoo Breakpoint Monitor Controls ..2143

Figure-127: Shmoo Breakpoint List ...2144

Figure-128: Shmoo User Variable Setup...2151

Figure-129: Shmoo Breakpoint Setup ...2152

Figure-130: Shmoo Output ..2153

Figure-131: Shmoo Definition File Controls...2154

Figure-132: User Variables Tool Display ...2161

Figure-133: User Variables Tool Display Option Controls..2163

Figure-134: User Variables Tool Display Option Controls..2164

Figure-135: User Variables Tool Display Sort Controls..2164

Figure-136: User Variable Display/Modification Controls ..2166

Figure-137: WaveTool Display ..2174

Figure-138: WaveTool Setup Dialogs..2182

Figure-139: Setup Signals Dialog ..2183

Figure-140: Setup Headers Dialog ..2185

Figure-141: WaveTool Setup Acquire Dialog ..2188

Figure-142: WaveTool Setup->Acquire Input Controls..2189

Figure-143: WaveTool Setup->Acquire Execute Controls...2192
 2/27/09 Pg-64

Figure-144: WaveTool Setup->Acquire LEC Controls...2194

Figure-145: WaveTool Drive Waveform Images..2202

Figure-146: WaveTool Double Clock Drive Waveform Images2203

Figure-147: WaveTool PinList Composite Symbol Examples2205

Figure-148: WaveTool Color Scheme Examples...2206

Figure-149: WaveTool Zoom Controls...2207

Figure-150: WaveTool Track Mouse Controls ...2208

Figure-151: WaveTool Trace File Creation Information...2209

Figure-152: History RAM Display ..2210

Figure-153: WaferMapTool Communication Architecture..2213

Figure-154: WaferMapTool Display ...2214

Figure-155: WaferMapTool Error: Sending Data Before Configuration2217

Figure-156: WaferMapTool with Test Data..2226

Figure-157: WaferMapTool Main Menu Options..2227

Figure-158: WaferMapTool Setup Headings Dialog ..2229

Figure-159: WaferMapTool Setup Axis Orientation Dialog..2230

Figure-160: WaferMapTool Setup Die Locations Dialog ...2230

Figure-161: WaferMapTool Setup Die Size Dialog..2231

Figure-162: WaferMapTool Setup Bin Colors/Codes Dialog ...2231

Figure-163: WaferMapTool Bin Colors Dialog ...2232

Figure-164: WaferMapTool Bin Filter Dialog ...2232

Figure-165: Bin Color View..2235

Figure-166: Bin Code View..2236

Figure-167: Bin Color-Code View..2237

Figure-168: Text View..2238

Figure-169: Bitmap View ...2239

Figure-170: WaferMapTool Marked Die and Clear Dialog...2240

Figure-171: Dialog with Sliders & Scroll-bars ..2555

Figure-172: Slider & Scroll-bar Resource Selection ..2556
 2/27/09 Pg-65

Figure-173: Example Dialogs with Grid ...2566

Figure-174: Grid Attributes ..2567

Figure-175: Grid Row/Column Numbering ..2570

Figure-176: Resource Editor Grid Controls ...2571
 2/27/09 Pg-66

Chapter 1 Magnum System Overview
This section provides an overview of the Magnum 1 configurations, architecture and key
hardware features.

• Magnum Configurations
• Multi-Site System Architecture
• Site Assembly Board
• PE Sub-site Architecture
• Pin Electronics (PE)

- PE Driver
- PE Comparators
- Per-pin Parametric Test Unit (PTU)
- Error Flag vs. Error Latch
- DC-only Pins

• DC Sub-System
- DUT Power Supply (DPS)
- High Voltage Source/Measure Unit (HV)
- Parametric Measurement Unit (PMU)
- Parametric Background Voltage
- DC Test and Measure System
- DC Source Select MUX
 - DC Comparators and Error Logic
 - DC A/D Converter
- DC Comparators and Error Logic
- DC A/D Converter

• Pattern and Timing System
- Overview
- Pin Scramble MUX
- Pin Scramble RAM
- Timing & Formatting
- System Clock
 2/27/09 Pg-67

Magnum System Overview
• Algorithmic Pattern Generator (APG)
- APG Controller Engine
 - uRAM
 - vRAM
- Branch-on-error Logic
- APG Address Generator
 - Address TOPO RAM
- APG Data Generator + Data Inversion Logic, JAM Logic
- APG Chip Selects
- APG Interrupt Timer
- APG User RAM
- Data Buffer Memory (DBM)
 - DBM Architecture

• Logic Vector Memory (LVM)
• Scan Vector Memory (SVM)
• Error Catch RAM (ECR)
• DUT Board I/O Ports

- I2C Bus
- SPI Port & GPIO Port
 2/27/09 Pg-68

Magnum System Overview Magnum Configurations
1.1 Magnum Configurations
See Magnum System Overview.

The following Magnum configurations are available:

Also supported are:

• DUT Power & Measurement Unit (DPMU) via an Magnum options board

Table 1.1.0.0-1 Magnum System Configurations

System
Max

Boards
Total

Channels
Sub-site A
Channels

Sub-site B
Channels

Site
Controllers

Magnum PV 5 640 320 320 5

Magnum SV 10 1280 640 640 10

Magnum
SSV

20 2560 1280 1280 20

Magnum GV 40 5120 2560 2560 40
 2/27/09 Pg-69

Magnum System Overview Multi-Site System Architecture
1.2 Multi-Site System Architecture
See Magnum System Overview.

The Magnum is available in several configurations:

Figure-1: Magnum System Configuration Options

Host
Computer

Host
Computer

Host
Computer

Host
Computer

Magnum PV
1 Chassis /w 1 to 5 Site Assembly Boards
128 to 640 Digital Pins
8 to 40 DPSs, 8 to 40 PMUs
16 to 80 High Voltage S/M

Magnum SV
2 Chassis /w up to 10 Site Assembly Boards
Up to 1280 Digital Pins, 80 DPSs, 80 PMUs,
160 High Voltage Source/Measure Unit (HV)

Magnum SSV
4 Chassis /w up to 20 Site Assembly Boards
Up to 2560 Pins, 160 DPSs, 160 PMUs,
320 High Voltage Source/Measure Unit (HV)

Magnum GV
8 Chassis /w 40 Site Assembly Boards
Up to 5120 Pins, 320 DPSs, 320 PMUs,
640 High Voltage Source/Measure Unit (HV)

Site
Assembly

Board

Site
Assembly

Board

Site
Assembly

Board

Site
Assembly

Board
 2/27/09 Pg-70

Magnum System Overview Site Assembly Board
1.3 Site Assembly Board
See Magnum System Overview, Pin Electronics (PE).

The diagram below shows the key components of the Magnum Site Assembly:

Figure-2: Site Assembly Board Block Diagram
Each Site Assembly Board contains the following:

Site
Controller
Computer

Timing &
Formatting

(64)

Power
Supplies

P
in

 S
cr

am
bl

e
M

U
X

*DBM

64 Sets of Timed
 Strobe, I/O &

 Formatted Drive

64
 C

ha
nn

el
s

ECR-A

64 Pin
Electronics

(PE) Channels

ECR-A Sub-site A

(4)
DPS

64
 C

ha
nn

el
s

APG

Pin
Scramble

RAM

*Logic
Vector

Memory
(LVM)/
Scan

Vector
Memory
(SVM)

Signals

(4) DC Test and
Measure System

(4)
PMU

ECR-A

64 Pin
Electronics

(PE) Channels

ECR-B

(4)
DPS(4) DC Test and

Measure System

(4)
PMU

High Voltage Source/
Measure Unit (HV) (8)

High Voltage Source/
Measure Unit (HV) (8)

Local Network

Host Computer

*Optional

Sub-site B
 2/27/09 Pg-71

Magnum System Overview PE Sub-site Architecture
• 128 test channels. Pairs of test channels share the same timing (strobe, I/O and
drive signals) and test pattern data source. See PE Sub-site Architecture and
Functional Pin-pairs.

• Each of the 128 test channels has an independent Per-pin Parametric Test Unit
(PTU).

• Eight DUT Power Supply (DPS).
• Sixteen High Voltage Source/Measure Unit (HV).
• Eight Parametric Measurement Unit (PMU)s. Each PMU can connect to 16 test pins,

16 Per-pin Parametric Test Unit (PTU)s, 1 DUT Power Supply (DPS), and 2 High
Voltage Source/Measure Unit (HV)s.

• Eight DC Test and Measure Systems, each with DC Comparators and Error Logic,
used to perform DC Go/NoGo tests, and DC A/D Converter used to make DC
measurements.

• Optionally, two Error Catch RAM (ECR).

1.4 PE Sub-site Architecture
See Magnum System Overview, Site Assembly Board.

The Magnum is targeted at parallel testing of multiple DUTs. The sub-site architecture
outlined below provides the high pin-counts needed while reducing overall system costs
by sharing timing, formatting, and test pattern hardware.

Each Site Assembly Board (each site) contains one set of 64 functional test channels which
are used to control 128 functional test pins. Note the following:

• Half of the 128 pins (a_1, a_2, ... a_64) are collectively called sub-site A pins.
Similarly, the other 64 pins (b_1, b_2, ... b_64) are collectively called sub-site B
pins.

• Each pin of sub-site A is paired with one corresponding pin of sub-site B. For
example, a_1 and b_1, a_13 and b_13, etc.

• During functional tests, each pin-pair receives identical drive, strobe and I/O
signals. See Pattern and Timing System and Functional Pin-pairs.

• Each pin of a pin-pair has independent timing deskew circuitry, to correct for signal
path differences between the pins and maintain timing accuracy.
 2/27/09 Pg-72

Magnum System Overview Pin Electronics (PE)
• All 128 pins have independent drive levels (VIL/VIH), strobe levels (VOL/VOH),
termination voltage (VTT), resistive load (RL) and termination voltage (VZ) and
drive super voltage (VIHH). Note that there are three PE Driver modes which do
constrain how a given pin-pair can utilize VTT/VZ/VIHH (see PE Driver and
Magnum PE Driver Modes).

• All 128 pins have an independent Per-pin Parametric Test Unit (PTU), each with
independent force voltage/current and PASS/FAIL test limits. It is the PTU which
generates the VIHH and VZ voltages noted in the previous bullet. It also is the PTU
which generates the Parametric Background Voltage.

• Each sub-site has an optional Error Catch RAM (ECR), which captures failures
from the 64 pins of that sub-site.

• When only one pin of a given pin-pair is used for functional testing, the other pin
can be used for DC-only purposes. See DC-only Pins.

• Each Site Assembly Board contains 8 DUT Power Supply (DPS), grouped into 2
sets: 4 A DPS and 4 B DPS. In software these are identified using A/B
designations; i.e. a_dps1a, b_dps1a, etc.

• Each Site Assembly Board has 16 High Voltage Source/Measure Unit (HV)s,
grouped into 8 A HV and 8 B HV. In software these are identified using A/B
designations; i.e. a_hv1, b_hv1, etc.

• Each Site Assembly Board contains 8 Parametric Measurement Unit (PMU)s. Each
PMU can connect to 16 test pins, 16 Per-pin Parametric Test Unit (PTU)s, 1 DUT
Power Supply (DPS), and 2 High Voltage Source/Measure Unit (HV)s. In software,
PMUs are identified implicitly via the members of a pin list.

• Each Site Assembly Board has 8 DC Test and Measure Systems, each with DC
Comparators and Error Logic, used to perform DC Go/NoGo tests, and DC A/D
Converter used to make DC measurements. Each of the DC Test and Measure
Systems supports 16 pins, 1 DPS, 2 HV, and 1 PMU.

For a usage overview see Magnum 1, 2 & 2x Parallel Test.

1.5 Pin Electronics (PE)
See Magnum System Overview, Site Assembly Board.

This section includes the Pin Electronics (PE) Block Diagram, and a detailed description of
each of the major features, including :
 2/27/09 Pg-73

Magnum System Overview Pin Electronics (PE)
• PE Driver
• PE Comparators
• Per-pin Parametric Test Unit (PTU)
• DC-only Pins
 2/27/09 Pg-74

Magnum System Overview Pin Electronics (PE)
The diagram below shows the main components of the Magnum Pin Electronics:

Figure-3: Pin Electronics (PE) Block Diagram

E
rr

or
 L

og
ic

VOL

VOH

Strobe1

Per-Pin

DUT

8 per
board

PE Driver

PE Comparators

Force V/I

PTU_L

PTU-H

PTU

VIHH

RL

Parametric
Measurement

Unit (PMU)

Each PMU can
separately

connect to 16
pins and 16

PTUs
To 15 other PTUs

To other 15 pins
To DC Test and

Measure System

To 1 DPS & 2 HV

VIH

I/O1

VIL

1Waveforms from Timing &
Formatting.

2VIHH Signal from APG

VTT

To other
pin of
pin-pair

RESET from APG

Vihh2

Drive1

or
VZ

50Ω

See Error Flag
vs. Error Latch

Error
Flag

Error
Latch
 2/27/09 Pg-75

Magnum System Overview Pin Electronics (PE)
1.5.1 PE Driver
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram

The PE driver generates the digital drive signals applied to the DUT during functional tests.
In Magnum, the driver has six possible states:

Table 1.5.1.0-1 Pin Electronics Driver States

State
Set

Funcion Range Resolution Termination

Drive High = VIH vih() -1V to +7V 5mV 50Ω

Drive Low = VIL vil() -1V to +7V 5mV 50Ω

Terminate to
VTT

vtt() -1V to +7V 5mV 50Ω

Terminate to
VZ/RL

vz()1 -1V to +7V 5mV 81Ω to 500K

Drive to 3rd level
(VIHH)

vihh()1 0V to +12.5V 5mV 81Ω

Tri-state n/a None. Shown as Hi-Z
in diagram below =
high impedance.

n/a n/a

Note-1: the actual voltage range of both VZ and VIHH is affected by the amount of
current sourced. See PTU Operating Area, vz() and vihh().
 2/27/09 Pg-76

Magnum System Overview Pin Electronics (PE)
Note that not all 6 driver states are usable at one time and that the usable states are affected
when using Double Clock Mode. The table below describes 4 modes, indicating the legal
combinations of states which can be obtained in each mode:

Note the following:

• During the initial program load the PE driver mode is set to Vz Mode with
RL = 500K. The system software does not otherwise change the driver mode.

• The pe_driver_mode_set() function is used to set the PE driver mode. The
pe_driver_mode_get() function can be used to get the currently set PE driver
mode for one pin.

• In Vz Mode, the Vz state is enabled in the test pattern using the PINFUNC ADHIZ
instruction (Memory Test Patterns) or X, H, L, V and Z tokens (Logic Test Patterns
& Scan Test Patterns). Pin(s) in Vz Mode ignore the test pattern VIHH Map
selection. The Hi-Z and Vtt states are not available on pins in Vz Mode.

• In Vihh Mode, the tri-state (Hi-Z) state is enabled in the test pattern using the
PINFUNC ADHIZ instruction (Memory Test Patterns) or X, H, L, V and Z tokens
(Logic Test Patterns & Scan Test Patterns). Pin(s) in Vihh Mode do respond to the
test pattern VIHH Map selection. To enable the VIHH voltage also requires defining
one or more VIHH Maps, to identify combinations of pin(s) which will drive to the

Table 1.5.1.0-2 Magnum PE Driver Modes

Mode VIL VIH Tri-stat VTT/50Ω VZ/RL VIHH Comment

Vz
Mode Yes Yes Note-1 No Yes No VIHH, VTT & Hi-Z

disabled

Vihh
Mode Yes Yes Note-2 No No Yes VZ and VTT disabled

Vtt
Mode Yes Yes Note-3 Yes No No VIHH, VZ & Hi-Z

disabled

Dclk
Mode Yes Yes Note-4 No No No

Double Clock Mode, a
special drive-only
mode.

Notes:
1) In Vz Mode, when the driver tri-states the Vz voltage from the PTU is enabled.
2) In Vihh Mode when the driver tri-states the PE channel is high impedance.
3) In Vtt Mode, when the driver tri-states the Vtt voltage is enabled.
4) In Dclk Mode the driver cannot be tri-stated.
 2/27/09 Pg-77

Magnum System Overview Pin Electronics (PE)
Vihh state in a given pattern instruction. In the test pattern, to switch Vihh Mode
pin(s) to the Vihh state, a non-default VIHH Map is selected, per cycle, using
PINFUNC VIHH# instruction (Memory Test Patterns) or VPINFUNC VIHH# and
VEC/RPT VIHH# instructions (Logic Test Patterns). Pin(s) in the Vihh state are not
tri-stated by the PINFUNC ADHIZ instructions (Memory Test Patterns) and X, H, L,
V and Z tokens (Logic Test Patterns & Scan Test Patterns) i.e. they continue to
drive to the VIHH level. Vihh Mode pin(s) which are not switched to the Vihh state
in a given cycle will tri-state (Hi-Z). The Vz and Vtt states are not available on pins
in Vihh Mode.

• In Vtt Mode, the Vtt state is enabled in the test pattern using the PINFUNC ADHIZ
instruction (Memory Test Patterns) or X, H, L, V and Z tokens (Logic Test Patterns
& Scan Test Patterns). Pin(s) in Vtt Mode ignore the test pattern VIHH Map
selection. The tri-state (Hi-Z) and Vz states are not available on pins in Vtt Mode.

• In Dclk Mode (see Double Clock Mode) the pin is set to drive-only and ignores the
various test pattern tri-state signals and the Vihh signal. Values programmed for
VZ, VTT and VIHH have no effect on pins in Dclk Mode.
 2/27/09 Pg-78

Magnum System Overview Pin Electronics (PE)
The diagram below shows the components important to PE driver mode:

Figure-4: PE Driver Block Diagram
Note the following:

• Each pin has independent DC levels: VIL, VIH, VIHH, VTT, VZ, and independent
RL. These voltages may be programmed from the test program and also
controlled from an executing test pattern (see Controlling PE Levels from the Test
Pattern).

• During pattern execution, the driver will switch states as controlled by the Drive,
I/O and Vihh signals from the Timing & Formatting logic, which is itself controlled
by signals from the Pin Scramble MUX which selects, cycle by cycle, from the
various pattern data sources (APG, LVM/SVM, etc.).

VIH

I/O1

VIL

1Waveforms from Timing &
Formatting.

2VIHH Signal from APG

VTT

To other
pin of
pin-pair

To/From

VZ or

PTU

RL

DUT

The PTU is the source
of VIHH and VZ.

Vihh2

Drive1

VZ
VIHH

VIHH

8 discrete
resistors, see

RL Values

PE Driver

50Ω
 2/27/09 Pg-79

Magnum System Overview Pin Electronics (PE)
• For any given pin, the other pin of the pin-pair (see Functional Pin-pairs) receives
the same Drive, I/O and Vihh signals. However, the PE driver mode can be
independently configured for each pin of the pin-pair (see Magnum PE Driver
Modes).

• The vz() function sets both the VZ level and the value of the termination
resistance, RL. There are 8 discrete RL resistor values, which can be used in
combination to provide 256 values. Nominal resistor values are ±20% but the FET
switch used to connect the PTU to the DUT adds an additional nominal resistance
of 50Ω (30-85 ohms, not ±20%). In the table below, the left 3 columns represent
just the RL resistors. The right 3 columns include the effect of the 50Ω FET switch
resistance:

Note that it is possible to combine multiple RL resistors (in parallel only) to obtain
other effective values, but the 50Ω (30-85 ohms) must be added to the resulting
parallel resistance calculation. Also, the PTU voltage limits and maximum current
the PTU can supply may constrain the use of some parallel RL combinations.

1.5.2 PE Comparators
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram

Table 1.5.1.0-3 RL Values

RL Nominal
Min

(-20%)
Max

(+20%)
RL Actual
Incl 50Ω

Min
(/w 30Ω)

Max
(/w 85Ω)

500K 400K 600K 500K 400K 600K

125K 100K 150K 125K 100K 150K

31.25K 25K 35.5K 31.3K 25030 37585

7.81K 6248 9372 7.86K 6278 9457

1.95K 1560 2340 2.0K 1590 2425

500 400 600 550 430 685

125 100 150 175 130 235

31 25 37.5 81 55 122.5

The effect of the series 50Ω was not included in the 2 highest resistor values.
 2/27/09 Pg-80

Magnum System Overview Pin Electronics (PE)
The Magnum PE comparator and error logic are used during functional tests, to test for four
logic states:

The diagram below shows each option and how the values of VOL/VOH apply:

Table 1.5.2.0-1 PE Comparator Levels

State & Reference Voltage
Set

Func. Range Resolution

Strobe High = VOH voh() -1V to +7V 5mV

Strobe High = VOL vol() -1V to +7V 5mV

Strobe Tri-state Both Same Same

Strobe Valid Both Same Same

VOH

VOL

Strobe
High

Strobe Strobe Strobe
Low Tri-state Valid

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

FAIL

PASS

PASS PASS

PASS
 2/27/09 Pg-81

Magnum System Overview Pin Electronics (PE)
The following diagram shows the DC comparators and error logic for one pin:

Figure-5: PE Comparators and Error Logic Block Diagram
Note the following:

• During pattern execution, the error logic at the output of the DC comparators will
receive strobe signals from the Timing & Formatting logic, which is itself controlled
by signals from the Pin Scramble MUX which selects, cycle by cycle, from the
various pattern data sources (APG, LVM/SVM, etc.). Each pin-pair (see Functional
Pin-pairs) shares the same set of drive, strobe and I/O signals. See Pin Electronics
(PE) Block Diagram.

• Strobe signals can generate edge strobes or window strobes, per-pin.
• The comparator error logic detects a FAIL if, during the entire time of a window

strobe, or at the time of the 1st edge of an edge strobe, the strobe fails. This will
occur as indicated above.

E
rro

r L
og

ic

VOL

VOH

Strobe1

Per-Pin

DUT

PE Comparators

Force V/I

PTU_L

PTU-H

PTU

RL

1From Timing & Formatting

To other
pin of
pin-pair

RESET from APG

PE Driver

See Error Flag
vs. Error Latch

Error
Flag

Error
Latch
 2/27/09 Pg-82

Magnum System Overview Pin Electronics (PE)
• Strobe enable and polarity is controlled (per-pin, per-cycle) by the test pattern data
source selected by the Pin Scramble MUX in each pattern cycle, which is
controlled from the test pattern using the PINFUNC PS# instruction (Memory Test
Patterns) and VEC/RPT PS# or VPINFUNC PS# instruction (Logic Test Patterns,
Scan Test Patterns).

• The error latch output from the error logic determines the overall PASS/FAIL result
for each pin. If, at the end of test pattern execution, a given pin’s error latch is set
that pin fails, as does the functional test.

• The error flag output from the error logic is used by the Algorithmic Pattern
Generator (APG) to determine branch-on-error or stop-on-error operation. All per-pin
error flags and the DC Error Flags from each DC Test and Measure System are
logically OR’ed together, to provide one error signal to the APG. See Error Flag vs.
Error Latch.

• It is possible to inhibit the error latch, per-cycle, using one of the NOLATCH test
pattern options (MAR NOLATCH in Memory Test Patterns, and VEC/RPT NOLATCH,
VAR NOLATCH, or VPINFUNC NOLATCH in Logic Test Patterns). In these
instructions, a failing strobe will only set the error flag (not the error latch). This
allows test pattern branch-on-error operations to use the error flag signal, reset
the flag as needed, and PASS/FAIL in conditional pattern cycles without affecting
the overall test pattern PASS/FAIL result. See Error Flag vs. Error Latch.

• The test pattern MAR RESET and CHIPS RESET instructions (Memory Test Patterns)
and VEC/RPT RESET, VAR RESET, and VPINFUNC RESET instructions (Logic Test
Patterns) will clear the error flag but not the error latch. See Error Flag vs. Error
Latch.

• The error logic is also involved during per-pin PTU Go/NoGo tests. The site
controller computer strobes the error logic during PTU Go/NoGo tests.

1.5.3 Per-pin Parametric Test Unit (PTU)
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram

Each Magnum PE pin has an independent per-pin Parametric Test Unit (PTU), used for the
following:

• A PTU can be used to perform static DC tests to force voltage and test/measure
current or vice versa. See PTU Static Test Functions.

• A PTU can be used as statically connected voltage or current source. See PTU as
Voltage/Current Source.
 2/27/09 Pg-83

Magnum System Overview Pin Electronics (PE)
• The PE Driver VIHH voltage for a given pin is supplied by the pin’s PTU. See PE
Driver Block Diagram, VIHH Voltage, and VIHH Maps.

• The PE Driver VZ voltage for a given pin is supplied by the pin’s PTU. See PE
Driver Block Diagram and PE Load Reference Voltage: VZ.

• The Parametric Background Voltage for a given pin is supplied by the pin’s PTU.
See Background Voltage Functions.

The PTU has a single force voltage range, programmed using PTU Force-voltage Functions:

The PTU may be used to test or measure voltage. Pass/Fail test limit values are
programmed using PTU Voltage Test Limit Functions:

Table 1.5.3.0-1 PTU Force Voltage Range

Parameter Range Resolution Comments

PTU Force
Voltage -2V to +12V 1mV

Also supplies VIHH voltage
and VZ voltage (see PE
Driver) and the Parametric
Background Voltage.

Table 1.5.3.0-2 PTU Voltage Test/Measure Range

Parameter Range Resolution

PTU Measure
Voltage -2V to +12V 2mV
 2/27/09 Pg-84

Magnum System Overview Pin Electronics (PE)
The PTU may be used to force current and test or measure current. The same ranges apply:

Table 1.5.3.0-3 PTU Current Force, Test & Measure Ranges

Parameter Range Resolution

PTU Force, Test &
Measure
Current

±2uA 1nA

±8uA 4nA

±32uA 16nA

±128uA 64nA

±512uA 256nA

±2mA 1uA

±8mA 4uA

±32mA 16uA
 2/27/09 Pg-85

Magnum System Overview Pin Electronics (PE)
The diagram below illustrates the V/I operating areas for the PTU based on which current
range is enabled. This model also applies to VIHH and Parametric Background Voltage
usage:

Figure-6: PTU Operating Area
The diagram above should be consulted to determine the PTU operating range based on the
selected current range. This applies when the PTU is forcing current or forcing voltage. A
simplified model of the PTU output structure is shown, to help explain the diagram. For
example, given a PTU force current = -28mA (i.e. the PTU is configured to sink a constant
28mA) the minimum PTU output voltage is +1.5V (which might seem strange). To obtain
-28mA (2nd Y-axis tick mark from the bottom) requires the PTU be set to the ±32mA current
range. In the diagram, this range is indicated by the magenta line, which intersects the
-28mA value at point A. Following this up, the minimum voltage is interpolated as half-way
between +1V and +2V; i.e. +1.5V. Conversely, if the PTU is configured to force +1.5V on the

Imin

Imax

-2V

10V7V 9V

1V 2V 12V

+

-
Sense
Range

PTU
Output

Sink

Source

Resistors

Range
Imin/
IMax

Tick
Value

±2uA 125nA

±8uA 500nA

±32uA 2uA

±128uA 8uA

±512uA 32uA

±2mA 125uA

±8mA 500uA

±32mA 2mA

Green
Blue

Magenta

Current Range

±8mA, ±32mA
±512uA, ±2mA
±2uA, ±8uA, ±32uA, ±128uA

A

 2/27/09 Pg-86

Magnum System Overview Pin Electronics (PE)
±32mA current range, the PTU will sink up to -28mA max, again indicated by point A. In both
cases, it is the voltage drop across the PTU output structure and sense resistor which limits
the output voltage.

Each PTU uses a set of local DC comparators to perform Go/NoGo tests. To make a
measurement, the sense signal is routed, via the Parametric Measurement Unit (PMU), to
the DC A/D Converter. See DC Sub-System.

The PTU Static Test Functions can test for three PASS/FAIL states:

• Greater-than PTU_H
• Less-than PTU_L
• In-range, between PTU_H and PTU_L

The diagram below shows each option and how the values of PTU_H and PTU_L apply:

Each PTU has two programmable voltage clamps, which are programmed using PTU
Voltage Clamp Functions. PTU voltage clamps are only active when the PTU is in the
force-current mode:

PTU force and test limits may be programmed from the test program or from an executing
test pattern (see Controlling PE Levels from the Test Pattern).

A PTU test on a given pin uses the same fail logic as the functional comparators on that pin.

Table 1.5.3.0-4 PTU Voltage Clamp Range

Range Resolution

0.5V to +12V
4mV

Positive Clamp

-2V to +11V Negative
Clamp

PTU_H

PTU_L

Greater
Than

Less In
Than Range

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS
 2/27/09 Pg-87

Magnum System Overview Pin Electronics (PE)
1.5.4 Error Flag vs. Error Latch
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram

With respect to failing strobes in functional tests, there are two important hardware error
signal types:

• Error Flag
• Error Latch

Figure-7: and Figure-8: are are used to describe how these signals operate:

Figure-7: PE Error Flag vs. Error Latch Diagram
The error latches have the following attributes:

• Each tester channel has a separate error latch signal.

voh()

To DUT

Switch
MatrixRESET signal from APG.

Resets error flags only

To DUT

Strobe Edges from
Timing & Formatting

Error Latch to CPU and

DC
Comparators

and Error
Logic

DC Source
Select MUX

1 per-16 Pins

To other
15 pins

To DUT

PMU

DPS

HV

E
rr

or
 L

og
ic

PTU

vol()

Per-pin

Expect Data From Pin
Scramble MUX

APG Branch-on-abort Logic

2

Error Flag to
Error Flag OR Logic and

Branch-on-error Logic

Error Flag to
Error Flag OR Logic and

Branch-on-error Logic
 2/27/09 Pg-88

Magnum System Overview Pin Electronics (PE)
• The overall PASS/FAIL results of a functional test is solely determined by reading
the error latches, after test pattern execution has ended. The error latches are
also read by Dynamic DC Tests, to determine if the functional pattern passed or
failed.

• Error latches are set in pattern instructions which generate a failing strobe.
Strobes are generated in Memory Test Patterns using the various MAR READ
operations (READUDATA, READZ, etc.) and in Logic Test Patterns and Scan Test
Patterns using the H, L, V and Z Logic Vector Bit Codes. In Memory Test Patterns
since READ is the default, any memory test pattern instruction performing a READ
without an explicit NOLATCH will set an error latch if one or more strobes fail.

• In Logic Test Patterns error latches are set by any failing strobe(s) in instructions
without an explicit VEC/RPT NOLATCH, VAR NOLATCH, or VPINFUNC NOLATCH
instruction.

• It is the error latch signals which affect test pattern branch-on-abort operations.
• Error latches can not be dynamically cleared using test pattern instructions; i.e.

once an error latch is set the test result will be FAIL. Error latches can be reset
only from the test site controller, either by the system software in preparation for
the next test, or by calling reset_error() from user C Code (rarely needed).

• Using pin_info(), individual error latch signals can be read to identify which
tester pins have failed.

• It is the error latch signals (not error flags) which are logged to the ECR using
Logic Error Catch (LEC) or executing funtest() using the fullec execution
option.
 2/27/09 Pg-89

Magnum System Overview Pin Electronics (PE)
The following diagram shows how 8 error flags for each set of 8 pins are logically OR’ed
together to generate a single output signal:

Figure-8: Error Flag OR Logic
The error flags have the following attributes:

• Each group of 8 pins has a single error flag output, representing the logical OR of
the error flags of those 8 PE channels.

• Each group of 16 pins has one error flag output from the DC Comparators and
Error Logic associated with those pins. The latter is used by both Static DC Tests
and Dynamic DC Tests when measurements are disabled. Further, the error flags
from all pins on a Site Assembly Board are logically OR’ed in to form a single error
flag signal which is used for branch-on-error and stop-on-error operations in the
test pattern. See Figure-8: . Note that the branch-on-abort operation tests the error
latches not the error flags.

• When performing a functional test the per-pin error flags have no effect on overall
PASS/FAIL test results; i.e. only the error latches are considered.

a_1

a_8

PTU

PTU

DC
Comparators

and Error Logic

b_1 thru b_8

One DC Comparators and
Error Logic per 16 pins.

8 pins
TRUE if at

least 1 error
from this set of

8 pins One Error Flag
from each 8 pin
group and each DC
Comparators and
Error Logic

Pins

b_1 .. b_8

b_57 .. b_64

...

a_1 .. a_8

OR’ed Error
Flags to

Branch-on-
error Logic.

One signal
for each set

of 8 pins.

a_9 thru a_16a_9 .. a_16

a_57 .. a_64

... a_9 .. a_16

a_57 .. a_64

...

b_1 .. b_8

b_57 .. b_64

...

Pins
 2/27/09 Pg-90

Magnum System Overview Pin Electronics (PE)
• When performing Dynamic DC Tests (all of which execute a test pattern) the DC
Error Flag output from the DC Comparators and Error Logic determines whether
the DC portion of the test passes or fails, and the PE error latches determine
whether the functional pattern passed or failed.

• When executing Memory Test Patterns, error flags can be set without setting the
error latch using READ NOLATCH in the pattern instruction. Executing Logic Test
Patterns, error flags can be set without setting the error latch using using VEC/RPT
NOLATCH, VAR NOLATCH, or VPINFUNC NOLATCH instruction.

• Traditionally, test pattern branch-on-error and stop-on-error operations are based
solely on these error flags. However, using Magnum, the ECR Counter
Comparators can also be treated as error sources.

• Some conditional operations evaluate the logical OR of all errors in a test site
while others consider error signals organized by DUT. The user must understand
some of the hardware architecture when selecting which signals are selected as
the error source. Details are covered in Branch-on-error Logic.

• In Memory Test Patterns, error flags can be dynamically cleared (reset) on-the-fly
from the pattern using the MAR RESET instruction. Combined with READ NOLATCH
this allows the pattern instruction sequence to branch about, based on strobe
PASS/FAIL results AND DC comparator PASS/FAIL test results, without causing
the overall test to fail.

• In Logic Test Patterns, the RESET operation noted above is controlled using the
VEC/RPT RESET, VAR RESET, or VPINFUNC RESET instructions.

1.5.5 DC-only Pins
See Pin Electronics (PE).

The Magnum 1, 2 & 2x Parallel Test software supports the concept of DC-only pins. Note the
following:

• DC-only pins are not formally defined. Rather, any digital pin can be effectively
made into a DC-only pin by executing pin_dc_state_set().

• Using pin_dc_state_set(), the PE Driver of specified pin(s) may be statically
set to drive to logic-1, logic-0, or tri-state. The Magnum PE Driver Modes does
apply to DC-only pins.

• pin_dc_state_set() provides two options related to whether the specified
pin(s) respond to test pattern stimuli:
 2/27/09 Pg-91

Magnum System Overview DC Sub-System
• If the hold_state argument is set TRUE the specified pin(s) will not receive
test pattern signals and thus will remain the specified DC state until
pin_dc_state_set() is executed again to change the pin mode. This is the
basis for a DC-only pin.

• If the hold_state argument is set FALSE the specified pin(s) will receive test
pattern signals and change state accordingly. This takes a pin out of the DC-only
state.

• See pin_dc_state_set() for additional details.

1.6 DC Sub-System
See Magnum System Overview, Site Assembly Board Block Diagram, Pin Electronics (PE)
Block Diagram.

The DC sub-system is used to test or measure voltage or current from a DUT Power Supply
(DPS), a High Voltage Source/Measure Unit (HV), or a Parametric Measurement Unit
(PMU).
 2/27/09 Pg-92

Magnum System Overview DC Sub-System
The block diagram below shows the main components of the DC sub-system:

Figure-9: DC Sub-System Block Diagram
Note the following:

• This circuit is replicated 8 times on each Site Assembly Board. Each instance
connects one DUT Power Supply (DPS), 2 High Voltage Source/Measure Unit (HV),
and 1 Parametric Measurement Unit (PMU) to the DC Source Select MUX. The
PMU can connect to 16 DUT pins, 16 PTU, 2 HV and 1 DPS.

• The DC Source Select MUX selects which DC instrument is routed to the DC Test
and Measure System. The DC Source Select MUX is controlled by system
software, based on the type of test being performed.

• It is the DC Test and Measure System which contains the DC comparators used to
perform Go/NoGo DC parametric tests (except for the PTU, more below).

• It is the DC Test and Measure System which contains the A/D converter used to
make DC parametric measurements, including PTU measurements.

• When using the PTU, the DC Test and Measure System is only used when making
a measurement (PTU Go/NoGo tests do not use the DC Test and Measure
System).

DPS A Force
DPS A Sense

DC Test and
Measure
System

DC Source
Select MUX

Error flag to

CPU Trigger

DUT
Power
Supply

Parametric
Measurement
Unit (PMU)

High Voltage
Source/

Measure Unit

DPS Current

HV Force
HV Sense

F

S

DPS Voltage

HV Current

HV Voltage

PMU Voltage

PMU Current

Test Pattern
VCOMP Trigger

8 per Site Assembly Board PTU connections to the
PMU used for

measurements only

To HV and DPS
Measurement

to CPU

APG & CPU

RESET from
Test Pattern

PTU 16 Pins
To DUT

DPS B Force
DPS B Sense

PTU

2

2

 2/27/09 Pg-93

Magnum System Overview DC Sub-System
• When making a PTU measurement, only one pin at a time can be measured. The
PMU selects and routes the voltage/current signal to the DC Source Select MUX
when making PTU measurements.

• The DC Test and Measure System can only test or measure voltage. Thus, to test
or measure a current value, the DUT Power Supply (DPS), High Voltage Source/
Measure Unit (HV), Per-pin Parametric Test Unit (PTU), and Parametric
Measurement Unit (PMU) generate a voltage proportional to the current being
supplied. It is this voltage that is tested or measured when performing a current
test.

1.6.1 DUT Power Supply (DPS)
See DC Sub-System , Pin Electronics (PE), Pin Electronics (PE) Block Diagram.

Each Site Assembly Board contains eight DPS, 1 for each 16 pins.

Note the following:

• Each DPS has two independently switchable outputs (split DPS)
• The two outputs (A&B) can operate in 2 modes (see DPS Voltage Programming

Functions and DPS Output Mode):
• In VPulse mode, both DPS outputs are set to the same voltage and may switch

to an alternate voltage.
• In Independent mode, the two DPS outputs may be programmed to different

voltages but the test pattern Vpulse control cannot be used.
• A solid-state switch allows each DPS output (A&B) to connect to or disconnected

from the DUT. User code must explicitly control these connections. See DPS
Connect/Disconnect Functions.
 2/27/09 Pg-94

Magnum System Overview DC Sub-System
• The DPS has a single force voltage range, which applies in both VPulse and
Independent modes:

Table 1.6.1.0-1 DPS Force Voltage Range

Voltage
Range

Max
Current Resolution Notes

-15V to +15V
-11.5V to +13.5V ±400mA

±600mA 5mV

Only one DPS of 4 can output
negative voltage. Note the ±600mA
maximum current is only available
with the DPS 300mA/600mA DPS
Option.

The current from each output (A&B) cannot exceed the 1/2 the total available DPS
output current specification.

See DPS Operating Area
diagram below
 2/27/09 Pg-95

Magnum System Overview DC Sub-System
• The following diagram shows the operating area of the DPS:

Figure-10: DPS Operating Area

0V/0mA

+15V-15V

-100mA

-400mA

+400mA

-13V

+600mA1

-11.5V1

-600mA1

+13.5V1

Note-1: ±600mA (blue) applies only when using the DPS 300mA/600mA DPS Option.
 2/27/09 Pg-96

Magnum System Overview DC Sub-System
• The DPS output current can be tested or measured using the DC Test and
Measure System. See DPS Static Current Test Functions and DPS Dynamic
Current Test Functions. The DPS has the following current sense ranges (see for
DPS Current Test Limit Functions details):

• Multiple DPS can be connected in parallel to obtain current greater than that
available from one DPS. See DPS Current Sharing.

• Each DPS has a corresponding Parametric Measurement Unit (PMU) which can be
switched to replace the DPS to perform PMU: Testing DPS Pins.

Table 1.6.1.0-2 DPS Test/Measure Current Ranges

Current
Range Resolution Notes

±4uA 2nA

±40uA 20nA

±400uA 200nA

±4mA 2uA

±40mA 20uA

±400mA 200uA

±600mA
2mA

±600mA only when using the DPS
300mA/600mA DPS Option.

±4A Only useable in DPS Current Sharing
mode.
 2/27/09 Pg-97

Magnum System Overview DC Sub-System
• The diagram below shows the DPS output structure. Each Site Assembly Board
has 8 of these:

Figure-11: Magnum DPS Output Block Diagram
• Not shown is the current sense circuitry, which operates differently depending on

the output mode of the DPS (see DPS Output Mode).
• In Vpulse mode, the combined output current is sensed and can be tested or

measured.
• In independent mode, the output current from one output at a time can sensed

and tested or measured.

1.6.2 High Voltage Source/Measure Unit (HV)
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram.

Each Site Assembly Board contains 16 high voltage source/measure units, effectively one
for each 8 pins. Note the following:

• See High Voltage Source/Measure Unit (HV) Functions.

Sense

Force

Solid-state
Switches

 Forcea

To DUT

Force 1a

Sense 1a

Sense 1b

Force 1b

PMU

 Sensea

 Forceb

Senseb

Board

To 16 PE Channels, 16
PTUs, and 2 HV units.

To DC
Test and
Measure
System

DPS

To DC
Test and
Measure
System
 2/27/09 Pg-98

Magnum System Overview DC Sub-System
• A solid-state switch allows each HV to connect to or disconnected from the DUT.
User code must explicitly control these connections. See HV Connect/Disconnect
Functions.

• The HV has a single force voltage range:

• The HV output current can be tested or measured using the DC Test and Measure
System. See HV Static Test Functions and HV Dynamic Test Functions. The HV
has 1 current sense range:

• The HV output voltage can be tested or measured using the DC Test and Measure
System. See HV Static Test Functions and HV Dynamic Test Functions. The HV
has 1 voltage sense range:

• Each two HV units have a corresponding Parametric Measurement Unit (PMU)
which can be switched to replace HV (one at a time) to perform PMU: Testing HV
Pins, typically continuity tests.

Table 1.6.2.0-1 HV Force Voltage Range

Voltage
Range Resolution

Max
Current Load

0V to +28V 2mV 8mA Up to 0.01uF

Table 1.6.2.0-2 HV Test/Measure Current Range

Current
Range Resolution

0mA to 8mA 4uA

Table 1.6.2.0-3 HV Test/Measure Voltage Range

Voltage
Range Resolution

0V to +28V 4mV
 2/27/09 Pg-99

Magnum System Overview DC Sub-System
• The diagram below shows the HV output structure:

Figure-12: Magnum HV Output Block Diagram

1.6.3 Parametric Measurement Unit (PMU)
See Pin Electronics (PE), Pin Electronics (PE) Block Diagram.

Each Site Assembly Board contains eight PMUs, 1 for each 16 pins. These PMUs can be
used to perform conventional DC parametric tests, and as a statically connected
programmable voltage or current source.

A solid-state switch matrix allows each PMU to connect to, and test or measure, 16 PE pins,
16 Per-pin Parametric Test Unit (PTU)s (for measurements only), one DUT Power Supply
(DPS), and two High Voltage Source/Measure Unit (HV)s.

Sense

Force

Solid-state

 Force

HV

To DUT

PMU

I Sense

To 16 PE Channels, 16 PTUs,
1 DPS, and 1 more HV unit.

Sense

Current sense to
DC Test and

Measure System

I-sense

Voltage sense to
DC Test and

Measure System

Switches

Board

To DC Test and
Measure System
 2/27/09 Pg-100

Magnum System Overview DC Sub-System
The PMU has a single force voltage range:

The PMU has the following voltage measure ranges:

PMU voltage measure range is programmed implicitly or explicitly using the PMU Voltage
Test Limit Functions.

Table 1.6.3.0-1 PMU Force Voltage Range

Voltage
Range Resolution

Max
Current Notes

-2.5V to +12.75V

1mV ±20mA

On PE Pins

-5V to +15V On DPS Pins

-2.5V to +15V On HV Pins

Note: while this may seem to be three voltage ranges, in hardware only one range
exists. The system software will limit the force voltage if/when the PMU is connected
to, or testing PE, DPS, or HV pins. The broader voltage output capabilies are only
usable when the PMU is connected to replace a DUT Power Supply (DPS) (see PMU:
Testing DPS Pins) or High Voltage Source/Measure Unit (HV) (see PMU: Testing HV
Pins).

Table 1.6.3.0-2 PMU Measure Voltage Ranges

Range Resolution

-2.5V to +4V 1mV
On PE Pins

-2.5V to +12.75V 4mV

-5V to +15V 4mV On DPS Pins

-2.5V to +15V 4mV On HV Pins

Note: the system software limits the measure voltage
range to the values noted depending on the hardware
connection being tested.
 2/27/09 Pg-101

Magnum System Overview DC Sub-System
The PMU has a five force current ranges:

The diagram below illustrates the different operating areas for the PMU based on how it is
connected. As indicated in the tables above, the operating range of the PMU depends upon
whether it is connected to PE channels or to a DPS or HV unit:

Figure-13: PMU Operating Area
PMU voltage measure range is programmed implicitly or explicitly using the PMU Voltage
Test Limit Functions.

Table 1.6.3.0-3 PMU Force Current Ranges

Current
Range Resolution

±2uA 1nA

±20uA 10nA

±200uA 100nA

±2mA 1uA

±20mA 10uA

15V-5V

-20mA

+20mA

-2.5V

-2V

Green = PMU on PE channels

Magenta = PMU on DPS or HV

12.75V

-14mA

+14mA

12V
 2/27/09 Pg-102

Magnum System Overview DC Sub-System
In force voltage mode, the PMU current sense circuitry generates a voltage proportional to
the amount of current supplied by the PMU. This current sense signal can be tested or
measured using the DC Test and Measure System. The PMU has 5 current ranges:

The PMU has a two voltage clamps:

PMU voltage clamps are programmed using PMU Voltage Clamp Functions. The voltage
clamps are only active when the PMU is in the force-current mode. PMU voltage clamps can
affect the PMU force voltage and PASS/FAIL limits.

See PMU as Voltage/Current Source for additional details about using the PMU as a
statically connected voltage or current source. The rest of this section addresses using the
PMU to perform DC parameteric tests, making measurements, etc.

Connections are made to the PMU a solid-state switch matrix. When performing standard
PMU tests, connections between the PMU and the DUT are sequenced automatically; i.e.
PMU Connect/Disconnect Functions are not needed. When using the PMU as Voltage/
Current Source, explicit connections are controlled using the PMU Connect/Disconnect
Functions.

In the force-voltage mode, the voltage is programmed using the PMU Force Voltage
Functions. In the force-current mode, the current is programmed using the PMU Force

Table 1.6.3.0-4 PMU Test/Measure Current Ranges

Current
Range Resolution

±2uA 1nA

±20uA 10nA

±200uA 100nA

±2mA 1uA

±20mA 10uA

Table 1.6.3.0-5 PMU Voltage Clamp Range

Range Resolution

-5V to +16V
100mV

Positive Voltage Clamp

-6V to +15V Negative Voltage Clamp
 2/27/09 Pg-103

Magnum System Overview DC Sub-System
Current Functions. PMU current ranges are normally set automatically, based on the force
voltage/current values programmed. It is also possible to explicitly set ranges using the PMU
Current Test Limit Functions.

The parametric_mode() function can be used to determine if the most recently executed
PMU test was testing current or voltage.

In the force-voltage mode, a voltage representing the PMU output current is routed to the
DC Test and Measure System via the DC Source Select MUX. In the force-current mode,
the PMU output voltage is routed to the DC Test and Measure System via the DC Source
Select MUX. The DC Source Select MUX will select the PMU test voltage any time one of
the PMU Static Test Functions or PMU Dynamic Test Functions is executed. The test voltage
is used to perform Go/NoGo PMU current tests, using the DC Comparators and Error Logic,
and can also be measured (more below). PMU current PASS/FAIL test limits are
programmed using the PMU Current Test Limit Functions.

Both static and dynamic PMU tests are supported, and executed using PMU Static Test
Functions or PMU Dynamic Test Functions. Also see Static DC Tests and Dynamic DC
Tests.

The system software provides a Built-in Settling Time to PMU current tests. The user may
use the partime() function to add additional settling time. See Parametric Settling Time.

It is possible to switch the PMU to temporarily replace one of the DUT Power Supply (DPS).
This is typically done when the PMU’s additional accuracy or voltage/current range is
needed to perform a special test. See PMU: Testing DPS Pins.

The start_ac_partest(), stop_ac_partest() functions can be used to perform a
specialized DC parametric test, where the PMU configuration and connections to the DUT
are explicitly set up, user-written code executes as desired, and finally the PMU is
disconnected. The user code typically executes test patterns which trigger the DC
Comparators and Error Logic or DC A/D Converter, etc.

1.6.4 Parametric Background Voltage
The parametric background voltage is used to bias a set of pins while testing another
[adjacent] pin. Having a background voltage facility simplifies using the Parametric
Measurement Unit (PMU) to perform continuity tests (opens/shorts testing) and [adjacent
channel] leakage tests.

Since the PMU is not a per-pin resource, using the PMU typically requires a sequential test,
where all pins are forced to a low (or high) voltage, i.e. the background voltage, and one pin
 2/27/09 Pg-104

Magnum System Overview DC Sub-System
at a time is forced to the opposite voltage and tested for current. In systems without
background voltage capability, the functional drivers are used, increasing the complexity of
writing a reliable and portable test program.

While the background voltage facility is not as beneficial when using the Per-pin Parametric
Test Unit (PTU), a sequentual PTU test does support its use (a parallel PTU test, the default
mode, does not use the background voltage mechanism.

Using the Site Assembly Board, the background voltage is generated by the Per-pin
Parametric Test Unit (PTU). The background voltage value is programmed using
Background Voltage Functions.

The background voltage has a single voltage range:

Note: when the Per-pin Parametric Test Unit (PTU) supplies the background voltage it is
set to operate on the ±2uA range. The actual background voltage output can be affected
by the current supplied. See PTU Operating Area.

1.6.5 DC Test and Measure System
See Site Assembly Board Block Diagram, DC Sub-System Block Diagram.

The DC test and measure system is used to test or measure voltage or current from the
DUT Power Supply (DPS), High Voltage Source/Measure Unit (HV), and Parametric
Measurement Unit (PMU). It is also used when measuring values from the PTU.

Table 1.6.4.0-1 Background Voltage Range

Range Resolution

0V to +12V 1mV
 2/27/09 Pg-105

Magnum System Overview DC Sub-System
The diagram below shows the key elements of the DC test and measure system. There are
8 of these on each Site Assembly Board:

Figure-14: DC Test and Measure System Block Diagram
Note the following:

• Each DC test and measure system is shared by one DUT Power Supply (DPS), two
High Voltage Source/Measure Unit (HV), one Parametric Measurement Unit (PMU),
and via the PMU 16 Per-pin Parametric Test Unit (PTU) (for measure only). Except
for PTU Go/NoGo tests, all tests and measurements using these DC instruments is
done using this subsystem.

• One input to the system is selected by the DC Source Select MUX. The MUX is
automatically configured any time a DC test is executed, using DPS Static Current
Test Functions, DPS Dynamic Current Test Functions, HV Static Test Functions and
HV Dynamic Test Functions, PMU Static Test Functions, PMU Dynamic Test
Functions or PTU Functions (measure only).

• Go/NoGo tests use the DC Comparators and Error Logic. Measurements use the
DC A/D Converter. The measure() function switches between Go/NoGo testing
and measurements.

• Static tests are triggered from the CPU. Dynamic tests can be triggered from either
the CPU (Go/NoGo tests only) or from a test pattern, using the VCOMP pattern
token.

DC
Comparators

and Error
Logic

DC Source
Select MUX

Per-pin Parametric Test Unit (PTU)
(16 PTUs via PMU)

APG VCOMP Trigger
CPU Trigger

DC A/D
Converter

Measurement

to APG and CPU

RESET from APG

Also see DC Sub-System Block Diagram

DC Error Flag

High Voltage Source/Measure Unit (HV)
1 current sense, 1 voltage sense

to CPU

High Voltage Source/Measure Unit (HV)
1 current sense, 1 voltage sense
Parametric Measurement Unit (PMU)
1 current sense, 1 voltage sense

DUT Power Supply (DPS)
1 current sense
 2/27/09 Pg-106

Magnum System Overview DC Sub-System
• In Go/NoGo tests, the state of the DC Error Flag determines the final test result.
When measurements are made, values are retrieved from the DC A/D Converter
and analyzed to determine the final test result.

• In dynamic tests, the DC Error Flag signal allows the executing test pattern to
perform branch-on-error or stop-on-error operations based on the logical OR of the
DC Error Flag signal from the DC Comparators and Error Logic and the error flags
from the PE Comparators and/or PTUs. The test pattern MAR RESET and CHIPS
RESET instructions (Memory Test Patterns) and VEC/RPT RESET, VAR RESET,
VPINFUNC RESET instructions (Logic Test Patterns) will reset theDC Error Flag in
the DC Comparators and Error Logic.

• Regarding the PTU, the DC test and measure system is only used to make
measurements (i.e. measure() = TRUE). In this situation, the Parametric
Measurement Unit (PMU) routes one PTU at a time via the DC Source Select MUX
to the DC A/D Converter.

1.6.6 DC Source Select MUX
See Magnum System Overview, DC Sub-System Block Diagram

The DC source select MUX is used, during DC parametric testing, to connect one DC
instrument (at a time) to the DC Test and Measure System. The connection allows the
output of the DC instrument to be tested or measured. The DC instruments include the DUT
Power Supply (DPS), High Voltage Source/Measure Unit (HV), Parametric Measurement
Unit (PMU), and when making a measurement (only) a Per-pin Parametric Test Unit (PTU).

The DC source select MUX is automatically configured based on the type of test being
performed:

• Executing a PMU Go/NoGo test or measurement using partest() or
ac_partest() will select the output of the Parametric Measurement Unit (PMU).

• Executing a PTU measurement (only) using ptu_partest() will select the output
of the Parametric Measurement Unit (PMU) and connect one or more PTU(s) to the
PMU.

• Executing a DPS current Go/NoGo test or measurement using test_supply()
or ac_test_supply() will select the output of the DUT Power Supply (DPS).

• Executing a HV current Go/NoGo test or measurement using hv_test_supply()
or hv_ac_test_supply() will select the output of the High Voltage Source/
Measure Unit (HV).
 2/27/09 Pg-107

Magnum System Overview DC Sub-System
The operation noted above is independent of whether a Go/NoGo test is being performed or
a measurement is being made. When executing a PTU test when measure() is TRUE, will
select the output of the Parametric Measurement Unit (PMU), and connect the specified
PTU to the PMU input.

1.6.6.1 DC Comparators and Error Logic
See DC Test and Measure System, DC Sub-System Block Diagram.

The DC Test and Measure System contains a dual DC comparator circuit, and associated
error logic, used to perform DC parametric tests (except using PTU). Note the following:

• The DC comparators are used during Go/NoGo tests. When measurements are
required the DC A/D Converter is used instead. The measure() function switches
between Go/NoGo testing and measurements.

• Selection of which DC resource is connected to the DC comparators is made by
the DC Source Select MUX, based on the type of test being performed.

• In static DC tests, the DC comparators are triggered from the CPU. In dynamic
tests, the DC comparators can be enabled from the CPU (Go/NoGo tests only) or
triggered from the executing test pattern, using the VCOMP pattern token.

• In dynamic tests, if test pattern triggers are disabled, the CPU enables the DC
comparators for the entire duration of the executing test pattern. If, during that
time, the parameter being tested fails the specified test limits, the DC error flag is
set. After the test pattern stops, if the error flag remains set the test returns FAIL.
The MAR RESET instruction (Memory Test Patterns) or VEC/RPT RESET, VAR
RESET, or VPINFUNC RESET instruction (Logic Test Patterns) will clear the error
flag.

• In dynamic tests with test pattern triggers enabled, each MAR VCOMP instruction
(Memory Test Patterns) or VEC/RPT VCOMP, VAR VCOMP, or VPINFUNC VCOMP
instruction (Logic Test Patterns) will trigger the DC comparators, which set the error
flag if the parameter being tested fails the specified test limits at the time of the
trigger. Again, after the test pattern stops, if the error flag remains set the test
returns FAIL. The MAR RESET instruction (Memory Test Patterns) or VEC/RPT
RESET, VAR RESET, or VPINFUNC RESET instruction (Logic Test Patterns) will clear
the error flag.

• The error flag signal is routed to the APG. During dynamic tests, this allows test
pattern branch-on-error or stop-on-error operations to react to this flag. The MAR
RESET instruction (Memory Test Patterns) or VEC/RPT RESET, VAR RESET, or
 2/27/09 Pg-108

Magnum System Overview DC Sub-System
VPINFUNC RESET instruction (Logic Test Patterns) do clear the error flag. Any
measured values (measure() = TRUE) are only processed after pattern
execution completes and thus cannot affect branch-on-error or stop-on-error (see
DC A/D Converter). Note that the error flag signal is logically OR’ ed with the error
flag signal from the DC Comparators and Error Logic and the error flags from the
PE Comparators and/or PTUs.

1.6.6.2 DC A/D Converter
See DC Test and Measure System, DC Sub-System Block Diagram.

The DC Test and Measure System contains a 16-bit A/D converter (ADC) which is used to
measure and log the following:

• The output current of the DUT Power Supply (DPS). A voltage representing the
DPS output current is routed to the ADC, via the DC Source Select MUX.

• The output current of any of the High Voltage Source/Measure Unit (HV). A voltage
representing the HV output current is routed to the ADC, via the DC Source Select
MUX.

• The output voltage of the Parametric Measurement Unit (PMU) when in force-
current mode or the output current (as a voltage) when in force-voltage mode. The
output of the PMU is routed to the ADC, via the DC Source Select MUX.

• The output voltage of the Per-pin Parametric Test Unit (PTU) when in force-current
mode or the output current (as a voltage) when in force-voltage mode. The PTU
output is routed via the Parametric Measurement Unit (PMU), which is routed to the
ADC, via the DC Source Select MUX.

Note the following:

• The ADC is used to make DC measurements. When a Go/NoGo test is required
the DC Comparators and Error Logic are used instead (except using PTU). The
measure() function switches between Go/NoGo testing and measurements.

• The ADC only measures voltage. Those DC resources which can test or measure
current output a voltage representing the current to be measured.

• Selection of which DC resource is connected to the ADC is made by the DC
Source Select MUX, based on the type of test being performed.

• In static tests, the ADC is triggered from the CPU. In dynamic tests, the ADC can
only be triggered from the executing test pattern, as specified using the VCOMP
pattern token.
 2/27/09 Pg-109

Magnum System Overview DC Sub-System
• The PASS/FAIL result of a dynamic measurement is determined after the test
pattern execution ends. The CPU retrieves the measured value and compares it to
the test limits to determine PASS/FAIL. Note that the test will also fail if any
functional strobes fail in the test pattern.

• User code can retrieve measured values. See Retrieving DC Test Results.
• ADC measurements cannot affect test pattern branch-on-error or stop-on-error

operation.
 2/27/09 Pg-110

Magnum System Overview Pattern and Timing System
1.7 Pattern and Timing System

1.7.1 Overview
See Magnum System Overview, Site Assembly Board.

The diagram below shows the architecture of the test pattern and timing system of one Site
Assembly Board. The pin electronics (PE) are simplified to show just the driver/comparator
of each of four pins of the total 128 test channels on the Site Assembly Board:

Drive
Strobe

I/O

Pin b_64

Pin a_64

Pin b_1

Pin a_1

Chan-nMain Input

DDR Input

Pattern Data
Strobe & I/O

Control

3
To 2 PE

Pattern Data/Control Signals Timed Signals

Channels3 Timing &
Formatting

Chan-1
Timing &

Formatting

Chan-64
Timing &

Formatting

*LVM/
SVM

Sub-site B

Sub-site B

Sub-site A

Sub-site A

*Optional

Pattern Data
Strobe & I/O
Control (6 bits
per pin)

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

36 Data
8 Chip Selects

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

Drive
Strobe

I/O

64 LVM/Scan Data
 2/27/09 Pg-111

Magnum System Overview Pattern and Timing System
Figure-15: Magnum Pattern & Timing System
A key architectural feature of the Site Assembly Board is the combination of the Pin
Scramble MUX driving the 64 channel Timing & Formatting logic. During test pattern
execution, the APG, via the Pin Scramble RAM, causes the Pin Scramble MUX to select a
unique source of test pattern signals, per cycle, as input to the Timing & Formatting logic of
each channel. This allows an arbitrary pattern data source to control, per-cycle, any given
pair of pins.

Each pin-pair (see Functional Pin-pairs) has independent Timing & Formatting logic. This is
where drive waveforms are formatted and exact edge times are controlled. Similarly, strobes
and I/O signals are timed and controlled here, per-pin pair, per-cycle. See Timing &
Formatting for more details.

1.7.2 Pin Scramble MUX
See Site Assembly Board, Pattern and Timing System.

The Pin Scramble MUX (see Pattern and Timing System) is used, during functional test
pattern execution, to select the source of test pattern data, strobe, and I/O control signals for
each tester pin-pair, on-the-fly.

For instance, testing a DUT with a complex I/O interface like that found on a NAND FLASH
device (with an instruction word, data, and three layers of address all multiplexed onto an
eight bit bus) is simple to test using the pin scrambler. One pattern cycle scrambles the
instruction to the 8-pin bus, the next cycle scrambles the first part of the address to these
same pins, the next cycle scrambles the second part of the address to these same pins, etc.
 2/27/09 Pg-112

Magnum System Overview Pattern and Timing System
The diagram below shows key details about the Magnum pin scramble architecture:

Figure-16: Pin Scramble Block Diagram
Note the following:

• The inputs to the Pin Scramble MUX consist of the various test pattern data
sources including:
• 18 X APG Address Generator outputs (X0 through X17, see note below)
• 16 Y APG Address Generator outputs (Y0 through Y15, see note below)
• 36 APG Data Generator outputs
• 8 APG Chip Selects
• 1 or 2 Logic Vector Memory (LVM) / Scan Vector Memory (SVM) data sources for

each pin-pair (see Functional Pin-pairs). The Vector Scramble MUX allows a
given LVM/SVM bit to be mapped any given pin-pair(s), allowing a test pattern for
a single DUT to be use to test multiple DUTs without modification. The Magnum

Selects one data source
for each of 64 Timing &
Formatting channels

To 128 Pin
Electronics
(PE)36 Data

8 Chip Selects

*Optional

P
in

 S
cr

am
bl

e
M

U
X

Pin
Scramble

RAM

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

P
S

 S
el

ec
t M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

*LVM/SVM
1

From CPU

Ve
ct

or

S
cr

am
bl

e
M

U
X

PS Select from
VAR Engine

PS Select
from MAR
Engine

*LVM/SVM
2

64 Timing &
Formatting
Channels
 2/27/09 Pg-113

Magnum System Overview Pattern and Timing System
LVM stores both logic vectors and scan vectors. The LVM architecture provides
separate memories; LVM-1 for normal logic vector and scan operations, LVM-2
stores Double Data Rate (DDR) Mode B-cycle pattern data.

Note: the APG Address Generator can output up to 18 X addresses, but the
combined X + Y address is limited to 36 bits. Therefore if X16 is used, Y15 can’t
be, and if X17 is used Y14 can’t be.

• The Pin Scramble RAM contents are initialized using the Pin Scramble Macros,
during the initial program load. This is where the user’s software identifies a test
pattern data source for each pair of DUT pins. Up to 64 sets can be defined (PS1
through PS64). Those which are not explicitly defined retain the Default Pin
Scramble Map definitions.

• During functional test execution, in each pattern cycle, the APG outputs a pin
scramble selection, to select one of the 64 pin scramble maps (PS1 to PS64). This
equates to the PS# parameter specified using the PINFUNC PS# (Memory Test
Patterns) or VEC/RPT PS# and VPINFUNC PS# instructions (Logic Test Patterns).
This is the address input to the Pin Scramble RAM. Thus, in each pattern cycle,
the Pin Scramble RAM outputs cause the Pin Scramble MUX to select a specific
pattern data source for each pair of tester pins.

• The output of the Pin Scramble MUX is 64 sets of pattern data (PEL), strobe control
(PES) and I/O control (PEE). Each set is sent to one of the 64 Timing & Formatting
channels where real-time timing is added, drive format is determined, etc. See
Timing & Formatting.

• The Timing & Formatting section outputs 64 sets of time-calibrated strobe and I/O
control signals and 64 time-calibrated and formatted drive signals. Each set controls
2 tester pins (see Functional Pin-pairs).

1.7.3 Pin Scramble RAM
See Site Assembly Board, Pattern and Timing System.

It is the Pin Scramble RAM which translates the pin scramble map selection (PS1 through
PS64), output by the APG in each pattern cycle, into the signals which cause the Pin
Scramble MUX to select a specific pattern data source for each pair of DUT signal pins.

The Pin Scramble RAM contents are initialized using the Pin Scramble Macros, during the
initial program load. This is where the user’s software identifies a test pattern data source for
each pair of DUT signal pins (see Functional Pin-pairs). Up to 64 sets (PS1 through PS64)
 2/27/09 Pg-114

Magnum System Overview Pattern and Timing System
can be defined. Those which are not explicitly defined retain the default Default Pin
Scramble Map definitions.

The Magnum APG has two pattern control engines (MAR Engine and VAR Engine) either of
which can select the pin scramble map, per cycle. The pattern instructions used are
PINFUNC PS# (Memory Test Patterns) or VEC/RPT PS# and VPINFUNC PS# instructions
(Logic Test Patterns). In Mixed Memory/Logic Patterns, an additional instruction is required
(PINFUNC VPS) to cause the VAR Engine pin scramble selection to take precedence over
the MAR Engine pin scramble selection. See Pin Scramble MUX.

The Pin Scramble Block Diagram includes key details about how the pin scramble selection
is made. Note the following:

• The PS Select MUX determines whether the APG MAR Engine or VAR Engine will,
cycle-by-cycle, make the pin scramble selection:
• In Memory Test Patterns, the selection is always made by the MAR Engine, using

the test pattern PINFUNC PS# instruction.
• In pure Logic Test Patterns (including Scan Test Patterns), the selection is always

made by the VAR Engine, using the test pattern VEC/RPT PS#, or VPINFUNC
PS# instructions.

• In Mixed Memory/Logic Patterns, by default, the MAR Engine pin scrmable
selection is used. The VAR Engine selection can be enabled, per cycle, using the
PINFUNC VPS instruction.

• The Vector Scramble MUX is able to map any Logic Vector Memory (LVM)/Scan
Vector Memory (SVM) data source to any combination of pin-pairs. This means, for
example, that the LVM/SVM data typically mapped to a_1/b_1, can also be
mapped to other pin-pairs. This supports logic pattern parallel applications, where
multiple DUTs will receive identical LVM/SVM outputs, without having to write
special Logic Test Patterns or duplicate pattern data into multiple LVM/SVM
locations (pins). The Vector Scramble MUX is configured statically, prior to
executing a test pattern, based on the Pattern Attributes.

1.7.4 Timing & Formatting
See Site Assembly Board, Pattern and Timing System, Timing and Formatting Functions.
 2/27/09 Pg-115

Magnum System Overview Pattern and Timing System
The Magnum Timing and Formatting logic provides the following AC test capabilities:

Table 1.7.4.0-1 Timing Specifications

Parameter Range Resolution

Time-sets 32

Cycle Period 20nS to 10.2uS 1nS

On-the-fly Cycle
Period Resolution 1ns

Max. Data Rate
50MHz

100MHz DDR1

133MHz DDR MUX
1nS

Edge Placement
Resolution

100pS Static
1nS On-the-fly

Edges range to end of 2nd cycle

Minimum Window
Strobe Width 5nS

Minimum Drive
Pulse-width 4nS

Timing Edges
Per-Cycle

2 Drive
2 Strobe

2 I/O

Mux Mode (lose
one pin for every

mux’ed pin)
Yes

Notes:
1) Magnum Double Data Rate (DDR) Mode, no loss of pins
 ala MUX.
 2/27/09 Pg-116

Magnum System Overview Pattern and Timing System
Each Magnum Site Assembly Board contains 64 timing and formatting channels. Each
timing channel drives two pin electronics (PE) channels. The diagram below shows key
details about the this architecture:

Note the following:

• The TSET Select MUX is determines whether the MAR Engine or VAR Engine will,
cycle-by-cycle, determine the time-set selection:
• In Memory Test Patterns, the selection is always made by the MAR Engine, using

the test pattern PINFUNC TSET# instruction.

64 Sets of
Timed Strobe,

I/O &
Formatted

Drive Signals
to 128 PEs

Pin
Electronics

(PE)

36 Data
8 Chip Selects

*Optional

P
in

 S
cr

am
bl

e
M

U
X

Pin
Scramble

RAM

16 Y Address
18 X Address

TSET
Select
from
MAR

Engine

TS
E

T
S

el
ec

t M
U

X

The TSET Select MUX is
controlled from the test
pattern. More below.

Per-cycle TSET Select
(TSET1 ..TSET32)

TSET Select
from VAR Engine

System Clock

*DBM

Algorithmic
Pattern

Generator
(APG)

From CPU

PEL
PES
PEE

Cycle Period

3-bits per Pin

*Optional

LVM/SVM
1 *

LVM/SVM
2 *

Ve
ct

or

S
cr

am
bl

e
M

U
X

64 Timing &
Formatting
Channels
 2/27/09 Pg-117

Magnum System Overview Pattern and Timing System
• In Logic Test Patterns (including Scan Test Patterns), the selection is always
made by the VAR Engine, using the test pattern VEC/RPT TS#, or VPINFUNC
TSET# instructions.

• In Mixed Memory/Logic Patterns, by default, the MAR Engine time-set selection is
used. The VAR Engine selection can be enabled, per cycle, using the PINFUNC
VTSET instruction.
 2/27/09 Pg-118

Magnum System Overview Pattern and Timing System
The following diagram shows the 4 timing generators used to generate the timed drive,
strobe and I/O edges used to stimulate and test the DUT during functional tests:

Figure-17: Timing Generator Block Diagram
Note the following:

76

64

4 Timing

Strobe

Generators

Edges
To

 2
 P

E
 D

riv
er

s
To

 E
rro

r L
og

ic
 (2

 p
in

s)APG Data
Sources

*Combined
Logic Vector

Memory (LVM)
& Scan Vector
Memory (SVM)

Edge Strobe
TS

E
T

S
el

ec
t M

U
X

P
S

 S
el

ec
t M

U
X

VAR
Engine

MAR
Engine

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

To Other
63 Timing
Channels

TSET
RAM

to all TGs

TG-C

TG-D

TG-B

TG-A

Components in Green are local to one timing channel
Components in Magenta are common to all channels

I/O
Control
Edges

This model changes when using Double Data Rate (DDR) Mode

Double Clock Mode
Double Data Rate (DDR)

*Optional

(per-pin pair)

S
el

ec
t L

og
ic

Drive
Edges

To
 2

 P
E

 D
riv

er
s

TSET#

PS#

Format
RAM

TG State
Decode
Logic

Scan-cycle

Scan-pin

(from LVM)

PEL
PES
PEE PEL

System
Clock
 2/27/09 Pg-119

Magnum System Overview Pattern and Timing System
• Each Site Assembly Board has 64 timing channel’s, each with four timing generators
(TG-A, TG-B, TG-C and TG-D).

• During test pattern execution, each timing channel’s four timing generators
generate the timed and formatted drive, strobe and I/O control signals sent to two
Pin Electronics (PE) channels (see Functional Pin-pairs).

• Two timing generators (TG-C and TG-D) are used to control I/O switching i.e. at
what time in the current pattern cycle the PE driver will drive and/or tri-state.

• Two timing generators (TG-A and TG-B) are used to generate either zero, one or
two drive edges or zero or two strobe edges, per cycle.

• Each of the 4 TGs are independently controlled by their associated TSET RAM,
which stores several edge-time and control bit combinations for each TG, for each
of 32 time-sets. In each pattern cycle, the combined control bit plus edge time
value determines whether a given TG issues an edge, or not, and at what time the
edge is generated. For example, to produce a window strobe or RTZ/RTO drive
format both TG-A and TG-B will issue an edge at a specified time. To produce an
NRZ format only TG-A will issue an edge. Edge strobes generate two edges even
though only the first edge is actually used as a strobe (see edge_strobe()).

• It is the combination of the TG State Decode Logic, Format RAM, test pattern data
from the Pin Scramble MUX, and time-set selection, plus several static signals
(more below) which determine how the TSET RAM is addressed and thus which
edges are generated and at what time.

• During test pattern execution, in each tester cycle, the Pin Scramble MUX selects
a pattern data source for each timing channel (each pin-pair). This provides 3-bits
per-channel used to control drive, strobe and I/O state.

• During test pattern execution, in each tester cycle, one time-set is selected. This
determines the global cycle period, and the drive, strobe and I/O timing and drive
format for each timing channel (each pin-pair).

• The following signal, input to the TG State Decode Logic, is global (not per-pin)
and static i.e. it does not change during test pattern execution.
• The Double Data Rate (DDR) Mode signal configures the TG State Decode Logic

to operate in DDR mode. This signal is set by the system software when preparing
to execute a given test pattern based on the pattern’s rate attribute (see Pattern
Rate Attributes). This signal is global (not per-pin) and static i.e. it does not
change during test pattern execution.

• The following signals are per-pin and static i.e. they don’t change dynamically
(per-cycle):
 2/27/09 Pg-120

Magnum System Overview Pattern and Timing System
• Scan-pin: identifies those pin(s) which will react to the Scan-cycle signal. In
scan cycles, those pins which are not scan pins will hold; i.e. they will use the
pattern data and generate the format from the most recent non-scan cycle. The
Scan-pin signal is set by the system software based on which pin(s) of the test
pattern about be executed were identified in the test pattern using the SCANDEF
pattern directive (see Scan Test Patterns).

• Double Clock Mode: configures the TG State Decode Logic to operate in double
clock mode. These pin(s) will not tri-state or strobe, regardless of test pattern
format selection. This signal is set when the most recent execution of settime(),
on a given pin, specifies the DCLKPOS or DCLKNEG. Double Clock Mode also
requires setting Dclk Mode using pe_driver_mode_set().

• Edge Strobe: determines whether the TG State Decode Logic generates an
edge strobe or window strobe. This signal is controlled using the edge_strobe()
function.

• The following signals are global (not per-pin) and change dynamically (per-cycle):
• TSET#: selects one of 32 time-sets
• PS#: selects one of 64 Pin Scramble Maps

• The following signals are per-pin and change dynamically (per-cycle):
• Scan-cycle: causes pin(s) which are not Scan-pin(s) (see above) to hold; i.e.

they will use the pattern data and generate the format from the most recently
executed non-scan cycle. Scan-pin(s) will be controlled using the scan pattern
data from the Pin Scramble MUX.
 2/27/09 Pg-121

Magnum System Overview Pattern and Timing System
• In non-DDR mode, a Magnum timing channel can generate five drive formats and
2 strobe formats:

Figure-18: Non-DDR Waveform Format Options
• In DDR mode, the NRZ, DCLK and Edge Strobe formats are available:

Figure-19: DDR Waveform Format Options

NRZ

RTO

RTZ

RTC

DCLK

Pattern

1 0 0 1 1

Window
Strobe

Edge
Strobe

Data = 1
Pattern

Data = 1
Pattern

Data = 1
Pattern

Data = 0
Pattern

Data = 0

NRZ

Pattern Data
0

Pattern DataPattern Data
1 0 1 1 1

DCLK

Edge
Strobe

Tester Cycle DDR
A

DDR
B

Cycle Cycle
 2/27/09 Pg-122

Magnum System Overview Algorithmic Pattern Generator (APG)
1.7.5 System Clock
See Site Assembly Board, Pattern and Timing System.

The following diagram shows the system clock sub-system:

Two system clock sources are available:

• A fixed 100MHz oscillator, selected when the most recently programmed cycle
period value is an even multiple of 1nS.

• TBD - a possible future option.

Note: in use, the system clock source frequency is effectively multiplied by 10. Thus,
using the fixed 100MHz Oscillator source (a 10nS clock) all cycle period values
and (digital) edge timing values are derived by counting a 1nS clock. For
documentation purposes, this effective clock source is called the X-clock (10x
clock source). See Magnum Timing Rules.

1.8 Algorithmic Pattern Generator (APG)
See Magnum System Overview.

12.8MHz

75MHz-100Mhz

Oscillator

200KHz Steps

System clock to
Timing & Formatting

C
lo

ck
 S

el
ec

t M
U

X

APG PLL

100MHz
Oscillator

Future
Option

Future
Option
 2/27/09 Pg-123

Magnum System Overview Algorithmic Pattern Generator (APG)
The APG on each Site Assembly Board performs the following functions:

• Controls all functional test pattern execution (start/stop, subroutines, branch-on-
error, etc.).

• Algorithmically generates address, data, and chip select test patterns used to
functionally test memory devices:
• APG Address Generator: 18 X and 16 Y address outputs (36 bits total)
• APG Data Generator: 36 data outputs
• APG Chip Selects: 8 independently controllable outputs, 2 can do I/O and strobe

• Generates a start signal to the VAR Engine, which controls Logic Vector Address
(VAR) used to sequence logic and scan test patterns from the combined Logic
Vector Memory (LVM) / Scan Vector Memory (SVM).

• Delivers per-cycle time-set selection (TSET#) to the Timing & Formatting logic.
• Delivers per-cycle pin scramble map selection (TSET#) to the Pin Scramble MUX.
• Delivers per-cycle VIHH Map selection (VIHH#) to the Pin Electronics (PE).
• Generates and controls various other miscellaneous signals used to:

• Switch the DUT Power Supply (DPS) to the secondary voltage (VPULSE).
• RESET the Error Flags in the DC Comparators and Error Logic and PE

Comparators.
• Trigger the DC Comparators and Error Logic or DC A/D Converter during dynamic

DC tests (VCOMP).
• Control over-programming logic used when programming some device types.

See Over-programming Controls and Parallel Test.
• Etc.
 2/27/09 Pg-124

Magnum System Overview Algorithmic Pattern Generator (APG)
The following diagram represents the Site Assembly Board APG:

Figure-20: APG Block Diagram
Regarding the diagram above, note the following:

• All of the logic shown resides on the Site Assembly Board.
Test pattern execution operates as follows:

• During the initial program load, test pattern(s) are loaded automatically.
• Memory Test Patterns are loaded into the appropriate APG Controller Engine.
• Logic Test Patterns and Scan Test Patterns are loaded into the combined Logic

Vector Memory (LVM) / Scan Vector Memory (SVM).
The system software has a record of the location of each pattern, by name.

Pattern

X0-X17
Y0-Y15

D0-Y35

CS1-CS8

Error
Flag*

PS#,VIHH#,TSET#,VPULSE,
RESET,VCOMP,LATCH,
NOLATCH,OVER,TIMEN,RSTTMR,READ
/NOREAD,INTEN, INTADR, etc.

APG
Address

Generator
APG Data
Generator
APG Chip

Selects

DUT Board
I/O Ports

To VAR Engine which controls the
combined Logic Vector Memory (LVM) /
Scan Vector Memory (SVM)

T0 from
System

Clock
Generator

To
 P

in
 S

cr
am

bl
e

M
U

X

*Logical OR of DC Error Flag signals from the DC
Comparators and Error Logic and all error flags from the
PE Comparators. Controls branch-on-error operations.

APG
Controller

Engine

Done

Start

RunSite
Controller
Computer

Level Set Signals

64K
uRAM

Interrupt
Timer

Counters
(64)

To DUT Board

Done

APG User
RAM
 2/27/09 Pg-125

Magnum System Overview Algorithmic Pattern Generator (APG)
• Prior to pattern execution, most of the APG’s components may be optionally
initialized from the test program, using functions documented in Memory-pattern
Related Functions and/or Logic Pattern Related Functions. This includes setting
initial counter values, initial values for X/Y APG Address Generators, APG Data
Generator, APG counters, etc. It is also possible to initialize these components
using the same functions in the Pattern Initial Conditions section of the test pattern.

• A test pattern is executed using funtest(), start_pattern(),
ac_partest(), or ac_test_supply(). Various pattern execution stop options
are possible. To simplify things, the rest of this section will only refer to
funtest().

• To execute the test pattern, the site controller computer sends the pattern run
signal to the APG Controller Engine. Once the pattern run signal is received, the
APG Controller Engine is in complete control of the APG and its various
components. This includes controlling the Start signal sent to the VAR Engine
which controls the combined Logic Vector Memory (LVM) / Scan Vector Memory
(SVM).

• As each pattern instruction executes, the APG Controller Engine outputs control
bits to each of the various APG components. These determine, for example, what
the X/Y APG Address Generator will do in the current instruction, what the APG
Data Generator will do in the current instruction, which time-set is selected, etc.

• The site controller computer then waits for a done signal. The APG will issue a
done signal under the following conditions:
• The last pattern instruction executes; i.e. MAR DONE instruction (Memory Test

Patterns) or VAR DONE (Logic Test Patterns) executes.
• A MAR PAUSE instruction (Memory Test Patterns) or VAR PAUSE (Logic Test

Patterns) executes.
• If the pattern execution stop condition = error (see funtest()) and an Error

Flag is set. This can be any error flags from the PE Comparators and/or any of
the of DC Error Flags from the DC Comparators and Error Logic on each Site
Assembly Board.

• The user interrupts execution using UI’s Stop Testing button.

1.8.1 APG Controller Engine
See Algorithmic Pattern Generator (APG), MAR Engine, VAR Engine.
 2/27/09 Pg-126

Magnum System Overview Algorithmic Pattern Generator (APG)
As noted above, the during pattern execution APG operation is controlled, at pattern data
rates, by its local APG Controller Engine, which actually consists of two state machines:

• The MAR Engine is involved in all test pattern executions, whether executing
Memory Test Patterns only, Logic Test Patterns only (which includes Scan Test
Patterns), or Mixed Memory/Logic Patterns.

• The VAR Engine is only active when executing a test pattern which contains logic
and scan instructions.

The term MAR has evolved, originally referring to the APG’s MicroRAM Address Register. In
this documentation, the term MAR is also used:

• When referring to the hardware engine which controls all test pattern execution;
i.e. MAR Engine.

• To represent the pattern instruction which controls the MAR Engine; i.e. the MAR
instruction.

• To represent the current value in the APG MAR register. This is the address of the
pattern instruction being executed. Note that user code doesn’t directly interact
with literal MAR register values; all references to specific pattern instructions is
done using Pattern Labels or the pattern’s name.

The term VAR refers to Vector Address Register, which is consistent with the use of MAR. In
this documentation, the term VAR is also used:

• When referring to the hardware engine which controls logic pattern instruction
execution; i.e. VAR Engine.

• To represent the pattern instruction which controls logic pattern execution
sequence; i.e. VAR instruction. Note that most pure Logic Test Patterns will not
contain an explicit VAR instruction because the VEC/RPT instructions implicitly
control the VAR Engine.

• The current value in the APG’s VAR register. This is the address of the logic
pattern instruction being executed. User code doesn’t directly interact with literal
VAR register values; all references to specific pattern instructions is done using
Pattern Labels or the pattern’s name.

Three pattern execution scenarios are possible, based on the type of instructions in the test
pattern:

• Pattern contains memory instructions only. Only the MAR Engine is used, the VAR
Engine is effectively disabled. Normal uRAM consumption by memory instructions.

• Pattern contains logic and scan instructions only. Only the VAR Engine is used, the
MAR Engine is effectively disabled.
 2/27/09 Pg-127

Magnum System Overview Algorithmic Pattern Generator (APG)
• Pattern contains a mix of logic and memory instructions. Both the MAR Engine and
VAR Engine are used. If the test pattern does not contain any memory instructions,
the MAR Engine is still used, but executes a built-in MAR instruction which loops
on itself indefinitely.

Note: Maverick-I logic pattern operation is not supported using Magnum i.e. any test
pattern using a logic instruction enables the VAR Engine and logic instructions
do not impact uRAM consumption.
 2/27/09 Pg-128

Magnum System Overview Algorithmic Pattern Generator (APG)
The following diagram shows the two engines and how they interact.

Figure-21: MAR/VAR Engine Block Diagram

Instruction

VARState
Machine

=0

Instruction

Timer

Counters

Pattern
Run

Site
CPU

X0-X15
Y0-Y15

D0-Y35

CS1-CS8

MARState
Machine

Error
flag*

=0

=0

64

Counters
64

Note: the yellow MUXes
select between signals
available from both VAR
engine (vRAM) and MAR
engine (uRAM). See below.

vRAM

VA
R

 M
U

X

Pattern
RunSite

CPU

D
on

e

MAR Engine

VAR Engine

VAR

D
on

e

Site
CPU

Done
MUX

MAR VCNTR

ADHIZ

PS#, VIHH#, TS#, VPULSE,
RESET, VCOMP, LATCH,
NOLATCH, OVER

T0 from
System

Clock
Generator

32K
uRAM

From MAR
Engine

MUX is set by
Pattern
Attributes

APG
Address

Generator
APG Data
Generator
APG Chip

Selects

DUT Board
I/O Ports

Error
flag*

To
 P

in
 S

cr
am

bl
e

M
U

X

VA
R

 to
 c

om
bi

ne
d

Lo
gi

c
Ve

ct
or

 M
em

or
y

(L
V

M
) /

 S
ca

n
Ve

ct
or

M

em
or

y
(S

V
M

)

Level Set Signals

*Logical OR of DC Error
Flag signals from the
DC Comparators and
Error Logic and all error
flags from the PE
Comparators. Controls
branch-on-error
operations.

To
DUT Board

VAR
Control

APG User
RAM
 2/27/09 Pg-129

Magnum System Overview Algorithmic Pattern Generator (APG)
Pattern execution using the model above is discussed below. But first, note the following:

• All of the logic shown in the diagram above resides in the APG.
• In the diagram above, the pattern run signal is shown in two places (to simplify the

diagram). However, there is only one signal.
• In the diagram above, the error flags signal is shown in two places (to simplify the

diagram). However, there is only one signal.
• There are two separate Done signals, one from the MAR Engine state machine,

one from the VAR Engine state machine. The Done MUX selects one of these
signals to be sent to the site controller computer . Operation is described in MAR
DONE and/or VAR DONE.

• During the initial program load, memory test pattern(s) are loaded into the 64K
APG uRAM. The system software has a record of the location of each pattern,
which is used to execute that pattern. Magnum does not support executing Logic
Test Patterns in Maverick-I compatibility mode; i.e. the VAR Engine vRAM are
always used and uRAM never stores logic vector information (VAR, etc.)

• If the pattern contains logic vectors, these are loaded into the Logic Vector Memory
(LVM). Again, the system software has a record of the location of the pattern.
Logic pattern instructions (VAR instructions) are loaded into the VAR Engine vRAM.

• If the pattern contains scan vectors, these are loaded into the combined Logic
Vector Memory (LVM) / Scan Vector Memory (SVM).

• When executing a test pattern that does not contain any logic instructions only the
MAR Engine is used; i.e. the VAR Engine is disabled.

• When executing a test pattern which does contain logic instructions the VAR MUX
selects the VAR Engine’s state machine as the source of the logic vector address
(VAR) output to the Logic Vector Memory (LVM). This is the same address seen at
the input to the vRAM.

• Two counter related signals connect the MAR Engine’s state machine and the VAR
Engine’s state machine. One allows the VAR Engine’s state machine to see the
counter = 0 signal from the MAR Engine’s state machine, the other allows the
MAR Engine’s state machine to see the counter = 0 signal from the VAR Engine’s
state machine. The VAR MCNTR and MAR VCNTR instructions must be explicitly
used to enable these features.

• When used, the VAR Engine is also able to select many of the per-cycle
parameters previously only selectable by the MAR Engine (see below). In the
diagram above, the hardware MUXs used to make these selections are shown at
the bottom, in yellow. Each MUX has input(s) from both the MAR Engine’s uRAM
and the VAR Engine’s vRAM. In a pure logic pattern (i.e. logic Pattern System
 2/27/09 Pg-130

Magnum System Overview Algorithmic Pattern Generator (APG)
Attributes) these MUX are set to select inputs from the VAR Engine’s vRAM. In
pure Memory Test Patterns the MUXs are set to select inputs from the MAR
Engine’s uRAM. In Mixed Memory/Logic Patterns, default operation selects the
MAR Engine inputs and an explicit pattern instruction is needed, for each
parameter, to select the VAR Engine inputs, as follows:
• PINFUNC VPS selects PS# from the VAR Engine’s vRAM.
• PINFUNC VVIHH selects VIHH# from the VAR Engine’s vRAM.
• PINFUNC VTSET selects TS# from the VAR Engine’s vRAM.
• PINFUNC VVPULSE selects VPULSE from the VAR Engine’s vRAM.
• PINFUNC VLATCHRESET selects RESET from the VAR Engine’s vRAM.
• PINFUNC VVCOMP selects VCOMP from the VAR Engine’s vRAM.
• PINFUNC VLATCHRESET selects LATCH/NOLATCH from the VAR Engine’s vRAM.
• PINFUNC VOVER selects OVER from the VAR Engine’s vRAM.

Pattern execution operates as follows:

• During the initial program load, test patterns s are loaded into the appropriate MAR
Engine uRAM and/or VAR Engine vRAM. Memory instructions go into the uRAM
and logic instructions into the vRAM. The system software has a record of the
location of each pattern, by name.

• At the same time, logic patterns and scan patterns are loaded into the combined
Logic Vector Memory (LVM) / Scan Vector Memory (SVM).

• Prior to executing a test pattern, most of the APGs components may be optionally
initialized from user C code, using functions documented in Memory-pattern
Related Functions and/or Logic Pattern Related Functions. This includes setting
initial counter values, initial values for APG Address Generator, APG Data
Generator, etc. It is also possible to initialize these components using the same C
functions in the Pattern Initial Conditions section of the test pattern. User code
does not directly interact with the MAR Engine/uRAM or VAR Engine/vRAM.

• A test pattern is executed using funtest(), start_pattern(),
ac_partest(), or ac_test_supply(). Various pattern execution stop options
are possible. To simplify things, the rest of this discussion will only refer to
funtest().

• As part of the funtest() execution, the system software gets the APG uRAM
address of the first instruction of the test pattern, and loads it into the MAR Engine
state machine.
 2/27/09 Pg-131

Magnum System Overview Algorithmic Pattern Generator (APG)
Note: all test patterns have an associated MAR pattern. In the case of pure Logic Test
Patterns (i.e. logic Pattern System Attributes) a built-in memory pattern is
used, containing a single MAR instruction (see Default Memory Pattern
Instruction), which forever loops on itself.

• If the test pattern contains logic instructions, the system software gets the APG
vRAM address (VAR) of the first instruction of the test pattern, and loads it into the
VAR Engine’s state machine. If not, the VAR Engine’s is disabled and the VAR is
arbitrary.

• Other housekeeping operations are performed to properly configure the various
APG components prior to actually starting the test pattern.

• To execute the test pattern, the site controller computer sends the pattern run
signal to both the MAR Engine state machine and VAR Engine state machine.
Once the pattern run signal is received, the two state machines are in complete
control of the APG, and its various components. This includes controlling the VAR
sent to the Logic Vector Memory (LVM) and the SAR to the Scan Vector Memory
(SVM).

• The site controller computer then waits for a done signal, or for the user to
interrupt execution using UI’s Stop Testing button. Or, if the funtest() was
executed with the error option (i.e. stop on error) the APG will stop if it receives an
error signal from any of the per-pin PE Comparators or from the DC Comparators
and Error Logic (the DC Error Flag) on any Site Assembly Board.

• The done signal from the VAR Engine’s state machine is only selected when
executing a pure logic pattern (i.e. logic Pattern System Attributes) otherwise the
done signal from the MAR Engine state machine is selected. See MAR DONE and/
or VAR DONE.

• As each pattern instruction executes, the uRAM outputs control bits to each of the
various APG components. These determine, for example, APG Address Generator
operation in the current instruction, the APG Data Generator in the current
instruction, which time-set is selected, etc. The uRAM has lots of output bits.

• As each pattern instruction executes, the uRAM also sends the MAR instruction
from that instruction back to the state machine, to specify how the next instruction
to be executed is determined. This can be a simple MAR INC, an unconditional
branch (JUMP, RETURN, etc.), a subroutine call (GOSUB), a conditional branch
(CJMPNZ, etc.), or a timer interrupt (see APG Interrupt Timer). It can also be MAR
DONE or MAR PAUSE, which stops the APG and sends the done signal to the site
controller computer .
 2/27/09 Pg-132

Magnum System Overview Algorithmic Pattern Generator (APG)
• The state machine sends the address (MAR) of the next instruction to be executed
to the uRAM, which then outputs the control bits for that instruction to the APG
hardware, etc. The process repeats until either a MAR DONE or MAR PAUSE is
detected or the user clicks UI’s Stop Testing button. Or, if the funtest() was
executed with the error option (i.e. stop on error) the APG will stop if it receives an
error latch signal from any of the per-pin PE Comparators or from the DC
Comparators and Error Logic (the DC Error Flag) on any Site Assembly Boards.

• If the test pattern contains logic or scan instructions the vRAM sends the VAR
instruction at the current address to the VAR Engine’s state machine, and to the
combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) (more below).
This specifies how the state machine is to determine which instruction will to be
executed next. This can be a simple VAR INC, an unconditional branch (JUMP,
RETURN, etc.), a subroutine call (GOSUB), a conditional branch (CJMPNZ, etc.). It
can also be VAR DONE, which, in pure Logic Test Patterns (only), stops the APG
and sends the done signal to the site computer.

• The two state machines continue to execute instructions from their associated
RAMs until a DONE instruction is executed, or the user clicks UI’s Stop Testing
button. In Memory Test Patterns or Mixed Memory/Logic Patterns the MAR DONE
instruction will stop the APG. In pure Logic Test Patterns the VAR DONE instruction
will stop the APG. See MAR DONE and/or VAR DONE. The state machines will
also stop if a PAUSE instruction is executed. This can be MAR PAUSE (Memory Test
Patterns) or VAR PAUSE (Logic Test Patterns). Or, if the funtest() was executed
with the error option (i.e. stop on error) both state machine’s will stop if an error
signal is received from any of the per-pin PE Comparators or from the DC
Comparators and Error Logic (the DC Error Flag) on any Site Assembly Board.

1.8.1.1 uRAM
See Algorithmic Pattern Generator (APG), MAR Engine
 2/27/09 Pg-133

Magnum System Overview Algorithmic Pattern Generator (APG)
The following diagram shows the Site Assembly Board’s APG uRAM architecture:

Figure-22: APG uRAM Architecture Block Diagram
In each pattern cycle, the MAR Engine state machine sends the instruction address (MAR)
to the uRAM, which outputs control bits to the various APG components, and sends the next
MAR instruction back to the state machine.

1.8.1.2 vRAM
See Algorithmic Pattern Generator (APG), VAR Engine.

APG Address Generator
APG Data Generator
APG Chip Selects
PS#
VIHH#
TSET#
VPULSE
RESET
VCOMP
LATCH/NOLATCH
OVER
TIMEN, RSTTMR
READ/NOREAD
INTEN, INTADR, etc.
LBData
Start to VAR Engine
Counter Control
UDATA

MARPattern

Error
Flag*

T0 from
System

Clock
Generator

*Logical OR of DC Error Flag
signals from the DC Comparators
and Error Logic and all error flags
from the PE Comparators. Controls
branch-on-error and stop-on-error.

Done

RunSite
Controller
Computer

MAR Instruction

Done from
VAR Engine

MAR
Engine
State

Machine

uRAM
64K
 2/27/09 Pg-134

Magnum System Overview Algorithmic Pattern Generator (APG)
The following diagram shows the Site Assembly Board’s APG vRAM architecture:

Figure-23: APG vRAM Architecture Block Diagram
In each pattern cycle, the VAR Engine state machine sends the instruction address (VAR) to
the vRAM, which outputs control bits to the various APG components, and sends the next
VAR instruction back to the state machine.

The vRAM is sized to match the Logic Vector Memory (LVM).

1.8.2 Branch-on-error Logic
The Magnum error logic receives one error flag signal from each set of 8 pins on a Site
Assembly Board (see Error Flag vs. Error Latch). These signals are used by the Algorithmic
Pattern Generator (APG) for test pattern branch-on-error operations. Much of the versatility
described below applies only to Multi-DUT Test Programs; i.e. when concurrently testing
multiple DUTs in parallel.

Various test pattern branch options are possible:

PS#
VIHH#
TSET#
VPULSE
RESET
VCOMP
LATCH/NOLATCH
OVER
Scan Control
Counter Control
VUDATA

VAR

Pattern

Error
Flag*

T0 from
System

Clock
Generator

Done

Run

To Done MUX

From Site
Controller
Computer

VAR Instruction

*Logical OR of DC Error Flag
signals from the DC Comparators
and Error Logic and all error flags
from the PE Comparators.
Controls branch-on-error and
stop-on-error.

To VAR MUX

VAR
Engine
State

Machine
vRAM
 2/27/09 Pg-135

Magnum System Overview Algorithmic Pattern Generator (APG)
• Branch on any error, from any pin or DUT.
• Branch on error if any DUT(s) connected to the Sub-site-A pin have an error (or

not) and no DUT(s) connected to the Sub-site-A pin have an error (or do). And,
vice-versa.

• Branch on error if DUT-1 (or -2, etc.) has an error. In Multi-DUT Test Programs, up
to 8 DUTs per site are supported.

• Branch if the ECR’s Total Error Counters are greater than the TEC Comparator
value. Similarly, for the ECR’s Row Error Counters and Col Error Counters.

• Etc.
It is the error logic described below which combines and decodes the error flag signal from
each set of 8 pins or the ECR Counter Comparators outputs to control these branch
operations.

The diagrams below are divided into two sections:

• Branch Error Choice Logic - a single set of error logic shared by both the memory
pattern controller (MAR Engine) and logic pattern controller (VAR Engine).

• Branch Decode Error Logic - error logic which is duplicated for both the MAR
Engine and VAR Engine. In Mixed Memory/Logic Patterns this allows the memory
pattern branch operation to diverge from the logic pattern branch operation.

The diagrams which follow describe the various modes and control options.
 2/27/09 Pg-136

Magnum System Overview Algorithmic Pattern Generator (APG)
Branch Error Choice Logic
The following diagram shows the branch logic which is shared by both the memory pattern
controller (MAR Engine) and logic pattern controller (VAR Engine):

Figure-24: Branch Error Choice Logic
Note the following:

Sub-site B

EFlag DUT1
TEC DUT1
REC DUT1
CEC DUT1

EFlag DUT9
TEC DUT9

REC DUT9
CEC DUT9

MAR Error-choice Operands

EFlag DUT2
TEC DUT2
REC DUT2
CEC DUT2

EFlag DUT10
TEC DUT10

REC DUT10
CEC DUT10

Sub-site A

2

2

E
rr

or
 S

ig
na

l M
U

X
E

rr
or

 S
ig

na
l M

U
X

M
od

e-
1

M
od

e-
2

M
od

e-
3

M
od

e-
1

M
od

e-
2

M
od

e-
3

b_9 .. b_16
b_17 .. b_24
b_25 .. b_32
b_33 .. b_40
b_41 .. b_48
b_49 .. b_56
b_57 .. b_64

b_1 .. b_8

a_9 .. a_16
a_17 .. a_24
a_25 .. a_32
a_33 .. a_40
a_41 .. a_48
a_49 .. a_56
a_57 .. a_64

a_1 .. a_8

Error flag signals from
Error Flag OR Logic.

One signal for
each set of 8 pins.

D
U

T
D

ec
od

e
Lo

gi
c

D
U

T
D

ec
od

e
Lo

gi
c

TEC, REC & CEC signals from
ECR Counter Comparators.
One signal for each DUT
(8 max. per ECR).

To separate
Branch
Decode
Error Logic
in MAR
Engine and
VAR Engine.

4 MUX per Sub-site
(64 pins)

DUT7
DUT5

DUT3

DUT15
DUT13

DUT11

DUT8
DUT6

DUT4

DUT16
DUT14

DUT12

DUT Error Flags

mar_error_choice_set()

Static Error Choice Functions, Branch-on-error
 2/27/09 Pg-137

Magnum System Overview Algorithmic Pattern Generator (APG)
• The diagram above shows the error choice logic which combines the error flag
signals from both Sub-sites on a given Site Assembly Board and signals from the
ECR Counter Comparators for each ECR. It is this logic which determines which
signals are tested when executing a conditional jump, conditional subroutine call or
conditional subroutine return test pattern operations.

• The two Error Signal MUXs are controlled by two sets of inputs:
• Two static bits are set using the mar_error_choice_set() function, prior to

pattern execution, to select between various static modes. See Static Error
Choice Functions, Branch-on-error.

• Two bits are controlled from the test pattern by the MAR Engine, as defined
using MAR Error-choice Operands. In pure Logic Test Patterns the two bits
controlled from the test pattern will be set to default values since the MAR
Engine is not used.

Note: proper branch operation requires that the desired error choice be continuously
selected for a minimum of 4 cycles before the instruction which branches. See
MAR Error-choice Operands.

Note that the default static error choice selection (t_errmode1) plus the default
MAR Error-choice Operands (ERRSRC1) operation matches Maverick-I/-II memory
pattern conditional branch operation, for both branch-on-error and branch-on-
abort, supporting up to 4 DUTs per-64 pins.

• As indicated in MAR Error-choice Operands, there are 4 types of signals which can
affect conditional branch operations:
• Error flags, one from each set of 8 pins
• ECR TEC Comparator signals
• ECR REC Comparator signals
• ECR CEC Comparator signals
Not all signal types can be used within a single pattern execution. Signal selection
is a done in two parts, keep reading.

Note: the term error is used consistently, even when the ECR Counter Comparators
signals are the selected error source signals. For example, CJMPE (jump if
error) can test the REC Comparator signal and jump accordingly. See MAR
Conditional Branch-condition Operands & MAR Multi-DUT Branch-condition
Operands or VAR Conditional Branch-condition Operands & VAR Multi-DUT
Branch-condition Operands.

ECR Counter Comparators
 2/27/09 Pg-138

Magnum System Overview Algorithmic Pattern Generator (APG)
• There are 4 Error Signal MUXs per Sub-site (per 64-pins), 8 per Site Assembly
Board. This results in 8 error signals into the Branch Decode Error Logic. Prior to
pattern execution, these MUXs are partially configured, using the
mar_error_choice_set() function, to statically select between 1 of 4 sets of
input signals. In the diagram, these are identified as Mode-1 (t_errmode1), Mode-
2 (t_errmode2), Mode-3 (t_errmode3) and Mode-4 (t_errmode4). All 8 Error
Signal MUXs are configured identically.

• Static option selection is primarily based on two criteria:
• The number of DUTs being tested per Sub-site:

- 1-4 DUTs (t_errmode1)
- 5-8 DUTs (t_errmode2, t_errmode3 and t_errmode4)

• Whether the ECR Error Counters will control conditional branch operations, and
which ECR Counter Comparators are to be tested: TEC Comparator, REC
Comparator, or CEC Comparator. Each static mode has different capabilities/
limitations; i.e. which ECR Counter Comparators can be tested, see MAR Error-
choice Operands.

• During pattern execution, in each pattern instruction, one of the MAR Error-choice
Operands determines which of the 4 Error Signal MUX inputs (of the statically
selected option group) is sent to the Branch Decode Error Logic, which further
decodes the selected signals and selects which decoded signal will affect
conditional branch operation. As indicated above, the Branch Decode Error Logic
is duplicated for both the memory pattern controller (MAR Engine) and logic
pattern controller (VAR Engine).

• In Multi-DUT Test Programs, test pattern conditional operations can test error
signals organized by DUT. The number of DUTs being tested is determined by the
Pin Assignment Table but the Error Signal MUX/Branch Decode Error Logic can
only distinguish up to 8 DUTs per Sub-site (per 64 pins). In the diagram above, it
is the DUT Decode Logic which determines which error flags represent a given
DUT. Proper operation requires DUT board connections to each DUT follow the
rules noted in DUT-pin to Tester-pin Connection Requirements. The ECR Counter
Comparators are also configured per-DUT, with up to a maximum of 8 DUTs per
ECR (16 per Site Assembly Board).

Branch Decode Error Logic
The following diagram shows how the outputs of the Branch Error Choice Logic are further
decoded and selected to determine the final conditional branch signal. The logic to the right
 2/27/09 Pg-139

Magnum System Overview Algorithmic Pattern Generator (APG)
of the magenta line is duplicated for the memory pattern controller (MAR Engine) and logic
pattern controller (VAR Engine):

Figure-25: Branch Decode Error Logic
During pattern execution (Memory Test Patterns and Mixed Memory/Logic Patterns) each
memory instruction’s conditional branch operand causes the Branch Signal Selection MUX
in the MAR Engine to select one input, which controls memory pattern branch operations for

To
 M

A
R

 E
ng

in
e

or

VA
R

 E
ng

in
e

From
Sub-site

A

Abort (from Error Latches)

DUT1(9)

From
Sub-site

B

MAR Error-choice
Operands

4

MAR Conditional Branch-condition
Operands & n or VAR Conditional
Branch-condition Operands & VAR

Multi-DUT Branch-condition Operands

E
rr

or
 S

ig
na

l
M

U
X

E
rr

or
 S

ig
na

l
M

U
X

Error Flags
& ECR

Counter
Comparators

Static Error Choice Functions, Branch-on-error

APG Interrupt Timer
APG Counters

When referring to the output of the Error
Signal MUXs, the term error is used
consistently, even when the branch signal
represents the output of an ECR Counter
Comparators.

mar_error_choice_set()

Error Logic common to both
MAR Engine and VAR Engine.

See Branch Error Choice Logic.

Error logic duplicated in
both MAR Engine and
VAR Engine

All

Error

B_not_A

A_not_B

TRUE = Branch
FALSE = No Branch

DUT3(11)

DUT5(13)

DUT7(15)

DUT2(10)

DUT4(12)

DUT6(14)

DUT8(16)

B
ra

nc
h

S
ig

na
l S

el
ec

tio
n

M
U

X

 2/27/09 Pg-140

Magnum System Overview Algorithmic Pattern Generator (APG)
that instruction. Similarly, in Logic Test Patterns and Mixed Memory/Logic Patterns, each
logic instruction’s conditional branch operand causes the Branch Signal Selection MUX in
the VAR Engine to select one input, which controls logic pattern branch operations for that
instruction. See MAR Conditional Branch-condition Operands & MAR Multi-DUT Branch-
condition Operands or VAR Conditional Branch-condition Operands & VAR Multi-DUT
Branch-condition Operands. In Mixed Memory/Logic Patterns using the mixedsync mode
(see Pattern Type Attributes) only one engine (MAR or VAR) will control each instructions
branch operation.

Note that when using some branch-on-error options, a MAR BOE-type operand must be
specified in the instruction which executes immediately prior to the branch instruction. See
MAR BOE Type Operands.

1.8.3 APG Address Generator
See Algorithmic Pattern Generator (APG), Memory Test Patterns.

To test memory devices, an APG must be able to generate complex address sequences.

The Magnum APG has two independent APG Address Generators:

• X address for the row addresses
• Y address for column addresses.

In use, the intersection of a row address and a column address determines which DUT
memory cell(s) will be read or written. The dual X/Y address generation architecture
provides flexibility in writing memory test patterns.

The heart of each APG Address Generators is an Arithmetic Logic Unit, or ALU. In each
pattern cycle, the ALU takes one or two inputs, identified as sourceA and sourceB, from
one of the three 16-bit address register(s), called MAIN, BASE, and FIELD, or UDATA, a
register holding an arbitrary value, as well as one carry/borrow input. The ALU then
operates on these inputs performing a specified function. The result of the ALU’s operation
is passed through a mask and then placed back in one or more of the 3 address registers. In
each pattern cycle, the output of one X address register and one Y address register is
selected as the address output from the APG in the current instruction.

In both the X and Y address generator, the upper three bits of the selected address source
can be replaced by bits from the other address generator. These are called the Address
Cross-over Bits. In the Y address generator, the Y15, Y14 and Y13 address bits can be
replaced by any of the X address bits. In the X address generator, the X17, X16 and X15
 2/27/09 Pg-141

Magnum System Overview Algorithmic Pattern Generator (APG)
address bits can be replaced by any of the Y address bits. The configuration is set statically,
using Address Cross-over Bit Functions.

Finally, the address is routed to the address topological scramble RAM (Address TOPO
RAM), the Data Buffer Memory (DBM), Error Catch RAM (ECR) and the DTOPO RAM (see
APG Data Topological Inversion (DTOPO) Function).

The operation of the two address generators are controlled from Memory Test Patterns by
the XALU and the YALU pattern instructions See Memory Test Patterns.
 2/27/09 Pg-142

Magnum System Overview Algorithmic Pattern Generator (APG)
The following diagram shows the Y Address Generator. The X Address Generator is
identical except for the Address Cross-over Bits, which can be used to replace X17, X16,
and X15:

Figure-26: APG Y Address Generator Block Diagram

invert

NODEST

(any/all)
COFFCON

Carry-in from other

Carry

COMPA

ZERO

ALL1S

Carry
Destination

Address

Carry-out to
other Address

B
Source
MUX

A
Source
MUX

AORBBAR
ANORBBR
AANDBBR
ANANDBBR

Borrow
In

MUX

Address Generator’s ALU

MUX

Scrambled
Address to
Pin Scramble
MUX

Unscrambled
Address to DBM,
ECR and DTOPO
RAM.

Generator’s
ALU

To APG Data
Generator
Equality
Functions

MAIN

BASE

UDATA

FIELD

AL
U

Address
TOPO
RAM

Registers

Address
Output
MUX Y14

Y15

Y13

Y15

Address
Cross-over

Bits

X17..0

Y14
Y13

Y0-Y15

Y0-Y12
 2/27/09 Pg-143

Magnum System Overview Algorithmic Pattern Generator (APG)
1.8.3.1 Address TOPO RAM
See APG Address Generator, APG Address Topo RAM Load Functions.

The X and Y APG Address Generators both have a topological scramble RAM, commonly
called address TOPO RAMs.

These are used to provide address topological scrambling; i.e. a translation of logical
address values, as generated by the APG Address Generator, into the topological
addresses needed to correctly test the DUT. See Logical vs. Physical, vs. Electrical
Addresses.

The following diagram shows a portion of the Y APG Address Generator, with an expanded
view of one address TOPO RAM. The X address TOPO RAM is 256Kx18 (218 X addresses),
Y address TOPO RAM is 64Kx16 (216 Y addresses):

Figure-27: Address TOPO RAM Block Diagram

Address
TOPO
RAM

Output:
16 topological
Y Addresses to the Pin
Scramble MUX

Input:
16 Logical

Y Addresses

Address Scrambled
Address to
Pin Scramble
MUX

Unscrambled
Address to DBM,
ECR and DTOPO
RAM.

To APG Data
Generator
Equality
Functions

MAIN

BASE

FIELD

Address
TOPO
RAM

Registers

Address
Output
MUX Y14

Y15

Y13

Y15

Address
Cross-over

Bits

X17..0

Y14
Y13

Y0-Y15

Y0-Y12
 2/27/09 Pg-144

Magnum System Overview Algorithmic Pattern Generator (APG)
In simple terms, in each pattern cycle the input address selects one TOPO RAM address,
which outputs its contents as the topological address. By default, the TOPO RAMs are
initialized to pass a given input address through unmodified; i.e. input (logical) addess 0x0
results in output (topological) address 0, etc. User code is required to change this operation,
see APG Address Topo RAM Load Functions.
 2/27/09 Pg-145

Magnum System Overview Algorithmic Pattern Generator (APG)
1.8.4 APG Data Generator

Figure-28: APG Data Generator Block Diagram

DTOPO

BCKGEN

X/Y Main

X/Y Base
X/Y Address

Address
Generators

From X/Y

uData

f

36

36

16

f
X/Y Field

36

36

X/Y

36

CNTDNYN
CNTUPYN
HOLDYN

UDATAYN

EQFDIS XYEQB YEQB
XEQB YEQBORF XEQBORF
YLTB XLTB YLEB
XLEB XYLTBYF XYLEBYF

XYLTBXF XYLEBXF XEQYPN
XEQYBPN

BCKFEN BCKDTOPO BCKFDIS

DTOPO

DATDAT
DATJAM
Etc.

UDATAJAM

data_reg_width()

ADD AND CNTDNDR
CNTUPDR CMPLDR HOLDDR

OR ROTLDR ROTRDR
SHLDR SHRDR SUBTRACT
UDATADR XOR

DBM

dbm_config_set()

DBASE
DBASE

JAM
Logic

Yindex

LBDATA

111

36
 A

PG
 D

at
a

to
 P

in
 S

cr
am

bl
e

M
U

X

DBMWR

D0

36

INVSNS
NOTINV

XORINV

[UDATA 0..3]

18

18

Destination MUX 36 or 18

UDATADR
SDMAIN
SDBASE
UDATA

DMAIN DBASE

36 or 18

AL
U

D1

D35

1

 Address
BIT2 (see bit2fen())

Data Inversion
Logic

A

B

SrcA

SrcB

Data
Register
Fill-bit

DMAIN
DMAIN
 2/27/09 Pg-146

Magnum System Overview Algorithmic Pattern Generator (APG)
1.8.4.1 Data Inversion Logic
See APG Data Generator.

The following diagram shows the APG Data Generator inversion logic:

From
APG
uRAM

INVSNS
NOTINV

X/Y Address

B
I
T
2

(
s
e
e

b
i
t
2
f
e
n
(
)
)

f f

EQFDIS XYEQB YEQB
XEQB YEQBORFXEQBORF
YLTB XLTB YLEB
XLEB XYLTBYFXYLEBYF

XYLTBXF XYLEBXF XEQYPN
XEQYBPN

36
 A

PG
 D

at
a

to
 P

in
 S

cr
am

bl
e

M
U

X

D0

D1

D35

DATDAT
DATJAM
Etc.

Data
Source
Select
MUX

36

XORINV

DBMWR
DBM

36
uData

36

Data Inversion AB Select
MUXs

See APG Data Inversion
Bank Select Functions

A Data
Inversion
Enables

B Data
Inversion
Enables

DTOPO

Background
Inversion

BCKFEN
BCKDTOPO
BCKFDIS

Background
Bank-A

Background
Bank-B

Data Inversion Bank-A

Data Inversion Bank-B

Figure-29: APG Data Inversion Block
Diagram

f

f

DTOPO
RAM

See APG Data Inversion Enable Functions
 2/27/09 Pg-147

Magnum System Overview Algorithmic Pattern Generator (APG)
Note the following:

• This logic will, on a per-pattern-cycle basis, perform up to 9 separate inversions on
the data source selected in each cycle by the Data Source Select MUX.
• Data topological inversion; i.e. conditionally invert data as a function of the X/Y

address and the contents of two DTOPO memories, also called DTOPO RAMs.
This is used when the DUT stores a logic-1 (or logic-0) in some cells inverted
from other cells. See APG Data Topological Inversion (DTOPO) Function and
APG Data TOPO RAM Load Functions.

• Background data inversion; i.e. conditionally invert data as a function of X and/or Y
address. The bckfen() function defines the desired operation, and optionally
which X/Y address bit(s) are considered. A typical application of background
inversion is to generate various checkerboard data patterns. See APG Background
Data Inversion Function.

• Bit-2 inversion; conditionally invert based on the logic state of a specific X or Y
address bit. See bit2fen().

• APG Background Bank-A, Bank-B Inversion. This is similar to the Background
data inversion except that two seperate sets of inversion logic are used with Data
Inversion Bank-A outputs routed to Data Inversion Bank-A only and Background
Bank-B outputs routed to Data Inversion Bank-B only. See APG Background Bank-
A, Bank-B Inversion.

• Explicit or pattern inversion. This is controlled using the test pattern DATGEN
INVSNS and NOTINV instructions which control a bit issued from the APG uRAM
in each pattern instruction.

• APG address equality plus Y-index inversion; i.e. conditional inversion based on a
comparison of APG X/Y address registers or X/Y address output + Y-index
register. Together, these are used to generate various inverted bit, inverted row(s),
inverted column(s) or diagonal data patterns. See DATGEN Equality Function
Operands and DATGEN Yindex Operands.

• Direct inversion based on the bit-wise value output from the APG uRAM in each
pattern cycle. See DATGEN Invert Sense Operand. These inversions are different
from the others in that they are not affected by the Data Inversion AB Select MUXs
(more below).

• The Magnum APG data generator has two banks of Data Inversion Logic and 36
Data Inversion AB Select MUXs. This allows two inversion setups to be configured
and selectively applied to each of the 36 APG Data Generator outputs. For
example, some data outputs can have background inversion applied (see APG
Background Data Inversion Function) while others use data inversion (see APG
Data Topological Inversion (DTOPO) Function).
 2/27/09 Pg-148

Magnum System Overview Algorithmic Pattern Generator (APG)
• The A Data Inversion Enables and B Data Inversion Enables are configured using
the APG Data Inversion Enable Functions. Five of the six inversions have
independent enable bits which must be setup before executing the test pattern.

• The Data Inversion AB Select MUXs are configured using the APG Data Inversion
Bank Select Functions. These are also setup before executing the test program.

1.8.4.2 JAM Logic
See APG Data Generator, APG JAM Logic Configuration Functions.

The Magnum APG Data Generator has four data sources, selected during pattern
execution, on a cycle-by-cycle basis, using the memory pattern DATGEN Instruction:

• DMAIN Register
• DBASE register
• Data Buffer Memory (DBM)
• JAM Register
• JAM RAM

The following diagram shows the JAM logic, containing the JAM Register and JAM RAM:

Figure-30: JAM Logic Block Diagram

36 Data Source
Select MUX

DMAIN Register To Data
Inversion
Logic

DBASE Register
Data Buffer Memory (DBM)

JAM RAM
16Kx36

36

36

JAM Select MUX

Controlled using
apg_jam_mode_set()

Controlled using
DATGEN Dataout

Operands
DATDAT
DATJAM

Etc.

JAM RAM
Address
Counter

Controlled using
DATGEN Dataout

Operands
DATDAT

DATJAM,Etc.

Initialized using
apg_jam_ram_address_set()

Load using
apg_jam_ram_set()

JAM
Register

14
 2/27/09 Pg-149

Magnum System Overview Algorithmic Pattern Generator (APG)
The JAM Register holds a single 36-bit value. The JAM RAM, first available in in software
release h1.1.23, is a 16K deep 36-bit wide memory. By default, the JAM Register is
selected until apg_jam_mode_set() selects the JAM RAM.

The initial application for the JAM RAM was targeted at parallel testing of multiple DUTs
which have:

• Known bad blocks; i.e. a series of known bad addresses which should not be
tested.

• Address and data sent sequentially, with the block address being distinct from
read/write data and the non-block portion of an address. For example:

To test is example device in parallel, it must be possible to concurrently send a different
block address to each DUT, with the remaining portion of the address and the data being
identical for each DUT. In this application the JAM RAM is used to supply the 8-bits-per-DUT
block address, with each 8-bits potentially different. The Pin Scrambler makes it easy to
select the JAM RAM as the source of the block address, much like a look-up table of good
block addresses.

Prior to pattern execution:

From X/Y
Address

Generator

DUT-1DUT-2DUT-3DUT-4

D
3

D
2
51

D
2

D
1
64

D
1 D

85
D
7

D
0

Cmd Col1
Addr.

Col2
Addr.

Row1
Addr.

Row2
Addr.

Row3
Addr. Data1 Data2 Etc.

Row2 is the
Block Address

from Data
Generator’s
JAM RAM

From X/Y
Address

Generator

From Data
Generator
 2/27/09 Pg-150

Magnum System Overview Algorithmic Pattern Generator (APG)
• The JAM RAM is loaded with the good block table, with each JAM RAM address
storing the block address for up to 4 DUTs (8 bits per DUT). See
apg_jam_ram_set().

• The initial JAM RAM address is set, using apg_jam_ram_address_set().
• The JAM RAM is enabled, using apg_jam_mode_set(). By default the original

JAM Register is enabled.
During pattern execution, in a given instruction the JAM RAM is selected and controlled
using the DATGEN Dataout Operand, to sequence through the good blocks.

See APG JAM Logic Configuration Functions.

1.8.5 APG Chip Selects
See Algorithmic Pattern Generator (APG).

The Magnum APG has 8 chip selects, which can be selected via the Pin Scramble MUX as
the source of test pattern control, per-pin, per-cycle. Note the following:

• Two of the chip selects (t_cs1 and t_cs2) are bi-directional; i.e. they have I/O
and strobe capability. See APG Chip Select Drive/Strobe Polarity Functions, APG
Chip Select Polarity Control Function. The other six chip selects drive only.

• Chip selects are traditionally used when testing memory devices, to control the
DUT’s chip select, write enable, R/W pins, etc.

1.8.6 APG Interrupt Timer
See Algorithmic Pattern Generator (APG), APG Timer Functions.

Each APG contains a real-time interrupt timer, traditionally provided for testing DRAM
refresh operation, but also useful when testing any device which has self-timed operation.
The interrupt timer requires the use of Memory Test Patterns instructions, thus to use the
timer with Logic Test Patterns instructions actually requires using Mixed Memory/Logic
Patterns,

The timer consists of a counter clocked by the system clock. It is loaded with the desired
time value and explicitly enabled to count-down in selected pattern instructions.

The timer can be used two ways:
 2/27/09 Pg-151

Magnum System Overview Algorithmic Pattern Generator (APG)
• Polled i.e. explicity test for timer = zero. This uses the test pattern MAR Branch
Condition Operands which test the timer (MAR CJMPT, CRETT, etc.).

• Interrupt: the timer generates a real-time interrupt during pattern execution. An
interrupt can conditionally call a subroutine or cause pattern execution to
conditionally branch. See MAR Interrupt Operands and MAR Timer Operands.

When the timer reaches a count of 0, an interrupt is set (pending). The timer can be used to
cause an interrupt subroutine to execute at a timed interval, or to control pattern execution
based on a real-time interval, both independent of the cycle period(s) currently programmed.

Timer interrupt operation is as follows:

• The timer value is programmed using the timer() function, which must be
executed before executing the test pattern.

• The timer interrupt is cleared at the start of pattern execution.
• The interrupt address register for memory patterns (MAR Engine) is set using the

MAR INTADR or MAR INTENADR operands. This identifies a pattern subroutine
which may be called if an interrupt occurs (the timer may also be used without
calling a subroutine, more below).

• Any pattern instruction containing the MAR RSTTMR operand will reset the timer to
its original programmed value. Since this is the default interrupt timer operand, the
timer will be reset in any pattern instruction which does not contain an explicit MAR
TIMEN operand (next).

• The interrupt timer will count-down in any pattern instruction(s) containing the MAR
TIMEN operand. If the timer reaches a count of 0, an interrupt will be set
(pending). See previous bullet.

• The MAR CJMPT, CJMPNT, CSUBT, CSUBNT, CRETT, or CRETNT, instructions can be
used at any time to perform conditional jump, subroutine call, or subroutine return
based on the state of the timer (zero or not zero). Similar instructions are available
for use in logic/mixed patterns: VAR CJMPT, CJMPNT, CSUBT, CSUBNT, CRETT, or
CRETNT. This usage is actually more common than using the interrupt subroutine
facility.

Once set, a timer interrupt will remain set (pending) until cleared by:

• Execution of an instruction containing the MAR INTEN or MAR INTENADR operands
• Execution of any of the pattern jump, subroutine, or return which is conditional

based on the timer being equal or not equal to zero (see above).
• Execution of the current test pattern completes.

A pending interrupt is masked in any pattern instruction containing the MAR NOINT or MAR
INTADR operands. Masked means that the interrupt subroutine will not be called in that
 2/27/09 Pg-152

Magnum System Overview Algorithmic Pattern Generator (APG)
instruction, even it an interrupt is pending. Note that MAR NOINT is the default in any
instruction which does not explicitly include one of the other interrupt operands.

If an interrupt is pending at the start of an instruction containing MAR INTEN the next
instruction address is pushed onto an execution stack and the interrupt subroutine, specified
in the interrupt address register, is called.

If an interrupt is pending at the start of an instruction containing MAR INTENADR the next
instruction address is pushed on the stack and the interrupt subroutine, specified in the
interrupt address register, is called. The interrupt address register is also updated with the
address in the UDATA field, but it is the subroutine specified by the register contents at the
start of the instruction that is called.

Only one timer interrupt latch exists (per APG); i.e. there is no interrupt stack or queue.

1.8.7 APG User RAM
See Algorithmic Pattern Generator (APG), APG User RAM Functions, USERRAM
Instruction.

The Magnum APG contains a 4Kx32 scratch-pad memory called the User RAM, which can
be used, under test pattern control, in different ways:

• Move values between select APG registers.
• Save/Restore various APG registers.
• For a given register, set multiple values from the test program to be used in the

test pattern.
• Incrementally save various APG register values for retrieval after pattern execution

ends.
 2/27/09 Pg-153

Magnum System Overview Algorithmic Pattern Generator (APG)
The simplified block diagram below shows the key components of the APG User RAM:

Figure-31: APG User RAM Simplified Block Diagram
Note the following:

• Before and/or after a test pattern executes the user’s program can read/write values
from/to the APG User RAM. See APG User RAM Functions.

• The APG User RAM is controlled, during pattern execution, from instructions
stored in the APG’s uRAM.

X Main
X Base
X Field

Y Main
Y Base
Y Field

APG
User
RAM
4K

User RAM
Address

Index

SET

GET

SourceA address
during

SET/GET URAMINCR
SET/GET URAMDECR

APG uRAM
UDATA

SourceA address
except during

SET/GET URAMINCR
SET/GET URAMDECR USERRAM

Instruction

SourceBSourceA InstructionMAR

Supported
APG

Registers
 2/27/09 Pg-154

Magnum System Overview Algorithmic Pattern Generator (APG)
• In the pattern language, the USERRAM instruction plus various operands is used
to control the APG User RAM. The following USERRAM instructions are supported
and specified using USERRAM Operation Operands:

1.8.7.1 User RAM Address Index Register
See Algorithmic Pattern Generator (APG), APG User RAM.

Some APG User RAM operations require selecting one or two User RAM addresses
(URAM1-URAM4096), to specify the source and/or destination for the instruction. In the
pattern language these are explicitly specified using the USERRAM Instruction SourceA
and SourceB operands (see USERRAM SourceA Operands and USERRAM SourceB
Operands).

When used, the SourceB value is always explicitly specified, however, the SourceA
address can be either an explicit address (URAM1 to URAM4096) or can be the output of the
Address Index Register. The latter is selected by specifying either URAMINCR or URAMDECR
as the SourceA value (see USERRAM SourceA Operands).

The main application of the Address Index Register is to sequentially access the APG User
RAM, typically in a pattern loop. Thus, when used, the Address Index Register is always
either post-incremented or post-decremented.

Once the Address Index Register is loaded with an initial address (USERRAM LOAD) that
address can be used (instead of an explicit address) to Get/Set a value from/to the APG
User RAM. For example, to clear all or part of the APG User RAM, or set all or several
addresses to 0xFF, etc. Note the following:

• If an explicit SourceA address is specified (URAM1 to URAM4096) the Address Index
Register is not used or modified.

Operand Purpose SourceA1 SourceB1

GET GET the value from SourceA into SourceB. APG User
RAM

APG
Register

SET SET the value from SourceB into SourceA. APG User
RAM

APG
Register

Note-1: SourceA and SourceB refer to operands of the USERRAM instruction.
 2/27/09 Pg-155

Magnum System Overview Algorithmic Pattern Generator (APG)
• If URAMINCR is specified as SourceA, the address in the Address Index Register
determines which APG User RAM address is accessed by the current USERRAM
instruction. Then, the Address Index Register is incremented in preparation for the
next URAMINCR or URAMDECR instruction.

• If URAMDECR is specified as SourceA, the address in the Address Index Register
determines which APG User RAM address is accessed by the current USERRAM
instruction. Then, the Address Index Register is decremented in preparation for the
next URAMINCR or URAMDECR instruction.

• The values in the Address Index Register do wrap, in both directions.

1.8.8 Data Buffer Memory (DBM)
See Site Assembly Board, Algorithmic Pattern Generator (APG), Data Buffer Memory
Software (DBM).

The Magnum test system has two test pattern data sources:

• APG (optionally including the DBM): see Memory Test Patterns.
• The combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) see Logic

Test Patterns and Scan Test Patterns.
The DBM is needed when the APG is used to test memory devices using stored pattern
data; i.e. non-algorithmically generated drive/compare data.

The original application of the DBM was testing ROMs, where the DUT contains non-volatile
data. The data pattern stored in a ROM isn’t written to the DUT during testing, and is
arbitrary, i.e. effectively random, non-algorithmic, etc. When testing the ROM, this read-only
data is loaded into the DBM from a disk file, with each ROM code typically contained in a
different file. Then, during functional testing, the DBM is selected as the data source
(DATGEN BUFBUF) when doing the actual read cycles in APG pattern instructions.

Although ROM testing originally identified the need for a DBM, the DBM can also be used for
testing any device type where (a) the APG is to be used as the pattern data source, and (b)
stored pattern data is needed. Cycle-by-cycle, DBM data can be used as drive data, for
writing to the DUT, or as compare data when strobing the DUT. Note that the APG data
source is selectable on a cycle-by-cycle basis, with the DBM selection being one data
source option.

See Data Buffer Memory Software (DBM) for programming information. The DBM
Architecture is described further below.
 2/27/09 Pg-156

Magnum System Overview Logic Vector Memory (LVM)
1.8.8.1 DBM Architecture
See Site Assembly Board, Algorithmic Pattern Generator (APG), Data Buffer Memory
(DBM).

The Data Buffer Memory (DBM) option consists of two SIMM memory modules mounted on
each Site Assembly Board. Both modules must be installed to use the DBM.

The DBM is implemented using DRAM, which may be used in an interleaved mode to
provide random DBM access at full speed or non-interleaved mode to increase the usable
DBM size, with restrictions on either access speed or address sequencing. See DBM DRAM
Interleaving and DBM Sequential Mode. The following table describes the DBM size options
vs. interleave mode:

See Data Buffer Memory Software (DBM) and DBM Usage Rules.

1.9 Logic Vector Memory (LVM)

The Logic Vector Memory (LVM) and Scan Vector Memory (SVM) are the same memory and
consists of a set of optional memory modules mounted on each Site Assembly Board.

Table 1.8.8.1-1 DBM Memory Size Options

Installed DBM Size

Usable DBM Size

Interleaved Non-Interleaved

72 MBits 72 MBits 576 MBits

144 MBits 144 MBits 1152 MBits

288 MBits 288 MBits 2304 MBits

576 MBits 576 MBits 4608 MBits

1152 MBits 1152 MBits 9216 MBits

2304 MBits 2304 MBits 18432 MBits

Note: not all DBM memory size options are initially available.
 2/27/09 Pg-157

Magnum System Overview Logic Vector Memory (LVM)
The LVM/SVM is used to store both Logic Test Patterns and Scan Test Patterns. The
combined LVM/SVM has 64 3-bit outputs, consisting of:

• One drive/strobe data bit (PEL)
• One strobe control bit (PES)
• One I/O control bit (PEE)

The LVM/SVM stores Logic Test Patterns, commonly used to test logic devices, or portions
of memory devices which can’t be tested using test patterns generated algorithmically
(APG) and Scan Test Patterns, used to test the DUT via, for example, an IEEE TAP port. In
both Logic Test Patterns and Scan Test Patterns, these are controlled using the same Logic
Vector Bit Codes.

The Magnum LVM/SVM architecture has the following key features:

• DRAM + SRAM architecture, used to store both logic vectors and scan vectors.
Use of DRAM provides large, cost effective LVM/SVM. The SRAM is used in
special situations which require faster memory access than possible using DRAM.
SRAM usage is transparent to the user; it is only noted here to help explain
Magnum 1/2/2x Logic Pattern Rules.

• As noted above, each LVM/SVM address stores 3-bits per timing channel (see
table below) plus other per-vector information (opcode, time-set selection, pin
scramble address, etc.).

• Two banks of LVM. The 2nd bank used to:
- Store DDR vectors
- Store DDR scan vectors

• Up to 64 scan channels per Site Assembly Board. Scan vectors are packed, to
conserve/optimize LVM/SVM use (see diagram below). Optimum scan vector
storage is obtained when the user’s test pattern defines scan data in sets of 1, 2,
4, 8, 16, and 64 pins.

• The Magnum Vector Scramble MUX allows any LVM/SVM output to be mapped to
any DUT pin(s),

The Magnum LVM architecture supports the following logic pattern features:

• Single vector repeat loops.
• Multi-vector loops nested to 3 levels (with restrictions)
• Vector subroutines nested to 2 levels (with restrictions)
• Branch-on-error, stop-on-error (with restrictions)
• Mixed Memory/Logic Patterns test patterns
 2/27/09 Pg-158

Magnum System Overview Logic Vector Memory (LVM)
• The model below shows the architecture of the two LVM/SVM banks and how
conventional logic vectors and scan vectors use the same LVM space:

Figure-32: Magnum Logic Vector Memory Architecture
The Opcode field stores:

• Vector instruction: VEC, RPT, VPULSE, VCOMP, RESET, NOLATCH, OVER
• Repeat count; i.e. RPT 12, etc.
• Pin scramble select: PS2, etc.

LVM 1

LVM 2

Opcode
I/O ControlStrobe Data

Ve
ct

or
S

cr
am

bl
e

64

2 Crosspoint MUX
Each 64 x 64 x 3

x 3

LVM-2 used for:
DDR

Scan DDR

LVM, Scan

64
x 3

To Pin
Scramble MUX

(PEE)(PES)
24 bits 64 bits64 bits

VEC VIHH1TSET2 PS4

VEC VIHH1TSET1 PS1

VEC VIHH2TSET2 PS4
RPT 10 VIHH3TSET2 PS4
VEC VIHH2TSET2 PS4
VEC VIHH1TSET1 PS1

VEC VIHH1TSET2 PS4

Parallel
Vectors

0 1 2 3 ...Scan Cycle 0 1 2 3 ...

Drive Data
(PEL)
64 bits

Scan
Vectors

0
1
1
0
0
1
0
1 0

1
1
0
0
1
0
1

0
0
1
0
1
1
0
0 0

0
1
0
1
1
0
0

0
1
1
0
0
1
0
1 0

1
1
0
0
1
0
11

1
1
1
0
0
0
0 1

1
1
1
0
0
0
0

0
0
1
0
1
1
0
00

0
1
0
1
1
0
0

0
0
1
0
1
1
0
00

0
1
0
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
00

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0

0
1
01

0
0 0

0
0

0
0
0 0

1
1 0

0
1

0
1
0

0
0
0....

....

....

....

....

....

0 1 2 3 ...

1
1
11

1
1 1

1
1

0
0
0

....

....

VEC VIHH1TSET2 PS4

VEC VIHH1TSET1 PS1

RPT 55 VIHH1TSET6 PS2
RPT 10 VIHH1TSET2 PS9
VEC VIHH1TSET4 PS8
VEC VIHH1TSET1 PS1

VEC VIHH1TSET2 PS4

Parallel
Vectors

0
1
1
0
0
1
0
1 0

1
1
0
0
1
0
1

0
0
1
0
1
1
0
0 0

0
1
0
1
1
0
0

0
1
1
0
0
1
0
1 0

1
1
0
0
1
0
11

1
1
1
0
0
0
0 1

1
1
1
0
0
0
0

0
0
1
0
1
1
0
00

0
1
0
1
1
0
0

0
0
1
0
1
1
0
00

0
1
0
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0 0

0
1
1
1
1
0
00

0
1
1
1
1
0
0 0

0
1
1
1
1
0
0

The arrows show the direction that pattern execution sequences through LVM contents. Note that
conventional logic vectors and scan vectors are different.
 2/27/09 Pg-159

Magnum System Overview Scan Vector Memory (SVM)
• Time-set select: TSET 4, etc.
• VIHH select: VIHH5, etc.

1.10 Scan Vector Memory (SVM)
See Site Assembly Board.

The Scan Vector Memory (SVM) and Logic Vector Memory (LVM) are the same memory and
consists of a set of optional memory modules mounted on each Site Assembly Board.

The combined LVM/SVM stores both Logic Test Patterns and Scan Test Patterns.

See Logic Vector Memory (LVM) for more information.
 2/27/09 Pg-160

Error Catch RAM (ECR)
1.11 Error Catch RAM (ECR)
See Site Assembly Board.

The optional Error Catch RAM (ECR) is used to capture functional failures, per-pin, per-
cycle, in real time. Typical applications include:

• Memory test Bitmap support; i.e. BitmapTool.
• Memory test Redundancy Analysis (RA).
• Logic Error Catch (LEC).

Key Features:

• Each Site Assembly Board supports two ECR’s, 1 ECR captures errors from Sub-
site A pins and 1 ECR captures errors from Sub-site B pins (see PE Sub-site
Architecture).

• Fail capture at 50Mhz. See Magnum ECR Memory Size Options.
• Built-in Logic Error Catch (LEC).
• Bit line error counter (IOC Error Counters below).
• Word line error counter (Row Error Counters/Col Error Counters below).
• Total failures error counter (Total Error Counters below).
• ECR Mini-RAM, to support block or segment oriented device testing.
• Test pattern on-the-fly branching based on Row Error Counters, Col Error Counters

and Total Error Counters.

Note: the following usage restriction was added 3/25/05. This restriction is required to
ensure that DUT boards and test programs written for Magnum will operate in
Magnum-compatible systems being planned for future development.

As note above, each Site Assembly Board supports two ECR’s: 1 ECR captures errors from
Sub-site A pins and 1 ECR captures errors from Sub-site B pins. Each ECR can capture
errors from up to 36 pins in its associated Sub-site, however, to maintain DUT board and test
program compatibility with future Magnum systems, at most a maximum of 18 pins from
each group of 32 pins should be captured. In other words:

• From Sub-site A, capture any 18 pins from a_1 to a_32
• From Sub-site A, capture any 18 pins from a_33 to a_64
 2/27/09 Pg-161

Error Catch RAM (ECR)
• From Sub-site B, capture any 18 pins from b_1 to b_32
• From Sub-site B, capture any 18 pins from b_33 to b_64

This requires that the user carefully consider which tester pins are connected, via the DUT
board, to the DUT pins which are to be captured in the ECR.

The following diagram is used to describe the ECR architecture:

Figure-33: Magnum ECR Block Diagram
Note the following:

PE Error Latches

16X*

16Y*
16X*
16Y*

16X*
16Y*

14X
14Y

3664

Configured Indirectly

Main
ECR
RAM

Mini
RAM

Address
CrossPoint

X/Y
Scramble

RAM

Mini RAM
CrossPoint

Data
CrossPoint

Row
RAM

Column
RAM

Total Error
Counters

Col Error
Counters

Row Error
CountersY APG

Address
Generator

X APG
Address

Generator

To Branch
Error Choice

Logic

ECR Error Counters
ECR RAMs

IOC Error
Counters

36

TEC
Comparator CEC

Comparator REC
Comparator

ECR Mini-RAMECR Counter Comparators

* Up to 18 X-address bits but 32 total X/Yaddresses max.
 2/27/09 Pg-162

Error Catch RAM (ECR)
• The Main ECR RAM is implemented using burst DRAM, using an interleaving
technique to provide random access. To capture errors at the Magnum’s maximum
data rate (i.e. 50MHz/20nS strobe rate) requires an interleave ratio of 8; i.e. the
entire ECR main memory size is divided by 8. Conversely, as the capture data rate
is reduced the interleave ratio is reduced, effectively increasing the size of the
ECR. When configuring the ECR (see ecr_config_set()), the
fastest_cycle argument is used to specify the maximum strobe rate (on all
pins) in test pattern(s) which are to capture errors in the ECR. The system
software uses this value to set up ECR interleaving, in one of 4 configurations:

Note that in the product specification the ECR size is specified for full-speed
operation; i.e. 8-way interleaving.

• The Address CrossPoint provides for address compression; i.e. one or more X
and/or Y address bits are not used (ignored, discarded, etc.) when addressing the
ECR. In effect, this results in a range of addresses which are captured to the
same location in the ECR. X and Y address compression is configured using two
arguments to ecr_config_set(). The current address compression
configuration can be read using ecr_config_get().

• The Data CrossPoint is used to map individual pin error flags to the ECR; i.e.
which pins are captured into each ECR data location. It also provides for data
compression; i.e. errors from multiple pins are captured to the same data in the
ECR. The Data CrossPoint is indirectly configured using ecr_config_set(). The
configuration pinlist can be retrieved using ecr_config_get().

Table 1.11.0.0-1 Magnum ECR Memory Size Options

ECR Size

Max Capture Speed vs. Effective ECR Depth First

50MHz 25MHz 12.5MHz 6.25MHz Avail.

72 MBit 72 MBit 144 MBit 288 MBit 576 MBit

144 MBit 144 MBit 288 MBit 576 MBit 1152 MBit

288 MBit 288 MBit 576 MBit 1152 MBit 2304 MBit

576 MBit 576 MBit 1152 MBit 2304 MBit 4608 MBit

1152 MBit 1152 MBit 2304 MBit 4608 MBit 9216 MBit

2304 MBit 2304 MBit 4608 MBit 9216 MBit 18432 MBit
h2.0.12
h1.1.27
 2/27/09 Pg-163

Error Catch RAM (ECR)
The following diagram shows how errors are logged to the Main ECR RAM, Row RAM, and
Column RAM:

• The Row RAM and Column RAM are used to improve the ECR read (scan)
performance. During test pattern execution, each time a failure is logged to the
ECR at a given address, a bit is also set in the Row RAM and Column RAM, at the
same address. Then, the ECR scan routine can skip rows/columns which do not
have a bit set in the Row RAM or Column RAM. These RAMs can be read from
user code using, ecr_row_ram_read(), ecr_row_ram_scan(),
ecr_col_ram_read(), ecr_column_ram_scan(). These RAMs can be
modified from user code using ecr_row_ram_write(),
ecr_col_ram_write(). These RAMs can be cleared using ecr_all_clear(),
ecr_rams_clear() and, optionally, ecr_area_clear(). Note that
ecr_config_set() also clears these RAMs.

• The Mini RAM is used when testing block or segment oriented memory devices. In
simple terms, each block or segment of the main ECR is mapped to one address
in the Mini RAM. Then, during test pattern execution, any time an error is logged
to the ECR the appropriate bit in the Mini RAM is also set. After the pattern
completes, the contents of the Mini RAM indicate which block(s) or segment(s)
contain errors. The Mini RAM is configured using ecr_miniram_config_set(),
which indirectly configures the Mini RAM CrossPoint. This defines the scope of
each Mini RAM address; i.e. how many and which X/Y addresses are mapped to a
given Mini RAM address. The current Mini RAM configuration can be retrieved
using ecr_miniram_config_get(). The Mini RAM can be read using
ecr_miniram_scan() and ecr_miniram_read(). The Mini RAM can be

0x53 0x37 0x04 0x08 0xF1

0x13R0

C0 C1 C2 C3 Cn

0x20R1
0x55R2
0xB5R3
0x01R4

0x8FRn

0x03 0x00 0x00 0x00 0x10
0x00 0x00 0x00 0x00 0x20
0x51 0x01 0x00 0x00 0x40
0x03 0x35 0x00 0x00 0x80
0x00 0x00 0x00 0x00 0x01

0x01 0x02 0x04 0x08 0x80

Main ECR RAM

Column RAM

Row
RAM

1 = Failure
(bit-wise)

Example Logs
8-pins per
Address
 2/27/09 Pg-164

Error Catch RAM (ECR)
modified using ecr_miniram_write(). The Mini RAM can be cleared using
ecr_all_clear(), ecr_rams_clear(), and, optionally, ecr_area_clear().
Note that ecr_config_set() also clears these RAMs.

1.11.1 ECR Error Counters
See Error Catch RAM (ECR).

As indicated in the Magnum ECR Block Diagram, the ECR contains several error counters,
some with corresponding ECR Counter Comparators:

• Total Error Counters (TEC) : 34-bit counter(s) which count total failing bits or total
failing addresses (see ecr_counters_config_set()). In Multi-DUT Test
Programs, each DUT has an independent TEC (up to 8 per ECR). The TEC
Comparator signal to the Branch Error Choice Logic will be TRUE when the value
in the TEC counter exceeds the count specified using ecr_compare_reg_set().
This can be used to control branch operations in Memory Test Patterns using the
MAR Error-choice Operands.

• Col Error Counters (CEC): 18-bit counter(s) which count the number of failing bits
or failing addresses in the Column RAM. In Multi-DUT Test Programs, each DUT
has an independent CEC (up to 8 per ECR). The CEC Comparator signal to the
Branch Error Choice Logic will be TRUE when the value in the CEC counter
exceeds the count specified using ecr_compare_reg_set(). This can be used
to control branch operations in Memory Test Patterns using the MAR Error-choice
Operands

• Row Error Counters (REC): 18-bit counter(s) which count the number of failing bits
or failing addresses in the Row RAM. In Multi-DUT Test Programs, each DUT has
an independent REC (up to 8 per ECR). The REC Comparator signal to the Branch
Error Choice Logic will be TRUE when the value in the REC counter exceeds the
count specified using ecr_compare_reg_set(). This can be used to control
branch operations in Memory Test Patterns using the MAR Error-choice Operands
 2/27/09 Pg-165

Error Catch RAM (ECR)
• IOC Error Counters (IOC): 32-bit counters which count the number of errors on
each ECR input. There are 36 I/O Counters (IOC1 through IOC36). In Multi-DUT
Test Programs, these are evenly distributed between DUTs as follows:

For example, given 4 Duts/ECR, the system software configures the IOC Error
Counters to provide 9 IOC counters per-DUT, t_ioc1..t_ioc9.

• When data compression is used (see ecr_config_set()), in a given pattern
cycle, the various counters see a single error per compressed input, regardless of
how many pin errors actually occur before compression is applied.

• ECR Error Counters are configured using ecr_counters_config_set(). The
current configuration can be retrieved using ecr_counters_config_get().

• A given counter can be read using ecr_error_counter_get(). A counter can
be modified using ecr_error_counter_set().

• Counters can be cleared using ecr_all_clear() and
ecr_counters_clear(). Note that ecr_config_set() also clears these
counters.

• Each TEC, REC and CEC counter has a corresponding comparator. The output of
these comparators may be used to affect test pattern conditional branch
operations, see Branch-on-error Logic and MAR Error-choice Operands. The
comparator values are accessed using ecr_compare_reg_set(),
ecr_compare_reg_get(). When counter/comparator is used to control branch
operations, the user’s test pattern must meet the Error Pipeline Requirements.

1.11.2 ECR Mini-RAM
See Error Catch RAM (ECR).

Table 1.11.1.0-1 ECR I/O Counter Distribution

DUTs/ECR IOC/DUT

1 36

2 18

4 9

8 4
 2/27/09 Pg-166

Error Catch RAM (ECR)
As shown in the Magnum ECR Block Diagram, the ECR contains a feature called the Mini
RAM, which is used to obtain a compressed view of the Main ECR RAM. In hardware, the
Mini RAM is a 16Kx1 memory, storing one bit at each address.

The target Mini RAM application is to obtain a block or segment-oriented view of the errors
logged to the Main ECR RAM. Because the Mini RAM represents a [potentially highly]
compressed version of the Main ECR RAM, the Mini RAM can be used to quickly determine
if any errors occurred in a large chunk of the Main ECR RAM. Devices with redundant
resources commonly have spare rows and/or columns. The Mini RAM is most useful when
the DUT has spare segments or blocks.

Note the following:

• The Mini RAM is not configured by the system software; i.e. user code is required.
This is done using ecr_miniram_config_set(), after configuring the ECR
using ecr_config_set(), and prior to using the ECR. In hardware, this
configures the Mini RAM CrossPoint. The ecr_miniram_config_get() function
can be used to get the current Mini RAM configuration.

• During pattern execution, errors are concurrently logged to the Main ECR RAM,
Mini RAM, Row RAM and Column RAM.

• After errors are captured to the ECR, the ecr_miniram_scan() function may be
used to scan the Mini RAM, to determine whether any errors were captured for
each range of Main ECR RAM, each range typically equating to a segment or
block. This is much faster than scanning the Main ECR RAM and/or Row RAM
and/or Column RAM and analyzing the results to identify which segment(s) or
block(s) had errors.

• In Multi-DUT Test Programs, each DUT has an independent Mini RAM (up to 8 per
ECR).
 2/27/09 Pg-167

DUT Board I/O Ports
1.12 DUT Board I/O Ports
See DUT Board I/O Port Functions.

The Magnum 1, 2 and 2x have the following ports available at the DUT board to control or
access external circuitry:

• I2C Bus
• SPI Port & GPIO Port
• Loadboard Board Data Bits (LBDATA)

1.12.1 I2C Bus
See DUT Board I/O Ports, I2C Bus Functions.

The following diagram shows how devices are connected to the I2Cbus:

Figure-34: I2C Bus Architecture
As shown, the I2C bus is very simple, consisting of only 2 signal connections to each device.
I2C is a two wire interface with one wire being a clock and the other a serial data line. Each
Site Assembly Board contains an I2C interface to the DUT board.

The I2C Bus Functions are used to read and/or write to devices on the I2C bus.

SDA = Serial Data Line
SCL = Serial Clock Line

Device 4

Device 5

Device 6

Device 1

Device 2

Device 3

Rterm

Rterm
+

 2/27/09 Pg-168

DUT Board I/O Ports
Note: device address 0x0 (Device 0) is reserved for Nextest use.

1.12.2 SPI Port & GPIO Port
See DUT Board I/O Ports, DUT Board I/O Port Functions.

The following diagram is used to describe the GPIO and SPI ports:

Note the following:

GPIO SPI
Dout

Din

CS

CLK

6

5

4

3

2

1

0

Part of APG

Direction

R
ea

d
/ W

rit
e

R
eg

is
te

r
&

 C
on

tro
l L

og
ic

gpio_direction_set()

gpio_value_set()
gpio_value_get()

spi_cmd()

To
 D

U
T

B
oa

rd

gpio_mode_set()
 2/27/09 Pg-169

DUT Board I/O Ports
• The GPIO port consists of either 3 or 7 signals, as determined by the
gpio_mode_set() function. In t_parallel_io_mode mode, all 7 signals are
treated as GPIO signals. In t_spi_mode mode, the upper 4-bits are dedicated to
the SPI port, leaving the low 3-bits for the GPIO port.

• GPIO signals are bi-directional, but the direction is set independent of the
read/write data using the gpio_direction_set() function. In other words, to
both read and write the GPIO port requires setting the direction to read, reading
the data, then setting the direction to write, then writing the data. The read/write
direction is a per-bit control, allowing some bits to be written while others are read,
possibly in a dedicated configuration.

• The SPI port is accessed using the spi_cmd() function. A single execution of
spi_cmd() can write, read, or write/read the SPI port. The I/O direction of the SPI
pins is automatically set; i.e. the gpio_direction_set() function has no effect
on pins in SPI mode.

• The GPIO/SPI pins are designed to drive high impedance, TTL levels (VIL <0.8V
and VIH >2.0V). They are not specified to drive 3.3V CMOS levels. The GPIO/SPI
pins are driven by a T.I. 74LVC1G125 IC, but each output is protected with a
series 33 Ohm discrete resistor. The 74LVC1G125 uses 3.3V power. The
74LVC1G125 IC is capable of driving:
• VOL 0.4V at 16mA or 0.55V at 24mA
• VOH of 2.4V at -16mA or 2.3V at -24mA
but the 33 Ohm series resistor can affect the output voltage dramatically (33mV
per mA).

• A timing diagram is not defined because all bus transactions occur at computer
speeds; i.e. relatively slowly as compared to the potential speed of the interface
IC.

 2/27/09 Pg-170

Chapter 2 Magnum 1, 2 & 2x Parallel Test
This section includes the following topics:

• Overview
- Multi-DUT Test Program
- Parallel Test Operation
- Functional Test Pattern Execution
- Using Getter Functions

• Types, Enums, etc.
• Active DUTs Set (ADS)

- active_duts_enable()
- active_duts_disable()
- active_dut_get()
- active_duts_get()
- max_dut()
- multi_dut_features()
- Active DUTs Set Iterators

• Ignored DUTs Set (IDS)
- ignored_duts_enable()
- ignored_duts_disable()
- ignored_duts_get()

• Multi-DUT Test Results
- result_set(), result_get()
- results_set(), results_get()
- all_results_match()
- any_results_match()

• Functional Test Pattern Execution
• Functional Pin-pairs
 2/27/09 Pg-171

Magnum 1, 2 & 2x Parallel Test Overview
2.1 Overview
See Magnum 1, 2 & 2x Parallel Test.

The Magnum 1, 2 and 2x system software formally supports parallel test; i.e. concurrently
testing multiple DUTs in parallel. This section provides an overview of key concepts and
associated operational details.

Note: except as noted, all parallel test (multi-DUT) concepts apply to software
executing in Site processes.

Except as noted below, a Multi-DUT Test Program is written as though one DUT is being
tested, greatly simplifying parallel test implementation. Exceptions:

• The Pin Assignment Table, where the physical connections to each DUT are
specified, identifies the maximum number of DUT(s) which can be tested by the
test program, and the tester resources (pins, DPS, etc.) which are connected to
each pin of each DUT.

• Standard Test Blocks are, by definition, parallel test blocks; i.e. the system
software will test all enabled DUT(s) concurrently, in parallel; e.g. all DUT(s) in the
Active DUTs Set (ADS). These test blocks are defined using the existing
TEST_BLOCK macro. However, when test conditions exist which prohibit
concurrently testing specific DUT(s) in parallel, a Sequential Test Block may be
used. These test blocks are defined using the TEST_BLOCK_SEQUENTIAL macro
and require that conflicting DUT(s) identified via a Conflict List.

• User designed hardware, typically on the DUT board, requires user-written control
code. This code can benefit from accessing the Active DUTs Set (ADS), to identify
which DUT(s) are enabled at any given time (more below).

The following key software features are used in support of Magnum 1, 2 and 2x Parallel Test
Operation:

• The Active DUTs Set (ADS), or ADS
• The Ignored DUTs Set (IDS), or IDS
• Multi-DUT Test Results
• Sequential Test Blocks and Conflict Lists
• Parking Blocks
 2/27/09 Pg-172

Magnum 1, 2 & 2x Parallel Test Overview
The Active DUTs Set (ADS) is the mechanism which the system software uses, during
Sequence & Binning Table execution, to manage which DUT(s) are enabled at any given
time; i.e. when some DUT(s) are being tested while others are disabled (parked). For
example, when multiple DUTs are tested in parallel, it will be common for some to pass a
given test block while others fail. When this occurs, the Sequence & Binning Table will
continue to test some DUT(s), for example those that passed, while others are temporarily
disabled, for example those that failed. In this context, ADS management is automatic, and
optimized to reduce test time. The Magnum 1, 2 and 2x hardware design provides for
disabling tester resources per-DUT.

User code may also manipulate the ADS, as required to read (get) a programmed value for
a specific DUT (see Using Getter Functions) or, less often, to [temporarily] enable or disable
hardware connected to specific DUT(s). Operational use of the ADS is described in Parallel
Test Operation.

The Ignored DUTs Set (IDS) is the mechanism available for user code to advise the system
software to ignore (don’t enable) specific DUT(s). This supports, for example, the situation
in which a DUT handler or prober is able to specify which test sites are active (or disabled),
which can be affected by an empty input tray, a full output bin, edge of wafer, a known bad
DUT socket, etc. The IDS may need to be updated for each start test signal, typically by
user code included in the handler/prober control loop, executing in the Host process.

Operational use of the IDS is described in Parallel Test Operation. In general, ignored
DUT(s) (i.e. those in the IDS) are not allowed in the Active DUTs Set (ADS).

In Multi-DUT Test Programs, individual test results must be continuously tracked for each
DUT being tested; i.e. all DUT(s) which are not in the Ignored DUTs Set (IDS). As described
in Multi-DUT Test Results, in simple cases this is can be automatic (no additional user code
required), however in many programs user code will be needed. See Multi-DUT Test
Results.

2.1.1 Multi-DUT Test Program
See Magnum 1, 2 & 2x Parallel Test.

A Multi-DUT Test Program is, by design, able to correctly and completely test multiple DUTs
concurrently, in parallel.

The term Multi-DUT Test Program refers to a Magnum 1, 2 or 2x test program in which the
Pin Assignment Table is defined using one of the multi-DUT macros; i.e. ASSIGN_2DUT(),
 2/27/09 Pg-173

Magnum 1, 2 & 2x Parallel Test Overview
ASSIGN_32DUT(), etc. This includes the use of ASSIGN_1DUT(), even though the
resulting test program will only support testing one DUT.

Conversely, when Pin Assignment Table is defined using the legacy ASSIGN() macro, the
multi-DUT features described in this manual do not apply.

Test blocks in a Multi-DUT Test Program may only return the value MULTI_DUT, which
causes the Sequence & Binning Table code to evaluate the correct test results.

The multi_dut_features() function can be used to determine if a given test program is
a Multi-DUT Test Program.

2.1.2 Parallel Test Operation
See Magnum 1, 2 & 2x Parallel Test.

This section applies only in Multi-DUT Test Programs.

As described in Overview, parallel test operation utilizes the following key software features:

• The Active DUTs Set (ADS)
• The Ignored DUTs Set (IDS)
• Multi-DUT Test Results

Operational use of these features must be described in two contexts:

• Multi-DUT non-Sequence & Binning Table Operation
• Multi-DUT Sequence & Binning Table Operation

Multi-DUT non-Sequence & Binning Table Operation
This section describes how the ADS, IDS, and Multi-DUT Test Results operate when
executing user code when the Sequence & Binning Table is not actively executing.

More specifically, these rules apply to user code executing in a Site process (the ADS and
IDS only exists in the Site process) via User Tools, User Dialogs and User Variables any
time the Sequence & Binning Table is NOT executing

• During initial program load, the IDS is set, by the system software, to contain zero
DUTs; i.e. no DUTs are ignored. The system software does not otherwise modify
the IDS; i.e. user code modifications to the IDS are persistent indefinitely.

• During initial program load, the ADS is set, by the system software, to contain all
DUT(s) defined in the Pin Assignment Table.
 2/27/09 Pg-174

Magnum 1, 2 & 2x Parallel Test Overview
• Operation of Nextest functions which are affected by the ADS is the same whether
the Sequence & Binning Table is executing or not.

• At the end of each Sequence & Binning Table execution, the ADS is set to contain
all DUT(s) which are NOT in the IDS. DUT(s) in the IDS can never be added to the
ADS.

• User code modifications to the ADS when the Sequence & Binning Table is NOT
executing are persistent until the next execution of the Sequence & Binning Table.

• Multi-DUT Test Results are correctly updated for all DUT(s) in the ADS by the
Nextest test functions. If a Test Block is executed when the Sequence & Binning
Table is NOT (i.e. invoke(myTB)) the rules specified in Multi-DUT Test Results still
apply.

• The DUT Manager can be used to view and modify the ADS, IDS, and Multi-DUT
Test Results.

Multi-DUT Sequence & Binning Table Operation
This section describes how the ADS, IDS, and Multi-DUT Test Results operate when
executing user code when the Sequence & Binning Table IS actively executing.

More specifically, these rules apply to user code executing in a Site process (the ADS and
IDS only exists in the Site process) via Test Blocks, User Tools, User Dialogs and User
Variables, any time the Sequence & Binning Table IS executing

• During initial program load, the IDS is set, by the system software, to contain zero
DUTs; i.e. no DUTs are ignored. The system software does not otherwise modify
the IDS; i.e. user code modifications to the IDS are persistent indefinitely.

• At the start of Sequence & Binning Table execution, the ADS is initialized to include
all DUTs which are not in the IDS. This means that all DUTs not in the IDS will be
tested by the current execution of the Sequence & Binning Table. But, user code
can affect this (more below).

• The previous statement also applies when using UI to execute one test block or
execute starting with a selected test block.

Note: it is highly recommended that changes to the Ignored DUTs Set (IDS) be made
before the Sequence & Binning Table executes the first test block; i.e. in a
Before-testing Block. This ensures that the Sequence & Binning Table correctly
and completely tests all DUT(s) enabled (not ignored) at the start of each
execution. The IDS is set or modified using ignored_duts_enable() and
ignored_duts_disable().
 2/27/09 Pg-175

Magnum 1, 2 & 2x Parallel Test Overview
• During Sequence & Binning Table execution, the system software will manage
(modify) the ADS as needed to control which DUT(s) are enabled at any given time.
Details follow:

• On entry to a given test block, any DUT(s) which are not to be tested will be parked.
See Active DUTs Set (ADS) and Parking Blocks (and, more below).

• On entry to a given test block, the system software will set the ADS to enable only
those DUT(s) to be tested by that test block. The system software does not
otherwise modify the ADS during the execution of a given test block.

• In standard test blocks, the test block code will execute once, regardless of how
many DUT(s) are in the ADS. This tests all DUT(s) in the ADS concurrently, in
parallel. User code within the test block may change this behavior (more below) but
in many applications this will not be necessary.

• Sequential Test Blocks provide for situations in which not all DUT(s) in the ADS can
be tested concurrently. User code must identify conflicting DUT(s) (see Conflict List),
then a Sequential Test Block code will execute two or more times, during which the
system software will manipulate the ADS to control which DUT(s) are to be tested
for each execution. During each execution, those DUT(s) which are waiting to be
tested are parked.

• When test block execution exits, the Sequence & Binning Table code retrieves the
Multi-DUT Test Results for those DUT(s) in the ADS at the start of block execution,
to determine how testing proceeds. Note that Multi-DUT Test Results are NOT the
value returned via the test block return statement.

• When test block execution returns to the Sequence & Binning Table, before
proceeding to the next step, the algorithm determines which DUT(s) are to be in the
ADS (enabled) for the next test block. This can cause the following additional
actions:
• If any DUT(s) need to be parked and the test block in which they are to be tested

next contains a user specified Parking Block, the ADS is temporarily set to contain
these DUT(s) and the Parking Block is executed. Then the default parking
operations are executed; basically disabling the tester hardware connected to
these DUT(s). See Active DUTs Set (ADS) for a detailed example.

• If any DUT(s) need to be un-parked, the default un-parking operations are
executed first; basically enabling the tester hardware connected to these DUT(s).
Then, the system software determines whether any DUT(s) were originally
parked by a user specified Parking Block and, if so, the ADS is set to these
DUT(s) and that Parking Block is executed to un-park those DUT(s).
 2/27/09 Pg-176

Magnum 1, 2 & 2x Parallel Test Overview
• On entry to a Parking Block, the ADS includes only those DUT(s) which are to be
parked or un-parked. When parking DUT(s), any which were previously parked
(and are to remain parked) will not be included in the ADS. Within the Parking
Block, the built-in variable, named parking, will be set by the system software
to allow user code to distinguish between parking (parking = TRUE) and un-
parking (parking = FALSE).

• Once any DUT(s) are tested to completion, the Sequence & Binning Table will
continue testing any remaining DUT(s) which were previously parked. Testing
continues until all DUTs which are not in the Ignored DUTs Set (IDS) have reached
a STOP statement in the Sequence & Binning Table.

• The After-testing Block will execute only after all DUT(s) have reached STOP in the
Sequence & Binning Table.

• As noted above, user code can modify the ADS, using active_duts_disable()
and active_duts_enable(). Using these functions, changes to the ADS are
scoped to the currently executing Test Block, Test Bin, or Parking Blocks, i.e. once
the block execution exits the system software sets the ADS as needed to properly
manage testing. This allows user code to change the ADS within the block, as
needed, without affecting the operation of the Sequence & Binning Table, which
uses the ADS to completely and correctly test multiple DUTs. The current ADS can
be copied using active_duts_get() (see ADS Save/Modify/Restore Example).

• It is possible for user code to modify the Ignored DUTs Set (IDS) during Sequence
& Binning Table execution. However, this is NOT RECOMMENDED. Once a DUT is
added to the IDS it totally ignored by the Sequence & Binning Table algorithm; i.e.
it will not be completely tested, it will never reach a STOP, it will not have a bin
assigned, etc. See Note:.

In Multi-DUT Test Program, the Sequence & Binning Table algorithm is optimized to reduce
the overall test time of all DUTs. In general, the number of times a given test block is
executed is minimized and the number of times DUT(s) are parked is minimized. For
example, when a test flow branches and merges (for example TB2, TB6, and TB3 in the
Example Test Flow Diagram) the algorithm is optimized to know which test block(s) should
execute first. In the Example Test Flow Diagram, the algorithm will execute TB6 before TB3
because any DUT(s) which pass TB6 must be tested in TB3. This warrants the following
observations:

• Any given DUT will transit the Sequence & Binning Table the same as if it was
being tested alone.

• When multiple DUTs are being tested, the amount of time between test blocks, as
seen by any given DUT, may be different based on the test results of other DUT(s)
being tested. In most applications, this is not significant. When it is, the user must
 2/27/09 Pg-177

Magnum 1, 2 & 2x Parallel Test Overview
design the Sequence & Binning Table to ensure test flow execution cannot vary
between the critical test blocks (contiguous test blocks with no exit branches will
always execute with the same relative real-time performance).

• The optimum benefit of parallel testing occurs when all DUTs pass all tests
identically or fail all tests identically and no Sequential Test Blocks are used.
Conversely, as the need to park DUT(s) increases, or Sequential Test Blocks
execute multiple times, the benefit of parallel test is reduced. This is true on all
test equipment.

2.1.3 Using Getter Functions
See Multi-DUT Test Program, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) both
affect the operation of Nextest getter functions.

In general, a getter function is one which returns a value. When the value being returned is a
per-pin attribute, for example a drive voltage, PTU current, etc., the associated getter
function requires that a DutPin be specified, to identify the target pin. However, in Multi-
DUT Test Programs, the same DutPin will exist for each DUT, thus creating an ambiguity.
In this situation, the first DUT in the Active DUTs Set (ADS) determines which value is
returned. And, DUT(s) in the Ignored DUTs Set (IDS) cannot be in the Active DUTs Set
(ADS).

In order to get a per-pin value from a DUT which is not currently first in the Active DUTs Set
(ADS), user code must modify the Active DUTs Set (ADS).

Note: any time user code modifies the Active DUTs Set (ADS), user code becomes
responsible for all subsequent operations which depend on the Active DUTs Set
(ADS), for the duration of the current Test Block, Test Bin or Parking Blocks.

To simplify this, the following steps should be considered any time user code must modify
the Active DUTs Set (ADS):

• Save the current state of the Active DUTs Set (ADS), using active_duts_get().
• Modify the Active DUTs Set (ADS) as needed, using active_duts_enable()

and/or active_duts_disable().
• Use the modified Active DUTs Set (ADS) as needed.
• Repeat the previous 2 steps as needed.
 2/27/09 Pg-178

Magnum 1, 2 & 2x Parallel Test Types, Enums, etc.
• Restore the Active DUTs Set (ADS) to that saved earlier, using
active_duts_enable().

An example of this code is available in ADS Save/Modify/Restore Example.

2.2 Types, Enums, etc.
See Magnum 1, 2 & 2x Parallel Test.

Description
The following enumerated types are used in Multi-DUT Test Programs:

Usage
The DutNum enumerated type is used in Multi-DUT Test Programs to identify a specific DUT.
These values are used when accessing the Active DUTs Set (ADS) or Ignored DUTs Set
(IDS).

enum DutNum {
t_dut1, t_dut2, t_dut3, t_dut4,
t_dut5, t_dut6, t_dut7, t_dut8,
... snip ...
t_dut125, t_dut126, t_dut127, t_dut128,
t_dut_na };

DutNumArray is a C++ data type used for defining arrays of DutNums; i.e. arrays of DUTs.
This is the base data type of the Active DUTs Set (ADS) and Ignored DUTs Set (IDS):

typedef CArray< DutNum, DutNum > DutNumArray;

2.3 Active DUTs Set (ADS)
See Magnum 1, 2 & 2x Parallel Test, Overview, Ignored DUTs Set (IDS).
 2/27/09 Pg-179

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
Description
The Magnum 1, 2 and 2x system software formally supports parallel test applications. A key
component of this support is the Active DUTs Set, or ADS. See Overview and Magnum 1, 2
& 2x Parallel Test.

Note the following:

• The Magnum 1, 2 and 2x architecture includes hardware to enable and disable
tester resources on a per-DUT basis. In software, it is the Active DUTs Set (ADS)
which controls this.

• In simple terms, the Active DUTs Set (ADS) is the mechanism which the system
software uses to manage which DUT(s) are enabled at any given time; i.e. when
some DUT(s) are being tested while others are idle (parked). This is explained in
more detail below.

• There is only one Active DUTs Set (ADS), established by the system software.
• At any given time, the contents (members) of the ADS consist of one or more

DUT(s) (DutNum = t_dut1, etc.) up to the total number of DUTs defined in the Pin
Assignment Table.

• The ADS cannot contain DUT(s) which are in the Ignored DUTs Set (IDS).
• The ADS only exists in the Site process(es).

The Active DUTs Set (ADS) has several usage contexts:

• During Sequence & Binning Table execution, within a given Test Block or Test Bin
the ADS identifies those DUT(s) which are currently enabled.

• During Sequence & Binning Table execution, within a given Parking Block the ADS
identifies those DUT(s) which are being parked or un-parked. See Magnum 1, 2 &
2x Parallel Test and Parking Blocks.

• During Sequence & Binning Table execution user code in a Test Block, Test Bin or
Parking Block, may manipulate the Active DUTs Set (ADS), to locally change which
DUT(s) are enabled at the time, and thus which will be affected by subsequent
execution of certain Nextest API functions (set or get voltages, timing, power
supplies, etc.), execute tests, etc. Most of the Nextest getter functions; i.e. functions
which return a value, return a single value, which will be for the first DUT in the
Active DUTs Set (ADS). In order to get a value for a different DUT, user code must
manipulate the Active DUTs Set (ADS). This will typically require a save, modify,
restore sequence. See ADS Save/Modify/Restore Example.
 2/27/09 Pg-180

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
Note: the need to save/restore the Active DUTs Set (ADS) is critical to proper test
results any time user code modifies the ADS during Sequence & Binning Table
execution.

• During non-Sequence & Binning Table execution the Active DUTs Set (ADS) still
determines which DUT(s) are enabled which, by default, will be all DUT(s) not in the
Ignored DUTs Set (IDS). This will affect User Tools, User Dialogs and User Variables
executed in a Site process when the Sequence & Binning Table is not executing.

The following example test flow is used to further explain the application of the Active DUTs
Set (ADS) and the use of Parking Blocks:

Figure-35: Example Test Flow Diagram
For reference, the following Sequence & Binning Table implements the diagram above:

TB7

TB1

TB2

TB3

TB4

TB6

TB5

TB8 TB9

Pass

Fail

On-2 On-1
On-0

Pass

Pass

Fail

Pass
Fail

AlwaysAlways

Always

STOP

1 2 3 4 5 6 7 8

2 3 5 7

1 4 6 8

1

6

4 6 8

32 5 7 1

1 4 8

1 2 3 4 5 6 7 8

3

2 3 5 6 7

1 2 3 4 5 6 7 8

Always

2 5 7

PARKING_BLOCK()s are shown
in dotted circles

PBw

Fail

STOP

PByPBx

PBz

PBv
 2/27/09 Pg-181

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
TESTL2(L1, TB1, L2, STOP)
TESTL2P(L2, TB2, L3, L6, PBv)
TESTL3P(L3, TB3, L4, L5, L7, PBw)
TESTL1P(L4, TB4, L8, PBx)
TESTL1(L5, TB5, L8)
TESTL2(L6, TB6, L3, L7)
TESTL2P(L7, TB7, L8, L9, PBy)
TESTL1P(L8, TB8, NEXT PBz)
TESTL1(L9, TB9, STOP)

A test program containing this example generated the following output, given the pass/fail
results shown above:

TestBlock => TB1 : active DUTs => t_dut1 t_dut2 t_dut3 t_dut4 t_dut5 t_dut6 t_dut7 t_dut8

TestBlock => TB2 : active DUTs => t_dut1 t_dut2 t_dut3 t_dut4 t_dut5 t_dut6 t_dut7 t_dut8

PBlock (PBw) => Parking => t_dut2 t_dut3 t_dut5 t_dut7
TestBlock => TB6 : active DUTs => t_dut1 t_dut4 t_dut6 t_dut8

PBlock (PBy) => Parking => t_dut4 t_dut6 t_dut8

PBlock (PBw) => Unparking => t_dut2 t_dut3 t_dut5 t_dut7
TestBlock => TB3 : active DUTs => t_dut1 t_dut2 t_dut3 t_dut5 t_dut7

PBlock (PBx) => Parking => t_dut2 t_dut5 t_dut7

PBlock (PBy) => Unparking => t_dut4 t_dut6 t_dut8
TestBlock => TB7 : active DUTs => t_dut1 t_dut4 t_dut6 t_dut8

PBlock (PBz) => Parking => t_dut6

PBlock (PBx) => Unparking => t_dut2 t_dut5 t_dut7
TestBlock => TB4 : active DUTs => t_dut2 t_dut5 t_dut7

PBlock (PBz) => Parking => t_dut2 t_dut5 t_dut7

TestBlock => TB5 : active DUTs => t_dut3
PBlock (PBz) => Unparking => t_dut2 t_dut5 t_dut6 t_dut7

TestBlock => TB8 : active DUTs => t_dut2 t_dut3 t_dut5 t_dut6 t_dut7

TestBlock => TB9 : active DUTs => t_dut1 t_dut2 t_dut3 t_dut4 t_dut5 t_dut6 t_dut7 t_dut8

Note the following:

• In this example, the Ignored DUTs Set (IDS) contains no (zero) DUTs. This means
that all DUTs defined in the Pin Assignment Table will be tested by the Sequence &
Binning Table. Thus, when the Sequence & Binning Table table is executed, the
system software will set the Active DUTs Set (ADS) to include all 8 DUTs (t_dut1,
t_dut2... t_dut8), and test block 1 (TB1) will test all 8 DUTs.

• Any DUT(s) which fail TB1 will STOP and the system software will remove them
from the ADS for the duration of the current Sequence & Binning Table execution.
This is consistent with a continuity test executed at the start of the test flow. In this
example, all 8 DUTs passed TB1 and will next be tested next in TB2.
 2/27/09 Pg-182

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• In TB2, some DUTs fail and some pass, thus the test flow must branch at this
point. The Sequence & Binning Table will determine which test block to execute
next, identify which DUTs must be enabled in that test block, and identify which
DUTs must be disabled; i.e. parked (more below). A record is kept of these
decisions to ensure that those DUT(s) which are parked will be correctly tested later.
In this example, either TB3 or TB6 could be executed next. But...

• TB6 will be scheduled to execute next, not TB3. This is because any DUT(s) which
pass TB6 will need to be tested in TB3 and the Sequence & Binning Table algorithm
is smart enought to schedule TB6 first. This makes it necessary to park t_dut2,
t_dut3, t_dut5, t_dut7 while TB6 executes.

• During the execution of a given Test Block, those DUTs which are not in the ADS
(and IDS) are, by definition, parked. The built-in park mechanism ensures that these
DUTs will not see any changes in hardware state, will not receive any test
stimulus, and cannot effect test PASS/FAIL results. However, ...

• For those occasions when the built-in park mechanism is inadequate, each
Sequence & Binning Table statement may optionally specify a Parking Block. For
example:

TESTL2P(L2, TB2, L3, L6, PBn)

• The trailing P in the macro name indicates that a Parking Block is being specified,
using the last parameter. The example above uses 5 Parking Blocks, named PBv,
PBw, ... PBz.

• A Parking Block allows user code to execute as part of the parking mechanism.
This code can be used to set special voltages, power-down DUTs being parked,
power-up DUTs being unparked, etc. See Parking Block for examples.

• A given Sequence & Binning Table statement identifies one Test Block which will
execute when the test flow reaches that statement. If the statement also contains a
Parking Block, it will be executed any time one or more DUT(s) which are to execute
the specified Test Block are parked while a different Test Block is executed first.
Conversely, when execution finally does reach the Sequence & Binning Table
statement any DUTs which were previously parked by that statement’s Parking
Block will be un-parked by executing that Parking Block again. To allow user code to
distinguish parking from un-parking, within the scope of a Parking Block a built-in
BOOL variable named parking exists, and can be tested: TRUE = parking, FALSE
= un-parking. See Parking Block examples.

• In the example above, since TB6 will execute before TB3, any DUTs which passed
TB2 must be parked. And, since the Sequence & Binning Table statement which
executes TB3 also includes a user specified Parking Block (PBw), before TB6 is
executed, the system software sets the ADS to include t_dut2, t_dut3, t_dut5,
 2/27/09 Pg-183

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
t_dut7 and the Parking Block named PBw is executed. The system software
remembers that these DUTs were parked using PBw and later will execute PBw
again to un-park these DUTs, just before TB3 executes.

• Next the system software sets the ADS to contain t_dut1, t_dut4, t_dut6 and
t_dut8 and executes TB6. In this example, one DUT (t_dut1) passes TB6 thus
the Sequence & Binning Table algorithm will schedule TB3 to execute before TB7,
because some DUTs exiting TB3 may need to be tested by TB7; again the
Sequence & Binning Table algorithm is smart, and schedules TB3 first.

• And, since the Sequence & Binning Table statement which executes TB7 also
includes a user specified Parking Block (PBy) it will be executed with the ADS set to
park t_dut4, t_dut6, and t_dut8. This occurs before TB3 is executed.

• Before executing TB3, it is necessary to un-park t_dut2, t_dut3, t_dut5,
t_dut7. And, since the Sequence & Binning Table statement for TB3 contained a
Parking Blocks (PBw) it will be executed again, with the ADS set to contain t_dut2,
t_dut3, t_dut5, t_dut7. During this execution the parking variable will be
FALSE.

• During TB3, the ADS is set to contain t_dut1, t_dut2, t_dut3, t_dut5 and
t_dut7.

• This process repeats until all DUTs are tested and each has reached a STOP or
STOPL operation.

• In this example, note that the Parking Block specified for TB2 (PBv) will never be
executed. This is because no DUTs are ever parked before executing TB2.

• Also note that some Sequence & Binning Table statements don’t include a Parking
Block. This means that any DUTs which need to be parked before these tests will
only be affected by the normal parking actions performed by the system software.

• Test Bin body code operates the same as Test Blocks; i.e. the ADS is set by the
Sequence & Binning Table to identify which DUT(s) are active during the Test Bin
execution.

The information above addresses the general problem of managing how DUTs are tested in
parallel. However, in operation, the Active DUTs Set (ADS) actually determines (limits) which
hardware resources are affected when executing many Nextest API functions. For example,
executing vil(800 MV) to change a drive level will affect only those pin(s) which are
connected to DUT(s) in the Active DUTs Set (ADS) at the time the function executes.
Similarly, when executing funtest(), the drive, I/O, and strobe signals are only applied to
DUT(s) in the Active DUTs Set (ADS). This raises the following issues:

• In most applications, program operation will be as desired; i.e. user code changes
to the Active DUTs Set (ADS) will rarely be needed.
 2/27/09 Pg-184

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• When user code does explicitly manipulate the Active DUTs Set (ADS), it is then
responsible for correct operation of all subsequent code within a given Test Block,
Test Bin or Parking Block. See ADS Save/Modify/Restore Example.

• On exit from a Test Block, Test Bin or Parking Block, the system software sets the
Active DUTs Set (ADS) as needed to correctly continue testing, as directed by the
Sequence & Binning Table. This means that the scope of user changes to the ADS
is limited to the test block.

• In Multi-DUT Test Programs, Pin Lists contain an element for every DUT defined in
the Pin Assignment Table. When the pin list is used to set a parameter the Active
DUTs Set (ADS) determines which pin(s) are actually affected. See Pin Lists.

2.3.1 ADS Save/Modify/Restore Example
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

The following example is typical of that needed when user code must temporarily modify the
Active DUTs Set (ADS). In this example, the vil() function is used to represent a Nextest
getter function which returns a single value, from the first DUT in the Active DUTs Set
(ADS). This example shows how the ADS is saved, temporarily modified, and restored:

DutNumArray ADSsave;

// Save the current ADS
int count = active_duts_get(&ADSsave);

// Set t_dut3 as the only DUT in the ADS
if(active_duts_enable(t_dut3) == FALSE)

output(" ERROR: attempt to enable invalid DUT");

else // Use modified ADS to get vil() from pin D0 of t_dut3
double v = vil(D0);

// Restore ADS to continue normal testing
active_duts_enable(ADSsave);

Note: the need to save/restore the Active DUTs Set (ADS) is critical to proper test
results any time user code modifies the ADS from within a Test Block, Test Bin
or Parking Block.
 2/27/09 Pg-185

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
2.3.2 active_duts_enable()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The active_duts_enable() function is used to completely define the Active DUTs Set
(ADS) or add DUT(s) to the Active DUTs Set (ADS). Note the following:

• The Active DUTs Set (ADS) cannot contain DUT(s) which are in the Ignored DUTs
Set (IDS). active_duts_enable() will return FALSE when attempting to add
DUT(s) which are in the Ignored DUTs Set (IDS).

• The effect of using active_duts_enable() is limited (scoped) based on where
the function is executed:
• If executed in a Test Block, Test Bin or Parking Block the scope is limited to that

test block.
• If executed from outside Sequence & Binning Table (i.e. User Variables, etc.), the

changes are persistent until the next Sequence & Binning Table executes, at
which time the system software sets the Active DUTs Set (ADS) to completely and
correctly test all DUT(s) which are not in the Ignored DUTs Set (IDS).

• The current Active DUTs Set (ADS) can be copied using active_duts_get().
• Information about which DUT(s) are currently in the Active DUTs Set (ADS) can be

obtained using active_duts_get().
• One or more DUT(s) can be removed from the Active DUTs Set (ADS) using

active_duts_disable().
Several versions of active_duts_enable() are provided:

• The version of active_duts_enable() which takes the DutNum argument
allows a single DUT to be specified.

• The version of active_duts_enable() which takes the DutNumArray argument
allows multiple DUT(s) to be specified.

• The version of active_duts_enable() which takes the mask argument allows
multiple DUT(s) to be specified using a bitmask to identify which DUT(s) are to be
included.

• All versions can either completely redefine or modify the Active DUTs Set (ADS),
as controlled by the incremental argument. See Usage.
 2/27/09 Pg-186

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
Usage
The following functions are used to completely redefine or incrementally add DUT(s) to the
Active DUTs Set (ADS):

BOOL active_duts_enable(DutNum dut,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL active_duts_enable(DutNumArray &duts,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL active_duts_enable(DWORD mask,
BOOL incremental DEFAULT_VALUE(FALSE));

where:

dut identifies one DUT which:

• When incremental = TRUE dut is added to the Active DUTs Set (ADS).
• When incremental = FALSE completely redefines the Active DUTs Set (ADS).

duts is a DutNumArray identifying zero or more DUTs, which:

• When incremental = TRUE duts are added to the Active DUTs Set (ADS).
• When incremental = FALSE completely redefines the Active DUTs Set (ADS).

incremental is optional, and if specified determines whether the current Active DUTs Set
(ADS) will be modified (TRUE) or completely redefined (FALSE). Default = FALSE.

mask is a bitmask identifying zero or more DUTs, which:

• When incremental = TRUE DUT(s) are added to the Active DUTs Set (ADS).
• When incremental = FALSE completely redefines the Active DUTs Set (ADS).

In the bitmask, a 1 identifies a DUT to be added and 0 identifies a DUT which will not be
added. See Examples.

active_duts_enable() returns FALSE if an invalid DUT is specified (i.e. a DUT which is
not defined in the Pin Assignment Table) or if a DUT in the Ignored DUTs Set (IDS) is
specified.

Example
The following example redefines the Active DUTs Set (ADS) to contain one DUT (t_dut3).
If the Pin Assignment Table does not define at least 3 DUTs, active_duts_enable() will
return FALSE:

BOOL ok = active_duts_enable(t_dut3);
 2/27/09 Pg-187

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
The following example adds one DUT (t_dut4) to the Active DUTs Set (ADS). If the Pin
Assignment Table does not define at least 4 DUTs, active_duts_enable() will return
FALSE:

BOOL ok = active_duts_enable(t_dut4, TRUE);

The following example completely redefines the Active DUTs Set (ADS) to contain 2 DUTs.
If the Pin Assignment Table does not define at least 8 DUTs, active_duts_enable() will
return FALSE:

DutNumArray enable_list;
enable_list.Add(t_dut4);
enable_list.Add(t_dut8);
BOOL ok = active_duts_enable(enable_list);

The following example adds 3 DUTs (t_dut6, t_dut4, t_dut2) to the Active DUTs Set
(ADS):

BOOL ok = active_duts_enable(0x2A, TRUE);

The following example redefines the Active DUTs Set (ADS) to include only 3 DUTs
(t_dut5, t_dut3, t_dut1):

BOOL ok = active_duts_enable(0x15);

2.3.3 active_duts_disable()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The active_duts_disable() function is used to completely define the Active DUTs Set
(ADS) or remove DUT(s) from the Active DUTs Set (ADS). Note the following:

• The Active DUTs Set (ADS) cannot contain DUT(s) which are in the Ignored DUTs
Set (IDS). Using active_duts_disable() to remove a DUT in the IDS is silently
ignored.

• The effect of using active_duts_disable() is limited (scoped) based on where
the function is executed:
• If executed in a Test Block, Test Bin or Parking Block the scope is limited to that

test block.
 2/27/09 Pg-188

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• If executed from outside Sequence & Binning Table (i.e. User Variables, etc.), the
changes are persistent until the next Sequence & Binning Table executes, at
which time the system software sets the Active DUTs Set (ADS) to completely and
correctly test all DUT(s) which are not in the Ignored DUTs Set (IDS).

• The current Active DUTs Set (ADS) can be copied using active_duts_get().
• One or more DUT(s) can be added to the Active DUTs Set (ADS) using

active_duts_enable().
Several versions of active_duts_disable() are provided:

• The version of active_duts_disable() which takes the DutNum argument
allows a single DUT to be specified.

• The version of active_duts_disable() which takes the DutNumArray
argument allows multiple DUT(s) to be specified.

• The version of active_duts_disable() which takes the mask argument allows
multiple DUT(s) to be specified using a bitmask to identify which DUT(s) are to be
removed.

• All versions can either completely redefine or modify the Active DUTs Set (ADS),
as controlled by the incremental argument. See Usage.

Usage
The following functions are used to completely redefine or incrementally remove DUT(s)
from the Active DUTs Set (ADS):

BOOL active_duts_disable(DutNum dut,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL active_duts_disable(DutNumArray &duts,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL active_duts_disable(DWORD mask,
BOOL incremental DEFAULT_VALUE(FALSE));

where:

dut identifies one DUT which:

• When incremental = TRUE is removed from the Active DUTs Set (ADS).
• When incremental = FALSE the Active DUTs Set (ADS) is set to include all

DUT(s) not in the Ignored DUTs Set (IDS), then dut is removed from the Active
DUTs Set (ADS).

duts is a DutNumArray identifying zero or more DUTs, which:
 2/27/09 Pg-189

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• When incremental = TRUE will be removed from the Active DUTs Set (ADS).
• When incremental = FALSE the Active DUTs Set (ADS) is set to include all

DUT(s) not in the Ignored DUTs Set (IDS), then duts are removed from the Active
DUTs Set (ADS).

incremental is optional, and if specified determines whether the current Active DUTs Set
(ADS) will be modified (TRUE) or completely redefined (FALSE). Default = FALSE.

mask is a bitmask identifying zero or more DUTs, which:

• When incremental = TRUE are removed from the Active DUTs Set (ADS).
• When incremental = FALSE completely redefines the Active DUTs Set (ADS).

In the bitmask, a 1 identifies a DUT to be removed and 0 identifies a DUT which will not be
removed. See Examples.

active_duts_disable() returns FALSE if an invalid DUT is specified; i.e. a DUT which
is not defined in the Pin Assignment Table. active_duts_disable() returns TRUE if a
DUT in the Ignored DUTs Set (IDS) is specified.

Example
The following example redefines the Active DUTs Set (ADS) to contain all non-ignored DUTs
except one (t_dut3). If the Pin Assignment Table does not define at least 3 DUTs,
active_duts_disable() will return FALSE:

BOOL ok = active_duts_disable(t_dut3);

The following example removes one DUT (t_dut4) from the Active DUTs Set (ADS). If the
Pin Assignment Table does not define at least 4 DUTs, active_duts_disable() will
return FALSE:

BOOL ok = active_duts_disable(t_dut4, TRUE);

The following example completely redefines the Active DUTs Set (ADS) to contain all non-
ignored DUTs except two (t_dut4 and t_dut8). If the Pin Assignment Table does not
define at least 8 DUTs, active_duts_disable() will return FALSE:

DutNumArray disable_list;
disable_list.Add(t_dut4);
disable_list.Add(t_dut8);
BOOL ok = active_duts_disable(disable_list);

The following example removes 3 DUTs (t_dut6, t_dut4, t_dut2) from the Active DUTs
Set (ADS):

BOOL ok = active_duts_disable(0x2A);
 2/27/09 Pg-190

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
The following example redefines the Active DUTs Set (ADS) to include only 5 DUTs
(t_dut8, t_dut7, t_dut6, t_dut4, t_dut2), assuming that 8 DUTs are defined in the
Pin Assignment Table:

BOOL ok = active_duts_disable(0x15, TRUE);

2.3.4 active_dut_get()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The active_dut_get() function is used to get the first DUT in the Active DUTs Set
(ADS).

Usage
DutNum active_dut_get();

where:

active_dut_get() returns the first DUT in the Active DUTs Set (ADS).

Example
DutNum d = active_dut_get();

2.3.5 active_duts_get()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The active_duts_get() function is used to get information about which DUT(s) are
currently in the Active DUTs Set (ADS).

ignored_duts_get() may be used to access the Ignored DUTs Set (IDS).
 2/27/09 Pg-191

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
Usage
The following function determines whether the specified DUT is currently in the Active DUTs
Set (ADS):

BOOL active_duts_get(DutNum dut);

The following function returns an array containing the DUT(s) which are currently in the
Active DUTs Set (ADS):

int active_duts_get(DutNumArray *duts);

The following function returns a bitmask which indicates which DUT(s) are currently in the
Active DUTs Set (ADS):

int active_duts_get(DWORD *mask);

where:

dut identifies one DUT (DutNum) to be checked for inclusion in the Active DUTs Set (ADS).

duts is a pointer to an existing DutNumArray used to return a copy of the Active DUTs Set
(ADS).

mask is a pointer to an existing DWORD used to return a bitmask of the Active DUTs Set
(ADS). In the returned bitmask, a 1 identifies a DUT which is in the Active DUTs Set (ADS)
and 0 identifies a DUT which is not in the Active DUTs Set (ADS).

The version of active_duts_get() which returns BOOL, returns TRUE if the specified
dut is in the Active DUTs Set (ADS), otherwise FALSE is returned.

The versions of active_duts_get() which returns int, return the number of DUT(s)
which are in the Active DUTs Set (ADS).

Example
The following example checks if t_dut2 is currently in the Active DUTs Set (ADS):

if(active_duts_get(t_dut2))
output(" t_dut2 IS in the ADS");

else
output(" t_dut2 is NOT in the ADS");

The following example returns an array containing those DUT(s) currently in the Active
DUTs Set (ADS):

DutNumArray ADS_copy;
int count = active_duts_get(&ADS_copy);
 2/27/09 Pg-192

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
The following example returns a bitmask indicating which DUT(s) are currently in the Active
DUTs Set (ADS) and, using the mask, checks to see if t_dut3 is in the Active DUTs Set
(ADS):

DWORD mask;
int count = active_duts_get(&mask);
if(mask && 0x4)

output(" t_dut3 IS in the ADS");
else

output(" t_dut3 is NOT in the ADS");

2.3.6 max_dut()
See Pin Assignment Table.

Description
The max_dut() function is used in Multi-DUT Test Programs to determine the number of
DUTs which are defined in the Pin Assignment Table. Also see multi_dut_features().
The value returned is not affected by the Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Usage
DutNum max_dut();

where:

max_dut() returns the DutNum of the highest DUT specified in the Pin Assignment Table.
This is a zero based value; i.e. 0 is returned when only 1 DUT is supported.

Examples
DutNum d = max_dut();
output("%d DUTs are specified in the Pin Assignments Table", d+1);

for(DutNum dn = t_dut1; dn <= max_dut(); ++dn) {
// Do something per DUT

}

 2/27/09 Pg-193

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
2.3.7 multi_dut_features()
See Pin Assignment Table.

Description
The multi_dut_features() function is used to determine if the test program is a Multi-
DUT Test Program.

Usage
BOOL multi_dut_features();

where:

multi_dut_features() returns TRUE if the test program is a Multi-DUT Test Program,
otherwise FALSE is returned.

Example
LPCTSTR s = multi_dut_features() ? "IS" : "Is NOT";
output(" This program %s a Multi-DUT Test Program", s);

2.3.8 Active DUTs Set Iterators
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Note: SoftwareOnlyActiveDutIterator was first available in software release
h1.1.23. Additional iterator capabilities were added in software release h1.1.23. A
new overload of the More() member function was added in software release
h2.2.7/h1.2.7.

Description

The ActiveDutIterator and SoftwareOnlyActiveDutIterator macros are used to
iterate over all DUTs currently in the Active DUTs Set (ADS). Note the following:
 2/27/09 Pg-194

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• The difference between ActiveDutIterator and
SoftwareOnlyActiveDutIterator is that the latter does not modify hardware
state; i.e. it does not enable/disable per-DUT test resources as the iterator
executes. Thus, SoftwareOnlyActiveDutIterator should only be used when
getting per-DUT values, not for setting any values which should affect hardware
state. SoftwareOnlyActiveDutIterator may execute faster than
ActiveDutIterator.

• Before the iteration loop begins the current Active DUTs Set (ADS) is saved.
• During the iteration loop, the Active DUTs Set (ADS) is modified within the body of

the ActiveDutIterator or SoftwareOnlyActiveDutIterator block. One
originally active DUT at a time is set active for each iteration. The
active_duts_get() function can be used to identify which DUT is active during
each loop iteration. Note that only DUTs in the Active DUTs Set (ADS) at the start
of the iteration loop will ever be set active within the loop.

• ActiveDutIterator and SoftwareOnlyActiveDutIterator have the
following member functions:
• The More() member function returns TRUE as long as more iterations are to

occur, then FALSE is returned.
• By default, when the iteration loop completes, the original Active DUTs Set (ADS)

is the restored and the associated variables are destroyed. However, beginning
in softwware release h2.2.7/h1.2.7 the More() member function has an overload
which takes a BOOL variable which, if set TRUE, resets the iterator pointer without
destroying these variables. Setting this argument to FALSE or specifying no
argument results in the original operation. Using this version of More() will result
in faster iteration loop execution, which is beneficial when
SoftwareOnlyActiveDutIterator is used within an outer loop. Example 4:
includes additional information.

• The Restore() member function can be used to restore the original Active
DUTs Set (ADS) (although this is normally not required).

Note: the previous reference to the Restore() member function was documented in
error. It is not necessary or desirable for Restore() to be used. Support for
this function may be removed in a future software release.

• When the iteration loop ends the original Active DUTs Set (ADS) is the restored. In
software releases prior to h1.1.23 this occurred when leaving the scope of the
iterator macro (see Note:). Beginning in software release h1.1.23 this occurs when
the More() member function returns FALSE; i.e. immediately after the closing
parenthesis of the iterator while loop.
 2/27/09 Pg-195

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
• Beginning in software release h1.1.23, it is possible to (usefully) nest calls to
ActiveDutIterator (and SoftwareOnlyActiveDutIterator), with each
nesting level starting with the original ADS contents; i.e. the ADS contents prior to
starting the outer level iterator loop. Previously, the inner loop would only see the
ADS currently set by the outer loop, which would only contain one DUT (which
was not useful). See examples.

Note: this note becomes obsolete using software release h1.1.23 or later. In earlier
releases this remains critical to proper program operation.

if ActiveDutIterator is to be used multiple times within a function, proper
operation requires that each instance be delimited in its own block, using an
extra set of curly braces. This is important to program reliability. For example:

{ // Start block delimiter
ActiveDutIterator duts;
while (duts.More()) {

[user code]
}

} // End block delimiter

Usage
The following executes [user code] once for each DUT in the Active DUTs Set (ADS). The
hardware for each DUT not in the Active DUTs Set (ADS) is disabled for each loop iteration:

ActiveDutIterator iID;
while (iID.More()) {

[user code]
}

The following executes [user code] once for each DUT in the Active DUTs Set (ADS). The
hardware state is not modified:

SoftwareOnlyActiveDutIterator iID;
while (iID.More()) {

[user code]
}

The following executes [user code] once for each DUT in the Active DUTs Set (ADS). The
hardware state is not modified. When iteration ends the ADS pointer is reset to the start of
the ADS and the iterator variables are not destroyed, see Description and Example 4: below:
 2/27/09 Pg-196

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
SoftwareOnlyActiveDutIterator iID;
while (iID.More(BOOL wrap)) {

[user code]
}

where:

iID is the iterator variable, not used except as shown.

The More() member function returns TRUE as long as additional DUT(s) remain to be
processed, otherwise FALSE is returned. Beginning in softwware release h2.2.7/h1.2.7 the
More(BOOL wrap) overload allows the iterator pointer to be reset without destroying the
iterator variables, see Description. Using this version of More() will result in faster iteration
loop execution when SoftwareOnlyActiveDutIterator is used within an outer loop.
See Example 4: below.

When using software release h1.1.23 or later see Note: regarding program reliability.

Examples

Example 1:
The following example prints a list of DUTs currently in the Active DUTs Set (ADS). The
extra curly braces are explained in Note:

{
ActiveDutIterator duts;
while (duts.More())

output(" DUT-%d is in the Active DUTs Set (ADS)",
active_dut_get() +1);

}

Example 2:
The following example retrieves and prints per-DUT test results after executing a test:

SoftwareOnlyActiveDutIterator ad1;
while (ad1.More()) {

DutNum dut = active_dut_get();
output(" Test Result for DUT-%d => %d",

dut +1,
result_get(dut));

}

 2/27/09 Pg-197

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
Example 3:
The following example demonstrates nested iterator use, only useful beginning in software
release h1.1.23:

DWORD d;
output("The ADS contains %d DUTs.", active_duts_get(&d));

ActiveDutIterator ad1;
while (ad1.More()) { // Start Outer

DutNum dut = active_dut_get();
output("Outer: t_dut%d", dut + 1);
ActiveDutIterator ad2;
while (ad2.More()) {

DutNum dut = active_dut_get();
output(" Inner-1: t_dut%d", dut + 1);

}
ActiveDutIterator ad3;
while (ad3.More()) {

DutNum dut = active_dut_get();
output(" Inner-2: t_dut%d", dut + 1);

}
} // End Outer

Given a test program configured to test two DUTs, the example produces the following
output:

The ADS contains 2 DUTs.
Outer: t_dut1

Inner-1: t_dut1
Inner-1: t_dut2
Inner-2: t_dut1
Inner-2: t_dut2

Outer: t_dut2
Inner-1: t_dut1
Inner-1: t_dut2
Inner-2: t_dut1
Inner-2: t_dut2

Example 4:
The following examples demonstrate the use of the More(BOOL wrap) overload added in
software release h2.2.7/h1.2.7. The first two code segments have the same result but the
Enhanced version will execute faster. The difference is that
 2/27/09 Pg-198

Magnum 1, 2 & 2x Parallel Test Active DUTs Set (ADS)
SoftwareOnlyActiveDutIterator is defined outside the for() loop, which requires
the use of the TRUE argument to the More() member function. Note that in the 3rd
example since the SoftwareOnlyActiveDutIterator is defined outside the for()
loop the ADS iteration will not execute as expected. This occurs because the More(TRUE)
option was not used, thus the iteration pointer is not reset and only one ADS loop iteration
can occur:

Original:

for (int i = 0; i < 3; ++i) {
SoftwareOnlyActiveDutIterator iID;
while (iID.More()) {

output(" Iteration %d for t_dut%d",
i,
active_dut_get() + 1);

}
}

Enhanced:

SoftwareOnlyActiveDutIterator iID;
for (int i = 0; i < 3; ++i) {

while (iID.More(TRUE)) {
output(" Iteration %d for t_dut%d",

i,
active_dut_get() + 1);

}
}

Incorrect:

SoftwareOnlyActiveDutIterator iID;
for (int i = 0; i < 3; ++i) {

while (iID.More() {
output(" Iteration %d for t_dut%d",

i,
active_dut_get() + 1);

}
}

 2/27/09 Pg-199

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
2.4 Ignored DUTs Set (IDS)
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS).

Description
As noted earlier, during Sequence & Binning Table execution the Active DUTs Set (ADS)
identifies which DUT(s) are enabled for testing at any given time. The Ignored DUTs Set, or
IDS, defines a set of DUT(s) which will be ignored by the Sequence & Binning Table; i.e. not
tested. The IDS only exists in the Site process.

Ignored DUT(s) are never included in the Active DUTs Set (ADS), During Sequence &
Binning Table execution, the system software manipulates the Active DUTs Set (ADS) as
needed to correctly and completely test the all DUTs which are not in the Ignored DUTs Set.

During initial program load, the Ignored DUTs Set is initialized to include zero DUTs. The
system software does not otherwise set/modify the IDS. Thus, if no changes to the IDS are
made by user code, all DUTs defined in the Pin Assignment Table are tested by each
execution of the Sequence & Binning Table.

User code can modify the IDS using ignored_duts_enable() or
ignored_duts_disable(). This supports the situation in which an IC handler or prober
is able to specify which test sites are active or disabled (which can be affected by an empty
input tray, a full output bin, a known bad DUT socket, etc.). And, the value can change for
each start test signal issued by the hander or prober. In this situation, the IDS must be
updated for each start test signal, typically using code included in the handler/prober control
loop, executing in the Host process (more below).

Each time the Sequence & Binning Table is executed, the IDS is consulted to determine
which DUT(s) should be tested.

Note: it is recommended that the Ignored DUTs Set functions
(ignored_duts_enable(), ignored_duts_disable()) be executed before
the Sequence & Binning Table executes the first test block; i.e. a Before-testing
Block, User Variables code, etc. This ensures that the Sequence & Binning Table
correctly and completely tests all DUT(s) enabled at the start of each execution.
 2/27/09 Pg-200

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
When defining the IDS, user code is responsible for mapping a given handler/prober DUT to
the appropriate tester site and DUT number. For example:

In this example, the handler specifies that DUTs 4 and 11 must be ignored. This translates
into t_dut4 on Site-1 and t_dut3 on Site-2. User code must correctly identify both the
DUT number and the site testing each DUT, for each DUT being ignored. See Examples.

2.4.1 ignored_duts_enable()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The ignored_duts_enable() function is used to completely redefine or add DUT(s) to
the Ignored DUTs Set (IDS).

Note: it is recommended that ignored_duts_enable() be executed before the
Sequence & Binning Table executes the first test block; i.e. a Before-testing
Block, User Variables code, etc. This ensures that the Sequence & Binning Table
correcly and completely tests all DUT(s) enabled at the start of execution.

When defining the IDS, user code is responsible for mapping a given handler/prober DUT to
the appropriate tester site and DUT number. See example in Ignored DUTs Set (IDS).

Several versions of ignored_duts_enable() are provided:

• The version of ignored_duts_enable() which takes the DutNum argument
allows a single DUT to be specified.

• The version of ignored_duts_enable() which takes the DutNumArray
argument allows multiple DUT(s) to be specified.

Site-1

Site-2

Tester View

10

Handler View

11 12 13 14 15 161 2 3 5 6 7 98

1 2 3 5 6 7 8

1 2 3 4 5 6 7 8

4

4

 2/27/09 Pg-201

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
• The version of ignored_duts_enable() which takes the mask argument allows
multiple DUT(s) to be specified using a bitmask to identify which DUT(s) are to be
included.

• All versions can either completely redefine or modify the Ignored DUTs Set (IDS),
as controlled by the incremental argument. See Usage.

Usage
The following functions are used to completely redefine or incrementally add DUT(s) to the
Ignored DUTs Set (IDS):

BOOL ignored_duts_enable(DutNum dut,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL ignored_duts_enable(DutNumArray &duts,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL ignored_duts_enable(DWORD mask,
BOOL incremental DEFAULT_VALUE(FALSE));

where:

dut identifies one DUT which:

• When incremental is TRUE, is added to the Ignored DUTs Set (IDS) .
• When incremental is FALSE, completely redefines the Ignored DUTs Set (IDS) .

duts is a DutNumArray identifying zero or more DUTs, which:

• When incremental is TRUE, are added to the Ignored DUTs Set (IDS)
• When incremental is FALSE, completely redefines the Ignored DUTs Set (IDS) .

incremental is optional, and if specified determines whether the current Ignored DUTs
Set (IDS) will be modified (TRUE) or completely redefined (FALSE). Default = FALSE.

mask is a bitmask identifying zero or more DUTs, which:

• When incremental = TRUE DUT(s) are added to the Ignored DUTs Set (IDS).
• When incremental = FALSE completely redefines the Ignored DUTs Set (IDS).

In the bitmask, a 1 identifies a DUT to be added and 0 identifies a DUT which will not be
added.

ignored_duts_enable() returns FALSE if an invalid DUT is specified; i.e. a DUT which
is not defined in the Pin Assignment Table.
 2/27/09 Pg-202

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
Examples
The following example is designed to execute in the Host process, as part of the handler/
prober control loop. For each start test signal from the handler/prober, this code gets the list
of DUT(s) which are to be ignored, translates it from the handler view to the tester view (see
example in Ignored DUTs Set (IDS)) and sends an ignore list to each Site:

// Definitions this code needs to operate correctly
#define NUM_SITES 2
#define DUTS_PER_SITE 8
DutNumArray MAG_ignore_dut_list, Handler_ignore_dut_list;

// // User must write my_handler_get_dut_ignore_function()... too
// handler specific. May also need to define appropriate data
// structure(s) and map handler DUT IDs to DutNums.
my_handler_get_dut_ignore_function(&Handler_ignore_dut_list);

// Translate handler/prober view to tester view, and update the
// Ignored DUTs Set (IDS) on each site.
for(int site = 0; site < NUM_SITES; ++site) {

MAG_ignore_dut_list.RemoveAll(); // Clear it for each site

// Process the entire handler list, extract DUTs for one site at
// a time.
for(int i = 0; i < Handler_ignore_dut_list.GetSize(); ++i){

DutNum dn = Handler_ignore_dut_list.GetAt(i);
if(dn <= (t_dut8 + DUTS_PER_SITE * site) &&

dn >= (t_dut1 + DUTS_PER_SITE * site)
){

// Current dn maps to the current site, translate and put
// into the ignore list
DutNum di = (DutNum) (dn - (DUTS_PER_SITE * site));
MAG_ignore_dut_list.Add(di);

}
}

// All DUT(s) for the current site have been identified & put
// into the MAG_ignore_dut_list. Send the list to the current
// site. This redefines the Ignored DUTs Set (IDS) for this site.
SiteMask mask(1 << site);
ignored_duts_enable(mask,

MAG_ignore_dut_list,
FALSE);

}

 2/27/09 Pg-203

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
2.4.2 ignored_duts_disable()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).

Description
The ignored_duts_disable() function is used to completely define or remove DUT(s)
from the Ignored DUTs Set (IDS).

Note: it is recommended that ignored_duts_disable() be executed before the
Sequence & Binning Table executes the first test block; i.e. in a Before-testing
Block, User Variables code, etc. This ensures that the Sequence & Binning Table
correcly and completely tests all DUT(s) enabled at the start of execution.

When defining the IDS, user code is responsible for mapping a given handler/prober DUT to
the appropriate tester site and DUT number. See example in Ignored DUTs Set (IDS).

Several versions of ignored_duts_disable() are provided:

• The version of ignored_duts_disable() which takes the DutNum argument
allows a single DUT to be specified.

• The version of ignored_duts_disable() which takes the DutNumArray
argument allows multiple DUT(s) to be specified.

• The version of ignored_duts_disable() which takes the mask argument
allows multiple DUT(s) to be specified using a bitmask to identify which DUT(s)
are to be included.

• All versions can either completely redefine or modify the Ignored DUTs Set (IDS),
as controlled by the incremental argument. See Usage.

Usage
The following functions are used to completely redefine or incrementally remove DUT(s)
from the Ignored DUTs Set (IDS):

BOOL ignored_duts_disable(DutNum dut,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL ignored_duts_disable(DutNumArray &duts,
BOOL incremental DEFAULT_VALUE(FALSE));

BOOL ignored_duts_disable(DWORD mask,
BOOL incremental DEFAULT_VALUE(FALSE));
 2/27/09 Pg-204

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
where:

dut identifies one DUT which:

• When incremental is TRUE, is removed from the Ignored DUTs Set (IDS).
• When incremental is FALSE, completely redefines the Ignored DUTs Set (IDS) .

duts is a DutNumArray identifying zero or more DUTs, which:

• When incremental is TRUE, are removed from the Ignored DUTs Set (IDS)
• When incremental is FALSE, completely redefines the Ignored DUTs Set (IDS) .

incremental is optional, and if specified determines whether the current Ignored DUTs
Set (IDS) will be modified (TRUE) or completely redefined (FALSE). Default = FALSE.

mask is a bitmask identifying zero or more DUTs, which:

• When incremental = TRUE are removed from the Ignored DUTs Set (IDS)..
• When incremental = FALSE completely redefines the Ignored DUTs Set (IDS).

In the bitmask, a 1 identifies a DUT to be removed and 0 identifies a DUT which will not be
removed.

ignored_duts_disable() returns FALSE if an invalid DUT is specified; i.e. a DUT which
is not defined in the test program.

Examples
This example creates an empty DutNumArray, which when used by
ignored_duts_disable() has the effect of removing all DUTs from the Ignored DUTs
Set (IDS):

#define NUM_SITES 2
DutNumArray restore_list;
for(int site = 0; site < NUM_SITES; ++site)

ignored_duts_disable(site+1, restore_list, FALSE);

Also see Examples.

2.4.3 ignored_duts_get()
See Magnum 1, 2 & 2x Parallel Test, Active DUTs Set (ADS), Ignored DUTs Set (IDS).
 2/27/09 Pg-205

Magnum 1, 2 & 2x Parallel Test Ignored DUTs Set (IDS)
Description
The ignored_duts_get() function is used to get information about which DUT(s) are
currently in the Ignored DUTs Set (IDS).

active_duts_get() may be used to access the Active DUTs Set (ADS).

Usage
The following function determines whether the specified DUT is currently in the Ignored
DUTs Set (IDS):

BOOL ignored_duts_get(DutNum dut);

The following function returns an array containing the DUT(s) which are currently in the
Ignored DUTs Set (IDS):

int ignored_duts_get(DutNumArray *duts);

The following function returns a bitmask which indicates which DUT(s) are currently in the
Ignored DUTs Set (IDS):

int ignored_duts_get(DWORD *mask);

where:

dut identifies one DUT (DutNum) to be checked for inclusion in the Ignored DUTs Set (IDS).

duts is a pointer to an existing DutNumArray used to return a copy of the Ignored DUTs
Set (IDS).

mask is a pointer to an existing DWORD used to return a bitmask of the Ignored DUTs Set
(IDS). In the returned bitmask, a 1 identifies a DUT which is in the Ignored DUTs Set (IDS)
and 0 identifies a DUT which is not in the Ignored DUTs Set (IDS).

The version of ignored_duts_get() which returns BOOL, returns TRUE if the specified
dut is in the Ignored DUTs Set (IDS), otherwise FALSE is returned.

The versions of ignored_duts_get() which returns int, return the number of DUT(s)
which are in the Ignored DUTs Set (IDS).

Example
The following example checks if t_dut2 is currently in the Ignored DUTs Set (IDS):
 2/27/09 Pg-206

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
if(ignored_duts_get(t_dut2))
output(" t_dut2 IS in the IDS");

else
output(" t_dut2 is NOT in the IDS");

The following example returns an array containing those DUT(s) currently in the Ignored
DUTs Set (IDS):

DutNumArray IDS_copy;
int count = ignored_duts_get(&IDS_copy);

The following example returns a bitmask indicating which DUT(s) are currently in the
Ignored DUTs Set (IDS) and, using the mask, checks to see if t_dut3 is in the Ignored
DUTs Set (IDS):

DWORD mask;
int count = ignored_duts_get(&mask);
if(mask && 0x4)

output(" t_dut3 IS in the IDS");
else

output(" t_dut3 is NOT in the IDS");

2.5 Multi-DUT Test Results
In Multi-DUT Test Programs, the following test functions automatically store a test result for
each DUT in the Active DUTs Set (ADS) (ADS) at the time the test is executed:

• funtest()
• test_supply() and ac_test_supply()
• partest() and ac_partest()
• hv_test_supply() and hv_ac_test_supply()
• ptu_partest()

These results are stored in a system defined data structure which is used by the system
software to properly track and manage per-DUT testing via the Sequence & Binning Table.

User code may utilize the following functions to access these same test results:

• result_set(), result_get()
• results_set(), results_get()
 2/27/09 Pg-207

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
• all_results_match()
• any_results_match()

During the test execution the system software determines which DUT(s) failed the test and
executes result_set() to store a result for each DUT in the ADS. When a given Test
Block only executes one of these tests (once), user code is typically not required to manage
test results. However, if more than one test function is executed in a given Test Block, the
results of the last one executed will over-write those from earlier tests. In this situation, it will
be necessary for user code to track and combine the test results from all test(s) executed
within the Test Block before the test block exits. This requirement is no different than when
testing a single DUT however the methods used are different. (more below).

In Multi-DUT Test Programs, when a given Test Block exits, the Sequence & Binning Table
needs a test result for each DUT that was in the ADS at the time the test block execution
started. The test functions manage this correctly, provided user code has not modified the
ADS in the Test Block and only one test function executes in the test block. When user
code executes result_set() or results_set() or modifies the ADS in a Test Block
the following rules apply:

• The default per-DUT test result = FAIL.
• All DUT(s) in the ADS at the start of test block execution must have a test result

specified, using result_set() or results_set(), before the test block exits. If
this rule is violated a warning is displayed, in the appropriate controller output
window, and the undefined DUT(s) are assigned the default test result.

Also:

• Using result_set() or results_set(), any test results specified for DUT(s)
which are parked will generate a warning message but are otherwise ignored.

• Using result_set() or results_set(), any test results specified for DUT(s)
which are in the Ignored DUTs Set (IDS) will generate a warning message but are
otherwise ignored.

As noted above, any Test Block which executes more than one test requires user-written
code to track and merge the test results for all test(s) before the Test Block exits. Examples
follow.

Note: the following examples assume a Multi-DUT Test Program.

The following example requires no user test result code:
 2/27/09 Pg-208

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
TEST_BLOCK(myTB1){ // Or TEST_BLOCK_SEQUENTIAL
// Other test setup code as desired
PFState result = funtest(myPat1, ...);
// Other code as desired (which doesn’t execute a test)
return MULTI_DUT;

}

In this example, since only one test function is executed the correct parallel test results are
recorded by the function and are available to the Sequence & Binning Table; i.e. no user
code is needed to manage per-DUT test results. However, note the following:

• In Multi-DUT Test Programs the test functions still return PASS/FAIL, reflecting the
overall test result of all DUT(s) tested (in the Active DUTs Set (ADS)). The
individual
per-DUT test results are stored as noted above.

• In Multi-DUT Test Programs, the only valid return value from a Test Block is
MULTI_DUT. If this rule is violated, a warning is displayed, in the appropriate
controller output window, but testing proceeds as though MULTI_DUT was returned.

• Combining the two previous bullets, the following code will cause a warning but will
also operate correctly:

return funtest(...); // Any test function

• Two new test block macros, MULTI_DUT_TEST_BLOCK and
TEST_BLOCK_SEQUENTIAL, are available which implicitly return MULTI_DUT,
eliminating the need for user code to return a value. These are only usable in Multi-
DUT Test Programs. See Test Block Macros.

In the following example, only the test results from the 2nd test will be seen by the Sequence
& Binning Table because the results from the 1st test are over-written. This is likely not what
the user wanted:

TEST_BLOCK(myTB1){ // Or TEST_BLOCK_SEQUENTIAL
// Other test setup code as desired
PFState result;
result = funtest(myPat1, error);
result &= funtest(myPat2, error);
return MULTI_DUT;

}

The following example shows how user code can explicitly manage test results when more
than one test is executed in a test block:
 2/27/09 Pg-209

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
TEST_BLOCK(myTB1){ // Or TEST_BLOCK_SEQUENTIAL
// Other test setup code as desired

PFState result = funtest(myPat1, finish);

IntArray r1, r2; // To store local test results
int count = results_get(&r1); // Save results from 1st test

result = funtest(myPat2, finish);
count = results_get(&r2); // Save results from 2nd test

// Combine test results into r1
for(int dut = 0; dut < count; ++dut)

r1[dut] = r1[dut] && r2[dut] ;

results_set(r1);

return MULTI_DUT;
}

Regarding this example note the following:

• The fact that results_get() returns values in the order DUT(s) are listed in the
Active DUTs Set (ADS) ensures that, in this example, the results_set() loop
inherently sets values in the correct order.

• If user code modifies the Active DUTs Set (ADS) between the two tests this
example will not work. In most applications, the need to change the Active DUTs
Set (ADS) is temporary, and it will be appropriate to save and restore the original
ADS to ensure overall operation remains as described above. See ADS Save/
Modify/Restore Example.

2.5.1 result_set(), result_get()
See Overview, Multi-DUT Test Results, Program Execution Control.

Description
The result_set() function is used, in Multi-DUT Test Program only, to explicitly set a test
result for one DUT. As described Multi-DUT Test Results, it is sometimes not necessary for
user code to use result_set(); i.e. the system software may do all the work.

The result_get() function is used to get the current test result value for one DUT. Again,
in Multi-DUT Test Programs only.
 2/27/09 Pg-210

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
The results_set(), results_get() functions support setting or getting test results
for multiple DUTs in Multi-DUT Test Programs.

Functions, MACROs & Keyword
result_set()

result_get()

Usage
BOOL result_set(DutNum dut, int result);

int result_get(DutNum dut);

where:

dut identifies one DUT for which the test result is being set or retrieved.

result specifies the test result for dut. Legal values are any non-negative integer, where
0 = FAIL, 1 = PASS, and other values are also PASS. Note that the Sequence & Binning
Table macros support values of 0 through 7, which correspond to the On0, On1,... On7
parameter positions of the Test Block Macros. Other values may be useful within the test
block (UI’s Breakpoint Monitor supports up to 63), or user code may extend the Test Block
Macros to support values > 7 in the Sequence & Binning Table.

result_set() returns FALSE if an invalid DutNum is specified; i.e. a DutNum which is not
defined in the Pin Assignment Table or not in the current Active DUTs Set (ADS).

result_get() returns the test result for one specified DUT.

Example
The following example set a PASS test result for t_dut1:

result_set(t_dut1, PASS);

2.5.2 results_set(), results_get()
See Overview, Multi-DUT Test Results, Program Execution Control.
 2/27/09 Pg-211

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
Description
The results_set() function is used, in Multi-DUT Test Program only, to explicitly set a
test result for one or more DUT(s). As described below, it is sometimes not necessary for
user code to use results_set(); i.e. the system software may do all the work.

The results_get() function is used to get the current test result value for one or more
DUT(s). Again, in Multi-DUT Test Programs only.

The result_set(), result_get() functions support setting or getting test results for
one DUT in Multi-DUT Test Programs.

Functions, MACROs & Keyword
results_set()

results_get()

Usage
int results_set(int result);

BOOL results_set(IntArray &results);

int results_get(IntArray *results);

where:

result specifies the test result assigned to all DUT(s) in the Active DUTs Set (ADS). Legal
values are any non-negative integer, where 0 = FAIL, 1 = PASS, and other values are also
PASS. Note that the Sequence & Binning Table macros support values of 0 through 7, which
correspond to the On0, On1,... On7 parameter positions of the Test Block Macros. Other
values may be useful within the test block (UI’s Breakpoint Monitor supports up to 63), or
user code may extend the Test Block Macros to support values > 7 in the Sequence &
Binning Table.

results is used in two contexts:

• Using results_set(), results is an IntArray containing a test result for one
or more DUT(s). Values MUST be ordered to match the order of DUT(s) in the
Active DUTs Set (ADS). See result above for legal values.

• Using results_get(), results is a pointer to an existing IntArray used to
return a test result for one or more DUT(s). The results will be ordered to match
the order of DUT(s) in the Active DUTs Set (ADS). See result above for legal
values.
 2/27/09 Pg-212

Magnum 1, 2 & 2x Parallel Test Multi-DUT Test Results
The version of results_set() which returns a BOOL returns FALSE if the size of results
does not match the number of DUTs in the Active DUTs Set (ADS), or if a test result is
specified for a DUT which was not in the Active DUTs Set (ADS) at the start of the current
test block.

The version of results_set() which returns an int returns the number of DUTs currently
in the Active DUTs Set (ADS).

results_get() returns the number of values in the results array.

Example
See Multi-DUT Test Results for an example using results_set() and results_get().

2.5.3 all_results_match()
See Overview, Multi-DUT Test Results, Program Execution Control.

Description
In Multi-DUT Test Programs the system software manages a set of test results, one value for
each DUT defined in the Active DUTs Set (ADS). See Multi-DUT Test Results.

The all_results_match() function can be used to test whether the individual test result
for each DUT(s) in the Active DUTs Set (ADS) match a specified value.

Usage
BOOL all_results_match(int value);

where:

value is the test result to be checked.

all_results_match() returns TRUE if the current test results for all DUT(s) in the Active
DUTs Set (ADS) all match value, otherwise FALSE is returned.

Example
if(all_results_match(FAIL))

output(" All active DUTs are FAILing");
else

output(" One or more active DUTs are not FAILing");
 2/27/09 Pg-213

Magnum 1, 2 & 2x Parallel Test Functional Test Pattern Execution
2.5.4 any_results_match()
See Overview, Multi-DUT Test Results, Program Execution Control.

Description
In Multi-DUT Test Programs the system software manages a set of test results, one value for
each DUT defined in the Active DUTs Set (ADS). See Multi-DUT Test Results.

The any_results_match() function can be used to determine if the current test results
contain one or more values matching a specified value.

Usage
BOOL any_results_match(int value);

where:

value is the test result to be checked.

any_results_match() returns TRUE if any value in the current test results match
value, otherwise FALSE is returned.

Example
if(any_results_match(FAIL))

output(" At least one DUT is FAILing");
else

output(" No DUTs are FAILing");

2.6 Functional Test Pattern Execution
In Multi-DUT Test Programs, functional test pattern execution has an important additional
consideration:

• In most cases, the pattern execution stop option must be set to execute the entire
test pattern !

The alternative stops pattern execution on detection of an error (failing strobe). If this is
done, the system software will correctly report which DUT(s) had a failure and which DUT(s)
passed.
 2/27/09 Pg-214

Magnum 1, 2 & 2x Parallel Test Functional Pin-pairs
• HOWEVER, test pattern execution was stopped EARLY, thus the test was
INCOMPLETE on DUT(s) which didn’t have a failure.

This means selecting the PatStopCond = finish (NOT error) when executing:

• funtest() (and usually start_pattern())
• ac_test_supply()
• ac_partest()
• hv_ac_test_supply()

2.7 Functional Pin-pairs
See Magnum 1, 2 & 2x Parallel Test.

As shown in the Site Assembly Board Block Diagram, each Magnum 1/2 Site Assembly
Board in has 128 signal pins but only 64 timing channels. This means that each timing
channel is shared by two (2) signal pins.

This concept is called functional pin-pairs; i.e. 2 pins get a the same timed drive/strobe/IO
signals under control of the same test pattern data source, per-cycle. This architecture
supports most parallel test applications while reducing the overall cost-per-pin of the test
system. Note that all 128 pins have independent PE Drivers, PE Comparators, and Per-pin
Parametric Test Unit (PTU) and independent DC levels.

The functional pin-pairs architecture does require the user consider the following:

• Using a Multi-DUT Test Program.
• In most applications, a given pin on each DUT can use the same timing and

pattern control. When this is not acceptable, i.e. when idependent timing and/or or
pattern control is required for a given pin DUT 4 pins will effectvely be consumed;
the 2 pins which are used at the DUT and the 2 other pins of each pin-pair which
are not.

• The DUT-to-pin definitions in the Pin Assignment Table must match the DUT board
design. HDTesterPins are identified using a_1, b_1, b_2, etc. It should be
obvious that a_1 and b_1 a pin-pair. During functional pattern execution both pins
of a given pin-pair will receive the same timing signals, controlled by the same
pattern data source, etc.
 2/27/09 Pg-215

Magnum 1, 2 & 2x Parallel Test Functional Pin-pairs
• In Multi-DUT Test Programs, in the Pin Assignment Table, a specific set of
MACROs are used to specify which tester resource is connected to each DUT’s
pins. By definition, DUT-1 and DUT-2 will share functional pin-pairs, DUT-3 and
DUT-4 will share functional pin-pairs, etc. As indicated above, it is also possible for
[some] pins to not use pin-pairs. See Pin Assignment Table.

• Both pins of a pin-pair must use the same PE driver mode. See Magnum PE Driver
Modes.

• Only the Magnum 1/2 versions of the Redundancy Analysis (RA) software supports
the upper 64 pins (B-pins). See Note:.

 2/27/09 Pg-216

Chapter 3 Software
• Software Architecture Overview PMU Functions
• Test System Macros Pin Electronics Voltages/Currents
• Specifying Units Timing and Formatting Functions
• Special Data Types Test Patterns
• Types, Enums, etc. Functional Tests
• output(), warning(), fatal(), vFormat() Data Buffer Memory (DBM)
• Configuring the Tester to the DUT Error Catch RAM (ECR)
• Program Execution Control Manipulating Tester Hardware
• DPS Functions
 2/27/09 Pg-217

Software Software Architecture Overview
3.1 Software Architecture Overview
See Software.

A simple software hierarchy model is shown below:

This manual documents the software used to write the test program, test patterns, and User
Tools.

3.1.1 Test Program Overview
See Software.

Magnum 1/2/2x test programs are composed of:

• One or more user-created C-code source files. The code in these files will invoke
various Nextest functions and macros to define program data and operation. In
addition, all standard C/C++ facilities are available to implement user-defined
functionality.

• Zero or more user-written test pattern source files. Test Pattern Programming
consists of Memory Test Patterns and/or Logic Test Patterns
and/or Scan Test Patterns, written using a proprietary pattern language. The pattern
compiler (Patcom) generates C code from the pattern language source files, which
then becomes part of the Visual C++ project that is built into a complete test
program.

• Miscellaneous files required by or created by Developer Studio to manage each
project (makefile, project workspace definition file, etc.). These are not
documented here.

Windows OS

Win32 DLLs

MFC DLLs

Nextest DLLs

User code Test program, test patterns, User Tools

Libraries of Functions

Microsoft Foundation Class Libraries

Windows Libraries
 2/27/09 Pg-218

Software Software Architecture Overview
• Libraries of Nextest functions and macroS, and associated data types, are used to
communicate with tester hardware, and to use other features designed by Nextest.
These are incorporated into the test program using one #include statement
(#include "TestProgApp/public.h”), typically in a file named tester.h.

3.1.2 Test Program Wizards
See Software.

Two Nextest wizards are included with Microsoft Visual C++, as shipped with the test system
software:

• MinimalTestProgram
• New Test Program

The MinimalTestProgram option creates a single file containing one #include statement.
This #include causes the complete Nextest software libraries (functions, macros, data
types) to be accessible to code in the file. This option allows experienced Magnum 1/2/2x
users a quick way to create a program, but does not provide any indication, or guidance, for
completing the other features typically required in a usable test program.

The New Test Program option creates a test program shell, containing a number of source
files, and one test pattern (see Test Program Wizard Files). These files contain comments
which outline the basic purpose of that file, and example code showing typical, but very
basic, contents. This option can be used at any time to create a basic test program shell
which contains standard components, compiles correctly, but does little else.

3.1.2.1 Test Program Wizard Files
See Software.
 2/27/09 Pg-219

Software Software Architecture Overview
When the New Test Program Test Program Wizard is invoked it creates a test program
template containing the following files:

Table 3.1.2.1-1 Wizard Created Program Source Files

File Name Reference

address_topo.cpp See APG Address Topo RAM Load Functions

data_topo.cpp See APG Data Topological Inversion (DTOPO) Function

host_begin.cpp See Host Begin Block

pin_assignments.cpp See Pin Assignment Table

pin_lists.cpp See Pin Lists

pin_scramble.cpp See Pin Scramble Map

seq_and_bin.cpp See Sequence & Binning Table

site_begin.cpp See Site Begin Block

test_blocks.cpp See Test Blocks

vihh_maps.cpp See VIHH Maps

dialogs.cpp Example dialog source code. See User Dialogs.

MultiDialog.rc Example user-dialogs, as created by the dialog editor

pattern1\ folder Stores temporary pattern compiler files

pattern1.pat Test Pattern Source File

patterns.h Auto-generated external declarations file

resource.h External declarations file for dialog resources.

tester.h External declarations file. Includes Nextest libraries.

*.mak Autogenerated make file (Pre MsDev 6)

*.mdp MSDS Project Workspace File (Pre MsDev 6)

*.dsw MSDS Project Workspace File (MsDev 6)

*.dsp Autogenerated make file (MsDev 6)

*.ncb Autogenerated program database file

*.dep MSDS Project Dependencies File
 2/27/09 Pg-220

Software Software Architecture Overview
The wizard only creates a template. The source files created by the wizard have simple
code examples embedded in them as comments. To create a complete test program, simply
fill in the files following the form of the examples in each file.

Complete descriptions of the functions and macros used in these files can be found in this
manual.

The user is free to [re]partition the code in these files in other ways, but following this basic
standard is recommended. The test block and pattern files are often expanded into multiple
files for ease of editing and tracking.

Note: a user-created main() program file will not be executed in the traditional
sense. The main() of a Magnum 1/2/2x test program is a hidden part of the
Nextest software.

Note: users familiar with MFC must NOT define their own CWinApp-derived class.
Doing this will cause fatal side effects.

A brief description of the intended purpose of each file in the Test Program Wizard follows.
Few test programs require all of these files, which if not needed can be deleted from the
project. The files are listed alphabetically:

• address_topo.cpp: maps the logical X and Y addresses from the APG address
generators into topologically scrambled (DUT physical) addresses. See APG
Address Topo RAM Load Functions.

• data_topo.cpp: define APG data topological scramble code, used to invert APG
data generator outputs, to generate physically correct data when testing devices
that store data in inverted form as a function of address. See APG Data
Topological Inversion (DTOPO) Function.

• dialogs.cpp: example user dialogs and related User Variables.
• host_begin.cpp: conventionally the file where the following macros are used:

HOST_CONFIGURATION(), HOST_BEGIN_BLOCK(), HOST_END_BLOCK(). Code
in the Host Begin Block is often used to communicate outside the tester to
operators, networks, external equipment, etc.

• pin_assignments.cpp: conventionally the file where the Pin Assignment Table
is defined. This maps DUT pin names to DUT pin numbers, and tester pin
numbers.
 2/27/09 Pg-221

Software Software Architecture Overview
• pin_list.cpp: conventionally the location where Pin Lists are defined. Since pin
lists are typically global, a corresponding pin_list.h file is used to declare each
pin list external.

• pin_scramble.cpp: conventionally the file where Pin Scramble Maps are
defined. These map test pattern data sources to DUT pins.

• seq_and_bin.cpp: conventionally the file where the Sequence & Binning Table is
defined. This controls the flow of the test execution, by calling test blocks one at a
time. After executing a test block, a branch decision to another test block is made
based on the result returned from the current test block just executed. Binning is
also managed here.

• site_begin.cpp: conventionally the file where the following macros are used:
SITE_CONFIGURATION(), SITE_BEGIN_BLOCK(), SITE_END_BLOCK(). Code
in the Site Begin Block is typically used initialize test parameters which are set
once.

• test_blocks.cpp: conventionally the file where the Test Blocks are defined.
These are the core of a test program, where tests are executed, tester hardware
is configured, etc. For instance, a low level input leakage test may be in one test
block, a high level input leakage test in another test block, a gross functional AC
test in another, etc. Setups, such as voltage and timing, are performed within the
test blocks.

• tester.cpp: a boiler-plate file, containing the #include statement which enables
the Nextest libraries. This ensures the program is a Nextest test program, loads all
the requisite DLLs, etc.

• vihh_maps.cpp: conventionally the file where the VIHH Maps are defined. These
specify which DUT pins are driven to the VIHH voltage level under pattern
generator control.

• *.pat: these are test pattern source files. Magnum 1/2/2x supports Memory Test
Patterns, Logic Test Patterns, Mixed Memory/Logic Patterns and Scan Test
Patterns. Patterns are compiled automatically, along with the test program, using a
special purpose pattern compiler. See Test Pattern Programming.

3.1.3 Program Loading and Execution Order
See Software.

When the test program is first loaded, the system software processes the various Test
System Macros, as specified by the user’s program code. This builds various lists and
 2/27/09 Pg-222

Software Software Architecture Overview
tables, sets the tester hardware to its default state, and automatically executes several key
initialization routines.

During this process, one key operation is reading the DUT Board calibration data from the
ASIC on the DUT Board.

Note: to ensure calibration data is properly loaded, the DUT Board must be properly
installed on the test system before the test program load is started.

The general order of execution, and the process in which each of the major pieces of tester
software execute, is shown in the table below. See Overview in Program Execution Control
for a description of the different program processes (Host, Site, etc.).

The CONFIGURATION block(s) always execute first on the Host, before any code is
executed on the Site(s). After this, even though the table shows some steps happening side-
by-side on the Host and Sites, there is no synchronization between these processes, unless
explicitly implemented in user code:

Table 3.1.3.0-1 Program Load Execution Order per Process

Host
Process

Site
Process(es)

Tool
Process(es)

CONFIGURATION()
(on Host)

X

HOST_CONFIGURATION() X

DUT Board Status
Check

X

CONFIGURATION()
(on Site)

X

SITE_CONFIGURATION() X

CONFIGURATION()
(on Tools)

X

TOOL_CONFIGURATION() X

PIN_ASSIGNMENTS() X X

CURRENT_SHARE() X

PINLIST() X
 2/27/09 Pg-223

Software Software Architecture Overview
The Sequence & Binning Table is executed each time Start Testing is invoked.

Additional details can be obtained using the ui_ResourceInitialized User Variables.
The Example Output shown there (ui_ResourceInitialized) was executed on the Site
only.

3.1.4 DUT Board Status Check
See Software.

Note: first available in software release h1.1.23.

During the program load process, the system software checks the DUT board installation
status. Most test programs require that a DUT board be properly installed. And, if the DUT
board EEPROM stores TDR data the DUT board must be correctly installed before the test
program loads on the Site controllers.

This check was added to reduce the potential confusion caused by pogo pins left retracted
after executing system diagnostics or calibration. Beginning in software h1.1.23, the system
diagnostics and calibration programs were modified to automatically retract the pogo pins,
allowing these programs to operate with a DUT board installed and latched. However, these

VIHH_MAP() X

PIN_SCRAMBLE() X

HOST_BEGIN_BLOCK() X*

SITE_BEGIN_BLOCK() X

TOOL_BEGIN_BLOCK() X

INITIALIZATION_HOOK() X X X

* The HOST_BEGIN_BLOCK() (only) executes in a separate thread, allowing code
there to execute continuously as needed for handler/prober control, etc. For this
reason, output(), warning(), and fatal() messages from the
HOST_BEGIN_BLOCK() may appear to occur out of sequence relative to other code.

Table 3.1.3.0-1 Program Load Execution Order per Process (Continued)

Host
Process

Site
Process(es)

Tool
Process(es)
 2/27/09 Pg-224

Software Software Architecture Overview
programs do not extend the pogo pins, requiring that the user do so using the Latch button
on the Manipulator Control Box.

If the DUT board status check detects that a DUT board is not installed, or not latched or that
any pogo pins used by the program are retracted the user is presented with a warning dialog
indicating the DUT board status:

The following options are available:

• Retry = check the DUT board status again. This is the default.
• Ignore = continue the program load.
• Abort = abort the program load.

The first option allows the user to install and latch a DUT board, and ensure that the pogo
pins are extended and then perform the DUT board status check again.

By default, the DUT board status check is performed when any test program is loaded on a
Magnum 1/2/2x Test System. The check can be disabled using
ui_DutBoardStatusCheckDisable.

Note that the warning
message is identical in each
dialog. The details are
displayed just above the
buttons.
 2/27/09 Pg-225

Software Software Architecture Overview
3.1.5 Program Un-Loading and Execution Order
See Software.

When the test program is Closed (unloaded), the system software will execute the following
code if included in the test program, or User Tools. Each of the END_BLOCK macros
executes only in the process indicated. Note that, unless explicitly implemented in user
code, there is no synchronization between processes as implied by the table:

Note that output(), warning(), and fatal() messages generated in END_BLOCKs
may not be displayed in the various UI - User Interface output windows. This is because the
communications process used to send the messages from the Host, Site or Tool processes
is terminated as the program is unloaded.

3.1.6 Program Working Directory
See Software.

The working directory of a loaded test program is the directory containing the .exe file,
regardless of how the test program was loaded.

This is important if test program code does file I/O and uses relative path names, or invokes
User Tools using relative path names. The working directory can be changed using the
Win32 SetCurrentDirectory() function.

Table 3.1.5.0-1 Program Un-Load Execution Order per Process

Host
Process

Site
Process(es)

Tool
Process(es)

HOST_END_BLOCK() X

SITE_END_BLOCK() X

TOOL_END_BLOCK() X
 2/27/09 Pg-226

Software Test System Macros
3.1.7 Retrieving the Nextest Software Version
See Software.

Description

The current_release() function can be used to get the version of the Nextest software
currently in use. This may be useful when generating test reports, etc.

Also see builtin_what_exe.

Usage
CString current_release();

where:

current_release() returns the current Nextest software release as a CString.

Example
CString s = current_release();
output(" Release => %s", s);

3.2 Test System Macros
See Software.

Many of the lists and configurations (Resources) are specified in the test program using C
macros, defined by Nextest. Macros are used to make test program generation simpler.
They hide much of the underlying C-code implementation details and allow the user to focus
on the testing issues. And, as Resources, additional capabilities are standardized.

3.2.1 Macro Syntax
See Software.
 2/27/09 Pg-227

Software Specifying Units
Nextest-defined macros are named using all upper case letters.

All of the Nextest-defined macros require an argument, which acts as the name of the
macro. In many cases, this name will be referenced again. For example, a Sequence &
Binning Table or Site Begin Block is selected using one of the USE_xxx macros (see
Configuration Macros). In many cases, this name will be referenced as a pointer to a
particular Resource type; for example PinList*, DutPin*, etc.

All of the Nextest-defined macros which have an argument must be typed with no spaces
between the macro name and the open (left side) parentheses. Spaces are allowed
anywhere else in the macro argument list. For example:

TEST(... is correct

TEST (...) is not correct because of the space between TEST and
the open parenthesis.

Nextest-defined macros never require a trailing semicolon but including one is harmless.

Many of the Nextest-defined macros may only be defined at global scope; i.e. not within the
body of another macro or a C-function. Others are only usable within the body of another
Nextest-defined macro. These are documented as needed.

Nextest-defined macros may now, or in the future, expand to more than one statement. This
means that, for example:

if (BoardPresent(t_pe1))
PINS2(...)

else if (BoardPresent(t_pe2))
PINS2(...)

will not compile. Instead use (note the added braces):

if (BoardPresent(t_pe1)) {
PINS2(...)

}
else if (BoardPresent(t_pe2)) {

PINS2(...)
}

3.3 Specifying Units
See Software.
 2/27/09 Pg-228

Software Specifying Units
All of the Nextest API functions that set a voltage, current or time value allow the use of a
units modifier. This takes the following form:

value units

where value is a floating point number (usually a double) and units is one of the
Nextest-defined macros used as a multiplier for value. The space between value and
units is required.

Technically, the use of units is optional, but highly recommended, not only for program
readability but to ensure the program will operate correctly with or without MKS Units
enabled (more below).

As the test program is compiled, when the C preprocessor detects a units macro it multiplies
the preceeding value by the units value, yielding a scaled value. As indicated in the table
below, multiplier values change when using MKS Units (in fact it is the units macro
mechanism which allows a test program to function correctly whether using MKS Units or
not).

The units macros are shown in the table below:

Table 3.3.0.0-1 Voltage, Current, and Timing Units

Multiplier

Units
Macro Definition

Non-MKS
Units MKS Units

UV Microvolts 1 1.0e-6

MV Millivolts 1.0e3 1.0e-3

V Volts 1.0e6 1

NA Nanoamps 1 1.0e-9

UA Microamps 1.0e3 1.0e-6

MA Milliamps 1.0e6 1.0e-3

A Amps 1.0e9 1

PS Picoseconds 1 1.0e-12

NS Nanoseconds 1.0e3 1.0e-9

US Microseconds 1.0e6 1.0e-6
 2/27/09 Pg-229

Software Specifying Units
The units macros allow user code to program voltages, currents, and time related functions
using familiar terminology. For example, to set the pin electronics drive high voltage level to
three volts, the following function is used:

vih(3 V);

This could also be written as

vih(3000 MV);

or...

vih(3000000);
vih(3.0e-6);

But... these latter two methods SHOULD NOT BE USED because this code WILL NOT
FUNCTION correctly when switching from non-MKS units to MKS Units. And, it is less
readable and forces others reading the test program to know the default units value for
voltages vs. currents vs. timing values (which prior to MKS Units were different).

The units macros are also usable (recommended) when variables are used to store voltage,
current and/or time values. However, careful attention to the scope of the macro is required
to ensure desired results: use parentheses:

MS Milliseconds 1.0e9 1.0e-3

S Seconds 1.0e12 1

Note: MKS Units were first available in software release v2.8.7.

Expression Non-MKSUnits MKSunits

1 double d = 0; 0 0

2 d += 1; 1 1

3 d += 1 V; 1000001 2

4 d += 1 + 1 V; 2000002 4

Table 3.3.0.0-1 Voltage, Current, and Timing Units (Continued)

Multiplier

Units
Macro Definition

Non-MKS
Units MKS Units
 2/27/09 Pg-230

Software Specifying Units
Regarding these results, note the following:

• These examples use the V units macro, suggesting a voltage value.
• When using non-MKS Units, the default voltage units are uV. In the examples

above note that it is not until the V macro is used that the output is scaled to uV.
• When using MKS Units, the default voltage units are volts (V). Thus 1 = 1 Volt as

does (1 V).
• Note that except for the use of parenthesis that the last 3 expressions are much

the same. However, the result is quite different.
The following example shows why the units macro should always be used:

In this example, the intent is to twice add 1uV to the initial 1V value. When using non-MKS
Units voltage values are in uV and the desired operation is obtained i.e. 1 = (1 UV); When
this program is migrated to use MKS Units 1 = 1V and as can be seen, the result of last
expression is quite different than desired.

5 d += 1 + (1 V); 3000003 6

6 d += (1 + 1) V; 5000003 8

The output was generated using:
 output("%0.0f", d);

Expression Non-MKSUnits MKSunits

1 d = 1 V; 1000000.000000 1.000000

2 d += 1 UV; 1000001.000000 1.000001

3 d += 1; 1000002.000000 2.000001

The output was generated using:
 output(" #8 => %0.6f", d);

Expression Non-MKSUnits MKSunits
 2/27/09 Pg-231

3.3.1 MKS Units
With the introduction of the Lightning Test System, a new (as compared to Maverick-I/-II)
form of mathematical units, called MKS Units, was used when programming the voltage,
current and time parameter values. The following topics are discussed in this section:

• Background
• Legacy Units
• MKS Units
• Definitions
• Enabling MKS Units
• Conditional Definition of the Legacy Units Macros
• Migration Issues
• Usage Issues

Background
MKS stands for Meters, Kilograms, Seconds, one of two recognized metric units systems
(the other is CGS and is not used).

With the introduction of the Lightning Test System, the software for all system types supports
MKS units. The method used to migrate legacy programs (more below) is quite simple.
Once migrated, all existing Nextest functions support values specified in MKS units.

Note: initially, only the Lightning software requires the use of MKS Units. However, as
Lightning features are migrated to other system types this requirement will
become more common. For the most part, migration of existing programs is
automatic and transparent. However, depending on coding styles used in the
older test program, manual intervention may be required. See Migration Issues.

Legacy Units
Prior to adding MKS, three non-natural (non-MKS) base units were used in Nextest
software:

• uV (for voltages)
• nA (for currents)
• pS (for timing)
 2/27/09 Pg-232

Units support consisted of a set of C macros, which were used as units tokens. For example,
the following function set VIL = 350mV:

vil(350 MV); // Prototype = void vil(double Value);

In this example, the MV token is actually a Nextest defined C macro which multiplies the
base value (350) by 1,000 (1e3) to obtain 350,000uV. Note that several other methods could
be used to obtain the same result:

vil(350000 UV);

vil(350000); // BAD form, more below

vil(3.5 * 1e5); // BAD form, more below

vil(350 * 1e3); // BAD form, more below

Note that from a program migration standpoint, if the methods used in the last 3 examples
are used, migration requires manual intervention. More below.

The Lightning Test System introduced two key units requirements:

• MKS units support is needed for effective (and conventional) use in mixed signal
test applications. The number of parameter types has increased (i.e. frequency,
dB, radians, etc.), as has the range of some existing parameter types. Substantial
mathematical operations are common and the use of MKS units greatly simplifies
decimal point management.

• Maverick-I/-II and Magnum 1/2/2x test programs must operate correctly, without
modification, even if recompiled.

The solution documented here addresses both requirements (unless the wrong notation was
used, more below).

MKS Units
The software defines the following new data types for MKS units support. These are used as
expected by the name:

MKSVolts for Voltage values, in Volts

MKSAmps for Current values, in Amps

MKSFrequency for Frequency values, in Hz

MKSTime for Time values, in Seconds

MKSPeriod for Period values, in Seconds
 2/27/09 Pg-233

Definitions

Enabling MKS Units
The following steps outline how MKS units are enabled:

1. A new preprocessor symbol is defined to enable MKS Units Mode:

#define USE_MKS_UNITS

For backwards compatibility, Legacy Units Mode is the default i.e. USE_MKS_UNITS
must be explicitly added to the test program to enable MKS Units Mode.

2. If used, USE_MKS_UNITS MUST be defined before TestProgApp/public.h is
#include’ed in a given source file. This is required for the system software to adapt to
which units are used. For this reason, it is recommended that USE_MKS_UNITS be
defined in the test program’s tester.h file or equivalent. For example, in a typical tester.h
file:

#define USE_MKS_UNITS
#include "TestProgApp/public.h"

This also ensures that all source files use the same units methodology, which is required.
All user source files must be compiled in the same mode or a fatal load-time error will be
reported.

Conditional Definition of the Legacy Units Macros
Beginning with the introduction of the Lightning Test System, the definition of the various
legacy units macros (V, MV, US, etc.) depends on whether the test program defines
USE_MKS_UNITS. As noted above, the default is to use the Legacy Units Mode.

As an example, consider (2.4 V). In Legacy Units Mode, the V macro multiplies
2.4 * 1e6 = 2,400,000uV. If USE_MKS_UNITS is defined, the operation of the V macro is
redefined, to not modify the base value, thus 2.4 V = 2.4 Volts.

Migration Issues
The one migration issue which cannot be automatically handled relates to how the user
might scale values in their C code. Consider the following:

Legacy Units Mode The test program only uses legacy units: uV, nA, pS.

MKS Units Mode The test program only uses MKS units.
 2/27/09 Pg-234

output (" Vih = %f Volts", vih(t_pe1) / 1e6); // Bad !!!
output (" Vih = %f Volts", vih(t_pe1) / (1 V)); // Good

Both examples scale the value returned by vih() (in uV) to obtain the desired value in
Volts. Using the latter form i.e. divide by (1 V) makes program migration transparent (and is
also better form, more readable, etc.). While dividing by 1e6 only works correctly in the
Legacy Units Mode, in MKS Units Mode the value printed will be off by a factor of 1e6.

Usage Issues
As noted above, the MKS units implementation provides for easy migration of Maverick-I/-II
test programs. Fundamentally, all MKS units (MKSVolts, MKSFrequency, etc.) are a
double, however, because the MKS units data types are actually C++ objects, additional
considerations exist. Note the following:

• Assignments between double variables and MKS units variables (MKSVolts,
etc.) may require that a cast be performed:

double d1 = 1.0;
MKSAmps a1 = 1.0;
a1 = (MKSAmps) d1; // Cast required
d1 = a1; // Cast not required, class handles it

• The C mathematical operators (+, -, *, /, etc.) operate only on double, int,
float, etc. These operators are not overloaded to support MKSVolts,
MKSFrequency, etc. Below are several examples showing correct and incorrect
usage.
The following each generate a compile-time error, “operator =' is ambiguous”

MKSAmps a1;
a1 = 1 MA + 2 MA; // Bad
a1 = (1 MA + 2 MA); // Bad
a1 = (MKSAmps) 1 + 2; // Bad
a1 = (MKSAmps) 1 + (MKSAmps) 2; // Bad

The following all compile OK and provide the expected result. Note both the cast
and the use of parenthesis:

a1 = (MKSAmps) (1 + 2); // 3Amps (3.000)
a1 = (MKSAmps) (1 MA + 2 MA);// 3mA (0.003)
a1 = (MKSAmps) (1 + 2) MA; // 3mA (0.003)

The following compile OK and provide the expected result:
 2/27/09 Pg-235

MKSAmps a1, a2, a3, a4;
a1 = 1.0 MA; // 1mA (0.001)
a2 = 2.0 MA; // 2mA (0.002)
a3 = (MKSAmps) (a1 + a2); // 3mA (0.003)

The following all generate a compile-time error, “operator =' is ambiguous”
a3 = a1 + a2; // Bad
a3 = (MKSAmps) a1 + a2; // Bad
a3 = (MKSAmps) a1 + (MKSAmps) a2; // Bad

The following compiles OK, but the result may not be as expected:
a4 = (MKSAmps) (a1 MA + a2 MA);// Result = 3uA, not 3mA

The following compiles OK and provide the expected result:
double d1, d2, d3, d4;
d1 = 1.0;
d2 = 2.0;
d3 = d1 + d2; // 3.000
d4 = d3 MA; // 0.003

// Protos: void ms_dps_current_high(MKSAmps value, ...);
ms_dps_current_high(d3, ...); // 3.0
ms_dps_current_high(d3 MA, ...); // 0.003
ms_dps_current_high(d4, ...); // 0.003
ms_dps_current_high(d4 MA, ...); // 0.000003

The following examples are included here NOT because the problems they
represent are caused by MKS units, but rather because the error messages seem
to indicate a problem with MKS values. The root issue here is the improper use of
the value ‘0’ (zero) for the last argument, where the proper method is to use an
appropriate enumerated type value (id_msdps1, etc.):

ms_dps_current_high(d3 MA, t_mspc4, id_msdps1); // OK
ms_dps_current_high(d3 MA, t_mspc4, 0); // Bad

Error Message: none of the 6 overloads can convert parameter 1
from type 'class MKSAmps'

MKSAmps a1 = ms_dps_current_high(t_mspc4, id_msdps1);// OK
MKSAmps a1 = ms_dps_current_high(t_mspc4, 0); // Bad

Error Message: binary '=' : no operator defined which takes a
right-hand operand of type 'void' (or there is no
acceptable conversion)
 2/27/09 Pg-236

Special Data Types
3.4 Special Data Types

3.4.1 __int64
See Special Data Types.

Some of the tester registers require an integer value greater than 32 bits. Below is an
example of using the __int64 data type:

__int64 my_variable;

There is a double underscore before the int64. You can search for __int64 in the Visual
C++ manual for more information.

By default, __int64 is a signed value. To obtain unsigned operation, use:

unsigned __int64 my_variable;

To print __int64 values use format(s) which include “I64” plus one of the other integer
format characters (d, x, etc.). For example:

__int64 val = 99;

output (" %I64d %-0.3I64d 0x%I64x\n", val, val, val);

3.5 Types, Enums, etc.
See Software.

Description
The following enumerated types are used in support of various software functions.

Usage
The HDTesterPin enumerated type is used to identify individual tester pins. This includes
signal pins, DPS and HV pins:
 2/27/09 Pg-237

Types, Enums, etc.
Note: HDTesterPin
a_1,a_2,... snip ...,a_640,
b_1,b_2,... snip ...,b_640,
a_dps1a,a_dps2a,... snip ...,a_dps40a,
a_dps1b,a_dps2b,... snip ...,a_dps40b,
b_dps1a,b_dps2a,... snip ...,b_dps40a,
b_dps1b,b_dps2b,... snip ...,b_dps40b,
a_hv1, a_hv2,... snip ...,a_hv80,
b_hv1, b_hv2,... snip ...,b_hv80,
the declaration above is simplified. The maximum values shown are those
actually usable given the maximum number of Sites-per-Controller supported
(10).

The HSBBoard enumerated type is used to identify a specific Site Assembly Board (HSB):

enum HSBBoard { t_hsb1, t_hsb2, t_hsb3, t_hsb4,
t_hsb5, t_hsb6,t_hsb7, t_hsb8,
t_hsb9, t_hsb10, t_hsb11, t_hsb12,
t_hsb13, t_hsb14, t_hsb15, t_hsb16,
t_hsb17, t_hsb18, t_hsb19, t_hsb20,
t_hsb21, t_hsb22, t_hsb23, t_hsb24,
t_hsb25, t_hsb26, t_hsb27, t_hsb28,
t_hsb29, t_hsb30, t_hsb31, t_hsb32,
t_hsb33, t_hsb34, t_hsb35, t_hsb36,
t_hsb37, t_hsb38, t_hsb39, t_hsb40, t_hsb_na };

The PFState enumerated type is used as the return value from the various test functions
(funtest(), etc.):

enum PFState { FAIL = 0, PASS = 1, MULTI_DUT = -1 };

The PatStopCond enumerated type is used to specify a test pattern execution stop option
using funtest(), ac_partest(), ac_test_supply(), hv_test_supply(). Note
that only the values shown below are implemented (other values are defined but are not
shown):

enum PatStopCond { finish, error, fullec, LEC_only_errors,
LEC_first_vectors, LEC_last_vectors,
LEC_before_error, LEC_after_error,
LEC_center_error };
 2/27/09 Pg-238

Types, Enums, etc.
The TesterFunc enumerated type is used to identify a specific test pattern data source:

enum TesterFunc {
t_cs1, t_cs2, t_cs3, t_cs4, t_cs5, t_cs6, t_cs7, t_cs8,
t_d0, t_d1, t_d2, t_d3, t_d4, t_d5, t_d6, t_d7, t_d8,
t_d9, t_d10, t_d11, t_d12, t_d13, t_d14, t_d15, t_d16, t_d17,
t_d18, t_d19, t_d20, t_d21, t_d22, t_d23, t_d24, t_d25, t_d26,
t_d27, t_d28, t_d29, t_d30, t_d31, t_d32, t_d33, t_d34, t_d35,
t_y0, t_y1, t_y2, t_y3, t_y4, t_y5, t_y6, t_y7,
t_y8, t_y9, t_y10, t_y11, t_y12, t_y13, t_y14, t_y15,
t_x0, t_x1, t_x2, t_x3, t_x4, t_x5, t_x6, t_x7,
t_x8, t_x9, t_x10, t_x11, t_x12, t_x13, t_x14, t_x15,
t_x16, t_x17
t_drive_low, t_drive_high, t_strobe_low, t_strobe_high,
t_strobe_valid, t_strobe_mid, t_tri_state, t_scan,
t_lvm, t_tf_na };

The PSNumber enumerated type is used to identify a specific Pin Scramble Map entry. The
value PS_na is not normally used. See Pin Scramble Macros, data_strobe(),
set_ps(), var_pinfunc():

enum PSNumber {
PS1, PS2, PS3, PS4, PS5, PS6, PS7, PS8,
PS9, PS10, PS11, PS12, PS13, PS14, PS15, PS16,
PS17, PS18, PS19, PS20, PS21, PS22, PS23, PS24,
PS25, PS26, PS27, PS28, PS29, PS30, PS31, PS32,
PS33, PS34, PS35, PS36, PS37, PS38, PS39, PS40,
PS41, PS42, PS43, PS44, PS45, PS46, PS47, PS48,
PS49, PS50, PS51, PS52, PS53, PS54, PS55, PS56,
PS57, PS58, PS59, PS60, PS61, PS62, PS63, PS64,
PS_na };

The PatternState enumerated type is used by pattern_state() to identify the
execution state of the last test pattern executed:

enum PatternState { PATTERN_RUNNING,
PATTERN_PAUSED,
PATTERN_DONE,
PATTERN_STOPPED };

The following array data types are provided to simplify function prototype syntax. These are
all specializations of the C++ CArray data type:
 2/27/09 Pg-239

Magnum System Type Get Function
typedef CArray< BYTE,BYTE > ByteArray;
typedef CArray< short,short > ShortArray;
typedef CArray< int,int > IntArray;
typedef CArray< WORD,WORD > WordArray;
typedef CArray< long,long > LongArray;
typedef CArray< DWORD,DWORD > DWordArray;
typedef CArray< double,double > DoubleArray;
typedef CArray< float, float > FloatArray;
typedef CArray< __int64,__int64 > Int64Array;
typedef CArray< CString,CString > CStringArray;

3.6 Magnum System Type Get Function
See Software.

Description

The is_magnum() function may be used on Magnum Test Systems to determine the
system type (Magnum 1, 2 or 2x).

Usage
BOOL is_magnum(DWORD *version = 0);

where version is a pointer to an existing DWORD variable used to return the Magnum
system type value. The value returned will be:

• 1 when is_magnum() is executed on a Magnum 1.
• 2 when is_magnum() is executed on a Magnum 2.
• 3 when is_magnum() is executed on a Magnum 2x.

is_magnum() returns TRUE when executed on any Magnum system type, otherwise
FALSE is returned. If FALSE is returned the value in version is invalid.
 2/27/09 Pg-240

output(), warning(), fatal(), vFormat()
Example
DWORD mtype;
if(is_magnum(&mtype))

output("Executed on Magnum-%d", mtype);
else

output("Executed on NON-Magnum system);

3.7 output(), warning(), fatal(), vFormat()
See Software.

Description

The output(), warning() and fatal() functions are used to generate messages in the
UI - User Interface output window(s).

Note: the standard C printf() function can not be used for this application. For file
I/O applications fprintf() operates as desired.

With one notable exception, the format option arguments for these functions are the same
as for printf(). The exception is that all three functions automatically include a newline
character (‘\n’). To suppress this, two back slash characters (“\\”) must be used (the first to
escape the second).

By default, all output uses a fixed font and font attributes. Beginning in software release
h3.3.xx some font attributes may be manipulated (color, font size, bold, italic, underline,
etc.). See Output/Warning/Fatal Text Format Options. In addition, messages generated by
warning() and fatal() will be displayed using red text. Some right-mouse selection
options in UI Output Window allow saving messages in Rich-text format (.rtf) to allow
saved text to include these font attributes (saving as plain text does not).

Messages can be logged to a text file using ui_OutputFile. However, a more versatile
mechanism is described in Redirecting Output Messages.

A user-defined prefix can be added to any message using ui_OutputFormat. However, a
more versatile mechanism is described in Redirecting Output Messages.
 2/27/09 Pg-241

output(), warning(), fatal(), vFormat()
The vFormat() function can be used to create a CString using syntax similar to
printf(). This is typically used to create a CString containing a combination of constant
characters, integers, floats, etc.

Usage
void output(const char *format, ...);

void warning(const char *format, ...);

void fatal(const char *format, ...);

CString vFormatVA(LPCTSTR format, va_list va);

CString vFormat(LPCTSTR format, ...);

where:

output() is a C-function, with arguments consistent with the standard C printf()
function, except that an automatic end-of-line is included by output(). output()
generates no special message prefix.

warning() operates the same as output() except that it automatically generates the
following prefix message: Warning:. Beginning in software release h3.3.xx all warnings
(including those generated by the system software) will be displayed using red text.

fatal() operates the same as output() except that it automatically generates the
following prefix message: Error: and, if executed in the SITE process, the test program is
terminated. Beginning in software release h3.3.xx all fatal messages (including those
generated by the system software) will be displayed using red/bold text.

vFormat() assembles a CString from the formatting tokens and corresponding argument
list. See examples.

Examples
output (" Hello World"); // Prints: "Hello World"

CString warn_msg = "Will Robinson";
warning ("%s", msg); // Prints: "Warning: Will Robinson"

int val = 10;
CString msg = " Max value is => ";
CString s = vFormat("Msg includes %d(int) %f(float)", 13, 1.333);
// Prints: "Error: Max value is => 10” and unloads the program
fatal ("%s %n", msg, val);
 2/27/09 Pg-242

output(), warning(), fatal(), vFormat()
3.7.1 Output/Warning/Fatal Text Format Options
See output(), warning(), fatal(), vFormat().

Note: first available in software release h3.3.xx.

Description
The output(), warning() and fatal() functions may be used in test programs to
generate user-defined messages in UI’s output window(s).

By default these messages use the system default font style (font, size, color, not-bold, not-
italic, not-underlined, etc.). Using the controls noted below it is possible to manipulate some
font style attributes applied to user-defined messages. This includes font-size, color, bold,
italic and under-line format attributes (but not the specific font used). For example:

Figure-36: Example Output
Note the following:

• During the initial program load, the format styles for all UI output windows are
reset to default values. Except as noted below for warning() and fatal() the
system software does not otherwise change any format styles.

• The syntax used to manipulate text format styles is similar to HTML tags. The
supported UI Output/Warning Format Tags must be enclosed in angle braces (i.e.
<tag>). The following table describes the supported format tags:

Table 3.7.1.0-1 UI Output/Warning Format Tags

Open
Tag

Close
Tag Attribute

<I> </I> Italic Font
 2/27/09 Pg-243

output(), warning(), fatal(), vFormat()
• Tags and values are not case sensitive.
• Tags can be opened (<tag>) and closed (</tag>) independently, in separate

calls to output() and/or warning() and/or fatal().

 Bold Font

<U> </U> Underline Font

<H6>
<H5>
<H4>
<H3>
<H2>
<H1>

</H6>
</H5>
</H4>
</H3>
</H2>
</H1>

H = Heading Size (font size)
H6 Font (default font size)

H5 Font

H4 Font

H3 Font

H2 Font

H1 Font

<COLOR=color>

where
color =
BLACK
BLUE
GRAY
GREEN
LIME

MAROON
PURPLE
RED

SILVER
WHITE
YELLOW

</COLOR>

COLOR = Font color
BLACK Font

BLUE Font

GRAY Font

GREEN Font

LIME Font

MAROON Font

PURPLE Font

RED Font

SILVER Font

WHITE Font (white = can’t see it at all)

YELLOW Font (yellow = hard to see)

Table 3.7.1.0-1 UI Output/Warning Format Tags (Continued)

Open
Tag

Close
Tag Attribute
 2/27/09 Pg-244

output(), warning(), fatal(), vFormat()
• A given style attribute (color, bold, italic, etc.) is a property of the UI output window
which displays a given message. Once opened (i.e. <tag>) a given attribute will
be applied to all user-defined messages in that window until closed (i.e. </tag>).

• User-defined font styles do not affect messages generated by Nextest software.
• Format tags can be nested and overlapped. For example:

output(" Start bold text from here...");
output("Continues with bold text…<I>and italic...");
output("Closing bold… and closing italic...</I>");
output("End of the message.");

Generates the following output:
Start bold text from here...

Continues with bold text…and italic...
Closing bold… and closing italic...
End of the message.

• When a format tag is opened the previous value for that attribute is saved on a
stack. When a given tag is closed that attribute is popped from its stack and the
next most recent value for that tag will take effect. For example, given the
following:

output("<COLOR=maroon>Some text");
output("<COLOR=blue>More text");
output("This text will be blue");
output("</COLOR>"); // Pops color stack, could be anywhere
output("This text will be maroon");

• The font style attribute stacks are limited to 1000 entries. When a given stack is full,
no additional changes to that font attributes will saved to the stack until one or more
related tags are popped from the stack.

• When the warning() function executes it automatically pre-pends “Warning:” to
the text specified by the user. As shown, the warning() function also sets
<COLOR=RED>, which causes all warning test to be RED, but it does not put this on
the font attribute stack. Then, at the end of the warning text the warning() function
also closes the red color, using </COLOR>. However, if the user includes a
<COLOR> tag in the body of warning text two things occur:
• The specified color will be applied to the appropriate text. For example:

warning("<COLOR=green>My green Warning");

generates:
Warning: My green Warning
 2/27/09 Pg-245

output(), warning(), fatal(), vFormat()
• The warning() function does not issue the close color tag (i.e. no </COLOR>).
This means that any color specified in warning text strings will carry-over to
subsequent executions of output(), warning() and fatal() unless the tag
is closed by user code.

• Similarly, fatal messages are displayed using RED-bold text, and the color
operations described in the previous bullet apply (although since fatal unloads the
test program this mostly doesn’t matter).

• Closing a tag which is not currently open is ignored.
• The back-slash character can be used to escape a tag to allow the tag’s text to be

seen in the output text. For example, try:
output("Use \\ to open the bold text tag");

• Some right-mouse selection options in UI Output Window allow saving messages
in Rich-text format (.rtf) to allow saved text to include these font attributes (saving
as plain text does not).

Example
The following example generates the Example Output:

output("<COLOR=Green><U>This </COLOR></U>\\");
output("<COLOR=Blue><H5><I>message </COLOR></H5></I>\\");
output("<COLOR=Red><H4><U>is </COLOR></H4></U>\\");
output("<COLOR=Silver><H3><I>pretty </COLOR></H3></I>\\");
output("<COLOR=Lime><H2>obnoxious </COLOR></H2>\\");
output("<COLOR=Purple><H1><U>Right! </COLOR></H1></U>");

This example closes each tag used within each output() statement.

The same text can be obtained using a single output statement (line-breaks added for
clarity):

output("<COLOR=Green><U>This </U>
<COLOR=Blue><H5><I>message </I>
<COLOR=Red><H4><U>is </U>
<COLOR=Silver><H3><I>pretty </I>
<COLOR=Lime><H2>obnoxious
<COLOR=Purple><H1><U>Right! ");

Note, that the 2nd example (unlike the 1st) does not close some attribute tags thus some of
the attribute stacks will not end the same. This can affect subsequent text.
 2/27/09 Pg-246

output(), warning(), fatal(), vFormat()
3.7.2 Redirecting Output Messages
See output(), warning(), fatal(), vFormat().

Description

In simple terms, the intercept() function was designed to redirect messages from the
UI - User Interface display to a text file. The fumble() function is used to restore default
operation.

More correctly, the intercept() function is used to register a user-written call-back
function which will then be called each time a message would be send to a UI - User
Interface output window. Then, user-written code in the call-back function determines the
fate of the message. For example, code in the call-back function could cause the message
to be output to the UI display and/or to a text file, to a User Dialog, or discarded. And,
output(), warning(), and fatal() messages can be treated separately.

The call-back function name and internal code is determined by the user programmer. The
prototype definitions of the call-back function are defined by Nextest (see Usage).

The fumble() function is used to un-register the user-written call-back and cause the built-
in functions to be called.

A registered call-back function is scoped to the process which calls intercept(). This
means that messages may be separately handled for messages generated in Host vs. Site
vs. User Tools processes. Using conditional code in the call-back it is possible to process
messages uniquely for each site_num().

It is possible to register more than one call-back function. In operation, the most recently
registered call-back function is called first. If it returns TRUE the next most recently
registered call-back function is then called, etc. If any call-back returns FALSE the process
stops. This allows a series of call-backs to be sequentially executed.

If the earliest registered user call-back function returns TRUE the built-in function is also
called, causing the messages to appear normally in the UI - User Interface display. If the
earliest registered user call-back function returns FALSE the built-in function is not called.

The currently executing user call-back does not intercept messages generated by calling
output(), warning(), or fatal() from within the call-back function code. The
messages are intercepted by any other registered call-backs which execute after the
currently executing call-back completes.
 2/27/09 Pg-247

output(), warning(), fatal(), vFormat()
Note: different versions of intercept() and fumble() functions are also used to to
intercept User Variables. See Intercepting User Variables.

Usage
void intercept(BOOL (*func)(char type, CString string));

void intercept(BOOL (*func)(char type,
CString string,
void *data),

void *data);

BOOL fumble(BOOL (*func)(char type, CString string));

BOOL fumble(BOOL (*func)(char type,
CString string,
void *data));

where:

*func is a pointer to the user-written callback function.

fumble() returns TRUE if the specified call-back function is successfully un-registered,
otherwise FALSE is returned. The arguments to fumble() identify which call-back to un-
register; the variation using the optional void *data argument is needed when the call-
back name is overloaded with different *data arguments.

The call-back prototype definitions include:

BOOL call-back return value. See Description.

type is a single character, and will be one of ‘o’, ‘w’, or ‘f’, corresponding to output(),
warning(), or fatal(). This allows code in the user call-back to identify the nature of the
message and conditionally treat each type of message differently. See Examples.

string is the message. This allows the call-back code to access to the message, and
determine its fate. See Examples.

*data is optional, and is not used by the system software in any way. It is a generic pointer,
allowing additional information to be passed to the call-back as needed by the user. Within
the call-back code this pointer should be cast to the proper data type before use.
 2/27/09 Pg-248

output(), warning(), fatal(), vFormat()
Examples

Example 1:
The function my_output_callback() is registered from code called in the Host Begin
Block, thus my_output_callback() will be called each time there is a output(),
warning(), or fatal() message from code executing in the Host process:

// Call-back function for intercept(). All output from output(),
// warning(),and fatal() is intercepted here and output to UI
// with a custom prefix. The TRACE macro is useful when running in
// UI Site or Host debug mode. It generates output in the
// Developer Studio output window.

BOOL my_output_callback(char type, CString string) {
// ID if message was output(), warning(), or fatal()
char *id = 0;
if (type == 'w') id = "My Warning: ";
if (type == 'f') id = "My Fatal: ";
if (type == 'o') id = "My Output: ";
// Display the message
TRACE("%s%s", id, string); // For Developer Studio Output only
output("%s%s", id, string); // For UI output
return TRUE; // Pass string to UI

}

HOST_BEGIN_BLOCK(HBB1) { // See HOST_BEGIN_BLOCK()
// ... other code here ...
// Register intercept() callback function in the Host processes
intercept(my_output_callback);
// ... other code here ...

}

Example 2:
This example saves just the warning(), and fatal() messages, produced during the
execution of problematic_function(), to the text file D:/temp/my_output.txt.
Since intercept() is executed in the Site Begin Block only messages generated when
problematic_function() is executed in a Site process will be saved:

void problematic_function() { // Any written code...
output ("This message is not saved to the file");
warning("This message is saved to the file");

}

 2/27/09 Pg-249

output(), warning(), fatal(), vFormat()
BOOL my_output_callback (char type, CString string, void *data) {
if (type != 'o') { // ID warning() and fatal() messages

// Cast the void arg pointer to the proper type
FILE *file = (FILE *) data;
fprintf (file, "Type => %c: %s", type, string);

}
return TRUE; // Send all messages to UI too

}

SITE_BEGIN_BLOCK(sb1) { // See Site Begin Block
// ... other code here ...
FILE *fp = fopen("D:/temp/my_output.txt", "w"); // Open file
if (fp) {

intercept(my_output_callback , fp); // Register call-back
problematic_function();
fumble(my_output_callback); // Un-register call-back
fclose(fp); // Close output file
output("Output is back to default");

}
// ... other code here ...

}

Example 3:
This example uses the output() function from within the my_output_callback() code
to replace warning() with output().

BOOL my_output_callback (char type, CString string) {
if (type == 'w') {

// Suppress final newline, because the original warning()
// includes it
output("This would have been a warning but %s\\", string);
return FALSE; // Don’t pass warning()s to UI

}
return TRUE; // Do pass output() and fatal() to UI

}

SITE_BEGIN_BLOCK(SBB1) { // See Site Begin Block
// ... other code here ...
intercept(my_output_callback); // Register call-back
output("This line output as-is"); // Outputs to UI normally
 2/27/09 Pg-250

output(), warning(), fatal(), vFormat()
warning(" my_output_callback() modified this one.");
// ... other code here ...

}

 2/27/09 Pg-251

Configuring the Tester to the DUT
3.8 Configuring the Tester to the DUT
The following topics are covered in this section:

• DUT Board Connection Considerations
• DUT Pins
• Pin Assignment Table

- ASSIGN_64DUT Work-around
- Sites-per-Controller
- Shared Tester Pins
- testerpin_name()
- testerpin_value()
- testerpin_offset()
- Pin Iteration

• Pin Lists
- DUT-specific Pin Lists
- pinlist_create(), pinlist_destroy()
- pin_info()
- testerpin_name()
- testerpin_value()
- testerpin_offset()
- Pin Iteration
- all_dps()
- no_dps()
- all_hv()
- no_hv()
- all_pe()
- no_pe()

• Pin Scramble Functions & Macros
- Overview
- Pin Scramble Macros
- Default Pin Scramble Map

• VIHH Maps
 2/27/09 Pg-252

Configuring the Tester to the DUT
3.8.1 DUT Board Connection Considerations
See Configuring the Tester to the DUT, Magnum 1, 2 & 2x Parallel Test.

Using Magnum 1/2/2x, the following issues must be considered when designing a new DUT
board. These issues reflect various constraints imposed by the tester hardware architecture:

1. Using Magnum 1/2, the 128 digital PE pins of a given Site Assembly Board are divided
into 2 groups: A-pins and B-pins, see PE Sub-site Architecture. Each pin of sub-site A is
paired with one corresponding pin of sub-site B. For example, a_1 and b_1, a_13 and
b_13, etc. During functional tests, each pin of a given pin-pair (see Functional Pin-pairs)
receives identical drive, strobe and I/O signals and pattern data. This normally means
that, for example, when pin a_1 is connected to a given pin of DUT-1 that pin b_1 is
connected to the same pin of DUT-2. See Pin Assignment Table, Multi-DUT Test
Program, Parallel Test Operation, etc. When the expected pin assignments are used odd
numbered DUTs will be connected to A-pins and even numbered DUTs to B-pins. A given
DUT will never have connections to both A-pins and B-pins.

2. Using Magnum 1/2, each DUT Power Supply (DPS) has two switchable outputs, which
can be programmed to identical voltages or separately to different voltages. Some of the
DPS hardware is shared between the two outputs, which might affect the user’s DUT
board design considerations.

3. Proper operation of DUT-based test pattern conditional branch operations depends upon
certain DUT-to-Pin relationships. See MAR Multi-DUT Branch-condition Operands, DUT-
pin to Tester-pin Connection Requirements.

4. When using pins in MUX Mode, the odd pins of a pin-pair(for example, a_1 and b_1) are
connected to the DUT and the next higher even numbered pins (for example, a_2 and
b_2) cannot be used at the DUT.

5. In Double Data Rate (DDR) Mode, hardware constraints affect how DDR A-cycle vs.
DDR B-cycle errors are captured. This affects memory patterns when logging errors to
the Error Catch RAM (ECR) and both Memory and Logic patterns when datalogging;
specifically some pins cannot be captured/logged at the same time as other pins, which
might affect DUT board design considerations. See DDR Fail Signal MUX, DDR Fail
Signal MUX: Logic Error Catch, DDR Fail Signal MUX: Memory Error Catch.

6. Each Site Assembly Board has two Error Catch RAM (ECR). Each ECR can capture
errors from up to 36 PE channels (36 DUT pins). In order to maintain DUT board and
program compatibility with future Magnum-compatible systems, at most 18 DUT pins
should be assigned to each of the following pin groups:
 2/27/09 Pg-253

Configuring the Tester to the DUT
• a_1 to a_32
• b_1 to b_32
• a_33 to a_64
• b_33 to b_64

7. Additional DUT board layout design rules are available from the Nextest Interface
Solutions Group.

3.8.2 DUT Pins
See Magnum 1, 2 & 2x Parallel Test, Pin Assignment Table.

Description

Using the Magnum 1/2/2x Test System, each DUT pin must be defined once, using the
DUT_PIN macro. This creates a DutPin resource which may be used elsewhere in the
program. Note that this is different than, and in addition to, the methods used when
programming Maverick-I/-II.

Note the following:

• The DUT_PIN macro will be used once, for each unique DUT pin of the device being
tested, to create/define a corresponding DutPin resource. The DutPin data type is
actually a resource, like a PinList, TestBlock, etc. See Resources.

• A given DUT pin is defined only once, regardless of how many DUT(s) are being
tested in parallel.

• Each entry in the Pin Assignment Table requires a corresponding DutPin, including
pins which are not connected to tester resources; i.e. Gnd, etc.

• The DUT_PIN macro is global in scope; i.e. it may not be used within the body of
another macro or C-function.

• DutPins are used throughout the test program. Functions which require a single pin
or return a single pin will specify the parameter as a DutPin*.

• Using Magnum 1/2/2x, the TesterPin data type used with using Maverick-I/-II is
replaced by HDTesterPin. This is required due to increased number of pins
available using Magnum 1, Magnum 2 and Magnum 2xI.

• HDTesterPin is only used in the Pin Assignment Table, where DutPin to tester
pin mapping is specified. Except for the Pin Assignment Table, DutPin* is used
everywhere else in the program to identify a single pin. The Nextest functions
 2/27/09 Pg-254

Configuring the Tester to the DUT
which, using Maverick-I/-II, took a TesterPin argument to identify one pin are not
supported using Magnum 1/2/2x. Instead, an equivalent function must be used,
which uses DutPin instead of TesterPin.

• In Multi-DUT Test Programs, the Active DUTs Set (ADS) affects the operation of
many functions which take a DutPin argument. In general, setter functions only
affect pin(s) of DUT(s) which are currently in the Active DUTs Set (ADS). Getter
functions return a value from the first DUT in the Active DUTs Set (ADS) (see
Using Getter Functions).

Usage
DUT_PIN(name){}

where:

name specifies the name for this DutPin. name must be a valid C identifier.

Example
The following example defines 4 pins:

DUT_PIN(A0){}
DUT_PIN(WEbar){}
DUT_PIN(Vcc){}
DUT_PIN(Gnd){}

3.8.2.1 dutpin_info()
See Pin Lists.

Description
The dutpin_info() function may be used to iterate over the DutPins actually used in the
Pin Assignment Table selected during the initial program load. dutpin_info() does not
report any DutPin(s) which, although defined, are not actually used in the currently defined
Pin Assignment Table.

Usage
BOOL dutpin_info(int index, DutPin **dut_pin);

where:
 2/27/09 Pg-255

Configuring the Tester to the DUT
index is used to select which element of the Pin Assignment Table is being accessed.
DutPins are returned in the order they are entered in the Pin Assignment Table. See
Example.

dut_pin is a pointer to an existing DutPin* variable used to return the indexth DutPin of
the current Pin Assignment Table.

dutpin_info() returns TRUE if a valid DutPin exists at the indexth position of the Pin
Assignment Table, otherwise FALSE is returned.

Example
DutPin *dut_pin;
for (int index = 0; dutpin_info(index, &dut_pin); ++index)

output(" Index-%d => %s", index, resource_name(dut_pin));

3.8.3 Pin Assignment Table
See Configuring the Tester to the DUT, Magnum 1, 2 & 2x Parallel Test.

Description
The Pin Assignment Table specifies the relationship between DUT pin names (DutPin),
DUT pin numbers, and tester pin numbers. Using Magnum 1/2I, it also determines if the
resulting test program is a Multi-DUT Test Program and which DUT pins share each set of
Functional Pin-pairs..

Note the following:

• The Pin Assignment Table describes the connections made, on the DUT board,
between the DUT and the tester hardware. This includes signal pin connections,
HV connections and DPS connections.

• A Pin Assignment Table is created using the PIN_ASSIGNMENTS macro noted
below. DutPins are added to the Pin Assignment Table using the various ASSIGN
macros noted below.

• Pin Assignment Tables can only be defined globally (i.e not nested, and outside of
any C-function. The Test Program Wizards locates Pin Assignment Tables in the
pin_assignments.cpp file. This form must be followed if the test program will use
Logic Test Patterns which contain a VECDEF Compiler Directive.
 2/27/09 Pg-256

Configuring the Tester to the DUT
• Once defined, the DutPins used in the Pin Assignment Table may be used
throughout the test program, to refer to these connections using DUT pin names
rather than pin numbers or tester channels. These same DutPins are used to
define Pin Lists.

• DPS and HV pins are not automatically connected to the DUT by the system
software- see dps_connect() and hv_connect().

• Multiple Pin Assignment Tables may be defined in a test program. This allows a
single test program to test DUTs with different packaging or pinout options but
otherwise the same electrical characteristics. If only one Pin Assignment Table is
defined in the test program it will automatically be selected as the program loads,
otherwise either user-code must make the selection, using the
USE_PIN_ASSIGNMENTS() macro in the body of a CONFIGURATION() macro, or
the system software will require the operator to select from a list of tables as the
program loads (this is not user friendly on multi-site systems).

• When the DUT to be tested requires more than 64 signal pins, the
SITES_PER_CONTROLLER macro must be used to specify how many sites are
required to test one DUT. See Sites-per-Controller.

• The PinAssignments_find() function can be used to get a pointer to a Pin
Assignments Table. This function has little practical use.

A Magnum 1/2/2x Pin Assignment Table design supports testing multiple DUTs, in parallel.
Different MACROs are used to add entries to the Pin Assignment Table and additional rules
apply, as follows:

• If the ASSIGN macro noted above is used, the test program is, by definition, NOT
a Multi-DUT Test Program, the rules noted above apply, the concept of Functional
Pin-pairs does not apply and the b_nnn pins are not usable. It is not legal to mix
the use of the ASSIGN macro with the ASSIGN_nnn macros noted below.

Note: the Magnum 1, Magnum 2 and Magnum 2x Programmer’s Manuals do not
otherwise document non-Multi-DUT Test Program programming; i.e. it is
expected that Functional Pin-pairs and the associated programming methods
are always used (if not, half of the available tester channels are not usable).

• To define the Pin Assignments Table for a Multi-DUT Test Program requires the
use of the macros developed specifically for parallel test (ASSIGN_2DUT,
ASSIGN_4DUT, etc.). When any of these MACROs are used the test program is,
by definition, a Multi-DUT Test Program and the b_nnn pins of the Functional Pin-
pairs are usable.
 2/27/09 Pg-257

Configuring the Tester to the DUT
• The name of the macro used determines how many DUT(s) the program can test
in parallel. For example, ASSIGN_4DUT is used when the test program will test 4
DUTs in parallel. Only one version of these macros can be used in a given Pin
Assignments Table; i.e. if ASSIGN_4DUT is used ASSIGN_2DUT, ASSIGN_6DUT,
etc. cannot be used.

• The appropriate macro is used once for each DutPin, to specify which tester
channel is connected to that DutPin of each DUT. This is the only place in the
test program in which HDTesterPins are used. For example:

DUT_PIN(dp1)

PIN_ASSIGNMENTS(example) {
SITES_PER_CONTROLLER(1);
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
ASSIGN_4DUT(dp1, a_1, b_1, a_23, b_23)

}

• Using these macros, note that tester signal pins are assigned in pairs (see
Functional Pin-pairs). This means that, using the previous example, during
functional tests, pin dp1 of both t_dut1 and t_dut2 will receive the same timing
and test pattern stimulus, and pin dp1 of both t_dut3 and t_dut4 will receive
the same timing and test pattern stimulus. All 4 pins do have independent PE
voltages, and t_dut1/t_dut2 and t_dut3/t_dut4 do have independent timing/
pattern stimulus. For example:
DUT_PIN(D0){}
DUT_PIN(D1){}
DUT_PIN(Cs){}
DUT_PIN(Rd){}
DUT_PIN(A1){}
DUT_PIN(A0){}
DUT_PIN(VCC){}
DUT_PIN(GND){}

PIN_ASSIGNMENTS(example) {
SITES_PER_CONTROLLER(1);

// DUT DUT-1 DUT-2 DUT-3 DUT-4
// Pin Tester Tester Tester Tester
// Name Pin # Pin # Pin # Pin #
// ------ ------ ------ ------- -----

ASSIGN_4DUT (D0, a_1, b_1, a_17, b_17)
ASSIGN_4DUT (D1, a_3, b_3, a_19, b_19)
ASSIGN_4DUT (Cs, a_11, b_11, a_31, b_31)
ASSIGN_4DUT (GND, a_na, b_na, a_na, b_na)
 2/27/09 Pg-258

Configuring the Tester to the DUT
ASSIGN_4DUT (Rd, a_9, b_9, a_25, b_25)
ASSIGN_4DUT (A1, a_7, b_7, a_23, b_23)
ASSIGN_4DUT (A0, a_5, b_5, a_21, b_21)
ASSIGN_4DUT (VCC, a_dps1a, b_dps1b, a_dps2a, b_dps2b)

}

Figure-37: Multi-DUT Test Program Pin Assignments (pin_pairs)
In the diagram above note the following:
• DUT-1 (t_dut1) and DUT-2 share Functional Pin-pairs. DUT-3 and DUT-4 share

Functional Pin-pairs. Etc. As noted in the example below, it is also possible, in a
Multi-DUT Test Program, for DUTs which nominally share Functional Pin-pairs to
have [some] pin(s) which are independent.

• Each Pin Scramble Map will have one entry for each DUT, but the pattern data
source specified for both DUTs which share Functional Pin-pairs must be
identical.

• The concept of Functional Pin-pairs does not apply to pins connected to DPS or
HV. The example above does follow the recommended convention.

• It may sometimes be necessary when testing some devices which, for the most
part, can be tested using Functional Pin-pairs, but need a few pin(s) with
independent timing and/or pattern stimulus.For each of these special DUT pins,
two DutPins must be defined and two ASSIGN_xxxDUT statements must be
used. For instance, considering the earlier example, what if each DUT’s chip
select pin (Cs) requires completely independent timing and/or test pattern control?
The following example shows the changes needed to support this:

DUT_PIN(Cs_a)
DUT_PIN(Cs_b)
//....

DUT Tester
Pin Resource
D0 a_1
D1 a_3
Cs a_11

Gnd a_na

D0 a_17
D1 a_19
Cs a_31

Gnd a_na

DUT
1

DUT
3

DUT
2

DUT
4

Functional Pin-pairs

Etc.

Etc.

DUT Tester
Pin Resource
Vcc a_dps1a
A0 a_5
A1 a_7
Rd a_9

Vcc a_dps2a
A0 a_21
A1 a_23
Rd a_25

DUT Tester
Pin Resource
D0 b_1
D1 b_3
Cs b_11

Gnd b_na

D0 b_17
D1 b_19
Cs b_31

Gnd b_na

DUT Tester
Pin Resource
Vcc b_dps1a
A0 b_5
A1 b_7
Rd b_9
Vcc b_dps2b
A0 b_21
A1 b_23
Rd b_25
 2/27/09 Pg-259

Configuring the Tester to the DUT
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
ASSIGN_4DUT(Cs_a, a_11, b_na, a_31, b_na)
ASSIGN_4DUT(Cs_b, a_na, b_12, a_na, b_32)

In the diagram above note the following:
• For the Cs pin, two DutPins are defined; Cs_a and Cs_b. Only two are ever

needed (per DUT pin), regardless of how many DUTs are being tested.
• The Cs pin of 2 DUTs is connected to the primary pin of a pin-pair (a_11, a_12)

and the other 2 DUTs to the secondary pin of the adjacent pins (b_12, b_32).
The other pin of each of these pin-pairs is not usable for functional testing; i.e.
b_11, a_12, b_31, and a_32.

• The ASSIGN_4DUT MACRO is used twice, once for Cs_a and once for Cs_b.
When definining Cs_a, the Cs connections to DUT-2 and DUT-4 are specified as
b_na. When definining Cs_b, the Cs connections to DUT-1 and DUT-3 are
specified as a_na.

• Throughout the program, two DutPins are used to represent the Cs pin; Cs_a
for odd numbered DUTs and Cs_b for even numbered DUTs.

• Each Pin Scramble Map will have two entries for the Cs pin, one for Cs_a and
Cs_b.

• The other functional pins are treated as Functional Pin-pairs.

Usage

The following macro creates a named Pin Assignment Table:

PIN_ASSIGNMENTS(name)

The following macro selects one, of possibly multiple, Pin Assignment Tables to be used.
This must be done in a CONFIGURATION() block:

DUT Tester
Pin Resource
D0 a_1
D1 a_3

Cs_a a_11
Gnd a_na

D0 a_17
D1 a_19

Cs_a a_31
Gnd a_na

DUT
1

DUT
3

DUT
2

DUT
4

DUT Tester
Pin Resource
Vcc a_dps1a
A0 a_5
A1 a_7
Rd a_9

Vcc a_dps2a
A0 a_21
A1 a_23
Rd a_25

DUT Tester
Pin Resource
D0 b_1
D1 b_3

Cs_b b_12
Gnd b_na

D0 b_17
D1 b_19

Cs_b b_32
Gnd b_na

DUT Tester
Pin Resource
Vcc b_dps1a
A0 b_5
A1 b_7
Rd b_9

Vcc b_dps2b
A0 b_21
A1 b_23
Rd b_25
 2/27/09 Pg-260

Configuring the Tester to the DUT
USE_PIN_ASSIGNMENTS(name)

The following macro allows the inclusion of an existing [partial] Pin Assignment Table in the
definition of the Pin Assignment Table being defined:

INCLUDE_PIN_ASSIGNMENTS(name)

The following macro is used to make an external or forward declaration:

EXTERN_PIN_ASSIGNMENTS(name)

The following macros are used to insert DutPins into the Pin Assignment Table being
defined, and associate one or more HDTesterPin value(s) with each DutPin. This
describes the physical connections between one or more DUTs and the tester resources.
The name of the macro identifies the number of required HDTesterPins arguments and
thus the number of DUT(s) the program can test in parallel. A given Pin Assignment Table
can use only one form of these macros By definition, using any of these macros results in a
Multi-DUT Test Program:

ASSIGN_1DUT(DutPin, t1)

ASSIGN_2DUT(DutPin, t1, t2)

ASSIGN_4DUT(DutPin, t1, t2, t3, t4)

ASSIGN_6DUT(DutPin, t1, t2, t3, t4, t5, t6)

... snip ...

ASSIGN_32DUT(DutPin,
t1, t2, t3, t4, t5, t6, t7, t8, t9, t10,
t11, t12, t13, t14, t15, t16, t17, t18, t19, t20,
t21, t22, t23, t24, t25, t26, t27, t28, t29, t30,
t31, t32)

where:

name identifies the name of the Pin Assignment Table. Must be a valid C identifier.

DutPin identifies one DutPin.
 2/27/09 Pg-261

Configuring the Tester to the DUT
t1, t2, ... t32, each identify one HDTesterPin value. When multiple tn values are
specified, the first value corresponds to DUT-1, the second to DUT-2, etc.:

Examples
The following is a Assignment Table for a memory device . The name of this Pin Assignment
Table is soic_package. The DUT pin named data_in is connected to tester channel
a_10. The DUT pin named data_out is connected to tester channel a_5. And so on. The
gnd pin is not connected to any tester hardware resource thus a_na or b_na (not
applicable) is used in the tester pin field for that pin. The DUT power pin, vcc, is connected
to a_dps1 as shown. This is a Multi-DUT Test Program, even though it supports testing
only one DUT:

Value Purpose

a_n
b_n

Tester signal pin connection, where n is an integer from 1 to 64 (for Sites-
per-Controller = 1) or up to 640 (for Sites-per-Controller = 10). The value n
represents one tester pin electronics channel. Each Magnum 1/2 Site
Assembly Board has 128 signal pins, half identified using the a_n notation,
the other half using the b_n notation, see Functional Pin-pairs.

a_dpsna
a_dpsnb
b_dpsna
b_dpsnb

Tester DPS connection, where n is an integer from 1 to 4 (for Sites-per-
Controller = 1) or up to 40 (for Sites-per-Controller = 10), identifying one
DPS. Each Site Assembly Board has 8 DPS, half are identified using the
a_n prefix notation, the other half using the b_n prefix notation (this is to be
consistent with how signal pins are numbered using the Magnum 1/2
Functional Pin-pairs architecture). The a and b suffix identifies one DPS
output (each DPS has 2 outputs, see Magnum DPS Output Block Diagram).

a_hvn
b_hvn

Tester HV connection, where n is an integer from 1 to 8 (for Sites-per-
Controller = 1) or up to 80 (for Sites-per-Controller = 10), identifying one HV.
Each Site Assembly Board has 16 HV, half are identified using the a_n
notation, the other half using the b_n notation (this is to be consistent with
how signal pins are numbered using the Magnum 1/2 Functional Pin-pairs
architecture).

a_na
b_na

No connection to test resources. Used to identify DUT pins which are not
connected to the tester hardware but which the user wishes to show in the
Pin Assignments Table anyway. This is most commonly used to identify
ground pins.
 2/27/09 Pg-262

Configuring the Tester to the DUT
DUT_PIN(data_in){}
DUT_PIN(dat_out){}
DUT_PIN(clk){}
DUT_PIN(cs_bar){}
DUT_PIN(vcc){}
DUT_PIN(gnd){}

PIN_ASSIGNMENTS(soic_package) {

SITES_PER_CONTROLLER(1) // See Sites-per-Controller
// DUT Pin Tester
// Name Resource
// -------- --------

ASSIGN_1DUT(data_in, a_10)
ASSIGN_1DUT(dat_out, a_5)
ASSIGN_1DUT(clk, a_3)
ASSIGN_1DUT(cs_bar, a_1)
ASSIGN_1DUT(vcc, a_dps1a)
ASSIGN_1DUT(gnd, a_na)

}

The following Pin Assignment Table is designed to test 4 DUTs in parallel. Each DUT has a
different tester resource identified for each DUT pin name (DutPin):

DUT_PIN(dp1){}
DUT_PIN(dp2){}
DUT_PIN(vcc){}
DUT_PIN(vpp){}
DUT_PIN(gnd){}

PIN_ASSIGNMENTS(myPinAssignmentsTable) {
SITES_PER_CONTROLLER(1) // See Sites-per-Controller
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
ASSIGN_4DUT(dp1, a_1, b_1, a_23, b_23)
ASSIGN_4DUT(dp2, a_21, b_21, a_3, b_3)
ASSIGN_4DUT(vcc, a_dps1a, b_dps1a, a_dps1b, b_dps1b)
ASSIGN_4DUT(vpp, a_hv1, b_hv1, a_hv2, b_hv2)
ASSIGN_4DUT(gnd, a_na, b_na, a_na, b_na)

}

Note the following:

• This is a Magnum 1/2 Multi-DUT Test Program, testing 4 DUTs, each with four
DutPins (dp1, dp2, vcc, vpp) plus ground.
 2/27/09 Pg-263

Configuring the Tester to the DUT
• DUT #1 (t_dut1) and DUT #2 (t_dut2) share Functional Pin-pairs, as do DUTs
#3 and #4. In this example, DUT #1 and DUT #2 will receive the same functional
timing edges, as will DUT #3 and DUT #4.

3.8.3.1 ASSIGN_64DUT Work-around
See Pin Assignment Table.

This section is needed because Visual Studio limits the number of arguments to a given
macro to 64 and violating this limit is fatal.

Note: the information in this section was added to support testing 64 DUTs on
Magnum 2x (first available in software release h3.5.xx). However, the methods
noted below may be used in any Magnum test program, thus this section
appears in all Magnum manuals.

In software release h3.5.xx, the number of DUTs which can be tested in parallel using
Magnum 2x was increased to a maximum of 64. However, given the Visual Studio limitation
noted above, it is not possible to use an ASSIGN_64DUT macro to support this number of
DUTs in the Pin Assignment Table.

The work-around to this limitation (below) expands the underlying code represented by the
macro. In the following example, NUM_DUTS is user-defined, to aid in seeing where the value
is used (it may also be useful defining the Pin Scramble tables, see SCRAMBLE_32DUT
Work-around). Regarding the add() function in the example:

• add() is a member function of the PIN_ASSIGNMENTS class.
• add() is used to specify the HDTesterPins mapped to one DUT pin, one

HDTesterPin for each DUT.
• The first argument, obj, is defined by the PIN_ASSIGNMENTS class and

represents the pin assignments table being defined (local scope). This is used as-
is as shown below.

• The 2nd argument is the DUT pin (DutPin) being defined.
• The 3nd argument is the count of subsequent HDTesterPin arguments (the

add() function uses a variable length argument list).
• The remaining arguments are HDTesterPins, specified in numerical DUT order

(t_dut1, t_dut2, etc.). The quantity of HDTesterPin arguments must match the
count specified for the 3rd argument.
 2/27/09 Pg-264

Configuring the Tester to the DUT
The following example has 4 DUT pins to test 64 DUTs. This example is only valid on
Magnum 2x.

#include "tester.h"

DUT_PIN(dp1){}
DUT_PIN(dp2){}
DUT_PIN(dp3){}
DUT_PIN(dp4){}

#define NUM_DUTS 64

PIN_ASSIGNMENTS(PA64_duts){

add(obj, dp1,
NUM_DUTS,
a_1, b_1, c_1, d_1, a_5, b_5, c_5, d_5,
a_9, b_9, c_9, d_9, a_13, b_13, c_13, d_13,
a_17, b_17, c_17, d_17, a_21, b_21, c_21, d_21,
a_25, b_25, c_25, d_25, a_29, b_29, c_29, d_29,
a_33, b_33, c_33, d_33, a_37, b_37, c_37, d_37,
a_41, b_41, c_41, d_41, a_45, b_45, c_45, d_45,
a_49, b_49, c_49, d_49, a_53, b_53, c_53, d_53,
a_57, b_57, c_57, d_57, a_61, b_61, c_61, d_61

);

add(obj, dp2,
NUM_DUTS,
a_2, b_2, c_2, d_2, a_6, b_6, c_6, d_6,
a_10, b_10, c_10, d_10, a_14, b_14, c_14, d_14,
a_18, b_18, c_18, d_18, a_22, b_22, c_22, d_22,
a_26, b_26, c_26, d_26, a_30, b_30, c_30, d_30,
a_34, b_34, c_34, d_34, a_38, b_38, c_38, d_38,
a_42, b_42, c_42, d_42, a_46, b_46, c_46, d_46,
a_50, b_50, c_50, d_50, a_54, b_54, c_54, d_54,
a_58, b_58, c_58, d_58, a_62, b_62, c_62, d_62

);

add(obj, dp3,
NUM_DUTS,
a_3, b_3, c_3, d_3, a_7, b_7, c_7, d_7,
a_11, b_11, c_11, d_11, a_15, b_15, c_15, d_15,
a_19, b_19, c_19, d_19, a_23, b_23, c_23, d_23,
a_27, b_27, c_27, d_27, a_31, b_31, c_31, d_31,
a_35, b_35, c_35, d_35, a_39, b_39, c_39, d_39,
 2/27/09 Pg-265

Configuring the Tester to the DUT
a_43, b_43, c_43, d_43, a_47, b_47, c_47, d_47,
a_51, b_51, c_51, d_51, a_55, b_55, c_55, d_55,
a_59, b_59, c_59, d_59, a_63, b_63, c_63, d_63

);

add(obj, dp4,
NUM_DUTS,
a_4, b_4, c_4, d_4, a_8, b_8, c_8, d_8,
a_12, b_12, c_12, d_12, a_16, b_16, c_16, d_16,
a_20, b_20, c_20, d_20, a_24, b_24, c_24, d_24,
a_28, b_28, c_28, d_28, a_32, b_32, c_32, d_32,
a_36, b_36, c_36, d_36, a_40, b_40, c_40, d_40,
a_44, b_44, c_44, d_44, a_48, b_48, c_48, d_48,
a_52, b_52, c_52, d_52, a_56, b_56, c_56, d_56,
a_60, b_60, c_60, d_60, a_64, b_64, c_64, d_64

);
}

3.8.3.2 Sites-per-Controller
See Pin Assignment Table.

Description

When the DUT to be tested requires more than 64 signal pins, the
SITES_PER_CONTROLLER() Test System Macro is used, in the Pin Assignment Table, to
specify how many test sites are required to test the DUT.

In general, when testing a DUT with 64 signal pins or less, the sites-per-controller value
should be 1, for DUTs with 65 to 128 signal pins the value should be 2, etc.

Using Magnum 1/2 the Functional Pin-pairs architecture does not change the purpose of
sites-per-controller, however the definition of a site is somewhat more complex as compared
to Maverick-I/-II. A Magnum 1/2 site consists of 128 signal pins; 64 pins on sub-site A (a_1
through a_64) and 64 pins on sub-site B (b_1 through b_64). In most applications, it is not
practical to use pins from both sub-site A and B to functionally test a given DUT. This is
because both pins of a given pin-pair receive exactly the same pattern data and waveforms
and it is a rare device type which can use this in real world testing. Thus, when specifying
the sites-per-controller value, it is likely that two sites will always be required to test a DUT
which needs more than 64 but less than 128 signal pins. However, in this situation, it will
 2/27/09 Pg-266

Configuring the Tester to the DUT
also be possible to test 2 DUTs on each site; DUT-1 using pins a_1 through a_128 and
DUT-2 using pins b_1 through b_128.

In situations where the DUT being tested has multiple package types with different pin
requirements, for example 64 pins or less in one package type and 65 signal pins or more in
another, the Pin Assignment Table for each package type will specify a different sites-per-
controller value.

When sites-per-controller > 1, test pattern branch-on-error operations (MAR CJMPE, CJMPNE,
etc.) require additional pipeline clock counts, see Error Pipeline Requirements.

The sites_per_controller() function may be used to determine the sites-per-
controller value currently set in the test program.

Usage
PIN_ASSIGNMENTS(table_name) { // See PIN_ASSIGNMENTS()

SITES_PER_CONTROLLER(#_sites)

// ... Pin Assignment Table macros as needed.
}

int sites_per_controller();

where:

SITES_PER_CONTROLLER is a Test System Macro used to specify the number of 64-pin
sites required to test one DUT. When SITES_PER_CONTROLLER is not explicitly specified it
defaults to 1.

#_sites is the integer number of 64-pin sites required to test one DUT. Using Magnum 1/2/
2x, the legal values are 1 to 10. The value specified must be consistent with the number of
site-assembly boards installed in any test system which will execute the test program.

sites_per_controller() returns the value set using SITES_PER_CONTROLLER.

Example
The following example shows the beginning of a Pin Assignment Table for a DUT which has
between 65 and 128 signal pins:

DUT_PIN(dp1){}
DUT_PIN(dp2){}

PIN_ASSIGNMENTS(myPinAssignmentsTable) {
SITES_PER_CONTROLLER(2)
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
 2/27/09 Pg-267

Configuring the Tester to the DUT
ASSIGN_4DUT(dp1, a_1, b_1, a_23, b_23)
ASSIGN_4DUT(dp2, a_96, b_96, a_111, b_111)

}

3.8.3.3 Shared Tester Pins
See Pin Assignment Table.

Note: this section and related information requires software release h1.0.32 or later.

Note: this section describes a specific application which is not commonly used, quite
restricted in capabilities and requires the user to manage program details
normally handled by the system software.

It is possible to connect a given tester pin (PE channel) to more than one DUT, allowing
more DUTs to be tested in parallel than is possible without sharing pins. Normally, this
application requires user-designed DUT board circuitry to connect/disconnect DUTs at
selected times in the test flow.

The Magnum 1/2/2x software only support this capability in two places:

• Pin Assignment Table, allowing a given pin (PE channel) to be assigned to the
same DutPin of more than one DUT. This is described and documented below.
And, as indicated above, support for this capability is very specific and limited.

• Error Catch RAM Software, specifically the ecr_dut_number_set(),
ecr_dut_number_get() functions. This section also describes how pin lists are
affected, which affects ECR use.

Note: other Magnum 1/2/2x software does not comprehend or compensate for sharing
tester pins between DUTs; i.e. the user is responsible for proper operation.

Rules:

1. The various ASSIGN_nDUT macros (see Pin Assignment Table) allow a given
HDTesterPin (PE channel) to be mapped to a given DutPin more than once, but the
usage rules are very specific. Examples are used below to explain the rules.
 2/27/09 Pg-268

Configuring the Tester to the DUT
For example, the following program tests 16 DUTs in parallel with the first 8 DUTs sharing
pins with the second 8 DUTs:

DUT_PIN(D0){}
DUT_PIN(D1){}
...
PIN_ASSIGNMENTS(pin_assign_16_duts){
// PIN DUT1 DUT2 DUT3 ...snip... DUT9 DUT10 Etc...
ASSIGN_16DUT(D0, a_1, b_1, a_17,...snip..., a_1, b_1, Etc...
ASSIGN_16DUT(D1, a_2, b_2, a_18,...snip..., a_2, b_2, Etc...
...
}

Note the following:

• Each set of DUTs must mirror the first set. Using the previous example, two sets
of DUTs are tested: the second set begins with DUT-9. The HDTesterPin
associated with DUT-9 pin D0 must match DUT-1 pin D0, and the HDTesterPin
associated with DUT-9 pin D1 must match DUT-1 pin D1. Etc.

• All DUT pins must be configured identically; i.e. all must share pins in a similar
manner. Using the previous example, the following is illegal because it violates
this rule :

ASSIGN_16DUT(D1, a_2, b_2, a_18,...snip..., a_50, b_50, Etc...

3.8.3.4 testerpin_name()
See Configuring the Tester to the DUT, Pin Assignment Table, DUT Pins.

Description
The testerpin_name() function is used to return the name of a specified tester pin.

Usage
CString testerpin_name(HDTesterPin pin);

where:

pin identifies the target tester pin. Legal values are of the HDTesterPin enumerated type.

testerpin_name() returns the pin name as a CString.
 2/27/09 Pg-269

Configuring the Tester to the DUT
Example
The following example prints the name of each tester pin connected to each DUT defined in
the Pin Assignment Table:

DutPin *dp = dp1;
HDTesterPin tpin;
for(DutNum dutnum = t_dut1;

pin_info(dp, dutnum, &tpin);
++dutnum)

output(" %s of t_dut%d connects to %s",
resource_name(dp),
(dutnum + 1),
testerpin_name(tpin));

3.8.3.5 testerpin_value()
See Configuring the Tester to the DUT, Pin Assignment Table, DUT Pins.

Description
The testerpin_value() function converts a tester pin name specified as a CString into
a HDTesterPin.

testerpin_value() is the complement of testerpin_name().

Usage
BOOL testerpin_value(CString name, HDTesterPin *pin);

where:

name specifies the target pin name as a CString.

pin is a pointer to an existing HDTesterPin variable used to return the pin identified by
name. If name is invalid pin will return NULL.

testerpin_value() returns TRUE if the specified pin name is valid, otherwise FALSE is
returned.

Example
HDTesterPin htpin;
 2/27/09 Pg-270

Configuring the Tester to the DUT
BOOL ok;

ok = testerpin_value("a_257", &htpin);
ok = testerpin_value("a_dps1a", &htpin);
ok = testerpin_value("a_hv2", &htpin);

3.8.3.6 testerpin_offset()
See Configuring the Tester to the DUT, Pin Assignment Table, DUT Pins.

Note: first available in software release h1.1.23.

Description
Given a specified HDTesterPin, the testerpin_offset() function will return:

• The first pin (base pin) of the same type (signal pin, DPS pin, etc.).
• The zero-based numerical offset of the specified pin from its base pin.

If the specified target pin is a valid HDTesterPin the HDTesterPin pin value returned will
be one of:

• a_1 (first signal pin from sub-site A)
• b_1 (first signal pin from sub-site B)
• a_dps1a (first DPS pin from sub-site A)
• b_dps1a (first DPS pin from sub-site B)
• a_hv1 (first HV pin from sub-site A)
• b_hv1 (first HV pin from sub-site B)
• a_na

For example:

• Given HDTesterPin a_49, the base pin is a_1 and the offset is 48.
• Given HDTesterPin b_hv4, the base pin is b_hv1 and the offset is 3.

Usage
BOOL testerpin_offset(HDTesterPin *pin,

DWORD *offset = 0);
 2/27/09 Pg-271

Configuring the Tester to the DUT
where:

pin both specifies the target input HDTesterPin and returns the base pin. It must be a
pointer to an existing HDTesterPin variable, previously initialized with the target input
value which will be replaced by the base pin. See examples.

offset is a pointer to an exising DWORD variable used to return the pin's offset value from
its base pin.

testerpin_offset() returns TRUE if the value specified for pin is valid, otherwise
FALSE is returned.

Example
The following example will return a pin value = a_1 and offset = 102:

DWORD offset;
HDTesterPin pin = a_103;
BOOL ok = testerpin_offset(&pin, &offset);
if(! ok) output("ERROR: invalid pin input value");

3.8.3.7 Pin Iteration
See Configuring the Tester to the DUT, Pin Assignment Table, Magnum 1, 2 & 2x Parallel
Test, See DUT Pins.

This section discusses methods which can be used to reliably iterate over pins of a
particular type.

Fundamental to this topic are the following built-in pin lists, defined by the system software.
These can be used to reliably iterate pins:

• PinList* builtin_UsedPins; // All signal pins used in Pin Assignment Table
• PinList* builtin_UsedHVPins; // All HV pins used in Pin Assignment Table
• PinList* builtin_UsedDPS; // All DPS pins used in Pin Assignment Table

These pin lists are initialized by the system software during the initial program load, to reflect
the pins actually used by the test program being loaded.

To iterate over all signal pins used in the current program:
 2/27/09 Pg-272

Configuring the Tester to the DUT
HDTesterPin tpin;
for (int i = 0; pin_info(builtin_UsedPins, i, &tpin); ++i) {

// Use tpin
}

It is also possible to iterate by DutNum, for example to determine which pins are associated
with a DUT:

DutPin *dpin;
for(int i = 0; pin_info(builtin_UsedPins, i, &dpin); ++i){

HDTesterPin tpin;
for(DutNum dut = t_dut1;

pin_info(dpin, dut, &tpin);
++dut) {

// Use tpin and dpin
}

}

It is also possible to iterate through specific pin ranges. However, any loops through an
entire range of a particular type of pin should be treated with suspicion! It is generally better
to loop over the built-in pin lists, so don't use the idioms in the following example unless you
have a reason why the built-in pin lists don’t work for your application:

for (HDTesterPin tp = a_1; tp < a_pe_max; ++tp) {
// In software releases prior to h1.2.xx, tp will range from a_1
// to a_512. Beginning in h1.2.xx, tp will range from a_1 to
// a_2560

}

for (HDTesterPin tp = b_1; tp < b_pe_max; ++tp) {
// In software releases prior to h1.2.xx, tp will range from a_1
// to a_512. Beginning in h1.2.xx, tp will range from b_1 to
// a_2560

}

3.8.4 Pin Lists
See Configuring the Tester to the DUT, Pin Assignment Table, Magnum 1, 2 & 2x Parallel
Test, See DUT Pins.
 2/27/09 Pg-273

Configuring the Tester to the DUT
Description
A pin list is a named list of DUT pins. Many Nextest functions take a pin list (PinList*)
argument, to identify one or more pin(s) to be affected by the function; for example, to
program a per-pin voltage, current, or timing value, etc.

Note the following:

• Pin lists can be defined statically (most common) or dynamically.
• The PINLIST Test System Macro is used to create a static pin list. The PINLIST

macro can only be used at global scope (i.e. outside of any C-function, not nested,
etc.), but otherwise can appear in any test program source file. For instance, it
might improve program readability to define a pin list used only once just before
the code that uses it, but to define commonly used pin lists all in one file. The
convention implemented by the Test Program Wizards has pin lists stored in the
pin_lists.cpp file.

• The EXTERN_PINLIST macro is provided to simplify making an external pin list
declaration, conventionally in the pin_lists.h file, which is then included into all
other source files, typically via the tester.h file.

• The INCLUDE_PINLIST macro can be used to add an existing pin list as an
element of a new pin list definition.

• Dynamic pin lists are created, and destroyed, using pinlist_create(),
pinlist_destroy().

• In use, a pin list is formally represented as a PinList*.
• Several additional macros are used to add members to a pin list. See Usage.
• Pin list members are specified using DutPin names, previously defined using the

DUT_PIN macro. These are the same names used in the Pin Assignment Table.
• When using Magnum 1/2/2x, most functions which take a Pinlist* argument

also have an overload which will accept a DutPin argument.
• The order of pins in a pin list is typically not important. However when it is, the

general rule is that the first element is processed first, etc.
• The pin_info() function can be used to iterate through the pins in a pin list.
• Given the name of a pin list (as a char*, LPCTSTR or CString) the

PinList_find() function can be used to get a pointer to the pin list
(PinList*).

• The system software predefines a number of built-in pin lists, all of which start with
the prefix builtin_. This prefix is reserved for Nextest use.
 2/27/09 Pg-274

Configuring the Tester to the DUT
builtin_UsedPins
builtin_UsedHVPins
builtin_UsedDPS

Using Magnum 1/2/2x Multi-DUT Test Programs, the underlying contents of a pin list is more
complex than in non-Multi-DUT Test Program. The following example code will be used to
explain this:

DUT_PIN(dp1){}
DUT_PIN(dp2){}
PIN_ASSIGNMENTS(myPinAssignmentsTable) {

SITES_PER_CONTROLLER(1) // See Sites-per-Controller
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
ASSIGN_4DUT(dp1, a_1, b_1, a_23, b_23)
ASSIGN_4DUT(dp2, a_21, b_21, a_3, b_3)

}

PINLIST(plAllPins){
PINS2 (dp1, dp2)

}

Using this example, note the following:

• plAllPins actually represents 8 members, 2 pins for each DUT defined in the
example Pin Assignment Table.

• When plAllPins is used to program (set) a value, the Active DUTs Set (ADS)
determines which pin(s) are actually affected. If, for example, the Active DUTs Set
(ADS) contains all DUTs except t_dut2, any Nextest function which programs a
parameter using plAllPins will not affect the two pins mapped to DUT-2; i.e.
pins b_1 and b_21 will not be affected. And, the other 6 pins mapped to DUTs 1,
3 and 4, will be affected.

Also see DUT-specific Pin Lists.

Usage
PinList is the resource (see Resources) created using the PINLIST macro.

The following Test System Macros are used to create and add pins to a PinList.

PINLIST(list_name) {
PINS1(p1)
PINS2(p1, p2)
PINS3(p1, p2, p3)
PINS4(p1, p2, p3, p4)
 2/27/09 Pg-275

Configuring the Tester to the DUT
PINS5(p1, p2, p3, p4, p5)
PINS6(p1, p2, p3, p4, p5, p6)
PINS7(p1, p2, p3, p4, p5, p6, p7)
PINS8(p1, p2, p3, p4, p5, p6, p7, p8)
PINS(p1, p2, p3, p4, p5, p6, p7, p8)
INCLUDE_PINLIST(existing_list)

}

where:

list_name identifies the pin list being created. Must be a valid C identifier.

PINS1 through PINS8, and PINS are Test System Macros used to add members to the pin
list. The number of arguments to each macro must match the name of the macro; i.e.
PINS4 requires 4 arguments. PINS operates the same as PINS8.

p1 through p8 are DutPins. These are the same as used in the DUT Pin Name column in
the Pin Assignment Table.

Examples

Example 1:
The following example creates a pin list called data_bus, containing 8 members (d0,..,
d7):

PINLIST(data_bus) {
PINS8(d0, d1, d2, d3, d4, d5, d6, d7)

}

Example 2:
The following example creates a pin list called address_bus, containing 16 members.
Different macros are used here for variety:

PINLIST(address_bus) {
PINS5(a15, a14, a13, a12, a11, a10)
PINS4(a9, a8, a7, a6)
PINS6(a5, a4, a3, a2, a1, a0)

}

Example 3:
In the following example, the pin lists from Example 1: and Example 2: are used as elements
in a new pin list, called all_pins. This example demonstrates the use of the
INCLUDE_PINLIST macro:
 2/27/09 Pg-276

Configuring the Tester to the DUT
PINLIST(all_pins) {
INCLUDE_PINLIST(data_bus)
INCLUDE_PINLIST(address_bus)
PINS3(WE, CS, OE)

}

3.8.4.1 DUT-specific Pin Lists
See Pin Lists.

Note: first available in software release h1.1.26 and h2.0.11.

Description
In Multi-DUT Test Programs, when defining Pin Lists, by default, a given DutPin added to
the pin list actually represents the same pin of all DUTs in the test program. This is
transparent to the user and, in most applications, is desirable: these pin lists make it easy to,
for example, set identical test parameter values for a set of pins for all DUTs in the test
program (usually all DUTs in the Active DUTs Set (ADS)). And, when the pins of a sub-set of
DUTs must be manipulated/tested the Active DUTs Set (ADS) can be modified to control
which DUT(s) will be affected.

It is also possible to create a pin list which contains pin elements for specific DUT(s),
excluding pins of some DUT(s). These can be useful when Controlling PE Levels from the
Test Pattern.

When Controlling PE Levels from the Test Pattern, when a conventional pin list is used in the
LSENABLE pattern instruction, the level being modified will change on the same pin(s) of all
DUT(s) in the Active DUTs Set (ADS) (this is usually desirable). But, since it is not possible
to modify the ADS during the execution of a test pattern, to modify a PE level for pins of
some active DUT(s) (maybe only one) while the other active DUT(s) remain unaffected
requires using a pin list which contains only pins of specific DUTs. The following macros may
be used to create these pin lists.

Usage
The following Test System Macros are used to add pin(s) for specific DUT(s) to a PinList.
These are only usable within the body of the PINLIST() macro (see example below):
 2/27/09 Pg-277

Configuring the Tester to the DUT
PINS_OF_1DUT(dp, d1)

PINS_OF_2DUT(dp, d1, d2)

PINS_OF_3DUT(dp, d1, d2, d3)

... snip ...

PINS_OF_32DUT(dp, d1, d2, d3, ... snip ..., d32)

where:

dp identifies the DutPin to be added to the pin list.

d1 through d32 identifies which DUT(s) will have their pins included in the pin list. Legal
values are of the DutNum enumerated type. The number of DutNum values which must be
specified is determined by the macro name.

Example
The following example creates 8 pin lists, each with a unique name and each identifying one
pin (VDD) from one DUT:

PINLIST(pl_vcc_DUT1) { PINS_OF_1DUT(VDD, t_dut1) } // PINLIST()
PINLIST(pl_vcc_DUT2) { PINS_OF_1DUT(VDD, t_dut2) }
PINLIST(pl_vcc_DUT3) { PINS_OF_1DUT(VDD, t_dut3) }
PINLIST(pl_vcc_DUT4) { PINS_OF_1DUT(VDD, t_dut4) }
PINLIST(pl_vcc_DUT5) { PINS_OF_1DUT(VDD, t_dut5) }
PINLIST(pl_vcc_DUT6) { PINS_OF_1DUT(VDD, t_dut6) }
PINLIST(pl_vcc_DUT7) { PINS_OF_1DUT(VDD, t_dut7) }
PINLIST(pl_vcc_DUT8) { PINS_OF_1DUT(VDD, t_dut8) }

3.8.4.2 pinlist_create(), pinlist_destroy()
See Pin Lists.

Description

The pinlist_create() function is used, during program execution, to dynamically create
a pin list and define its PinList*. The pinlist_destroy() function is used to destroy a
pin list, freeing any associated memory, and undefine its PinList*.
 2/27/09 Pg-278

Configuring the Tester to the DUT
Usage
The following function creates a pin list containing one DutPin:

PinList* pinlist_create(DutPin *dutpin);

The following function creates a pin list containing one or more DutPin(s):

PinList* pinlist_create(DutPin **pins,
int size,
LPCTSTR name DEFAULT_VALUE(0));

void pinlist_destroy(PinList* &obj);

where:

dutpin identifies one pin to be in the pin list. When this pin list is accessed, the
corresponding pin of all DUT(s) in the Active DUTs Set (ADS) are accessed.

pins is a pointer to an existing DutPin* or array of DutPin* values which define the
members of the pin list being created. When this pin list is accessed, the corresponding
pin(s) of all DUT(s) in the Active DUTs Set (ADS) are accessed.

size is used when pins repesents an array of DutPins and specifies the number of
DutPin* values to add to the pin list from the pins argument.

name is optional, and is used to specify a name for the PinList* being defined.

obj is a pointer to the PinList to be destroyed.

pinlist_create() returns a pointer to the PinList created (PinList*).

Examples
DutPin* myPins[]={ D0, D1 };
PinList* pl_myPins = pinlist_create(myPins, 2, "myPins");
// Use pl_myPins as desired
pinlist_destroy(pl_myPins);

3.8.4.3 pin_info()
See Pin Lists.
 2/27/09 Pg-279

Configuring the Tester to the DUT
Description
The pin_info() function has several purposes:

• To identify the DutPin at a specified position in a PinList:
• In Multi-DUT Test Program, to identify the tester pin connected to a specific pin of

a specified DUT.
• In Multi-DUT Test Program, to identify the HDTesterPin associated with each pin

in a pin list, for each DUT in the test program.
pin_info() is often used within a loop, to iterate over each member pin of the specified
PinList. This usage can be seen in the various datalogging applications found in most test
programs. The example below shows this usage.

Usage
The following function is used to obtain the HDTesterPin connected to a specified DutPin
for a specified DUT. This is used in Multi-DUT Test Programs, where a given DutPin
actually represents an HDTesterPin for each DUT in the program:

BOOL pin_info(DutPin *obj, DutNum dut, HDTesterPin *pin);

The following function is used to obtain a pointer to the DutPin at the indexth position of the
specified PinList:

BOOL pin_info(PinList* obj, int dutpin_index, DutPin **dutpin);

The following function is used to obtain the HDTesterPin at the pin_indexth position in
the specified pin list. In Multi-DUT Test Programs, the Active DUTs Set (ADS) is ignored.
The HDTesterPin at pin_index = 0 is for t_dut1, the HDTesterPin at pin_index = 1
is for t_dut2, etc.

BOOL pin_info(PinList* obj, int pin_index, HDTesterPin *p_pin);

where:

obj is used in two contexts:

• As a DutPin*, obj identifies the target DutPin.
• As a PinList*, obj identifies the PinList containing the dutpin of interest.

dutpin_index is the zero based position of the dutpin of interest in the specified
PinList.

dutpin is a pointer to a DutPin pointer variable used to return the address of the DutPin
at the index’th position in the specified PinList.
 2/27/09 Pg-280

Configuring the Tester to the DUT
dut identifies the DutNum for which the information is to be returned. This is used in Multi-
DUT Test Programs, where a given DutPin actually represents a HDTesterPin for each
DUT in the program.

pin_index is the zero based position of the pin of interest in the specified PinList.

p_pin is a pointer to an existing variable of type HDTesterPin. It is used to return the
tester pin of the pin at the pin_index'th position in the specified PinList.

The first version of pin_info() above returns TRUE if the specified DUT is currently in the
Active DUTs Set (ADS), otherwise FALSE is returned.

The second and third versions of pin_info() above return TRUE when the index’th
position of the specified PinList contains a valid pin, otherwise FALSE is returned. This is
useful when using pin_info() as the control statement in a C for loop (as seen the
Example below).

Example
The following example iterates over all members of the pin list named allpins and prints the
name of each member:

DutPin *dutpin;
for(int i = 0;pin_info(allpins, i, &dutpin); ++i)

output(" Pinlist member-%d => %s", p, resource_name(dutpin));

The following example iterates over all DUT(s) defined in the Pin Assignment Table and, for
each DUT, returns the HDTesterPin connected to that DUT’s WE_bar pin:

DutPin *dp = WE_bar;
HDTesterPin tpin;
for(DutNum dutnum = t_dut1;

pin_info(dp, dutnum, &tpin);
++dutnum)

output(" %s of t_dut%d connects to %s",
resource_name(dp),
(dutnum + 1),
testerpin_name(tpin));

3.8.4.4 all_dps()
See Pin Lists.
 2/27/09 Pg-281

Configuring the Tester to the DUT
Description
The all_dps() function can be used to confirm that all members of a specified PinList
are DUT Power Supply (DPS) pins (i.e. not digital test pins or High Voltage Source/Measure
Unit (HV) pins).

See also no_dps(), all_pe(), no_pe(), all_hv(), no_hv().

Usage
BOOL all_dps(PinList* obj);

where:

obj identifies the PinList of interest.

all_dps() returns TRUE if all pins in obj are DPS pins, otherwise FALSE is returned.
Beginning in software release h2.2.xx/h1.2.xx all_dps() returns FALSE if the obj
argument is NULL or contains no pins.

Example
if (all_dps (pl_some_pins))

dps (3.3 V, pl_some_pins);
else

output(" ERROR: invalid PinList for use with dps() function");

3.8.4.5 no_dps()
See Pin Lists.

Description
The no_dps() function can be used to determine whether any members of a specified
PinList are DUT Power Supply (DPS) pins.

See also all_dps(), all_pe(), no_pe(), all_hv(), no_hv().

Usage
BOOL no_dps(PinList* obj);

where:
 2/27/09 Pg-282

Configuring the Tester to the DUT
obj identifies the PinList of interest.

no_dps() returns TRUE if none of the pins in obj are DPS pins, otherwise FALSE is
returned. Beginning in software release h2.2.xx/h1.2.xx no_dps() returns FALSE if the
obj argument is NULL or contains no pins.

Example
if (no_dps (pl_some_pins))

vol (1 V, pl_some_pins);
else

output(" ERROR: invalid PinList using vol() function");

3.8.4.6 all_hv()
See Pin Lists.

Description
The all_hv() function can be used to confirm that all members of a specified PinList
are High Voltage Source/Measure Unit (HV) pins (i.e. not digital test pins or DUT Power
Supply (DPS) pins).

See also all_dps(), no_dps(), all_pe(), no_pe(), no_hv().

Usage
BOOL all_hv(PinList* *obj);

where:

obj identifies the PinList of interest.

all_hv() returns TRUE if all pins in obj are HV pins, otherwise FALSE is returned.
Beginning in software release h2.2.xx/h1.2.xx all_hv() returns FALSE if the obj
argument is NULL or contains no pins.

Example
if (all_hv (pl_some_pins))

hv_voltage_set(3.3 V, pl_some_pins);
else

output(" ERROR: invalid PinList for use with hv_voltage_set()");
 2/27/09 Pg-283

Configuring the Tester to the DUT
3.8.4.7 no_hv()
See Pin Lists.

Description
The no_hv() function can be used to determine whether any members of a specified
PinList are High Voltage Source/Measure Unit (HV) pins.

See also all_dps(), no_dps(), all_pe(), no_pe(), all_hv().

Usage
BOOL no_hv(PinList* obj);

where:

obj identifies the PinList of interest.

no_hv() returns TRUE if none of the pins in obj are HV pins, otherwise FALSE is returned.
Beginning in software release h2.2.xx/h1.2.xx no_hv() returns FALSE if the obj argument
is NULL or contains no pins.

Example
if (no_hv(pl_some_pins))

vol (1 V, pl_some_pins);
else

output(" ERROR: invalid PinList using vol() function");

3.8.4.8 all_pe()
See Pin Lists.

Note: first available in software release h2.2.xx/h1.2.xx.
 2/27/09 Pg-284

Configuring the Tester to the DUT
Description
The all_pe() function can be used to confirm that all members of a specified PinList
are digital test pins; i.e. not DUT Power Supply (DPS) or High Voltage Source/Measure Unit
(HV) pins).

See also all_dps(), no_dps(), no_pe(), all_hv(), no_hv().

Usage
BOOL all_pe(PinList* obj);

where:

obj identifies the PinList of interest.

all_pe() returns TRUE if all pins in obj are digital test pins pins, otherwise FALSE is
returned. all_pe() returns FALSE if the obj argument is NULL or contains no pins.

Example
if (all_pe (pl_some_pins))

vol(800 MV);
else

output(" ERROR: invalid PinList using vol() function");

3.8.4.9 no_pe()
See Pin Lists.

Note: first available in software release h2.2.xx/h1.2.xx.

Description
The no_pe() function can be used to determine whether a specified PinList contains any
digital test pins.

See also all_dps(), no_dps(), all_pe(), all_hv(), no_hv().

Usage
BOOL no_pe(PinList* obj);
 2/27/09 Pg-285

Configuring the Tester to the DUT
where:

obj identifies the PinList of interest.

no_pe() returns TRUE if none of the pins in obj are digital test pins, otherwise FALSE is
returned. no_pe() returns FALSE if the obj argument is NULL or contains no pins.

Example
if (no_pe (pl_some_pins))

output("pl_some_pins contains no digital test pins");
else

output("pl_some_pins contains at least 1 digital test pin");
 2/27/09 Pg-286

Program Execution Control
3.9 Program Execution Control
See Software.

• Overview
• Execution Context Functions
• Configuration Macros
• Host Begin Block, Host End Block
• Site Begin Block, Site End Block
• Tool Begin Block, Tool End Block
• Initialization Hook
• Sequence & Binning Table
• Parking Blocks
• Test Flow Synchronization
• Test Blocks
• Delay()
• Error Line Reset from CPU: reset_error()
• Control of Branch on Error Flag
• Over-programming Control Stimulus Selection

3.9.1 Overview
See Program Execution Control.

Executing a Magnum 1/2/2x test program invokes the following processes:

• UI - User Interface. Used to select, load, and unload a test program. It is UI which
invokes the Host process and Site process(es). Communicates with Host, Site,
and User Tools. The UI process site_num() = -1.

• Host process. Executes selected test program code on the Host computer (see
CONFIGURATION(), HOST_CONFIGURATION(), HOST_BEGIN_BLOCK(),
HOST_END_BLOCK(), INITIALIZATION_HOOK()). Can communicate with UI,
Sites and User Tools. The Host process site_num() = 0.
 2/27/09 Pg-287

Program Execution Control
• Site process(es). Executes selected test program code on the Site computer(s).
(see CONFIGURATION(), SITE_CONFIGURATION(), SITE_BEGIN_BLOCK(),
SITE_END_BLOCK(), INITIALIZATION_HOOK()). The Sequence & Binning
Table, Test Blocks, and all functions which access tester hardware execute in the
Site process. Can communicate with UI, Host, and User Tools. The Site process
site_num() = 1 through 40.

• Tool process(es). Optional. User Tools execute independent of the Host/Site
processes, but can communicate with each of them, and each other, though UI.
Tool processes have site_num() > 1024:

The diagram above shows the various process communication paths. The blue paths are
established when a test program is loaded - these are the standard program
communications paths. The red paths are established when User Tools are started.

user-written code in each process can communicate with the other processes using various
functions documented in Host / Site / Tool Communication. The site_num() values noted
above play a key role in this communications.

When a test program is loaded, the Host process and each Site process load the same test
program executable file. The program executes different code on Host vs. Site process as
determined by command line arguments used when the program is loaded. These
command line arguments are normally invisible to the user, and managed by UI - User
Interface. The exception is when Host/Site/Tool Debug Mode(s).

Site2 Controller

Site40 Controller

User Tool 1
process

Host Computer
Site1 ControllerAny Computer

site_num > 1024

UI
process

site_num = -1

Host
process

site_num = 0

Site-1
process

site_num = 1

Site-2
process

site_num = 2

Site-40
process

site_num = 40

User Tool 2
process

Any Computer

site_num > 1024

Test System

Sites 3..39 and pins a/b129-a/b2432 not shown
Pins

a2496-a2560
b2496-b2560

Pins
a65-a128
b65-b128

Pins
a1-a64
b1-b64
 2/27/09 Pg-288

Program Execution Control
As noted above, different test program code executes in Host vs. Site process(es). The table
below indicates some of the differences in Host vs. Site processes. Note that there is no
synchronization between Host or Site or Tool, as might be implied by the table:

Table 3.9.1.0-1 Host vs. Site vs. Tool Execution

Host Site(s) Tool

Communicates directly
with UI and Sites.
Communicates with User
Tools via UI.

Communicates with UI via
Host process.
Communicates with User
Tools via UI.

Communicates directly
with UI. Communicates
with Host and Sites via
UI.

Execute CONFIGURATION(),
and HOST_CONFIGURATION()

Wait for Host to signal
ready. Then Initialize
tester hardware defaults

Execute CONFIGURATION(),
and TOOL_CONFIGURATION()
to configure tool
options.

Execute
PIN_ASSIGNMENTS() to get
Sites-per-Controller
value

Execute CONFIGURATION(),
and SITE_CONFIGURATION()
to set up Site options.

Execute
TOOL_BEGIN_BLOCK() to
configure tool options.

Execute
HOST_BEGIN_BLOCK() (in a
separate thread) to
invoke and interact with
user dialogs and
interact with prober/
handler software.

Executing
PIN_ASSIGNMENTS(),
CURRENT_SHARE(),
PINLIST(), VIHH_MAP(),
PIN_SCRAMBLE()

Execute
INITIALIZATION_HOOK()

The Host does NOT
execute the Sequence &
Binning Table.

Execute
SITE_BEGIN_BLOCK() to
set up hardware per test
program configuration.

Communicate with UI,
Host, and/or Site using
Host / Site / Tool
Communication methods.

Execute
INITIALIZATION_HOOK()

Execute
INITIALIZATION_HOOK()

Execute TOOL_END_BLOCK()
when terminating the
tool.

Execute HOST_END_BLOCK()
when Closing the program

For each Start Testing
signal, execute the
Sequence & Binning
Table. Report test
results to UI.

Execute SITE_END_BLOCK()
when Closing the program
 2/27/09 Pg-289

Program Execution Control
3.9.2 Execution Context Functions
See Program Execution Control.

Description

The OnHost() function may be used to determine if the code being executed is executing
in the host process.

The OnSite() function may be used to determine if the code being executed is executing
in a site process.

The OnTool() function may be used to determine if the code being executed is executing
in the tool process.

The site_num() function may be used to determine the site number where the function is
executed.

These functions can be used to determine the current execution context (process) from
user-written C-code. See Overview.

By design, execution context is mostly transparent in a Magnum 1/2/2x test program.
However, there are several situations where user-written code explicitly references
execution context. This is in the form of a site number. In these cases the functions
documented here can be useful:

• Using the CONFIGURATION() macro, the macro body code will execute in Host,
Site, and User Tools processes, thus conditional statements are sometimes used
to differentiate code which is to execute in each context. However, there is a better
way (older programs didn’t have this). Rather than use CONFIGURATION() plus
conditional code it is recommended that the Host/Site/Tool specific configuration
macros be used instead; i.e. use HOST_CONFIGURATION(),
SITE_CONFIGURATION(), TOOL_CONFIGURATION().

• User Dialogs executed in the Host process often need to communicate with Site
process(es).

• User Dialogs executed in a User Tools process often need to communicate with
Host and/or Site processes (sometimes other tools).

• Using ui_OutputFile or ui_OutputFormat.
 2/27/09 Pg-290

Program Execution Control
• User Tools execute in processes separate from the test program. Code in user
tools often communicates with Host and/or Site processes. Similarly, if the test
program contains C-code which is to communicate with a user tool, that code must
be able to obtain the site number of the tool (as an ID), which can be different
each time the tool is started. However, this is not good design and is discouraged.

Usage
BOOL OnHost();

BOOL OnSite();

BOOL OnTool();

These functions each return TRUE when they are executed in the context after which they
are named. For example, OnHost() returns TRUE when executed in the Host process, etc.

int site_num();

The site_num() function is more general, and returns one of the following:

• -1 = UI execution context
• 0 = Host process execution context
• 1 through 40 = Site process execution context
• > 1024 = User Tools execution context

Example
if (OnHost()) {

// Host process code here
}
else if (OnSite()) {

// Site process code here. Will execute on all sites
}

if (site_num() == 0) {
// Host process code here

}
else if ((site_num() >0) && (site_num() < 1024)){

// Site process code. Will execute on all sites
}
else if ((site_num() == 3)){

// Site process code. Will execute on site #3 only
}
 2/27/09 Pg-291

Program Execution Control
else if (site_num() > 1024) {
// User Tools process code

}

Including the last else statement is misleading... code implementing User Tools is almost
always separate from test program code, thus this example would never be used.

3.9.3 Configuration Macros
See Program Execution Control.

Description
The macros documented below are all Test System Macros.

An important part of writing a test program is creating the various tables that configure the
tester software and hardware. Most of these tables are more generically called Single
Resource Types. For example:

• Pin Assignment Table
• Pin Scramble Map
• VIHH Maps
• Sequence & Binning Table
• ... etc. ... See Single Resource Types for a complete list.

To enable reuse, and increase program versatility, the system software supports the creation
of multiple instances of each type. However, as the program loads, only one instance of
each Single Resource Types can be active.

As a convenience, if only a single definition of a given Single Resource Types exists (for
example, one Sequence & Binning Table), then that table will be automatically selected. The
configuration macros may also be used in the case of a single instance to make the test
program more explicit.

When multiple instances of a Single Resource Types have been defined one instance must
be selected at runtime. The macros documented here can be used to make this selection, or
the system software will present a dialog prompting the user to select from a list. Note,
however, that this dialog is presented for each Site, which is not user friendly. Thus the
configuration macros are a better solution.
 2/27/09 Pg-292

Program Execution Control
The Test Program Wizard provided with Visual C++ uses the CONFIGURATION macro in an
example. It can be found in the site_begin.cpp file.

One drawback to hard coding the configuration using the configuration macros is that
making a selection at runtime can require additional user-written code. See Single Resource
Types for an alternate method for selecting the configuration at runtime.

The Configuration_find() function can be used to get a pointer to a Configuration
Block. The HostConfiguration_find() function can be used to get a pointer to a Host
Begin Block. The SiteConfiguration_find() function can be used to get a pointer to a
Site Begin Block. The ToolConfiguration_find() function can be used to get a pointer
to a Tool Begin Block.

Usage
The following macro executes in each of the Host, Site, and Tool process(es):

CONFIGURATION(){ body-code }

The following macro executes only in the Host process:

HOST_CONFIGURATION(){ body-code }

The following macro executes only in site processes:

SITE_CONFIGURATION(){ body-code }

The following macro executes only in User Tools processes:

TOOL_CONFIGURATION(){ body-code }

Each entry in the CONFIGURATION blocks is optional, see above. This example only shows
the CONFIGURATION() macro, however, usage is similar for each of
HOST_CONFIGURATION, SITE_CONFIGURATION, and TOOL_CONFIGURATION.

CONFIGURATION(name) {
USE_PIN_ASSIGNMENTS(name) // See USE_PIN_ASSIGNMENTS()
USE_PIN_SCRAMBLE(name) // See USE_PIN_SCRAMBLE()
USE_VIHH_MAP(name) // See USE_VIHH_MAP()
USE_SEQUENCE_TABLE(name) // See USE_SEQUENCE_TABLE()
USE_CURRENT_SHARE(name) // See USE_CURRENT_SHARE()

}

where name is the name of the configuration that you want to use.
 2/27/09 Pg-293

Program Execution Control
Example
CONFIGURATION(plcc) {

USE_PIN_ASSIGNMENTS(plcc)
USE_PIN_SCRAMBLE(plcc)
USE_VIHH_MAP(special_vihh_modes)
USE_SEQUENCE_TABLE(wafer_sort)

}

3.9.3.1 Single Resource Types
See Configuration Macros, Program Execution Control.

Certain test program structures are only allowed to have a single active instance. For
example, a test program may define multiple Sequence & Binning Tables, but at runtime
only one table can be active at any given time.

These are structures called Single Resource data types. See Resource Types.

The table below shows key information about each Single Resource type:

Table 3.9.3.1-1 Single Resource Macros and Functions

Creation Macro
Run-time

Selection Function
Load-time

Selection Macro Resource Name

CONFIGURATION() Configuration_use USE_CONFIGURATION S_Configuration

CURRENT_SHARE() CurrentShare_use USE_CURRENT_SHARE S_CurrentShare

HOST_BEGIN_BLOCK() HostBeginBlock_use USE_HOST_BEGIN_BLOCK S_HostBeginBlock

HOST_END_BLOCK() HostEndBlock_use USE_HOST_END_BLOCK S_HostEndBlock

PIN_ASSIGNMENTS() PinAssignments_use USE_PIN_ASSIGNMENTS() S_PinAssignments

PIN_SCRAMBLE() PinScramble_use USE_PIN_SCRAMBLE() S_PinScramble

SEQUENCE_TABLE() SequenceTable_use USE_SEQUENCE_TABLE() S_SequenceTable

SITE_BEGIN_BLOCK() SiteBeginBlock_use USE_SITE_BEGIN_BLOCK S_SiteBeginBlock

SITE_END_BLOCK() SiteEndBlock_use USE_SITE_END_BLOCK S_SiteEndBlock

TOOL_BEGIN_BLOCK() ToolBeginBlock_use USE_TOOL_BEGIN_BLOCK S_ToolBegin

TOOL_END_BLOCK() ToolEndBlock_use USE_TOOL_END_BLOCK S_ToolEnd

VIHH_MAP() VihhMap_use USE_VIHH_MAP() S_VihhMap
 2/27/09 Pg-294

Program Execution Control
3.9.3.2 Single Resource Runtime Selection
See Configuration Macros, Program Execution Control.

The runtime software requires that only one instance of each Single Resource Types be
active. This is resolved during the program load sequence.

In many cases, the test program may not define even one instance of a given resource. In
this scenario, the system software sets up a default, and the test program may not contain a
CONFIGURATION block.

In many cases, the test program only defines one instance of a given Single Resource
Types. In this scenario, the test program may not contain a CONFIGURATION block; by
design, the runtime software uses the one instance.

In the case where multiple instances of one, or more, Single Resource types is defined one
of the following scenarios occurs:

• User C-code manages the selection, using one of the CONFIGURATION() block
types.

• The runtime software presents the user with a selection dialog. Note: the user will
be prompted once by each site controller, for each Single Resource which has
multiple instances defined. This can be very annoying.

• User C-code can sometimes switch between or select the desired instance using
resource_select().

The example below demonstrates how user-written C-code, in the host process, can acquire
a Single Resource selection from the user and pass it to the site(s). The selection is
stored in a user variable (type CSTRING_VARIABLE) that the site(s) can subsequently
access using the remote_get() function calls. This method has the advantage that:

1. No explicit synchronization is needed between host and site(s)

2. All activity takes place in the CONFIGURATION block.

Example
// If there is more than one SEQUENCE_TABLE, select one at runtime.
// Ditto for all Single Resource types. This example doesn’t
// consider the content of the resource, it only shows the
// mechanism for allowing the host to control a selection at
// runtime.

#include "TestProgApp/public.h"
 2/27/09 Pg-295

Program Execution Control
// These represent existing tables defined in various source files

SEQUENCE_TABLE(seq1) { ... }
SEQUENCE_TABLE(seq2) { ... }
SEQUENCE_TABLE(seq3) { ... }

PIN_ASSIGNMENTS(pa1) { ... }
PIN_ASSIGNMENTS(pa2) { ... }

SITE_BEGIN_BLOCK(sbb1) { ... }
SITE_BEGIN_BLOCK(sbb2) { ... }

// Host code will set these, and each site will remote_get() them.

CSTRING_VARIABLE(selected_sequence_table, "", "") { }
CSTRING_VARIABLE(selected_pin_assignments, "", "") { }
CSTRING_VARIABLE(selected_site_begin_block, "", "") { }

// The CONFIGURATION macro executes first on the host, since the
// host is started before the sites. In this case the host saves
// the names of the selected SEQUENCE_TABLE, PIN_ASSIGNMENTS, and
// SITE_BEGIN_BLOCK so that each site can retrieve it as needed.
// The CONFIGURATION setup on the site(s) occurs only after the
// host’s CONFIGURATION has completed. That means that the values
// that the host saved will always be valid by the time the site(s)
// request them.

CONFIGURATION(example) {

if (OnHost()) {

// The function resource_select() displays a simple dialog
// within UI. In a real application, a user-defined dialog
// that sets the following three user-variables would be
// invoked instead.

selected_sequence_table = resource_select(S_SequenceTable);

selected_pin_assignments = resource_select(S_PinAssignments);

selected_site_begin_block = resource_select(S_SiteBeginBlock);

// The host needs to know which PIN_ASSIGNMENTS table to use,
// since it needs the SITES_PER_CONTROLLER value (which may
// vary between PIN_ASSIGNMENTS TABLES).

PinAssignments_use(selected_pin_assignments);

}

if (OnSite()) {
 2/27/09 Pg-296

Program Execution Control
// Get the names of the selected SEQUENCE_TABLE,
// PIN_ASSIGNMENTS, and SITE_BEGIN_BLOCK from the host, and
// select those to be used.

// If there is, for instance, more than on SEQUENCE_TABLE and
// we don't tell the system which one to use, each site will
// end up querying the operator to select a SEQUENCE_TABLE.

SequenceTable_use(remote_get(selected_sequence_table, 0));
PinAssignments_use(remote_get(selected_pin_assignments, 0));
SiteBeginBlock_use(remote_get(selected_site_begin_block, 0));
}

}

3.9.4 Host Begin Block
See Host End Block, Site Begin Block, Program Execution Control.

Description
Several blocks of user-written code are automatically executed by the test system software
when a test program is loaded:

• Host Begin Block, executes on the host computer and typically controls user input
from dialog boxes and drives handlers, probers, and networks.

• Site Begin Block, executes locally on each test site controller and is used for
configuring the hardware on each test site.

• Also see Configuration Macros, used to define CONFIGURATION blocks which can
execute on both Sites and Host.

All configurations of the Magnum 1/2/2x use a host computer which is separate from each of
the test site controller(s). They communicate using a TCP/IP connection.

The Host Begin Block is defined using the HOST_BEGIN_BLOCK macro. It is automatically
called once by the system software; see Program Loading and Execution Order.

The following tasks are appropriately done in the C-code within the HOST_BEGIN_BLOCK:

• User dialogs.
• Initialization of handlers, probers, or external instruments
• Any initialization of user C variables, global binning information, or other data

structures
 2/27/09 Pg-297

Program Execution Control
See also Host End Block.

The HostBeginBlock_find() function can be used to get a pointer to a Host Begin
Block.

Usage

HOST_BEGIN_BLOCK(name) {

// Initializations and C code go here

}

where:

HOST_BEGIN_BLOCK is a Test System Macro used to denote the beginning of the Host
Begin Block.

name is a user-defined name.

Example
HOST_BEGIN_BLOCK(64M_flash) {

invoke(OPERATOR_DIALOG);
}

3.9.4.1 Host Waiting for Site to Load
See Host Begin Block, Program Execution Control.

There are situations in which some Host user code must not execute until all of the Sites
have completed loading the test program. The example code below can be used in the Host
Begin Block to wait for the Sites to complete loading the test program :

// File: host_begin.cpp

// UI invokes when ui_ProgLoaded body code when all site have
// completed initial program load
VOID_VARIABLE(ui_ProgLoaded, "") {

// Send signal to Host process when all sites are done loading
remote_signal("AllSitesLoaded", site_num());

}

 2/27/09 Pg-298

Program Execution Control
HOST_BEGIN_BLOCK(my_host_block_name) {
... other code here ...
// Wait here for signal...
remote_wait("AllSitesLoaded", INFINITE);
... other code here ...

}

3.9.5 Host End Block
See Host Begin Block, Site End Block, Program Execution Control.

Description
Similar in purpose to the Host Begin Block, the Host End Block may optionally be defined by
in user-written C-code. If defined, the code will execute as part of the program unload
process. See also Site End Block.

The HostEndBlock_find() function can be used to get a pointer to a Host Begin Block.

Note: user C-code must NOT call HOST_END_BLOCK.

Usage

HOST_END_BLOCK(block_name) {
// C code goes here

}

where:

HOST_END_BLOCK is a Test System Macro used to denote the beginning of the Host End
Block.

name is a user-defined name.

3.9.6 Site Begin Block
See Site End Block, Host Begin Block, Program Execution Control.
 2/27/09 Pg-299

Program Execution Control
Description

The purpose of the SITE_BEGIN_BLOCK is to configure the test site hardware in an
appropriate manner for your needs if that configuration is different than the default hardware
state set by the system software at program load time. The tester hardware and much of the
system software is initialized to default states before the SITE_BEGIN_BLOCK is called.
Aside from a few simple mandatory actions, user code in the SITE_BEGIN_BLOCK is to
override the system-defined defaults for various tester resources.

The SITE_BEGIN_BLOCK will automatically be called once by the system software; you
must not call the SITE_BEGIN_BLOCK by yourself. The SITE_BEGIN_BLOCK typically runs
in conjunction with the Host Begin Block to process dialog box information input by users.
See Program Loading and Execution Order.

The following tasks are appropriately done in the SITE_BEGIN_BLOCK to configure the test
site hardware for the application:

1. Configuration of the algorithmic pattern generator

2. Changing other hardware parameters from their default values

3. Any initialization of your own variables, binning information, or other data structures

The system software initializes much of the tester hardware before calling the
SITE_BEGIN_BLOCK. The hardware initialization states are identified for all functions and
macros in this manual under the sub-heading of Default State. The system software
writes all tester hardware to the default state and then calls the SITE_BEGIN_BLOCK,
allowing user code to modify the hardware state before testing begins. Thus, any hardware
with a default state that is not initialized or set by the user will be in its default state for the
duration of the test program.

Note: user C-code must NOT call SITE_BEGIN_BLOCK.

See also Site End Block.

Usage
SITE_BEGIN_BLOCK(name) {

/* Initializations and C code go here. */
}

where:
 2/27/09 Pg-300

Program Execution Control
SITE_BEGIN_BLOCK is a Test System Macro used to denote the beginning of the Site
Begin Block.

name is a user-defined name.

Example
SITE_BEGIN_BLOCK(boot_block) {

numx(11); // Enable X0 - X10
numy(7); // Enable Y0 - Y6
x_fast_axis(TRUE); // X is the fast address
data_reg_width(36); // Data register is 36 bits
initialize_my_variables();

}

3.9.7 Site End Block
See Site Begin Block, Host End Block, Program Execution Control.

Description
Similar in purpose to the Site Begin Block, the Site End Block may optionally be defined by
the user. If defined, the Site End Block will be executed prior to the sites unloading the test
program. See also Host End Block.

Note: user C-code must NOT call SITE_END_BLOCK.

Usage

SITE_END_BLOCK(block_name) {
// C code goes here

}

where:

SITE_END_BLOCK is a Test System Macro used to denote the beginning of the Site End
Block.

name is a user-defined name.
 2/27/09 Pg-301

Program Execution Control
3.9.8 Tool Begin Block
See Site Begin Block, Host Begin Block, Program Execution Control.

Description
User-created tools optionally have both begin and end blocks, similar in purpose to Host
Begin Block and Site Begin Block. In general, if a TOOL_BEGIN_BLOCK is defined in the tool
code it will be executed when the tool is started. The TOOL_BEGIN_BLOCK only executes in
the process of the tool; i.e. not in the Host process or Site process(es).

Note: user C-code must NOT call TOOL_BEGIN_BLOCK.

Usage

TOOL_BEGIN_BLOCK(name) {
// Initializations and C code go here

}

where:

TOOL_BEGIN_BLOCK is a Test System Macro used to denote the beginning of the Tool
Begin Block.

name is a user-defined name.

Example
TOOL_BEGIN_BLOCK(my_tool) {

// Tool specific code here
}

3.9.9 Tool End Block
See Site End Block, Host End Block, Program Execution Control.
 2/27/09 Pg-302

Program Execution Control
Description
User-created tools optionally have a begin block, similar in purpose to Host Begin Block and
Site Begin Block. Similarly, a TOOL_END_BLOCK can be defined, similar in purpose to Host
End Block, and Site End Block.

When a TOOL_END_BLOCK is defined in the tool code it will be executed when the tool is
terminated. The TOOL_END_BLOCK only executes in the tool process; i.e. not in the Host
process or Site process(es).

Note: user C-code must NOT call TOOL_END_BLOCK.

Usage

TOOL_END_BLOCK(name) {

// Initializations and C code go here

}

where:

TOOL_END_BLOCK is a Test System Macro used to denote the beginning of the Tool End
Block.

name specifies the desired block name.

Example
TOOL_END_BLOCK(my_tool) {

// Tool specific code here
}

3.9.10 Initialization Hook
See Program Execution Control.

Description

The INITIALIZATION_HOOK facility provides a way to execute user-written code just
because it exists. This may sound funny, but it is a valuable feature.
 2/27/09 Pg-303

Program Execution Control
If an INITIALIZATION_HOOK has been defined in the test program it will be executed, in
the Host process, and all Site processes (see Program Execution Control: Overview).
Similarly, if an INITIALIZATION_HOOK has been defined in User Tools code it will be
executed, in the tool process. The example shows how OnSite() and site_num() can be
used to distinguish between Host, Site, or Tool contexts.

It is up to the code within the INITIALIZATION_HOOK to recognize the context in which it
will execute (Host, Site or Tool) and provide conditional statements, as needed, to execute
the appropriate code in each context. See Execution Context Functions and the example
below.

The INITIALIZATION_HOOK code executes after any Configuration Macros, Host Begin
Block, Site Begin Block, and Tool Begin Block.

The INITIALIZATION_HOOK macro must be defined at the global level; i.e. not within the
body of another macro or within a C-function.

Usage
INITIALIZATION_HOOK(name) {

// C code goes here
}

where:

INITIALIZATION_HOOK is a Test System Macro used to denote the beginning of the
Initialization Hook code.

name is a user-defined name.

Example
INITIALIZATION_HOOK(name) {

if (OnHost()) {
// Host process code here

else if (OnSite()){
// Code will execute on all sites

}
else if (site_num() == 1){

// Code will execute on site-1 only
}
else if (site_num() > 1024) {
 2/27/09 Pg-304

Program Execution Control
// Code will execute in User Tools
}

}

3.9.11 Sequence & Binning Table
See Program Execution Control.

Description
The Sequence and Binning Table implements a software state machine which controls test
execution and binning. Each time Start Testing is invoked, the Sequence and Binning
Table is executed, which in turn, executes Test Blocks, Parking Blocks, and Test Bins, as
specified in the Sequence & Binning Test Flow.

• The term Sequence refers to the control of the sequence of Test Block, Parking
Blocks, and Test Bin execution.

• The term Binning refers to the control of software bins used to count test results,
as specified in Test Bins.

The Sequence and Binning Table documentation is divided into several parts:

• The Sequence & Binning Table Creation section documents the Test System
Macros used to create one or more Sequence and Binning Tables. Note that these
macros do not execute a Sequence and Binning Table, they are used to create it.

• The Sequence & Binning Test Flow section documents the Test System Macros
used to define the test flow and binning portion of the table. Several examples are
included.

• The Binning section documents the Test System Macros used to create Test Bins,
and Test Bin Groups, which are the built-in software bins supported by the
Sequence and Binning Table. The available C-functions which interact with Test
Binss are covered in the Test Bin Functions section. The available C-functions
which interact with Test Bin Groupss are covered in the Test Bin Group Functions
section.

• A given test program can define Multiple Sequence & Binning Tables, allowing a
single test program to implement different test flows and/or binning strategies. The
Multiple Sequence & Binning Tables section documents the methods used to select
one Sequence and Binning Table for use when multiple tables have been defined,
and how this selection can be changed while the program remains loaded.
 2/27/09 Pg-305

Program Execution Control
• The macros used to define a Sequence and Binning Table normally execute once,
while the test program loads. This occurs after SITE_CONFIGURATION()
execution has completed and before SITE_BEGIN_BLOCK() executes. In order to
modify an existing Sequence and Binning Table these macros must be executed
again, which is covered in Modifying Sequence & Binning Tables.

• A summary of Test Bins and Test Bin Groups can be displayed using
SummaryTool, invoked from UI - User Interface. This displays any bins which have
non-zero values.

Once the test program is loaded, UI - User Interface displays a graphical view of the
selected Sequence and Binning Table in the UI Sequence and Binning sub-window. Various
controls are available there to interactively execute Test Blocks and Test Bins, modify the
table (modify the test execution sequence), reset the sequence to the original configuration,
set breakpoints at Test Blocks and/or Bins, etc.

3.9.11.1 Sequence & Binning Table Creation
See Sequence & Binning Table.

Definition
Sequence & Binning Tables are created in user-written C-code, using the Test System
Macros defined here.

Note: these macros do NOT execute a Sequence and Binning Table, they are used to
create (define) one.

The SEQUENCE_TABLE() macro is used to create a new table, each with a user specified
name. This name may subsequently be used:

• With INCLUDE_SEQUENCE() to include one [partial] Sequence and Binning Table
within another table.

• When Multiple Sequence & Binning Tables are defined, to specify which table is to
be enabled using USE_SEQUENCE_TABLE().

The SEQUENCE_TABLE_INIT() macro is required by the system software.

The INCLUDE_SEQUENCE_TABLE macro can be used to insert an existing [partial]
Sequence & Binning Table at the location this macro appears. In effect, it operates as
though the macros defining a separate Sequence & Binning Test Flow were copied and
 2/27/09 Pg-306

Program Execution Control
pasted in the same location as the INCLUDE_SEQUENCE_TABLE macro. The most common
application for INCLUDE_SEQUENCE_TABLE is to define standard tests (continuity, leakage,
etc.) and include them as components of multiple other tables which implement different test
flows, typically sort vs. class vs. final, etc.

The USE_SEQUENCE_TABLE() macro is used, within the body of the CONFIGURATION()
macro, to select one table when the test program defines multiple Sequence and Binning
Tables.

The EXTERN_SEQUENCE_TABLE() macro is used to make an external or forward
declaration.

These macros execute once, while the test program loads. This occurs after
SITE_CONFIGURATION() execution has completed and before the
SITE_BEGIN_BLOCK() executes. In order to modify an existing Sequence and Binning
Table these macros must be executed again, which is covered in Modifying Sequence &
Binning Tables.

The convention used by the Test Program Wizards puts the Sequence and Binning Table
code in the file named seq_and_bin.cpp.

Usage
SEQUENCE_TABLE(table_name) {

SEQUENCE_TABLE_INIT
// One or more macros defining the Sequence & Binning Test Flow
// and Binning
INCLUDE_SEQUENCE_TABLE(other_table) // Alt method

}

where:

SEQUENCE_TABLE is the Test System Macro used to create a Sequence and Binning Table.
The SEQUENCE_TABLE macro can only be used at global scope (outside of any C function,
not nested, etc.).

table_name is the name of the Sequence and Binning Table being defined. Must be a valid
C identifier.

SEQUENCE_TABLE_INIT is a Test System Macro required to initialize the Sequence and
Binning Table. Do not omit this from your Sequence and Binning Table. This macro can only
be used within the body of the SEQUENCE_TABLE macro, and must occur before any of the
macros used to define the Sequence & Binning Test Flow are used.
 2/27/09 Pg-307

Program Execution Control
INCLUDE_SEQUENCE_TABLE is optionally used to insert the specified existing table at the
location this macro is placed. This macro can only be used within the body of the
SEQUENCE_TABLE macro.

EXTERN_SEQUENCE_TABLE can be used to create an external declaration for the specified
Sequence & Binning Table. This is rarely needed.

Example
See Examples

3.9.11.2 Sequence & Binning Test Flow
See Sequence & Binning Table.

Definition
This section documents the Test System Macros used to specify the order of execution of
Test Blocks, Parking Blocks, and Test Bins in a Sequence & Binning Table, executed each
time Start Testing is invoked. These macros are:

Macro Executes Branch Action

BIN()
BINL()

Test Bins Unconditional action

CALL()
CALLL()

Test Blocks Unconditional action = execute next statement

STOP()
STOPL()

Test Bins Unconditional Stop
 2/27/09 Pg-308

Program Execution Control
These macros are used to:

• Specify the first Test Blocks executed after both the built-in and the optional
Before-testing Block(s) have executed.

• Specify the name and sequence of all subsequent Test Blocks, Parking Blocks, and
Test Bins executed.

• For each Test Blocks or Test Bins executed what to do next; i.e. what action to
take. Actions can be unconditional, or based on the PASS/FAIL or Test Block
Integer Return Values returned from each Test Blocks execution. Actions can
include executing the NEXT statement in the table, SKIP over the next statement
in the table, branch to a label, or STOP. See Branch Table Actions.

• When STOP is encountered the optional (if any) and built-in After-testing Block(s)
are executed, before testing actually stops.

The macros used to create the test flow are shown below. These macros have several
forms:

• Macros which include a label as the first parameter (TESTL(), CALLL(), BINL(),
STOPL())

• Macros which don’t include a label (TEST(), CALL(), BIN(), STOP).

TEST()
TESTL()

Test Blocks Conditional pass action, fail action. See Branch Table
Actions.

TEST0()
thru

TEST8()
and

TESTL0()
thru

TESTL8()

Test Blocks Conditional action, using Test Block Integer Return
Values. See Branch Table Actions.

TESTP()
TEST0P()

thru
TEST8P()

and
TESTLP()
TESTL0P()

thru
TESTL8P()

Parking Blocks
Applies only in Multi-DUT Test Programs when the test
flow must park some DUT(s) while testing continues on
other DUT(s). See Parking Blocks.

Macro Executes Branch Action
 2/27/09 Pg-309

Program Execution Control
• Macros which include a Parking Blocks as the last parameter (TEST0P(),
TESTL0P(), etc.). These are available with and without the label option.

Labels which are never referenced are OK. The action options are documented in Branch
Table Actions.

As noted, eight macros exist which provide for specifying up to 8 unique action(s) to be
taken when Test Block Integer Return Values (0, 1, through 7) are used. These are further
documented under Usage.

These macros are only usable within the scope of the SEQUENCE_TABLE() macro body
code, and must occur after the SEQUENCE_TABLE_INIT() macro.

These macros can be used in any quantity (within computer memory limitations) and in any
order. There is no required correspondence between the quantity of each statement used,
i.e., there does not have to be a BIN macro for each TEST macro, etc.

Note: STOP exists as both a macro and as an action:

• As a macro, STOP specifies the last Test Bin to be executed before execution
branches to the After-testing Block(s). When the STOP macro is used, the
builtin_Pass and builtin_Fail Test Bins are not incremented (see Binning).

• As an action, STOP causes execution to branch to After-testing Block(s), without
specifying a final Test Bin. One of the built-in bins (builtin_Pass or
builtin_Fail) are incremented.

Branch Table Actions
As noted above, some macros require that one or more actions be specified. During
Sequence & Binning Table execution, except as modified using action options, the test flow
follows the order that the statements are coded. The conditional actions options are:

Action Operation

NEXT Execute the next statemebt in the Sequence & Binning Table

SKIP Skip over the next statement to execute the following one

label Branch to the statement containing the specified label

STOP
Exit the Sequence & Binning Table and execute the After-testing
Block(s). STOP exists as both a macro and as an action, see above.
 2/27/09 Pg-310

Program Execution Control
Usage
The following macros execute the specified Test Block. Execution then flows unconditionally
to the next statement in the Sequence & Binning Table. In Multi-DUT Test Programs,the
system software determines which DUT(s) are in the Active DUTs Set (ADS) at the time the
Test Bin is executed (see Overview):

CALL (Test Block)

CALLL (label, Test Block)

The following macros execute the specified Test Block. In Multi-DUT Test Programs,the
system software determines which DUT(s) are in the Active DUTs Set (ADS) at the time the
Test Block is executed (see Overview). Execution continues by evaluating the value
returned from the test block and performing the specified pass_action or fail_action
(see Branch Table Actions). In Multi-DUT Test Programs, a unique pass_action and
fail_action value exists for each DUT in the Active DUTs Set (ADS) at the time the Test
Block was executed. The system software tracks and manages Sequence & Binning Table
execution for each DUT (see Overview):

TEST(Test Block, pass_action, fail_action)
TESTL(label, Test Block, pass_action, fail_action)

The following macros execute the specified Test Bin. This does two things:

• The Test Bin is incremented
• If the Test Bin has body code, that code is executed. See Binning.

Execution continues by performing the specified action unconditionally (see Branch Table
Actions). In Multi-DUT Test Programs,the system software determines which DUT(s) are in
the Active DUTs Set (ADS) at the time the Test Bin is executed (see Overview):

BIN(Test Bin, unconditional_action)
BINL(label, Test Bin, unconditional_action)

The following macros execute the specified Test Bin then exit the Sequence & Binning Table
and execute the After-testing Block(s). In Multi-DUT Test Programs,the system software
determines which DUT(s) are in the Active DUTs Set (ADS) at the time the Test Bin is
executed (see Overview):

STOP(Test Bin)
STOPL(label, Test Bin)

The following macros execute the specified Test Block. In Multi-DUT Test Programs,the
system software determines which DUT(s) are in the Active DUTs Set (ADS) at the time the
Test Bin is executed (see Overview). Execution continues by evaluating the value returned
from the test block and performing the action specified for each return value, which can
 2/27/09 Pg-311

Program Execution Control
range from 0 to 7 (see Branch Table Actions). In Multi-DUT Test Programs, a unique
return value exists for each DUT in the Active DUTs Set (ADS) at the time the Test Block
was executed. The system software tracks and manages Sequence & Binning Table
execution for each DUT (see Overview):

TEST0(Test Block) // Same as CALL
TEST1(Test Block,on0)
TEST2(Test Block,on1,on0)
TEST3(Test Block,on2,on1,on0)
TEST4(Test Block,on3,on2,on1,on0)
TEST5(Test Block,on4,on3,on2,on1,on0)
TEST6(Test Block,on5,on4,on3,on2,on1,on0)
TEST7(Test Block,on6,on5,on4,on3,on2,on1,on0)
TEST8(Test Block,on7,on6,on5,on4,on3,on2,on1,on0)

TESTL0(label,Test Block) // Same as CALLL
TESTL1(label,Test Block,on0)
TESTL2(label,Test Block,on1,on0)
TESTL3(label,Test Block,on2,on1,on0)
TESTL4(label,Test Block,on3,on2,on1,on0)
TESTL5(label,Test Block,on4,on3,on2,on1,on0)
TESTL6(label,Test Block,on5,on4,on3,on2,on1,on0)
TESTL7(label,Test Block,on6,on5,on4,on3,on2,on1,on0)
TESTL8(label,Test Block,on7,on6,on5,on4,on3,on2,on1,on0)

The following macros are similar to those above except that a Parking Blocks is specified as
the last argument. These macros can only be used in a Magnum 1/2/2x Multi-DUT Test
Program:

TEST0P(Test Block,Parking Blocks)// Same as CALL

TEST1P(Test Block,on0, Parking Blocks)

TESTP(Test Block,on1,on0, Parking Blocks)

TEST2P(Test Block,on1,on0, Parking Blocks)

TEST3P(Test Block,on2,on1,on0, Parking Blocks)

TEST4P(Test Block,on3,on2,on1,on0, Parking Blocks)

TEST5P(Test Block,on4,on3,on2,on1,on0, Parking Blocks)

TEST6P(Test Block,on5,on4,on3,on2,on1,on0, Parking Blocks)

TEST7P(Test Block,on6,on5,on4,on3,on2,on1,on0, Parking Blocks)

TEST8P(Test Block,on7,on6,on5,on4,on3,on2,on1,on0, Parking Blocks)

TESTL0P(label,Test Block, Parking Blocks) // Same as, CALLL

TESTL1P(label,Test Block,on0,Parking Blocks)

TESTLP(label,Test Block,on1,on0, Parking Blocks)
 2/27/09 Pg-312

Program Execution Control
TESTL2P(label,Test Block,on1,on0, Parking Blocks)

TESTL3P(label,Test Block,on2,on1,on0, Parking Blocks)

TESTL4P(label,Test Block,on3,on2,on1,on0, Parking Blocks)

TESTL5P(label,Test Block,on4,on3,on2,on1,on0, Parking Blocks)

TESTL6P(label,Test Block,on5,on4,on3,on2,on1,on0, Parking Blocks)

TESTL7P(label,Test Block,on6,on5,on4,on3,on2,on1,on0, Parking Blocks)

TESTL8P(label,Test Block,on7,on6,on5,on4,on3,on2,on1,on0, Parking Blocks)

where:

Macro names which contain the L character require a label as the first argument (CALLL,
TESTL, BINL, and STOPL, etc.) These operate identically to their non-label version. The
label is user-defined, and acts as a branch target; i.e. a place to branch-to. Each label
must be unique within a given Sequence and Binning Table and must be a legal C identifier.

Macro names which contain the P character require a Parking Blocks as the last argument
(TEST0P, TESTL1P, etc.) These are only usable in Magnum 1/2/2x Multi-DUT Test Program
programs.

Examples
• Example 1: and Example 2: show two simple Sequence & Binning Tables which

function identically. They are implemented using two different styles to show the
flexibility available.

• Example 3: is more complex, and more typical of a production test flow. It contains
a flow chart, and a step-by-step narrative description of how several key features
execute, tied to the macro used to define each step. Last is the Sequence &
Binning Tables code which implements the entire table.

• Using Magnum 1/2/2x, additional information applies in Multi-DUT Test Programs.
See Active DUTs Set (ADS) and Ignored DUTs Set (IDS).

Example 1:
This example uses a common form which groups TEST macros together, and STOP macros
together. This style has the advantage of making it easy to see the order in which Test
Blocks are executed on good DUT(s). When a fail occurs, execution branches to one of the
STOP macros. If no failures occur, the first STOP macro calls the pass_bin.

// Bin declarations
TEST_BIN(shorts_bin){ check_for_consecutive_shorts(); }
TEST_BIN(opens_bin){ check_for_consecutive_opens(); }
 2/27/09 Pg-313

Program Execution Control
TEST_BIN(gross_bin){}
TEST_BIN(pass_bin){}

TEST_BIN_GROUP(continuity_fails) {
BINS2(shorts_bin, opens_bin)

}

SEQUENCE_TABLE()(sort_1M) {
SEQUENCE_TABLE_INIT()

// label block/bin pass action fail action
// ------- --------- ----------- -----------

CALL(TB_setup)
TEST(shorts, NEXT, l_shorts)
TEST(opens, NEXT, l_opens)
TEST(gross_func, NEXT, l_gross)
STOP(pass_bin)
STOPL(l_shorts, shorts_bin)
STOPL(l_opens, opens_bin)
STOPL(l_gross, gross_bin)

}

The first statement executes the Test Block named TB_setup. Regardless of the value
returned by TB_setup, execution unconditionally moves to the next statement. Since no
actions in this table reference this CALL, a label is not necessary.

The TEST macros each execute one Test Block. If PASS is returned execution proceeds to
the NEXT statement. If FAIL is returned, execution branches to the STOPL statement
containing the label specified in the TEST macro fail action field. At these STOPL macros, the
specified Test Bin is incremented and execution proceeds to the After-testing Block(s).Note
that the two Test Bins shorts_bin and opens_bin each have body code. If execution
reaches these bins the specified function is executed. Also, shorts_bin and opens_bin
are members of the Test Bin Groups named continuity_fails. If execution reaches
either of these bins the continuity_fails bin is also incremented.

Example 2:
This Sequence and Binning Table is identical in function to the previous one, but uses a
different style. In this example, each TEST macro is followed by a BIN macro. If the Test
Block executed by the TEST returns PASS, execution SKIP’s over the BIN to the next TEST.
If the Test Block returns FAIL, execution flows to the NEXT statement, i.e. the BIN
immediately following the TEST is executed. Notice that no labels are used.
 2/27/09 Pg-314

Program Execution Control
// Bin declarations
TEST_BIN(shorts_bin){ check_for_consecutive_shorts(); }
TEST_BIN(opens_bin){ check_for_consecutive_opens(); }
TEST_BIN(gross_bin){}
TEST_BIN(pass_bin){}

TEST_BIN_GROUP(continuity_fails) {
BINS2(shorts_bin, opens_bin)

}

SEQUENCE_TABLE(sort_1M) {
SEQUENCE_TABLE_INIT

// label block/bin pass label fail label
// ----- --------- ---------- ----------

CALL(set_up)
TEST(shorts, SKIP, NEXT)
BIN(shorts_bin, STOP)
TEST(opens, SKIP, NEXT)
BIN(opens_bin, STOP)
TEST(gross_func, SKIP, NEXT)
STOP(gross_bin)
STOP(pass_bin)

}

 2/27/09 Pg-315

Program Execution Control
Example 3:
The diagram below shows a flow chart view of a test flow containing the commonly used test
flow options. The rectangular boxes represent Test Blocks and the ovals represent Test Bins
(see Binning). Branch labels on Test Block use the L prefix, and B on Bins.

The complete Sequence & Binning table code representing this example follows the
descriptions below.

T2

T3

T4

T5

T6 T7

T8 T10

Fail

T10

Pass

Pass

Pass

Pass
Fail

Fail
T9Pass

Fail

Fail
Pass

Pass

L5

L8 L9

T1
B10

Pass Fail STOP

STOP

Optional

Built-in

Optional

Built-in

Bin10

B9
Fail

STOPBin9

B11
Fail

STOPBin11

B1
Fail STOPBin1

B2
Fail STOPBin2

B12
Bin12

STOP

builtin_before_testing_block

User -defined Before-testing Block

builtin_after_testing_block

User -defined After-testing Block
 2/27/09 Pg-316

Program Execution Control
• When Start Testing is invoked a Before-testing Block named
builtin_before_testing_block is always executed first. This Before-testing
Block is defined by system software.

• If the test program contains one or more user-defined Before-testing Block(s) they
are executed next.

• The Test Block or Test Bin specified in the first statement executes next. In the
example, Test Block T1 executes next (the name T1, and all other Test Block
names, labels, and bin names are user-defined). The macro which specifies this
is:

TEST(T1, NEXT , B10) // T1 = Test Block, B10 = Label

The pass action specified is NEXT, thus if T1 PASSes execution continues to the
next statement, which executes Test Block T2. If T1 FAILs execution branches to
the statement at the label B10. This must be a macro which supports the label
parameter; i.e.:

STOPL(B10, Bin10) // B10 = label, Bin10 = Test Bin
This specifies that execution will STOP after executing the Test Bin Bin10 (see
Binning).

• If execution proceeded to the next statement:
CALL(T2) // T2 = Test Block

This specifies that Test Block T2 will execute. Then the test flow proceeds
unconditionally to Test Block T3. The CALL() macro is used to specify an
unconditional test; i.e. T2 has no PASS/FAIL results.

• Test Block T3 executes next.
TEST(T3, L5, NEXT) // T3 = Test Block, L5= Label

If T3 FAILs the test flow proceeds to the NEXT statement; i.e. execute Test Block
T4 (more below). If T3 PASSes the test flow branches to the statement containing
the label L5. This must be a macro which supports the label parameter; i.e.:

TESTL(L5, T5, NEXT, B11) // L5/B11 = Labels, T5 = Test Block
This causes Test Block T5 to execute. If T5 PASSes execution continues to the
NEXT statement, which executes Test Block T6. If T5 FAILs the test flow branches
to the statement containing the label B11; i.e.:

STOPL(B11, Bin11) // B11 = Label, Bin11 = Test Bin

This executes the Test Bin Bin11 (see Binning), then execution STOPs
• Earlier, T4 was executed:
 2/27/09 Pg-317

Program Execution Control
TEST(T4, SKIP, NEXT) // T4 = Test Block
BIN(Bin9, STOP)

If T4 PASSes execution SKIPs over the following statement (in this case, BIN())
to the next one (in this case the TESTL() macro containing the L5 label). If T4
FAILed execution goes NEXT to the following macro (BIN()), which executes
TEST_BIN() Bin9, then execution STOPs.

• Etc.
• When execution reaches a STOP, if test program contains one or more user-

defined After-testing Block(s) these execute next.
• The last thing that (always) executes is the After-testing Block named

builtin_after_testing_block. This Test Block is defined by system software
The complete definition of this Sequence & Binning table is:

// Bin definitions
TEST_BIN(Bin1) {}
TEST_BIN(Bin2) {}
TEST_BIN(Bin9) {}
TEST_BIN(Bin10){}
TEST_BIN(Bin11){}
TEST_BIN(Bin12){}

SEQUENCE_TABLE(my_sort_table) {
SEQUENCE_TABLE_INIT

// label block/bin pass action fail action
// ----- --------- ---------- ----------

TEST(T1, NEXT, B10)
CALL(T2)
TEST(T3, L5, NEXT)
TEST(T4, SKIP, NEXT)
BIN(Bin9, STOP)
TESTL(L5, T5, NEXT, B11)
TEST(T6, NEXT, L8)
TEST(T7, NEXT, L9)
CALL(T10)
STOP(Bin1)
TESTL(L8, T8, NEXT, B12)
TESTL(L9, T9, NEXT, B12)
CALL(T10)
STOP(Bin2)
 2/27/09 Pg-318

Program Execution Control
STOPL(B10, Bin10)
STOPL(B11, Bin11)
STOPL(B12, Bin12)

}

3.9.11.3 Multiple Sequence & Binning Tables
See Sequence & Binning Table.

Multiple Sequence & Binning Table can be defined, allowing a single test program to
implement different test flows and/or binning strategies.

When a test program defines only one Sequence & Binning Table it is automatically selected
when the program is loaded.

When multiple Sequence & Binning Tables are defined one must be selected for use.
Several methods are available to make this selection:

• User-written C-code can select a Sequence & Binning Table, by name, using the
USE_SEQUENCE_TABLE() macro, within the body of the CONFIGURATION()
macro.

• If, during program load, none is selected by test program code the system
software will automatically display a dialog requiring the user to select a table.

• Once the test program is loaded, if multiple Sequence and Binning Tables exist it
is possible to select a different table. This can only be done when the currently
selected table is not actually executing, which means the selection code must be
invoked from code executing in the Host process, User Tools and/or User Dialogs.

The code below shows how this latter case can be implemented:

// Disable the currently selected Seq/Bin table
resource_deallocate(S_SequenceTable); // resource_deallocate()

// Invoke dialog to select new Seq/Bin table
// See resource_select()
CString SBT_cs = resource_select(S_SequenceTable);

// Convert CString to pointer for use by resource_initialize()
// See SequenceTable_find()
SequenceTable *SBT = SequenceTable_find(SBT_cs);
 2/27/09 Pg-319

Program Execution Control
// Enable the selected Seq/Bin table
if (SBT) resource_initialize (SBT); //resource_initialize()
else output("ERROR: invalid Seq/Bin table [%s]", SBT_cs);

Note that this example is only suitable for a single Site system because in multi-site
Maverick-I/-II systems and all Magnum 1/2/2x systems the resource_deallocate(),
SequenceTable_find(), and resource_initialize() code must be executed on
each active Site.

3.9.11.4 Modifying Sequence & Binning Tables
See Sequence & Binning Table.

Normally, the macros used for Sequence & Binning Table Creation and to define the
Sequence & Binning Test Flow execute only one time, while the test program loads. This
occurs after SITE_CONFIGURATION() execution has completed and before the
SITE_BEGIN_BLOCK() executes.

However, resource_initialize() can be used to execute these macros again. This
has the effect of enabling conditional code within the SEQUENCE_TABLE macro. For
example:

// Variable used to conditionally modify Seq/Bin configuration
// This variable can be modified using User Tools, User Dialogs, or
// User Variables Tool, as any variable in C-code.
INT_VARIABLE(SBT_pass, 0, "") {}

SEQUENCE_TABLE(SBT1) {

SEQUENCE_TABLE_INIT
if(SBT_pass_num == 0) {

TEST(tb_1,NEXT,STOP)
TEST(tb_2,NEXT,STOP)
TEST(tb_3,STOP,STOP)
SBT_pass_num++;

}
else if (SBT_pass_num == 1) {

TEST(tb_2,NEXT,STOP)
TEST(tb_3,NEXT,STOP)
TEST(tb_1,STOP,STOP)
SBT_pass_num++;
 2/27/09 Pg-320

Program Execution Control
}
else {

TEST(tb_2,STOP,STOP)
SBT_pass_num = 0;

}
}

It is important to note that these conditional statements only execute in the following
situations:

• When the test program load initializes the Sequence and Binning Table the first
time.

• Each time resource_initialize(SBT1) is executed.
Conversely, these conditional statements do NOT execute during the execution of the
Sequence and Binning Table; i.e. during Test Block execution. One other note, it is not legal
to modify a Sequence and Binning Table while it is executing; i.e. Test Block code cannot
modify a Sequence and Binning Table.

3.9.12 Parking Blocks

See Sequence & Binning Test Flow, Overview, Active DUTs Set (ADS).

Overview

The PARKING_BLOCK() macro is used to define a Parking Block.

In Multi-DUT Test Programs, during the Sequence & Binning Table execution, it will be
common for some DUT(s) to be tested (active) while others are temporarily disabled
(parked). For example, when multiple DUTs are tested in parallel, it will be common for some
to pass a given test block while others fail. When this occurs, the Sequence & Binning Table
will continue to test some DUT(s), for example those that passed, while others are
temporarily disabled (parked), for example those that failed.

Detailed operation is described in Overview.

The Magnum 1/2/2x hardware design provides for disabling tester resources per-DUT. The
system software manages all the details, at the Sequence & Binning Table level, using the
Active DUTs Set (ADS).
 2/27/09 Pg-321

Program Execution Control
By default, when a DUT is parked, the system software disables the hardware connected to
it. This means no change of state (PE voltages don’t change, DPS voltages don’t change,
etc.), no test simulus is applied, etc. Later, when appropriate, the DUT is un-parked to
resume testing, at which time the system software re-enables the hardware connected to it.

In anticipation of special testing requirements, it may be necessary for user code to be
executed as part of parking or unparking a DUT. This is the purpose of the Parking Block,
supporting, for example, setting DPS voltages to 0V, controlling PE connections, DUT board
relays, etc.

Note the following:

• A Parking Block is defined using the PARKING_BLOCK macro. Any number of
Parking Blocks may be defined.

• User code is written in the body of the PARKING_BLOCK, much like test block code
is written in the body of Test Block Macros.

• To be executed, a Parking Block must be specified as an argument to an entry in
the Sequence & Binning Table. Specific macros are used, which require a Parking
Block argument (TESTL0P(), etc.). Note these macros all have a P as the last
character in the macro name. These macros are only valid in Multi-DUT Test
Programs.

• Within a Parking Block, the system defined variable parking is available to allow
user code to execute conditionally, as determined by whether the parking block is
being executed to park the DUT(s) or un-park the DUT(s). Again, see Overview.

See Active DUTs Set (ADS) for a detailed example of Parking Block use.

Usage
PARKING_BLOCK(name){

// User code
}

where:

name identifies the name of the Parking Block. These names are used in the Sequence &
Binning Table to specify which Parking Block is executed by a given Sequence & Binning
Table statement.

Example
The following example outputs whether parking or un-parking is being performed, followed
by a list of DUT(s) being parked/un-parked. Last, is a conditional statement suitable for
adding user code which executes differently when parking vs. un-parking:
 2/27/09 Pg-322

Program Execution Control
PARKING_BLOCK(myPB) {
output(" %sing => \\", parking ? " Park" : " Unpark");
DutNumArray duts;
int size = active_duts_get(&duts); // active_dut_get()
for (int i = 0; i < size; ++i)

output("t_dut%d \\", duts[i] + 1);
output("");

if(parking) {
// Parking code here as desired

}
else {

// UN-Parking code here as desired
}

}

3.9.13 Test Flow Synchronization
See Sequence & Binning Test Flow.

Note: first available in software release h2.2.7/h1.2.7.

Overview
Normally, when executing the Sequence & Binning Table, program execution on each site
and on the host are in-sync only at the time that start-testing is first invoked. Subsequently,
no execution synchronization is attempted (or typically required) between the individual
program instances executing on each site.

The synchronization facility described here may be used to re-synchronize test flow
execution on all sites, with or without host involvement. This might be required, for example,
in wafer testing situations where all the sites need to by synchronized before changing the
substrate voltage. Or when all sites need to be at a particular place before controlling some
external instrument connected to the host. This test flow synchronization facility is designed
to provide a simple, reliable, and efficient built-in mechanism to address the most common
synchronization needs.

Executing remote_synchronize() causes site execution to pause and wait until
execution on all active sites has reach the same point (inactive sites are those which have
 2/27/09 Pg-323

Program Execution Control
already stopped Sequence & Binning Table execution). Then, depending on the type of the
block argument specified, a synchronization block will execute, either on the host or on all
active sites:

• When synchronization requires host code execution, a
HostSynchronizationBlock is specified as the block argument to
remote_synchronize(). A HostSynchronizationBlock is defined using the
HOST_SYNCHRONIZATION_BLOCK() macro.

• When synchronization requires only site code execution, a
SiteSynchronizationBlock is specified as the block argument to
remote_synchronize(). A SiteSynchronizationBlock is defined using the
SITE_SYNCHRONIZATION_BLOCK() macro.

During Sequence & Binning Table execution, executing
remote_synchronize(sync_block) on a given site causes execution to pause and
wait on that site. Execution will remain paused until all active sites have each executed
remote_synchronize(sync_block) (the same block name, here called sync_block,
is required), at which time the body code of the specified synchronization block will execute.
Two scenarios are possible:

• The specified synchronization block is a HostSynchronizationBlock.
• The specified synchronization block is a SiteSynchronizationBlock.

For example:

TEST_BLOCK(id){
\\... other code as desired...
UNIT64 m = remote_synchronize(sync_block); // Pause/wait here
\\ If desired, examine m (bit-mask of synchronized sites) here.
\\... other code as desired...
return(...); // Appropriate return value

}

Given the TEST_BLOCK example above, if sync_block is a
HostSynchronizationBlock:

• The HostSynchronizationBlock body code is executed only after Sequence &
Binning Table execution on all active sites has stopped because
remote_synchronize(sync_block) was executed on every active site.

• HostSynchronizationBlock body code then executes only on the host.
• Execution on all active sites waits until the HostSynchronizationBlock body

code execution ends. Then, execution restarts on all active sites, beginning with the
statement immediately following remote_synchronize(sync_block).
 2/27/09 Pg-324

Program Execution Control
Alternatively, given the TEST_BLOCK example above, if sync_block is a
SiteSynchronizationBlock:

• The SiteSynchronizationBlock body code is executed only after test flow
execution on all active sites has stopped because
remote_synchronize(sync_block) was executed on every active site.

• The SiteSynchronizationBlock body code then executes on all active sites.
• When the SiteSynchronizationBlock body code execution completes,

execution continues on all active sites beginning with the statement immediately
following remote_synchronize(sync_block).

Also note the following:

• remote_synchronize() is only useful when executed in site code.
• remote_synchronize() is only effective when the Sequence & Binning Table is

executing. As a practical matter, this means executed directly or indirectly from a
Test Block.

• A site which has stopped executing the Sequence & Binning Table (possibly
because all DUTs on that site have finished testing) before
remote_synchronize() has executed on any other sites will not affect
synchronization.

• The Active DUTs Set (ADS) has no effect on synchronization, except that a given
site may be idle if all DUTs on that site are inactive.

• Within the body code (scope) of both the HostSynchronizationBlock and
SiteSynchronizationBlock an implicitly declared UINT64 variable named
mask is available. This is a bit-wise mask indicating which sites wait for
synchronization. See examples below.

• Invoking UI's Stop-testing control will interrupt any pending synchronization and
stop testing as expected.

• HostSynchronizationBlock and SiteSynchronizationBlock are
Resources, just like PINLIST, TEST_BLOCK, etc.

Usage
This synchronization facility uses the following:

HOST_SYNCHRONIZATION_BLOCK(block){ [body code] }

SITE_SYNCHRONIZATION_BLOCK(block){ [body code] }
 2/27/09 Pg-325

Program Execution Control
UINT64 remote_synchronize(
HostSynchronizationBlock *block,
DWORD timeout DEFAULT_VALUE(INFINITE));

UINT64 remote_synchronize(
SiteSynchronizationBlock *block,
DWORD timeout DEFAULT_VALUE(INFINITE));

where:

The HOST_SYNCHRONIZATION_BLOCK macro defines a HostSynchronizationBlock.
The SITE_SYNCHRONIZATION_BLOCK macro defines a SiteSynchronizationBlock.

block identifies the HostSynchronizationBlock or SiteSynchronizationBlock.

body-code is user-written code which executes as described above.

timeout is optional and, if used, specifies the amount of time to wait for all active sites to
pause. Default = INFINITE.

Note: INFINITE is the recommended timeout value. When a non-INFINITE
time-out value is specified and a time-out occurs remote_synchronize()
returns 0. When this occurs, a corresponding HostSynchronizationBlock
will not receive notice that all sites have paused and its body code will not
execute. A corresponding SiteSynchronizationBlock will be executed but
the site mask value will be = 0x0.

remote_synchronize() returns a bit-wise mask indicating which sites were
synchronized. Sites which had stopped Sequence & Binning Table execution will not be in
this mask.

Example
Two test blocks are used below to demonstrate the two synchronization scenarios:

HOST_SYNCHRONIZATION_BLOCK(hsb1){
output("Sites[%I64x] are waiting.", mask);
output("None of these sites will return from their call to

remote_synchronize() until this HOST_SYNCHRONIZATION_BLOCK() code
ends.");
}

 2/27/09 Pg-326

Program Execution Control
SITE_SYNCHRONIZATION_BLOCK(ssb1){
output("Sites[%I64x] were waiting and started executing this

code in parallel.", mask);
}

// This test block demonstrates synchronization with Host code
// execution. Program execution on all sites will stop below, and
// wait until all active sites have executed
// remote_synchronize(hsb1).
// Then, HOST_SYNCHRONIZATION_BLOCK(hsb1) body code will be
// executed on the host only. When this ends, execution will be
// restarted on all active sites, with the instruction immediately
// following remote_synchronize(hsb1).
TEST_BLOCK(host_synchronization_example){

// ... other code as desired...
UNIT64 m = remote_synchronize(hsb1);
// ... other code as desired...
return MULTI_DUT;

}

// This test block demonstrates synchronization with no Host code
// execution. Program execution on all active sites will stop
// below, and wait until all these sites have all executed
// remote_synchronize(ssb1).
// Then, SITE_SYNCHRONIZATION_BLOCK(ssb1) will be executed on all
// active sites, in parallel. Execution will continue on each site
// independently.
TEST_BLOCK(site_synchronization_example){

// ... other code as desired...
UNIT64 m = remote_synchronize(ssb1);
// ... other code as desired...
return MULTI_DUT;

}

 2/27/09 Pg-327

3.9.14 Test Blocks
See Program Execution Control.

• Overview
• Test Block Macros
• Sequential Test Block
• Test Block Integer Return Values
• Before-testing Block, After-testing Block
• Conflict List
• Conflict List Macros
• Test Numbers
• Setup Numbers

3.9.14.1 Overview
See Test Blocks, Program Execution Control.

Conceptually, a test block is a unit of user-written code which programs the tester hardware
and executes one or more tests.

Each time a Start Testing is invoked, the Sequence & Binning Table executes zero or
more test blocks to test DUT(s). In general, test blocks contain user code which executes in
the Site processes any time the Sequence & Binning Table executes.

Statements in the Sequence & Binning Table, determine which test block(s) are executed, in
which order they are executed, and how the next step of Sequence & Binning Table
execution is determined.

Using Magnum 1/2/2x, two forms of test blocks are available:

• Standard test block, defined using the TEST_BLOCK macro.
• Sequential Test Block, defined using the TEST_BLOCK_SEQUENTIAL macro.

A standard test block is used when test conditions allow all enabled DUT(s) to be tested
concurrently, in parallel. This is the only type of test block supported using Maverick-I/-II.
 2/27/09 Pg-328

A Sequential Test Block is used when test conditions are such that some enabled DUT(s)
conflict with other enabled DUT(s); i.e. the test block code must be executed more than
once, with a subset of enabled DUT(s) tested for each execution. See Sequential Test Block
and Conflict List.

Test blocks are created using Test Block Macros.

3.9.14.2 Test Block Macros
See Test Blocks, Program Execution Control.

Description
The macros documented in this section are used to define Test Blocks:

• The TEST_BLOCK() macro defines a standard test block.
• The TEST_BLOCK_SEQUENTIAL macro defines a Sequential Test Block.
• The EXTERN_TEST_BLOCK() macro is used to declare a test block or Sequential

Test Block as external.
• The MULTI_DUT_TEST_BLOCK() macro defines a parallel test block, which is the

same as defined using TEST_BLOCK except that the test block implicitly returns
MULTI_DUT, eliminating the need for user code to return a value. See Overview.
Only usable when the Pin Assignment Table uses the parallel test macros; i.e.
ASSIGN_1DUT(), ASSIGN_2DUT(), etc.

• The MULTI_DUT_TEST_BLOCK_SEQUENTIAL() macro defines a Sequential Test
Block, which is the same as defined using TEST_BLOCK_SEQUENTIAL except that
the test block implicitly returns MULTI_DUT, eliminating the need for user code to
return a value. See Overview. Only usable when the Pin Assignment Table uses
the parallel test macros; i.e. ASSIGN_1DUT(), ASSIGN_2DUT(), etc.

• The MULTI_DUT_CALL_BLOCK() macro defines a test block intended to be
executed using the CALL() or CALLL() macro. Unlike MULTI_DUT_TEST_BLOCK,
a MULTI_DUT_CALL_BLOCK does not require that a test result value be returned.

It is the user-written code within a test block which controls how the hardware is
programmed, tests are executed, test results are used, etc.

The TestBlock_find() function can be used to get a pointer to a Test Block, given its
name. Using this pointer, the Test Block can be explicitly executed using invoke(),
 2/27/09 Pg-329

typically from a User Tool or User Dialog. Note: it is NOT necessary to use invoke() when
executing test blocks via the Sequence & Binning Table.

The name of the currently executing test block can be obtained using the
current_test_block() function.

Usage
TEST_BLOCK(name){

// Test block code
return(int);

}

TEST_BLOCK_SEQUENTIAL(name, Conflict_List) {
// Test block code
return(MULTI_DUT);

}

MULTI_DUT_TEST_BLOCK(name){
// Test block code

}

MULTI_DUT_TEST_BLOCK_SEQUENTIAL(name, Conflict_List) {
// Test block code

}

MULTI_DUT_CALL_BLOCK(name){
// Test block code
// No return value

}

EXTERN_TEST_BLOCK(name)

where:

name identifies the name of the test block and must be a legal C identifier.. These names are
used in the Sequence & Binning Table to specify which test block is executed by a given
Sequence & Binning Table statement.

Conflict_List identifies the Conflict List to be used during the execution of the
Sequential Test Block. A conflict list is defined using the Conflict List Macros.

The TEST_BLOCK*(macro requires that user code return an integer value. The default
Sequence & Binning Table operation supports return values of 0 through 7, where 0 = FAIL,
and 1 through 7 = PASS. See Test Block Integer Return Values.
 2/27/09 Pg-330

The TEST_BLOCK_SEQUENTIAL() macro is only usable in Multi-DUT Test Programs and
thus must return the value MULTI_DUT.

Both MULTI_DUT_TEST_BLOCK() and MULTI_DUT_TEST_BLOCK_SEQUENTIAL()
implicitly return MULTI_DUT. These macros are only usable in test programs in which the
Pin Assignment Table uses the parallel test macros; i.e. ASSIGN_1DUT(),
ASSIGN_2DUT(), etc.

The MULTI_DUT_CALL_BLOCK() macro requires that no value be returned.

Example
The following example creates a test block named shorts:

TEST_BLOCK(shorts) {
output("Executing => %s", current_test_block());
dps(0 V, pl_all_Vcc);
vpar_force(2 V);
ipar_high(100 UA);
ipar_low(-100 UA);
back_voltage(0 V);
back_voltage_enable(TRUE);
PFState pf = partest(passnicl, all_signal_pins);
// Other code as desired: datalogging, etc.
return pf;

}

3.9.14.3 current_test_block()
See Test Blocks, Program Execution Control.

Description
The current_test_block() function is used to get the name of the currently executing
test block.

current_test_block() does not report Before-testing Block, After-testing Block.

current_test_block() returns the name of a TEST_BIN() if executed within the
optional Test Bin body code.
 2/27/09 Pg-331

If a call-back function is registered using install_debug_hook(), any time the call-back
executes the name of the test block being executed can be obtained using the
current_test_block().

Usage
CString current_test_block();

where current_test_block() returns the name of the currently executing test block, as
a CString.

Example
TEST_BLOCK(myTB1){

// Other code as desired
output(" Executing => %s", current_test_block());
// Other code as desired

}

3.9.14.4 Sequential Test Block
See Test Blocks, Conflict List, Program Execution Control.

Using Magnum 1/2/2x, when executing the Sequence & Binning Table, by default each Test
Block is executed once, concurrently testing all DUT(s) in the Active DUTs Set (ADS).

In situations where it is not appropriate to test all active DUTs, a Conflict List may be defined
and used in conjunction with a sequential test block, to selectively test subsets of the active
DUTs. A sequential test block is executed the number of times necessary to test the active
DUTs but without testing any DUTs which are in conflict.

A sequential test block is defined using the TEST_BLOCK_SEQUENTIAL macro. A
sequential test block differs from the normal test block in that the sequential test block
requires that a Conflict List be associated. Then, as the Sequence & Binning Table is
executed, when a sequential test block is encountered the specified conflict list controls how
many times the sequential test block executes, with each execution testing a subset of
active DUTs which are not in conflict.
 2/27/09 Pg-332

3.9.14.5 Test Block Integer Return Values
See Test Blocks, Program Execution Control.

Description
Test Blocks typically return a PASS or FAIL value. However, they can also return an integer
between 0 and 7.

This enables increased flexibility in the Sequence & Binning Test Flow where the test flow
can branch to a different label based on the return value. For example:

// Test Block Code
TEST_BLOCK(TB_1) {

// Other test block code
return result_int;

}

// Sequence & Binning Code
TEST5(TB_1, label_4, label_3, label_2, label_1, STOP)

TESTL(label_4, TB_on4, STOP, STOP);
TESTL(label_3, TB_on3, STOP, STOP);
TESTL(label_2, TB_on2, STOP, STOP);
TESTL(label_1, TB_on1, STOP, STOP);

In this example, during Sequence & Binning Table execution, the TEST5 macro evaluates
the return value from TB_1 and takes the following action based on that value:

• 0 = STOP
• 1 = branch to label_1, which then executes the TEST_BLOCK named TB_01.
• 2 = branch to label_2, which then executes the TEST_BLOCK named TB_02.
• 3= branch to label_3 which then executes the TEST_BLOCK named TB_03.
• 4= branch to label_4, which then executes the TEST_BLOCK named TB_04.

The TEST1 through TEST7 macros are covered in the Usage section of Sequence & Binning
Test Flow.
 2/27/09 Pg-333

3.9.14.6 Before-testing Block, After-testing Block
See Test Blocks, Program Execution Control.

Description

The BEFORE_TESTING_BLOCK() macro defines a before-testing block, which is a
user-defined block of code that will always be executed immediately before the first test
block specified in the Sequence & Binning Table. This is a good place to perform any final
preparations for device testing, such as closing switches to connect DPS and tester pins
to the DUT (dps_connect(), etc.), or doing some final set up of the APG, initializing
variables, etc.

Similarly, the AFTER_TESTING_BLOCK() macro defines an after-testing block, which is a
user-defined block of code that will always be executed immediately after the first test block
specified in the Sequence & Binning Table. This is a good place to perform any special
power down, or binning activities.

Note: any user-defined before-testing block(s) and/or after-testing block(s) do execute
when executing one test block using mouse controls in the UI Sequence and
Binning sub-window.

Note the following:

• After-testing blocks are guaranteed to execute, even if Stop Testing is asserted
from UI.

• Before-testing blocks and after-testing blocks do not (and must not) appear in the
Sequence & Binning Table; just the fact they are defined causes them to execute
automatically. And, unlike other test blocks, before-testing and after-testing blocks
do not return a PASS/FAIL value.

• Multiple before-testing block(s) and/or after-testing block(s) may be defined. The
block names are stored in a list, and will be executed in the order they were
defined.

• In every test program, the system software automatically defines one before-
testing block and one after-testing block. These are named:
•builtin_before_testing_block

•builtin_after_testing_block

• The builtin_before_testing_block contains the following:
 2/27/09 Pg-334

BEFORE_TESTING_BLOCK(builtin_before_testing_block) {
// Closes pin relays on all used signal pins
// Does NOT close any DPS switches
pin_connect(builtin_UsedPins);

}

where builtin_UsedPins is a pin list automatically created by the system
software and contains all of the signal pins defined in the test program.

• The builtin_after_testing_block contains the following:
AFTER_TESTING_BLOCK(builtin_after_testing_block) {

pmu_disconnect();
vihh(0.0, builtin_UsedPins);
vih(0.0, builtin_UsedPins);
voh(0.0, builtin_UsedPins);
vil(0.0, builtin_UsedPins);
vol(0.0, builtin_UsedPins);
vtt(0.0, builtin_UsedPins);
hv_pmu_disconnect();
hv_voltage_set(0.0);
dps(0.0, builtin_UsedDPS);
ptu_disconnect(builtin_UsedPins);
disconnect(builtin_UsedPins);

}

where builtin_UsedPins, builtin_UsedAVS and builtin_UsedDPS and are
pin lists automatically created by the system software based on the signal pins,
DPS pins, and ATC pins used in the test program. The Analog Test Channel (ATC)
is documented in a separate manual.

• The system software always executes the builtin_before_testing_block
first, even when the user has also defined a before-testing block. User-code can
override the builtin_before_testing_block by defining a before-testing
block with the same name. The user may also create additional before-testing
block(s) which will be executed after the builtin_before_testing_block.
These will have names created by the user.

• Similarly, the system software always executes the
builtin_after_testing_block last, even when the user has also defined a
after-testing block. User-code can override the
builtin_after_testing_block by defining a after-testing block with the
same name. The user may also create additional after-testing block(s) which will
be executed before the builtin_after_testing_block. These will have
names created by the user.
 2/27/09 Pg-335

• The BeforeTestingBlock_find() function can be used to get a pointer to a
before-testing block, given its name. The AfterTestingBlock_find() function
can be used to get a pointer to an after-testing block, given its name. Using this
pointer, the before-testing block or after-testing block can be explicitly executed
using invoke(). However, it is not necessary to use invoke() to execute a
before-testing block or after-testing block during typical testing operations.

Usage
BEFORE_TESTING_BLOCK(name) { body-code }

AFTER_TESTING_BLOCK(name) { body-code }

where:

BEFORE_TESTING_BLOCK and AFTER_TESTING_BLOCK are Test System Macros used to
define a before-testing block or after-testing block.

name is the name assigned to the before-testing block or after-testing block, and must be a
legal C identifier.

body-code represents the user-written body-code to be executed when the before-testing
block or after-testing block executes.

Example
BEFORE_TESTING_BLOCK(tb_initialize) {

dps_connect(pl_vcc);
data_strobe(pl_data);
vclamp(7 V, -3 V);
// Test flow setup – for parallel test routines
curr_dut_mask = init_dut_mask;
clear_dut_bins();// user function in datalog.cpp
// Do NOT return a value from a Before or After Testing Block

}

AFTER_TESTING_BLOCK(my_after_testing_block) {

my_power_down_func();

my_binning_eval_func();

}

 2/27/09 Pg-336

3.9.14.7 Conflict List
See Test Blocks, Program Execution Control.

Description
Using Magnum 1/2/2x, when executing the Sequence & Binning Table, by default each Test
Block is executed once, concurrently testing all DUT(s) in the Active DUTs Set (ADS).

In situations where it is not appropriate to test all active DUTs, a conflict list may be defined
and used in conjunction with a Sequential Test Block, to selectively test subsets of the active
DUTs. A Sequential Test Block is executed the number of times necessary to test the active
DUTs but without testing any DUTs which are in conflict.

A conflict list is defined, using Conflict List Macros, to identify sets of DUTs which cannot be
tested concurrently. Then, as the Sequence & Binning Table is executed, when a Sequential
Test Block is encountered the specified conflict list controls how many times the Sequential
Test Block executes, with each execution testing a subset of active DUTs which are not in
conflict.

3.9.14.8 Conflict List Macros
See Test Blocks, Sequential Test Block, Conflict List, Program Execution Control.

Note: first available in software release h1.1.23.

Description

User code creates and names a Conflict List using the CONFLICT_LIST and related macros
documented below.

Within the body of the CONFLICT_LIST macro the CONFLICTn macros or COMPATIBLEn
macros are used to identify DUT(s) which cannot be concurrently tested; i.e. are in conflict.
The name of the macro used (CONFLICT2, CONFLICT3, or COMPATIBLE3, COMPATIBLE4,
etc.) is determined by the number of DUTs in each conflict, which corresponds to the
number of DutNum arguments specified in the macro. For example, to specify that even
numbered DUTs are in conflict with odd numbered DUTs the CONFLICT2 macro could be
used:
 2/27/09 Pg-337

CONFLICT_LIST(EvenOddDutsConflict) {
CONFLICT2(t_dut1, t_dut2)
CONFLICT2(t_dut1, t_dut4)
CONFLICT2(t_dut2, t_dut1)
CONFLICT2(t_dut2, t_dut3)
CONFLICT2(t_dut3, t_dut2)
CONFLICT2(t_dut3, t_dut4)
CONFLICT2(t_dut4, t_dut1)
CONFLICT2(t_dut4, t_dut3)
// Etc.

}

Note that since CONFLICT2(x, y) == CONFLICT2(y, x), the above can be
simplified to:

CONFLICT_LIST(EvenOddDutsConflict) {
CONFLICT2(t_dut1, t_dut2)
CONFLICT2(t_dut2, t_dut3)
CONFLICT2(t_dut3, t_dut4)
CONFLICT2(t_dut4, t_dut1)
// Etc.

}

Or, the same result can be obtained using:

CONFLICT_LIST(EvenOddDutsConflict) {
COMPATIBLE2(t_dut1, t_dut3)
COMPATIBLE2(t_dut2, t_dut4)
// Etc.

}

Using the COMPATIBLEn macros, each line lists DUT(s) that can be tested concurrently; i.e.
DUT(s) which are NOT listed are, by definition, in conflict.

Conflict Lists must be defined at global scope; i.e. the CONFLICT_LIST macro cannot be
used within the body of another macro, C function, etc.

A Conflict List is used in conjunction with the TEST_BLOCK_SEQUENTIAL macro, by
specifying its name as the last parameter. For example:

TEST_BLOCK_SEQUENTIAL(my_test_block, EvenOddDutsConflict){
// Test block code

}

As described in Conflict List, the code in a Sequential Test Block may execute more than
once; the specific number of times is determined by which DUT(s) are enabled in the Active
 2/27/09 Pg-338

DUTs Set (ADS) and the relationships defined in the specified Conflict List. For example,
given the EvenOddDutsConflict Conflict List example above, the table below shows how
many times the Sequential Test Block will execute for various combinations of active
DUT(s):

Note the following:

• If only CONFLICT2 is used to define a Conflict List, the test block code will never
execute more than 2 times, regardless of how many DUT(s) are in the Active DUTs
Set (ADS). Similarly, if only CONFLICT4 is used to define a Conflict List, the test
block code will never execute more than 4 times, regardless of how many DUT(s)
are in the Active DUTs Set (ADS). Etc.

• If a mix of CONFLICTn macros are used, complex combinations are possible.
However, this is unlikely to be useful in the real world, and thus is not further
documented here.

Active DUTs Set
Members

Test Block Code
Execution Count

t_dut1 1

t_dut2 1

t_dut1
t_dut3

1

t_dut2
t_dut4

1

t_dut1 t_dut2
t_dut3

2

t_dut1 t_dut2
t_dut4

2

t_dut1
t_dut3 t_dut4

2

t_dut2
t_dut3 t_dut4

2

t_dut1 t_dut2
t_dut3 t_dut4

2

 2/27/09 Pg-339

Usage
The following macro is used to create a new Conflict List, with the specified name:

CONFLICT_LIST(name)

The following macro is used to make a forward or external Conflict List declaration:

EXTERN_CONFLICT_LIST(name)

The following macros are used to identify specific DUT conflicts:

CONFLICT1(d1)

CONFLICT2(d1, d2)

CONFLICT3(d1, d2, d3)

... snip ...

CONFLICT32(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31,
d32)

The following macros are used to identify specific DUT compatibilities:

COMPATIBLE1(d1)

COMPATIBLE2(d1, d2)

COMPATIBLE3(d1, d2, d3)

... snip ...

COMPATIBLE32(d1, d2, d3, d4, d5, d6, d7, d8, d9, d10,
d11, d12, d13, d14, d15, d16, d17, d18, d19, d20,
d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31,
d32)

where:

The name of the macro identifies how many DutNum arguments must be specified.

d1, d2, through d32 identify the DUTs which are in conflict or are compatible. Legal values
for are of the DutNum enumerated type (t_dut1, etc.).

Example:
See Description.
 2/27/09 Pg-340

3.9.14.9 Test Numbers
See Test Blocks, Program Execution Control.

Description

The test_number() function may be used to explicitly set a test number or retrieve the
current test number value.

Every test in a test program can be uniquely identified by test block name and a test number
within each test block. This is important when gathering test data and when setting
interactive breakpoints, as described in Breakpoint Monitor.

Test Blocks names are assigned by the user when test blocks are created. Test numbers
are assigned automatically by the system software within each test block for the predefined
functions that execute parametric and functional tests. A test number counter, starting at
zero when the test block is entered, is automatically incremented by the system software at
each execution of the following functions:

• partest()

• ac_partest()

• funtest()

• test_supply()

• ac_test_supply()

• hv_test_supply()

• hv_ac_test_supply()

• ptu_partest()

• ptu_ac_partest()

For example, if a test block named leakage executes ten partest() functions, the
first one would be test number one, the second would be test number two, etc. The fourth
partest() in this test block would be identified as: Test Block: leakage, Test # 4.

In certain instances, the user may want to manipulate the test number. Functions are
provided that allow the user to retrieve the current test number or set the test number to a
value. Incrementing the test number can also be done using these functions.

Also note that there are set-up numbers assigned by the system software for all tester
defined functions in a test block. See the description under Setup Numbers for more
information.
 2/27/09 Pg-341

Usage
int test_number(); // Return current test number

int test_number(int value); // Set test number with value.
// Return previous test number

where value is an integer (int).

Examples

Example 1:
test_number(50);

The test number is set to 50.

Example 2:
int curr_tn = test_number();

This example retrieves the current test number and stores it in the user-defined variable
named curr_tn.

Example 3:
test_number(test_number() + 1);

This increments the test number by retrieving the current test number and adding one to it.
This is also automatically done by the system software throughout a test block unless
overridden by the explicit use of test_number().

3.9.14.10 Setup Numbers
See Test Blocks, Program Execution Control.

Description

The setup_number() function may be used to explicitly set a setup number or retrieve the
current a setup number value.

Every C function documented in this manual except the five test functions shown below are
uniquely identified within each test block by a setup number.

The following five test functions are identified by Test Numbers, not setup numbers.
 2/27/09 Pg-342

• partest()

• ac_partest()

• funtest()

• test_supply()

• ac_test_supply()

Executing any of the other C functions documented in this manual causes the setup number
to be incremented. Each time one of the five test functions above is executed, the setup
number is reset to zero.

Note: only functions created by Nextest cause the setup number to increment; i.e.
user-created functions have no effect on setup number unless they call the
setup_number() function documented here.

During interactive debug, using the Breakpoint Monitor, breakpoints can be set to act on a
specific setup number; i.e. on any function documented in this manual. This allows
execution to halt before or after executing a specific C function.

Usage
The following function changes the setup number to the value specified:

void setup_number(int value);

The following function retrieves the current setup number:

int setup_number();

where value specifies the desired setup number.

Examples

Example 1:
setup_number(50);

The setup number is set to 50.

Example 2:
int my_sn = setup_number();

This example retrieves the current setup number and stores it in the user-defined variable
called my_sn.
 2/27/09 Pg-343

Example 3:
setup_number(setup_number() + 1);

This increments the setup number by retrieving the current value and adding one to it.

3.9.15 Delay()
See Program Execution Control.

Description
The Delay() function may be used to pause test program execution for a specified time.
This uses the same hardware timer as partime(), and that used by the system software
for internal relay and voltage settling time delays.

Usage
void Delay(double Value);

where:

Value specifies the desired delay. Legal values are 100uS to 1S. Units may be used (see
Specifying Units).

Example
// Other code as desired...
Delay(10 MS); // Wait 10mS before proceeding
// Other code as desired...

3.9.16 Error Line Reset from CPU: reset_error()
See Program Execution Control.

Description

The reset_error() function will reset the Pin Electronics error latches, for all tester
channels on the Site (this is not a per-pin or per-PE board function). See Error Flag vs. Error
Latch.
 2/27/09 Pg-344

Once the error latches are reset the test_pin() and test_pin_first_error()
functions will return PASS.

Usage
void reset_error();

Example
reset_error();

All pin electronics error latches are cleared.

3.9.17 Control of Branch on Error Flag
See Over-programming Controls and Parallel Test, Over-programming Control Stimulus
Selection.

Description

See Over-programming Controls and Parallel Test for a detailed overview of the purpose
and operation of the error_flag_enable() function.

Note: the error_flag_enable() function documented here is not needed when
testing a single DUT per-site, including when using MAR OVER to inhibit
over-programming.

Note: the features noted below assume that all pins of a given set of 8 are only used
by one DUT; i.e. a_1 through a_8 are used by one DUT, b_1 through b_8 are
used by one DUT, etc. Note that other restrictions exist: see Over-programming
Controls and Parallel Test.

error_flag_enable(TRUE) is the global default set during initial program load. The
system software does not otherwise modify this setting.

Executing error_flag_enable(TRUE) in user code restores default error flag and error
latch operation. More below.

error_flag_enable(FALSE) does the following:
 2/27/09 Pg-345

• Globally, for all DUT(s), prevents the corresponding error flags from that DUT from
affecting test pattern branch-on-error operation when an error latch is set for that
DUT. Thus, when a DUT is defective (i.e some associated error latches are set),
the adaptive test pattern will ignore that DUT when making branch-on-error
decisions. See Over-programming Controls and Parallel Test.

• Inhibits the programming stimulus, identified using over_inhibit(), for any
DUT(s) which have an error latch set. Again, see Over-programming Controls and
Parallel Test.

The following table summarizes this operation:

Note: the Maverick-I/-II software includes a second overload of
error_flag_enable() with a PEBoard argument, used to provide a per-DUT
control. The equivalent overload is not available using Magnum 1/2/2x because
the Active DUTs Set (ADS) provides a more fully integrated level of control and
should be used.

Usage
void error_flag_enable(BOOL State);

where:

State is either TRUE or FALSE. See Description.

Example
error_flag_enable(FALSE);

Table 3.9.17.0-1 error_flag_enable() Operation and Options

Function
Option

Error
Latches

Error
Flags

error_flag_enable(TRUE) Enabled Enabled

error_flag_enable(FALSE) Enabled Conditionally
Disabled1

Notes:
1) Error flags are disabled on DUT(s) which have an error latch set, in real-time, as
 the test pattern executes.
 2/27/09 Pg-346

3.9.18 Over-programming Control Stimulus Selection
See Over-programming Controls and Parallel Test, Control of Branch on Error Flag.

Description

The over_inhibit() function is used to identify the programming stimulus which will be
affected (inhibited) as described in Over-programming Controls and Parallel Test.

All three mode options noted below are deselected at test program initialization. This is
equivalent to over_inhibit(0,0,0); The system software does not otherwise modify
this configuration.

Using Magnum 1/2/2x, the special hardware noted in Over-programming Controls and
Parallel Test is replicated for every 8 pins and one DPS (i.e. a_1 through a_8, b_1 through
b_8, etc). This restricts the minimum DUT size to 8 pins but also works when a DUT spans
more than 8 pins. However, additional restrictions apply depending on the programming
stimulus being used:

• If using VIHH as the programming stimulus, no additional restrictions exist.
• If using DPS as the programming stimulus, the over-programming inhibit hardware

requires that the DPS Output Mode be configured/used in VPulse mode
(t_dps_vpulse). The over-programming inhibit hardware inhibits the DPS
programming stimulus by forcing the DPS to its primary output voltage, over-riding
(inhibiting) the secondary output voltage (vpulse). In VPulse mode, both the A and
B DPS outputs will drive the same voltage (unless one is disconnected).

• If using a normal PE driver signal as the programming stimulus, the
over-programming inhibit hardware forces the drive state to VIH (presuming the
active programming state to be active-low). This affects BOTH the A/B tester
channels which share a given timing generator.

Usage
The function options below provide for several usage variations. In general, argument
names that begin with No allow that argument to be effectively ignored by entering 0 as the
argument value. Only the combinations documented below are supported.

// Specify 0 for all arguments. Restores default operation
void over_inhibit(int NoVihhPinList,

int NoVihPinList,
int NoDPSPinList);
 2/27/09 Pg-347

// Specify a pin list for all arguments
void over_inhibit(PinList* pVihhPinList,

PinList* pVihPinList,
PinList* pDPSPinList);

// Specify 0 for argument 3 only
void over_inhibit(PinList* pVihhPinList,

PinList* pVihPinList,
int NoDPSPinList);

// Specify 0 for arguments 1 & 3
void over_inhibit(int NoVihhPinList,

PinList* pVihPinList,
int NoDPSPinList);

// Specify 0 for arguments 2 & 3
void over_inhibit(PinList* pVihhPinList,

int NoVihPinList,
int NoDPSPinList);

where the following apply to all pin electronics boards in a test site:

pVihhPinList is a pin list identifying one or more pins on which VIHH will be inhibited.
With VIHH inhibited, the PE driver drives the logic state last set from the test pattern. Specify
0 for this parameter when VIHH is not being used as programming stimulus.

pVihPinList is a pin list on which the drive-state will be inhibited. This causes the PE
driver to drive-high (VIH) independent of the test pattern. Specify 0 for this parameter when
PE pins are not used as programming stimulus. Note that this operation presumes that the
pins are being used as active-low chip-select-like DUT inputs. The active-high state is not
supported. Note that restrictions exist: see Description.

pDPSPinList is a pin list identifying which DPS will be inhibited. When a DPS is inhibited,
it is forced to the primary voltage (not dps_vpulse()). Specify 0 for this parameter when
not using a DPS as programming stimulus.

Note: using Magnum 1/2/2x, each DPS has two independently switchable output
connections. This adds capabilities but also requires the user understand the
potential effects when using the pDPSPinListoption. See DUT Power Supply
(DPS).

Example
The following example will cause VIHH on the pins in the pl_cs pin list to be inhibited:
 2/27/09 Pg-348

over_inhibit(pl_cs, 0, 0);
 2/27/09 Pg-349

3.9.19 Binning
See Program Execution Control, Software.

The Magnum 1/2/2x software contains support for software binning. Note the following:

• All automated binning operations occur during Sequence & Binning Table
execution. User code can manipulate or access binning structures at any time.

• Individual software bins are called Test Bins, and are created using the
TEST_BIN() macro.

• During Sequence & Binning Table execution, if the test flow executes a Test Bin that
Test Bin will automatically be incremented.

• Each Test Bin may include optional user body code which is executed any time
that bin is encountered in a BIN(), BINL(), STOP, and STOPL() during
Sequence & Binning Table execution.

• The TEST_BIN_GROUP() macro is used to create a software bin which
accumulates the sum of one or more Test Bins. See Test Bin Groups.

• The available C-functions which interact with Test Bins are covered in the Test Bin
Functions section.

• The available C-functions which interact with Test Bin Groups are covered in the
Test Bin Group Functions section.

• Two built-in Test Bins, named builtin_Pass and builtin_Fail, are defined by
the system software. One will be incremented when Sequence & Binning Table
execution reaches a STOP action (not a STOP macro, see Sequence & Binning Test
Flow). Conversely, neither of these built-in bins will be incremented when
Sequence & Binning Table execution stops in a BIN() or BINL() statement.

• In Multi-DUT Test Programs, the TEST_BIN() and TEST_BIN_GROUP() macros
actually create a separate bin for each DUT. Then, as the Sequence & Binning
Table executes, the system software automatically increments the correct Test Bin
and, if appropriate Test Bin Group, independently for each active DUT. In other
words, when execution reaches a BIN(), BINL(), STOP, or STOPL() statement,
the system software takes the correct action for each DUT currently in the Active
DUTs Set (ADS).
 2/27/09 Pg-350

3.9.19.1 Test Bins
See Binning, Program Execution Control.

Definition

The TEST_BIN() macro is used to create software test bin(s), for use in the traditional way,
to count test results. In software, a test bin is represented as a TestBin data type.

When test bins are created, the BIN(), BINL(), STOP, and STOPL() macros are used in
the Sequence & Binning Test Flow definition to specify which test bin to increment when
execution reaches that statement. It is possible to increment any number of test bin(s)
during a single execution of a Sequence & Binning Table.

Each test bin may optionally include body code i.e. user-written C-code. During Sequence
& Binning Table execution, when a BIN() or BINL() statement is executed which
references a test bin which has body code, that code is also executed. This enables user
code to perform binning related actions which are not available in the built-in binning
software. Iin Multi-DUT Test Programs, for a given BIN() or BINL() execution, the test bin
body code is executed once, independent on the number of DUT(s) currently in the Active
DUTs Set (ADS).

Test bin(s) are defined outside the scope of the SEQUENCE_TABLE() macro body code,
however, the convention used by the Test Program Wizards puts this code in the file named
seq_and_bin.cpp.

The EXTERN_TEST_BIN macro is used to create an external test bin declaration. This
should only be necessary when code outside the seq_and_bin.cpp file needs access a
test bin.

current_test_block() returns the name of the test bin if executed within the test bin’s
body code.

Usage
TEST_BIN(bin_name) { optional body code }

EXTERN_TEST_BIN(bin_name)

where:

TEST_BIN is a Test System Macro used to create a test bin.
 2/27/09 Pg-351

EXTERN_TEST_BIN is a Test System Macro used to create an external test bin declaration.

bin_name is the user-defined name of the test bin being created. Names must be valid C
identifiers.

optional body code allows user-written C code to be executed each time the test bin is
encounterd in a BIN(), BINL(), STOP, and STOPL() during Sequence & Binning Table
execution.

Example
The following example creates 5 test bins and 2 Test Bin Groups:

TEST_BIN(OpensFail){ output("msg"); }
TEST_BIN(ShortsFail){}
TEST_BIN(SpeedFail){}
TEST_BIN(PassBin1){}
TEST_BIN(PassBin2){}

TEST_BIN_GROUP(PassBins) {
BINS2(PassBin1, PassBin2)

}

TEST_BIN_GROUP(FailBins) {
BINS3(OpensFail, ShortsFail, SpeedFail)

}

3.9.19.2 Test Bin Groups
See Binning, Program Execution Control.

Definition
The TEST_BIN_GROUP macro is used to create a Test Bin Group, essentially a software bin
which accumulates the sum of one or more Test Bins.

During Sequence & Binning Table execution, a Test Bin Group is incremented when any of
its member Test Bins is incremented. For example, it might be useful to add individual Test
Bins named opens_fail_bin, shorts_fail_bin, vcc_open_fail_bin, and
vcc_open_fail_bin to a Test Bin Group named continuity_fails. Then,
SummaryTool can be used to display both the individual Test Bin counts and the sum of
these bins i.e. the total count of the Test Bin Group.
 2/27/09 Pg-352

Test bin group are created at a global level, normally in the same location as Test Bins. The
convention used by the Test Program Wizards puts this code in the file named
seq_and_bin.cpp.

Individual Test Bins are added to a Test Bin Group using the BINS1() through BINS8()
macros, documented below. An existing Test Bin Group can be added to a new Test Bin
Group being created using the INCLUDE_TEST_BIN_GROUP macro.

As noted above, Test Bin Groups are incremented automatically, as a side effect of
incrementing one of its member Test Bins. The Test Bin Group Functions can be used to
explicitly manipulate a Test Bin Group from user-written C-code.

The EXTERN_TEST_BIN_GROUP macro is used to make a forwarsd or external Test Bin
Group declaration.

The Units Passed counter in FrontPanelTool will only be updated if the test program defines
a Test Bin Group named units_passed (case insensitive). See page 2013 for an example.

Usage
TEST_BIN_GROUP(group_name) {

BINS1(bin_name1)
BINS2(bin_name2, bin_name3)
INCLUDE_TEST_BIN_GROUP(other_group)

}

EXTERN_TEST_BIN_GROUP(group_name)

The following macros are used to add up to 8 Test Bins to a Test Bin Group.

BINS1(group_name,tbin0)
BINS2(group_name,tbin1,tbin0)
BINS3(group_name,tbin2,tbin1,tbin0)
BINS4(group_name,tbin3,tbin2,tbin1,tbin0)
BINS5(group_name,tbin4,tbin3,tbin2,tbin1,tbin0)
BINS6(group_name,tbin5,tbin4,tbin3,tbin2,tbin1,tbin0)
BINS7(group_name,tbin6,tbin5,tbin4,tbin3,tbin2,tbin1,tbin0)
BINS8(group_name,tbin7,tbin6,tbin5,tbin4,tbin3,tbin2,tbin1,tbin0)

where:

TEST_BIN_GROUP is a Test System Macro used to create a software bin containing the sum
its member Test Bins.

group_name is a user-defined name of the Test Bin Group being created or being externally
declared. Names must be valid C identifiers.
 2/27/09 Pg-353

bin_name1, bin_name2, bin_name3, and tbin0 through tbin8 are the names of
existing Test Bins being added to the Test Bin Group.

INCLUDE_TEST_BIN_GROUP is a Test System Macro used to insert the contents of an
existing Test Bin Group (other_group in the example above) into the Test Bin Group
currently being defined.

BINS1 through BINS8 are Test System Macros used to add from 1 to 8 Test Bins to a
TEST_BIN_GROUP.

Example
See Example.

3.9.19.3 Test Bin Functions
See Binning, Program Execution Control.

The following functions may be used to access Test Bins:

• Test Bin set()/get() Functions - used to set the value of a specified Test Bin or get
the value of a specified Test Bin.

• Test Bin increment()/decrement() Functions - used to increment or decrement the
value of a specified Test Bin.

• Test Bin reset_all_bins() Function - used to reset the value of all defined Test Bins.
• Test Bin total_all_bins() Function - used to obtain the sum of all defined Test Bins for

a specified DUT.
• Test Bin set_bin()/get_bin() Functions - used to set or get a final Test Bin.
• Test Bin invoke() Function - executes the user-written C code (body code)

associated with a specified Test Bin.
Also see Test Bin Group Functions.

3.9.19.4 Test Bin set()/get() Functions
See Test Bin Functions, Test Bins, Binning, Program Execution Control.
 2/27/09 Pg-354

Description

The set() function is used to set the value of a specified Test Bin.

The get() function is used to get the current value of a specified Test Bin.

Usage
The following function sets the value of a specified Test Bin for a specific DUT:

int set(TestBin* testBin, DutNum dut, int newValue);

The following function gets the current value of a specified Test Bin for a specific DUT:

int get(TestBin* testBin, DutNum dut);

where:

testBin identifies the target Test Bin.

newValue specifies the desired value.

dut is used in Multi-DUT Test Programs to identify the testBin for a specific DUT. The
Active DUTs Set (ADS) has no effect on this function.

set() returns the previous value of the specified testBin.

get() returns the current value of the specified testBin.

Example
Given:

TEST_BIN(OpensFail){}

The following functions set and get the value of the OpensFail Test Bin:

int prev_value = set(OpensFail, t_dut1, 0);
int curr_value = get(OpensFail, t_dut1);

3.9.19.5 Test Bin increment()/decrement() Functions
See Test Bin Functions, Test Bins, Binning, Program Execution Control.
 2/27/09 Pg-355

Description

The increment() function is used to increment the value of a specified Test Bin.

The decrement() function is used to decrement the value of a specified Test Bin.

Note: normal Test Bin usage in the Sequence & Binning Table automatically increments
a Test Bin.

Usage
The following function increments the value of a specified Test Bin:

int increment(TestBin* testBin);

The following function decrements the value of a specified Test Bin:

int decrement(TestBin* testBin);

where:

testBin identifies the target Test Bin. In Multi-DUT Test Programs, the specified testBin
for all DUT(s) in the Active DUTs Set (ADS) are incremented or decremented.

increment() returns the value of the specified testBin after it is incremented. In Multi-
DUT Test Programs, the return value is the sum of the specified testBin of all DUT(s) in
the Active DUTs Set (ADS).

decrement() returns the value of the specified testBin after it is decremented. In Multi-
DUT Test Programs, the return value is the sum of the specified testBin of all DUT(s) in
the Active DUTs Set (ADS).

Example
Given:

TEST_BIN(OpensFail){}

The following functions increment and decrement the OpensFail Test Bin:

int new_value = increment(OpensFail);

int new_value = decrement(OpensFail);
 2/27/09 Pg-356

3.9.19.6 Test Bin reset_all_bins() Function
See Test Bin Functions, Test Bins, Binning, Program Execution Control.

Description

The reset_all_bins() function is used to reset the value of all defined Test Bins.

Usage
BOOL reset_all_bins(DutNum dut);

where:

dut is used in Multi-DUT Test Programs to identify a specific DUT. reset_all_bins()
resets all defined Test Bins for this DUT. The Active DUTs Set (ADS) has no effect on this
function.

reset_all_bins() returns FALSE if an invalid dut is specified otherwise TRUE is
returned.

Example
ok = reset_all_bins(t_dut1);

3.9.19.7 Test Bin total_all_bins() Function
See Test Bin Functions, Test Bins, Binning, Program Execution Control.

Description

The total_all_bins() function is used to obtain the sum of all defined Test Bins for a
specified DUT.

total_all_bins() has no effect on Test Bin Groups, see group_total().

Usage
int total_all_bins(DutNum dut);

where:
 2/27/09 Pg-357

dut is used in Multi-DUT Test Programs to identify a specific DUT. total_all_bins()
returns the sum of all defined Test Bins for this DUT. The Active DUTs Set (ADS) has no
effect on this function.

total_all_bins() returns the sum of all defined Test Bins for the specified
dut.

Example
int Dut1_total = total_all_bins(t_dut1);

3.9.19.8 Test Bin set_bin()/get_bin() Functions
See Test Bin Functions, Test Bins, Binning, Program Execution Control.

Description

The set_bin() function is used, during Sequence & Binning Table execution, to set a final
Test Bin. By default, the final Test Bin is that executed in the last test block executed, which
defaults to either builtin_Pass or builtin_Fail based on the test block result.

The get_bin() function is used to get the final Test Bin, which is either the Test Bin
executed in the last test block executed by the Sequence & Binning Table or the Test Bin set
by set_bin().

Usage
In Multi-DUT Test Programs, the following function sets the same bin for all DUTs in the
Active DUTs Set (ADS):

BOOL set_bin(TestBin* bin);

The following function sets the bin for a specified DUT:

BOOL set_bin(TestBin* bin, DutNum dut);

The following function is used to get the currently set bin for a specified DUT:

TestBin* get_bin(DutNum dut);

where:

bin identifies the target Test Bin to be set.
 2/27/09 Pg-358

dut is used in Multi-DUT Test Programs to identify a specific DUT. get_bin() returns the
last bin executed for this DUT. The Active DUTs Set (ADS) has no effect on this function.

set_bin() returns TRUE if no errors occur, otherwise FALSE is returned.

get_bin() returns a pointer to the last Test Bin executed.

Example
The following code is targeted for execution in an After-testing Block:

output("Final Bin Results");
TestBin *tbin;
for(DutNum dut = t_dut1; dut <= max_dut(); ++dut){

tbin = get_bin(dut);
output(" t_dut%d bin = %s", dut+1, resource_name(tbin));

}

3.9.19.9 Test Bin invoke() Function
See Test Bin Functions, Test Bins, Binning, Program Execution Control.

Description

The invoke() function executes the user-written C code (body code) associated with a
specified Test Bin.

Note: the invoke() function has several overloads used with other data types, each
documented separately.

Usage
int invoke(TestBin* obj);

where:

obj identifies the target Test Bin. In Multi-DUT Test Programs, the Active DUTs Set (ADS)
has no effect on this function.

invoke() returns the final value assigned to the specified Test Bin. This value can also be
obtained using get().
 2/27/09 Pg-359

Example
Given:

void myFunc(){
if(get(OpensFail) > 10){

output(" Resetting OpensFail");
set(OpensFail, 0);

}
}

TEST_BIN(OpensFail){ myFunc() }

The following causes myFunc() to be executed returns the value of the OpensFail Test
Bin:

int val = invoke(OpensFail);

3.9.19.10 Test Bin Group Functions
See Test Bins, Binning, Program Execution Control.

The following functions may be used to access Test Bins:

• Test Bin Group group_total() Function - used to get the current value of the specified
Test Bin Group i.e. the sum of all Test Bins which are members of the specified Test
Bin Group

• Test Bin Group group_bin() Function - used to identify the index’th Test Bin in a
specified Test Bin Group.

Also see Test Bin Functions.

3.9.19.11 Test Bin Group group_reset() Function
See Test Bin Groups, Test Bin Group Functions, Binning, Program Execution Control.

Description

The group_reset() function is used to reset all Test Bins represented by a specified Test
Bin Group. This also, in effect, resets the value of the specified Test Bin Group.
 2/27/09 Pg-360

In Multi-DUT Test Programs, the version of group_reset() which takes a DutNum
argument must be used. Using the version without a DutNum generates a warning similar to
the following (the bin name tbin1 will change, depending on the bins in the Test Bin Group
being reset):

Warning: Calling "set(tbin1,0)" is probably a mistake. Call the
version that takes a DutNum instead.

Usage
BOOL group_reset(TestBinGroup *obj);

BOOL group_reset(TestBinGroup *obj, DutNum dut);

where:

obj identifies the target Test Bin Group.

dut is used in Multi-DUT Test Programs to identify a specific DUT for which the bin(s) in the
Test Bin Group are to be reset.

group_reset() returns FALSE if an error occurs otherwise TRUE is returned.

Example

TEST_BIN(tbin0){}
TEST_BIN(tbin1){}
TEST_BIN(tbin2){}
TEST_BIN(tbin3){}
TEST_BIN(tbin4){}
TEST_BIN_GROUP(myBinGroup){

BINS5(tbin0, tbin1, tbin2, tbin3, tbin4)
}

group_reset(myBinGroup, t_dut1);

3.9.19.12 Test Bin Group group_total() Function
See Test Bin Groups, Test Bin Group Functions, Binning, Program Execution Control.
 2/27/09 Pg-361

Description

The group_total() function is used to get the current value of the specified Test Bin
Group i.e. the sum of all Test Bins which are members of the specified Test Bin Group.

Usage
int group_total(TestBinGroup *obj, DutNum dut);

where:

obj identifies the target Test Bin Group.

dut is used in Multi-DUT Test Programs to identify a specific DUT.

group_total() returns the sum of the Test Bins represented by the specified Test Bin
Group (obj). The Active DUTs Set (ADS) has no effect on this function.

Example
int total = group_total(PassBins, t_dut1);

3.9.19.13 Test Bin Group group_bin() Function
See Test Bin Groups, Test Bin Group Functions, Binning, Program Execution Control.

Description

The group_bin() function is used to identify the index’th Test Bin in a specified Test Bin
Group. This can be useful to iterate over the Test Bin members of a Test Bin Group, see
Example.

Usage
TestBin* group_bin(TestBinGroup *obj, int index);

where:

obj identifies the target Test Bin Group.

index is the zero-based index into the Test Bin Group.

group_bin() returns a pointer to the index’th Test Bin in a specified Test Bin Group. The
Active DUTs Set (ADS) has no effect on this function.
 2/27/09 Pg-362

Example
TestBin *bin;
for (int i = 0; bin = group_bin(PassBins, i); ++i)

output(" Bin => %s", resource_name(bin));
 2/27/09 Pg-363

DC Functions
3.10 DC Functions
See Software.

This section covers topics which are common to using the DUT Power Supply (DPS), High
Voltage Source/Measure Unit (HV), Per-pin Parametric Test Unit (PTU), and Parametric
Measurement Unit (PMU). See DPS Functions, High Voltage Source/Measure Unit (HV)
Functions, PTU Functions, and PMU Functions,

This section includes the following topics:

• Overview of hardware resources.
• Static DC Tests
• Dynamic DC Tests
• Types, Enums, etc.
• Parametric Settling Time

- Built-in Settling Time
• measure()
• Measurement Average Count Functions
• Retrieving DC Test Results

3.10.1 Overview
See DC Functions.

Each Site Assembly Board contains the following DC test resources (see Site Assembly
Board Block Diagram):

• Eight DUT Power Supply (DPS)s, programmed using the DPS Functions.
• Sixteen High Voltage Source/Measure Unit (HV)s, programmed using the High

Voltage Source/Measure Unit (HV) Functions.
• Eight Parametric Measurement Unit (PMU)s, programmed using the PMU

Functions.
• 128 Per-pin Parametric Test Unit (PTU)s, programmed using the PTU Functions.
 2/27/09 Pg-364

DC Functions
• Eight DC Test and Measure Systems, used to perform both Go/NoGo tests and
measurements using the DC resources above. Details are outlined in Static DC
Tests and Dynamic DC Tests.

Key voltages from each of these DC resources are routed, one at a time via the DC Source
Select MUX, to the DC Test and Measure System, which is used to both perform Go/NoGo
tests and to make measurements. Both Static DC Tests and Dynamic DC Tests are
supported, as Go/NoGo tests (faster) or measurements (more information).

The measure() function is used to switch between Go/NoGo test mode and measurement
mode. Measured values are used by the system software to determine PASS/FAIL and may
also be retrieved for evaluation by user code, see Retrieving DC Test Results.

Both Go/NoGo tests and measurements can be triggered from the site computer or by
triggers from an executing test pattern.

3.10.2 Static DC Tests

See Overview, Dynamic DC Tests.

Static DC tests are executed using:

• DPS Static Current Test Functions; i.e. test_supply()
• HV Static Test Functions; i.e. hv_test_supply()
• PMU Static Test Functions; i.e. partest()
• PTU Static Test Functions; i.e. ptu_partest().

Two static test options are possible:

• If measurements are disabled (see measure()) a static Go/NoGo test is
performed. For all DC instruments except the PTUs, the site computer triggers the
DC Comparators and Error Logic, one or more times, and reads the DC Error Flag
to determine the test result. Using the PTU, the site computer triggers one or more
PTU(s) internal DC comparators and reads the per-pin PTU error flag(s) to
determine the test result.

• If measurements are enabled (see measure()) a static measurement is made.
For all DC instruments, including the PTUss, the site computer triggers the DC A/
D Converter, one or more times, and reads the measured value(s). The system
software then compares the measured value(s) against the appropriate PASS/FAIL
limits to determine the test result. When more than one measurement is made, the
 2/27/09 Pg-365

DC Functions
average of all measurements is compared to the PASS/FAIL limits to determine
the test result. Measured values can be retrieved by user code, see Retrieving DC
Test Results.

In software release h1.1.23, support for measurement averaging was enhanced, which
affects the Magnum 1 static DC parametric tests which support the iacc argument. The
test_supply() and ptu_partest() operations were also enhanced at the same time.
See Measurement Average Count Functions.

When performing Static DC Tests a user-specified Parametric Settling Time can be added to
the Built-in Settling Time, both of which occur after the test stimulus is applied and before
the Go/NoGo test or measurement is performed.

3.10.3 Dynamic DC Tests

See Overview, Dynamic DC Tests.

Dynamic DC tests include the execution of a functional test pattern.

Dynamic DC tests are executed using:

• DPS Dynamic Current Test Functions; i.e. ac_test_supply()
• HV Dynamic Test Functions; i.e. hv_ac_test_supply()
• PMU Dynamic Test Functions; i.e. ac_partest()
• PTU Dynamic Test Functions; i.e. ptu_ac_partest()

During a dynamic DC test a specified test pattern is executed, to functionally stimulate the
DUT and to trigger the DC portion of the test.

Dynamic DC tests have two basic forms:

• Go/NoGo tests
• Measurement tests

The measure() function is used to enable or disable measurements vs. Go/NoGo tests.

A dynamic DC Go/NoGo test has two variations. The selection is made by including or
excluding the vcomp argument to the test function being used:

• The executing test pattern triggers the DC Comparators and Error Logic. If, after
pattern execution ends, if a DC Error Flag or a PE error latch is set the test fails
(see Error Flag vs. Error Latch). Note that dynamic PTU Go/NoGo tests (i.e.
 2/27/09 Pg-366

DC Functions
ptu_ac_partest() with measure() = FALSE) do not use the DC Error Flag.
Instead, each PTU has its own set of DC comparators and local error flag which
are used to determine PASS/FAIL. See Dynamic PTU Go/NoGo Test.

• The site computer enables the DC Comparators and Error Logic for the entire time
the test pattern is executing. If, during this time, the parameter being tested fails
either PASS/FAIL test limit the DC Error Flag is set and, if not reset (more below)
the test fails. The test also fails if any PE error latch is set. This option is not
usable in dynamic PTU Go/NoGo tests, see Dynamic PTU Go/NoGo Test..

In order to perform a dynamic DC measurement, the executing test pattern must trigger the
DC A/D Converter (ADC); i.e. the computer can’t trigger dynamic measurements. After
pattern execution completes, the system software retrieves the last measurement value and
compares it to the PASS/FAIL test limits to determine the test result. Measured values can
also be retrieved by user code, see Retrieving DC Test Results.

As noted above, the test pattern executed during dynamic DC tests may trigger the DC
portion of the test. This requires two things:

• Except for ptu_ac_partest(), the DC test function must specify vcomp as the
optional the CompCond argument. See ac_partest(), hv_ac_test_supply(),
ac_test_supply(). Excluding this argument or specifying no_vcomp means
that the site computer enables the test hardware and any pattern triggers (next)
have no effect on the test.

• The test pattern must include one or more VCOMP instructions. One DC trigger will
be generated for each executed pattern instruction which contains the MAR VCOMP
instruction (Memory Test Patterns) or VEC/RPT VCOMP, VAR VCOMP, or VPINFUNC
VCOMP instructions (Logic Test Patterns).

Note: when using vcomp, if the pattern does not generate a DC trigger
ac_partest(), ptu_ac_partest(), hv_test_supply() and
ac_test_supply() will return an invalid DC test result. If measure = FALSE,
the DC Comparators and Error Logic will not be triggered, which means the DC
Error Flags will remain cleared = PASS.
If measure() = TRUE, no new measurements will occur, the measured value
will be invalid (old, stale, etc.) and the test may return PASS or FAIL based on
the invalid measurement value. The system software cannot check for this
error; i.e. it is the user’s responsibility to ensure that at least one trigger is
issued by the pattern.

Any number of test pattern triggers can generated by a given test pattern, however, when
measurements are enabled, additional considerations exist:
 2/27/09 Pg-367

DC Functions
• The hardware can only store one measurement for each DC A/D Converter, thus
only the measured value acquired by the last trigger is used to determine PASS/
FAIL.

• The DC A/D Converter requires a minimum of 15 uS to complete a conversion.
The user’s test pattern is responsible for ensuring proper operation.

Note: using test pattern triggers with measure() = TRUE it is possible (easy?) to
trigger the DC A/D Converter faster than it can correctly convert and store a
measurement. Neither the hardware nor the system software can detect this
condition; i.e. it is the user’s responsibility.

As noted, whether using test pattern triggers or not, the state of the DC Error Flags will affect
the test pattern’s branch-on-error operations. The test pattern MAR RESET instruction
(Memory Test Patterns) or VEC/RPT RESET, VAR RESET, or VPINFUNC RESET instruction
(Logic Test Patterns) will clear the DC Error Flags on all Site Assembly Boards. If
measurements are disabled, after pattern execution stops, the state of the DC error flags
(and PE error flags, more below) determine tests overall PASS/FAIL result.

During the execution of the dynamic DC test, if any test pattern functional strobes fail (i.e.
any digital PE error latches are set) the DC test will return FAIL, even if the DC portion of the
test passed.

Note: all dynamic DC test functions execute a functional test pattern, thus for proper
operation, it is necessary to correctly set up AC timing, DUT power, and PE
drive, compare, and load voltages/currents prior to executing a dynamic DC
test.

The functions which execute a dynamic DC test do not return until the functional test pattern
execution ends. These functions all require that the test pattern termination option be
specified, using the PatStopCond argument (see funtest()for reference). Most tests will
use the error or finish options.

PASS/FAIL test limits are set using DPS Current Test Limit Functions, PMU Current Test
Limit Functions and PMU Voltage Test Limit Functions, HV Current Test Limit Functions and
HV Voltage PASS/FAIL Limit Functions, and PTU Current Test Limit Functions and PTU
Voltage Test Limit Functions.

The information above applies to dynamic PTU measurement tests but not to dynamic PTU
Go/NoGo tests, which operate differently, see Dynamic PTU Go/NoGo Test.
 2/27/09 Pg-368

DC Functions
3.10.4 Types, Enums, etc.
See DC Functions.

Description
The following data types are used in support of various DC Functions:

Usage
The Range enumerated type is used to get or set a range option in DPS Current Test Limit
Functions and PMU Force Current Functions. Note that the norange value is not normally
used in test program but equates to auto-range operation:

enum Range { norange, range1, range2, range3,
range4, range5, range6, range7, range8};

The PassCond enumerated type is used to specify test conditions for DC parametric tests.
See DPS Static Current Test Functions, DPS Dynamic Current Test Functions, High Voltage
Source/Measure Unit (HV) Functions, PTU Functions, PMU Static Test Functions and PMU
Dynamic Test Functions:

The PassCond enumerated type is used to specify test conditions for DC parametric tests.
See PMU Static Test Functions, PMU Dynamic Test Functions, HV Static Test Functions, HV
Dynamic Test Functions, PTU Static Test Functions, DPS Static Current Test Functions,
DPS Dynamic Current Test Functions:

enum PassCond {pass_pcl, pass_ncl, pass_nicl,
pass_vg, pass_vl, pass_nivl };

The CompCond enumerated type is used in DPS Dynamic Current Test Functions and PMU
Dynamic Test Functions to enable test pattern triggers, used to trigger the DC Comparators
and Error Logic from the test pattern (see Dynamic DC Tests). Excluding the vcomp
argument from the test function disables test pattern triggers.

enum CompCond { vcomp, no_vcomp };

Test pattern MAR VCOMP (Memory Test Patterns) and VEC/RPT VCOMP, VAR VCOMP, or
VPINFUNC VCOMP (Memory Test Patterns) instructions are used to generate each trigger.

The PartestOpt enumerated type is used to select various options when executing PMU
Static Test Functions,PMU Dynamic Test Functions, PTU Static Test Functions, HV Static
Test Functions and HV Dynamic Test Functions:
 2/27/09 Pg-369

DC Functions
enum PartestOpt { sequential,
parallel,
iacc,
no_iacc };

3.10.5 Parametric Settling Time
See DC Functions.

Description

The partime() function is used to add additional settling time to the Built-in Settling Time,
applied during DC parametric tests.

During parametric test execution, a fixed amount of Built-in Settling Time is applied by the
system software. Settling time is an intentional time delay which occurs after the specified
parametric voltage or current is forced by the, DUT Power Supply (DPS), High Voltage
Source/Measure Unit (HV), Per-pin Parametric Test Unit (PTU), Parametric Measurement
Unit (PMU), and before the specified Go/NoGo test or measurement is performed. This
settling time allows circuits internal to the tester to stabilize, decoupling capacitors to charge,
etc. The partime() function can be used to add any additional settling time needed to
compensate for DUT board circuitry, DUT requirements, etc.

In most applications, this settling time is only useful when performing static tests; i.e.
test_supply(), hv_test_supply(), ptu_partest() or partest(). The additional
delay will occur during dynamic tests but is usually not useful because it occurs after the
hardware is connected to the specified pins, and after the force parameter is applied, but
before the test pattern is executed and, since it is the test pattern which induces the DC
parameter being tested to be dynamic, any settling time occuring before the pattern
executes is not typically useful.

The system software sets the default partime() value to 0pS during the initial program
load. The value is not otherwise modified by the system software; i.e. any additonal settling
time programmed using partime() remains in effect until another value is programmed
using partime().

In sequential mode tests (the default for all DC tests except PTU tests) the additional delay
repeats for each pin tested.

partime() is a global value; i.e. it can not be specified on a per-pin or per-DUT basis. As
indicated above, any additonal settling time programmed using partime() remains in
 2/27/09 Pg-370

DC Functions
effect until another value is programmed using partime(). This will impact the operation of
all subsequent:

• DPS Static Current Test Functions; i.e. test_supply()
• HV Static Test Functions; i.e. hv_test_supply()
• PMU Static Test Functions; i.e. partest()
• PTU Static Test Functions; i.e. ptu_partest()
• DPS Dynamic Current Test Functions; i.e. ac_test_supply()
• HV Dynamic Test Functions; i.e. hv_ac_test_supply()
• PMU Dynamic Test Functions; i.e. ac_partest()

Note: when executing ptu_partest() in force-voltage mode a maximum additonal
settling time of 5mS is enforced. In this situation, if the currently programmed
partime() value is >5mS a warning is issued and partime(5 MS) is
executed. This remains in effect until subsequently changed by user code.

To restore the minimum parametric settling time, execute partime(0).

Usage
The function below is used to program a new partime value:

void partime(double value);

The following function returns the currently programmed partime value:

double partime();

where, value specifies the desired additional settling time. Units may be used (see
Specifying Units). Legal values are:

The partime() getter function returns the currently programmed value.

Table 3.10.5.0-1 partime() Range & Resolution

Range Resolution

0, or
0.1mS to 1000mS

0.1mS
 2/27/09 Pg-371

DC Functions
Examples
partime(5 MS); // Delay = 5mS + Built-in Settling Time
partime(0 MS); // Reset to minimum value
double t = partime();

3.10.5.1 Built-in Settling Time
See DC Functions.

The system software causes a built-in Parametric Settling Time to occur during DC
parametric tests.

The built-in settling time is designed to compensate for the internal DC circuitry to reach a
stable operating condition before the actual test or measurement is made. The built-in
settling time does not compensate for external requirements imposed by the DUT board
design or DUT, etc., see Parametric Settling Time. The following DC instruments have a
non-zero built-in settling time applied when performing DC parametric tests (details follow):

• Parametric Measurement Unit (PMU).
• DUT Power Supply (DPS).
• High Voltage Source/Measure Unit (HV).
• Per-pin Parametric Test Unit (PTU).

In force-voltage mode (DPS, HV, PTU or PMU) the specific amount of built-in settling time
depends upon which current range is selected and, when applicable, which compensation
capacitor is being used. In force voltage mode the built-in settling time is normally adequate
to assure that tester specifications are met as long as a compensation capacitor consistent
with the DUT capacitance has been selected to assure stability. See PMU Compensation
Capacitors and DPS Compensation Capacitors for information about selecting
compensation capacitors.

In force-current mode (PMU and PTU) the built-in settling time is fixed at 100uS for all
ranges and all compensation capacitors. The user ‘s program should provide additional
settling time based on the capacitance at the node being tested and the amount of current
being forced. The user can either estimate the time using a mathematical model or using an
oscilloscope to observe the voltage waveform at the DUT under both normal and fault
conditions.
 2/27/09 Pg-372

DC Functions
Built-in PMU Settling Time
The following table summarizes the built-in settling times for each PMU current range and
compensation capacitor value. These apply when the PMU is in force-voltage mode. Refer
to PMU Compensation Capacitors for more information about the function of the
compensation capacitors.

Built-in DPS Settling Time
The following table summarizes the built-in settling times for each DPS current range and
compensation capacitor value of the DPS. Refer to DPS Compensation Capacitors for more
information about the function of the compensation capacitors:

Table 3.10.5.1-1 PMU Built-in Force Voltage Settling Time

PMU
Current
Range Comp-cap 0 Comp-cap 1 Comp-cap 2

range1 601uS 18mS 180mS

range2 108uS 1.8mS 18mS

range3 91uS 201uS 1.8mS

range4 90uS 92uS 201uS

range5 90uS 90uS 92uS

Table 3.10.5.1-2 DPS Built-in Settling Time

DPS Range Comp-cap 0 Comp-cap 1 Comp-cap 2

range1 9mS 90mS 990mS

range2 905uS 9mS 90mS

range3 127uS 905uS 9mS

range4 91uS 127uS 1.27mS

range5 90uS 91uS 91uS

range6 90uS 90uS 91uS
 2/27/09 Pg-373

DC Functions
Built-in HV Settling Time
Since the High Voltage Source/Measure Unit (HV) has a single voltage range, has no
compensation capacitor options, and has a low current output capability the built-in settling
time is a constant 100uS.

Built-in PTU Settling Time
The following table summarizes the built-in settling times for each PTU current range.
These apply when the PTU is in force-voltage mode:

3.10.6 measure()
See DC Functions.

Description
The measure() setter function is used to switch the global DC test mode between
Go/NoGo test mode and measurement mode.

During initial program load the measure mode is set to FALSE. The mode is not otherwise
changed by the system software.

Table 3.10.5.1-3 PTU Built-in Force Voltage Settling Time

PTU Current
Range

Settling
Time

range1 2mS

range2 1mS

range3 400uS

range4 200uS

range5

150uS
range6

range7

range8
 2/27/09 Pg-374

DC Functions
The effect of measure() is covered in some detail in Static DC Tests and Dynamic DC
Tests.

The measure() getter function can be used to get the currently programmed measure
mode state.

User code can retrieve a measured values, see Retrieving DC Test Results.

Note: measured values should be retrieved immediately after performing a test to
prevent subsequent tests from over-writing useful information.

Usage
void measure(BOOL state);

BOOL measure();

where:

state is TRUE or FALSE to enable or disable measure mode.

The measure() get function returns the currently programmed measure mode state.

Example
measure(TRUE); // Enable measure mode
BOOL state = measure();// Retrieve current measure state

3.10.7 Measurement Average Count Functions

Note: first available in software release h1.1.23.

Description
The Magnum 1/2/2x static DC parametric tests noted below support measurement
averaging, enabled by including the iacc argument in the function parameter list.

The iacc_count_set() function may be used to specify the number of measurements
(i.e. iacc count) made to determine each average. Prior to the availability of
iacc_count_set() the count was fixed at 10.
 2/27/09 Pg-375

DC Functions
The iacc_count_get() function can be used to retrieve the value last set using
iacc_count_set().

Note the following:

• A value set using iacc_count_set() affects the static DC parametric tests
which accept the PartestOpt iacc argument. This are:
• partest() testing signal pins, DPS pins and HV pins.
• hv_test_supply()
•test_supply()

• ptu_partest()
The value set using iacc_count_set() has no effect if the iacc argument is
not included in the parametric test function’s parameter list.

• During the initial program load iacc_count_set() is set = 10. The system
software does not otherwise change this value.

• The value set using iacc_count_set() is a global value; i.e. it cannot be set
per-pin, per-DUT, per-site, etc.

• The value set using iacc_count_set() is only used when measure() = TRUE.
• When Retrieving DC Test Results only the average value is returned, regardless of

the value set using iacc_count_set().

Usage
void iacc_count_set(int value);

int iacc_count_get();

where:

value specifies the desired iacc count value.

iacc_count_get() returns the currently programmed iacc count value.

Example
iacc_count_set(13);

int value = iacc_count_get();
 2/27/09 Pg-376

DC Functions
3.10.8 Retrieving DC Test Results
See Static DC Tests, Dynamic DC Tests.

Description
The parametric test functions partest(), ac_partest(), hv_test_supply(),
hv_ac_test_supply(), ptu_partest(), test_supply(), and
ac_test_supply()return a PASS/FAIL result, indicating the overall outcome of the test.
In Multi-DUT Test Programs, a test result is separately stored for each DUT in the Active
DUTs Set (ADS), which can be retrieved using result_get() or results_get().

Each of the parametric test functions noted above are able to test multiple pins, DPS, or HV
with a single execution, thus additional test results may be available and which can be
retrieved using the following functions:

• Pin_meas() - returns an array of measurement results. Used when testing signal
pins using partest(), ac_partest(), ptu_partest() with measure() =
TRUE. Values in the array are ordered based on the pin list tested. Values are
returned for the first DUT in the Active DUTs Set (ADS).

• Pin_pf() - returns an array of PASS/FAIL values. Used when testing signal pins
using partest(), ac_partest(), ptu_partest(). Values in the array are
ordered based on the pin list tested. Values are returned for the first DUT in the
Active DUTs Set (ADS).

• Dps_meas() - returns an array of measurement results. Used when testing DPS
pins using partest(), ac_partest(), test_supply() and
ac_test_supply()with measure() = TRUE. Values in the array are ordered
based on the pin list tested. Values are returned for the first DUT in the Active
DUTs Set (ADS).

• Dps_pf() - returns an array of PASS/FAIL values. Used when testing DPS pins
using partest(), ac_partest(), test_supply() and ac_test_supply().
Values in the array are ordered based on the pin list tested. Values are returned
for the first DUT in the Active DUTs Set (ADS).

• Hv_meas() - returns an array of measurement results. Used when testing HV pins
using partest(), ac_partest(), hv_test_supply() and
hv_ac_test_supply()with measure() = TRUE. Values in the array are ordered
based on the pin list tested. Values are returned for the first DUT in the Active
DUTs Set (ADS).
 2/27/09 Pg-377

DC Functions
• Hv_pf() - returns an array of PASS/FAIL values. Used when testing HV pins
using partest(), ac_partest(), hv_test_supply() and
hv_ac_test_supply(). Values in the array are ordered based on the pin list
tested. Values are returned for the first DUT in the Active DUTs Set (ADS).

These test results should be read immediately after the test function execution completes.
This ensures subsequent tests do not over-write and cause a loss of information.

Note: when any of the parametric test functions terminate due to an error the previous
PASS/FAIL and measurement values are invalid; i.e. old, stale, etc.

Measured current and voltage values are stored in base units (see Specifying Units). When
accessing the PASS/FAIL results, 0 represents a FAIL and 1 represents a PASS.

Note: each Magnum 1/2/2x DPS has two independently switchable output
connections.

Using partest(), when the parallel or parallel_pmu test options are specified,
identical values are returned for each pin tested.

Usage
void Pin_meas(CArray<double, double>& data);

void Pin_pf(CArray<PFState, PFState>& data);

void Dps_meas(CArray<double, double>& data);

void Dps_pf(CArray<PFState, PFState>& data);

void Hv_meas(CArray<double, double>& data);

void Hv_pf(CArray<PFState, PFState>& data);

where:

data is used in two contexts:

• When retrieving PASS/FAIL test results, data is a previously declared CArray,
defined to store PFState information. The array is automatically cleared and
resized as necessary to store the appropriate test results. See Example.

• When retrieving measured values, data is a previously declared CArray, defined
to store double. The array is automatically cleared and resized as necessary to
store the appropriate test results. See Example.
 2/27/09 Pg-378

DC Functions
Example
The following example may be used in Multi-DUT Test Programs to retrieve per-DUT
measured values and PASS/FAIL results. There are two functions below:

• cnvt_result() : scale and outputs voltage and current values with the
appropriate units. Only ever called by pdatalog().

• pdatalog() : collect and output various test results. Calls cnvt_result().
#include "math.h" // Needed for fabs() below
enum e_log_type { LOG_I, LOG_V, LOG_T };

// Support function: scale and output result
CString cnvt_result(double value, e_log_type log_type){

CString cstr;
switch(log_type) {
case LOG_V: // Convert to voltage

if (fabs(value) >= (1 V)) {
cstr.Format("%8.3f v", value / (1 V));

}
else {

cstr.Format("%8.0f mv",value / (1 MV));
}

break;
case LOG_I: // Convert to current

if(fabs(value) >= (1 MA)) {
cstr.Format("%8.3f ma", value / (1 MA));

}
else if (fabs(value) >= (1 UA)) {

cstr.Format("%8.3f ua", value / (1 UA));
}
else {

cstr.Format("%8.0f na", value / (1 NA));
}
break;

case LOG_T: break;
default:cstr.Format("#############");
}
return (cstr);

}

void pdatalog(PinList* pPinList) {
 2/27/09 Pg-379

DC Functions
// Determine the mode of the parametric test last executed
e_log_type log_type;
switch(parametric_mode()) {

case 0:log_type = LOG_I; break;
case 2:log_type = LOG_I; break;
case 1:log_type = LOG_V; break;
default: output("Error: invalid mode: %d",parametric_mode());

}

// Output datalog header
output("TestBlock = %-15s TestNumber = %d",

current_test_block(),
test_number());

if (measure() == TRUE) {
output("--");
output("Tester DUT Pin Pin Measured");
output(" Pin Pin Name Result Value ");
output("--");

}
else {

output("-----------------------------------");
output("Tester DUT Pin Pin ");
output(" Pin Pin Name Result");
output("-----------------------------------");

}

CArray<double,double> meas_results;
CArray<PFState,PFState> pf_results;

// Get/save the current Active DUTs Set
DutNumArray active_duts;
int count = active_duts_get(&active_duts);

// For each active DUT...
for(int dut = 0; dut < count; dut++) {

DutNum dut_num = active_duts[dut];
active_duts_enable(dut_num); // Enable one DUT at a time

// Check the pinlist for either dps pins or signal pins
if(all_dps(pPinList)){

Dps_pf(pf_results);
if(measure()) Dps_meas(meas_results);

}
else if(all_hv(pPinList)){
 2/27/09 Pg-380

DC Functions
Hv_pf(pf_results);
if(measure()) Hv_meas(meas_results);

}
else {

Pin_pf(pf_results);
if(measure()) Pin_meas(meas_results);

}

output("Dut-%d : %s", active_duts[dut]+1,
result_get(active_duts[dut]) ? "PASS" : "FAIL");

int size = pf_results.GetSize(); // Get num of results

// Loop through all tested pins and output results
for (int pin = 0; pin < size; pin++) {

DutPin * dpin;
pin_info(pPinList, pin, &dpin);
TesterPin tpin;
pin_info(dpin, dut_num, &tpin);
CString pin_name = resource_name(dpin);
if(measure())

output("t_%-4d %5d %-14s %4s %s",
(tpin + 1),
0,
pin_name,
pf_results[pin] ? "PASS" : "FAIL",
cnvt_result(meas_results[pin], log_type));

else
output("t_%-4d %5d %-14s %4s",

(tpin + 1),
0,
pin_name,
pf_results[pin] ? "PASS" : "FAIL");

}
}

// Restore Active_DUTs_Set
active_duts_enable(active_duts);

}

 2/27/09 Pg-381

DPS Functions
3.11 DPS Functions
See DUT Power Supply (DPS).

This section includes the following topics:

• Overview
• Types, Enums, etc.
• DPS Connect/Disconnect Functions
• DPS Voltage Programming Functions
• DPS Output Mode
• DPS Current Test Limit Functions
• DPS Static Current Test Functions
• DPS Dynamic Current Test Functions
• VPulse Function
• DPS Current Sharing
• DPS Compensation Capacitors
• DPS 300mA/600mA DPS Option

• dps_ilimit_set(), dps_ilimit_get()
Other related information includes:

• Static DC Tests and Dynamic DC Tests
• Parametric Settling Time and Built-in Settling Time
• measure()
• Retrieving DC Test Results

3.11.1 Overview
See DPS Functions, DUT Power Supply (DPS).

Using Magnum 1/2, there are 8 DUT Power Supply (DPS) per Site Assembly Board (i.e. one
DPS per sixteen signal pins but each DPS has two independently switchable outputs). See
DUT Power Supply (DPS).
 2/27/09 Pg-382

DPS Functions
By default, all DPS are disconnected from the DUT. The DPS Connect/Disconnect Functions
must be used to connect all used DPS to the DUT.

Each DPS has two programmable voltage values. Both are set using the DPS Voltage
Programming Functions. The secondary output voltage (VPulse) is dynamically enabled
from an executing test pattern using the PINFUNC VPULSE pattern instruction (Memory Test
Patterns) or VEC/RPT VPULSE, VAR VPULSE and VPINFUNC VPULSE instructions (Logic
Test Patterns) but only DPS which have been enabled to respond to the VPULSE signal will
be affected, see VPulse Function. Two output modes are available, more below. The
VPULSE signal only affects DPS in t_dps_vpulse mode.

The DPS output current can be tested (i.e. a Go/NoGo test) or measured:

• The DPS uses the DC Test and Measure Systems to test or measure DPS current.
The DC Comparators and Error Logic are used when performing Go/NoGo tests,
the DC A/D Converter is used when measuring DPS current. The DC Test and
Measure Systems is also used (shared) by the Parametric Measurement Unit
(PMU), High Voltage Source/Measure Unit (HV) and Per-pin Parametric Test Unit
(PTU).

• The DPS current test PASS/FAIL limits are programmed using DPS Current Test
Limit Functions.

• Both static and dynamic DPS current tests are supported. See DPS Static Current
Test Functions and DPS Dynamic Current Test Functions. Also review Static DC
Tests and Dynamic DC Tests.

• The measure() function is used to switch between Go/NoGo tests vs.
measurements.

• Review Parametric Settling Time and Built-in Settling Time; both apply to DPS
current tests.

• Also review Retrieving DC Test Results.
In the Magnum 1/2 DPS hardware design, each DPS has 2 outputs, which be configured in
two ways, using the DPS Output Mode:

• The vpulse mode allows an executing test pattern to cause the DPS(s) output to
switch between the 2 voltage levels, typically for power supply noise immunity
tests (VBump tests), or to enable special test modes. Additional steps are required
to enable the Vpulse signal at each DPS, see VPulse Function.

• The independent output mode allows the two outputs (A&B) of each DPS to be
programmed to a different voltage. In this mode the Vpulse signal has no effect.
The independent output mode cannot be used when DPS Current Sharing.
 2/27/09 Pg-383

DPS Functions
• In vpulse mode, the combined current of both outputs cannot exceed the total
available DPS output current specification. In independent mode, each output is
limited to 1/2 the total available DPS output current specification.

To test devices requiring DPS current exceeding that available from one DPS, up to 10 DPS
can be shared; i.e. electrically connected together on the DUT board. When this is done, the
system software must be advised using the CURRENT_SHARE() macro. See DPS Current
Sharing.

The DPS is a closed-loop feedback system, with stability that is affected by the circuit load.
The DPS have several internal compensation capacitors, which are selected based on
information supplied using the dps_comp_cap() function. See DPS Compensation
Capacitors.

3.11.2 Types, Enums, etc.
See DPS Functions.

Description
The following enumerated types are used in support of various DPS Functions:

Usage
The DpsOutputMode enumerated type is used to control DPS Output Mode options:

enum DpsOutputMode {t_dps_vpulse, t_dps_independent };

The DpsILimit enumerated type is used to select whether the DPS 300mA/600mA DPS
Option is enabled, using dps_ilimit_set(), and as a return value from
dps_ilimit_get():

enum DpsILimit { t_dps_default_ilimit, t_dps_high_ilimit };

3.11.3 DPS Connect/Disconnect Functions
See Overview, DUT Power Supply (DPS).
 2/27/09 Pg-384

DPS Functions
Description

The dps_connect() function is used to close the solid-state switch(es) connecting DPS(s)
to DUT pins.

The dps_connected() function may be used to determine whether one specified pin is
connected. This function was first available in software release h3.4.xx.

During initial program load, all DPS connect switches are opened. The system software
does not otherwise change the configuration.

It is common to use dps_connect() in the Site Begin Block, to connect all used DPS for
the duration of the test program.

Usage
The following function connects one DPS:

void dps_connect(DutPin *pDutPin);

The following function connects one or more DPS:

void dps_connect(PinList* pPinList);

The following function disconnects one DPS:

void dps_disconnect(DutPin *pDutPin);

The following function disconnects one or more DPS:

void dps_disconnect(PinList* pPinList);

The following function determines if the specified DPS is currently connected:

BOOL dps_connected(DutPin *pDutPin);

where:

pDutPin is used in two contexts:

• Using dps_connect() and dps_disconnect() identifies the target DPS to be
manipulated. In Multi-DUT Test Programs, the DPSs of each DUT currently in the
Active DUTs Set (ADS) are affected. The specified DutPin must be mapped to a
DPS in the Pin Assignment Table.

• Using dps_connected(), identifies one DPS for which the current connect state
is to be read.
 2/27/09 Pg-385

DPS Functions
pPinList specifies one or more target DPS(s). Only the DPS in the pin list, including any
DPS connected by DPS Current Sharing, are affected. In Multi-DUT Test Programs, the
DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

Note: each DPS has two independently switchable output connections. This adds
capabilities but also requires the user understand the potential effects on the
functions documented in the DPS related sections.

dps_connected() returns TRUE if the specified DPS is currently connected, otherwise
FALSE is returned.

Example
The example below causes all DPS specified in the pin list named VCC to be disconnected.
Then some test program code is executed, and these same DPS are reconnected.

dps_disconnect(VCC);
// Other code executes here with all VCC DPS disconnected
dps_connect(VCC);

3.11.4 DPS Voltage Programming Functions
See Overview, DUT Power Supply (DPS).

Description

The dps() function is used to program the primary output voltage for one or more DUT
Power Supply (DPS) or get the currently programmed value for one DPS. It is also used to
program both outputs (A&B) independently for DPS(s) in t_dps_independent, more
below.

The dps_vpulse() function is used to program the secondary output voltage (VPulse) for
one or more DPS or get the currently programmed value for one specified DPS. See
Overview and VPulse Function.
 2/27/09 Pg-386

DPS Functions
Each DPS has two programmable voltage values, set using the dps() and dps_vpulse()
functions:

Note the following:

• During the initial program load, all DPS output voltages are set to 0V and the
primary voltage is selected.

• Executing dps() takes effect immediately (presuming a previously executed test
pattern has not left the secondary (VPulse) voltage enabled).

• Once programmed, DPS voltage and/or current values remain in effect until:
• Reprogrammed by user code.
• Modified from a test pattern. See Controlling PE Levels from the Test Pattern.
• Sequence & Binning Table execution stops, at which time the
builtin_after_testing_block sets all DPS voltages to 0V.

• Changing the DPS Output Mode may also cause the output voltage to change,
more below.

• Except as noted below, the primary DPS voltage is not affected when setting the
secondary voltage, and vice versa.

• The secondary DPS voltage (VPULSE) may be set greater than, less than or
equal to the primary DPS voltage.

• The secondary voltage (VPulse) is enabled from an executing test pattern, using
the PINFUNC VPULSE instruction (Memory Test Patterns) or VEC/RPT VPULSE,
VAR VPULSE, or VPINFUNC VPULSE instructions (Logic Test Patterns). However, by
default, all DPS are configured to not respond to the VPULSE signal from the test

Table 3.11.4.0-1 DPS Voltage Range

Function Range3
Max.

Current LSB

dps() -15V to +15V
-11.5V to +13.5V

±400mA1

±600mA1,2 5mV
dps_vpulse()

Notes:
1) The current from each output (A&B) cannot exceed 1/2 the total
 available DPS output current specification.
2) The ±600mA maximum current is only available with the
 DPS 300mA/600mA DPS Option.
3) See DPS Operating Area.
 2/27/09 Pg-387

DPS Functions
pattern. The VPulse Function may be used to enable selected DPS to respond to
this signal. Beginning in software release h3.4.xx, the DPS Vpulse Enable
Functions may be used to enable selected DPS to respond to this signal. This is
the only method which is supported in Magnum 2x but may also be used on
Magnum 1/2.

As noted above, each DPS has two programmable voltage values, and can operate in two
modes, selected using DPS Output Mode functions. The following diagram is used to
explain DPS Output Mode operation:

Figure-38: Simplified DPS Model
Note the following:

• The diagram is shown configured in t_dps_vpulse mode.
• Selecting t_dps_vpulse mode has the following effects:

• The Ka, Kb, Kc and Kd relays are switched to the positions shown in the
diagram.

• The outputs of the A&B output amplifiers are connected together via Kd. Thus, in
t_dps_vpulse mode, the A and B outputs will always be at the same voltage
level, and the combined current of both A&B DPS outputs cannot exceed the
total available DPS output current specification.

• The output sense line connection for the B DPS output is disabled; i.e. the sense
connection for both amplifiers is the A sense connection.

A-output

Primary
DAC

Vpulse signal
from APG

Secondary
DAC

Ka

Kb

Kv

To CPU

To CPU

Relays are shown to simplify the model.
DUT-1 and DUT-2 are used as examples only

Force

Force

Sense

Kc

(DUT-1)

B-output
(DUT-2)

Kd
Sense

Mode
 2/27/09 Pg-388

DPS Functions
• The current sense circuitry (not shown) senses the total current of both output
amplifiers, thus DPS current tests test/measure the combined current. User code
can connect/disconnect the A&B outputs independently as needed to test/
measure current for one output. See DPS Connect/Disconnect Functions.

• The Vpulse signal from the APG causes both DPS outputs to switch between the
primary voltage, set using dps(), and the secondary voltage, set using
dps_vpulse(). This allows an executing test pattern to cause both DPS
outputs (A&B) to switch between the 2 voltage levels. Additional steps are
required to completely enable the Vpulse signal at each DPS, see VPulse
Function.

• Selecting t_dps_independent mode has the following effects:
• The Ka, Kb, Kc and Kd relays switch to the opposite state.
• The connection between the A&B output amplifiers is opened, allowing the A&B

outputs to be set to different voltage levels (more below).
• The sense line connection for the B DPS output is enabled.
• Each DPS output is limited to 1/2 the total available DPS output current

specification. The current sense circuitry (not shown) senses the current from
one output (A or B) e.g. DPS current tests test/measure the A&B output current
individually.

• In t_dps_independent mode, the dps() function is used to program the
output voltage value for both outputs. The Active DUTs Set (ADS) determines
which output(s) of a given DPS are programmed by any given execution of
dps(). Remember, a given DPS’s A&B outputs are each independently mapped
to a DUT in the Pin Assignment Table.

• The effect of the Vpulse signal from the APG is disabled. Executing
dps_vpulse() has no effect on DPS(s) in t_dps_independent mode.

The following text describes how the DPS Output Mode affects DPS operation. The diagram
above is used for example:

• The system software keeps a record of 3 voltage values for each DPS:
• DPS A primary voltage
• DPS B primary voltage
• VPULSE voltage (secondary voltage)

• During initial program load, the DPS Output Mode is set to t_dps_vpulse. The
system software does not otherwise modify the mode.

• During initial program load, all three recorded voltage values are set = 0V. And,
both DACs are set to output 0V.
 2/27/09 Pg-389

DPS Functions
• For DPS(s) in t_dps_vpulse mode, executing dps() sets only the primary DAC.
The system software records only the A primary voltage value.

• For DPS(s) in t_dps_vpulse mode, executing dps_vpulse() sets only the
secondary DAC value. However, the DPS output doesn’t change until the test
pattern outputs the Vpulse signal, selecting the secondary voltage. The system
software records only the VPULSE voltage value.

• For DPS(s) in t_dps_independent mode, executing dps() can program either
or both DACs, depending on which DUT(s) are in the Active DUTs Set (ADS) at the
time dps() is executed. This works because each DPS output (A&B) is mapped to
a specific DUT in the Pin Assignment Table. In hardware, the DPS’s A output (DUT-
1) will be at the A primary voltage (Primary DAC) and the B output (DUT-2) at the
B primary voltage (SecondaryDAC). The system software records the changes
appropriately.

• For DPS in t_dps_independent modes, executing dps_vpulse() updates the
recorded VPULSE value only; i.e. the secondary DAC is not affected.

• When a given DPS is switched from t_dps_vpulse to t_dps_independent, the
DPS’s A output is connected to the primary DAC but the DAC is not
reprogrammed, which is significant if a prior test pattern left the DPS connected to
the secondary DAC. The DPS’s B output is connected to the secondary DAC,
which is set to the B primary voltage last programmed for the DPS. This operation
may or may not cause the voltage at the two DPS outputs to change or to be
different. The recorded values do not change.

• When a given DPS is switched from t_dps_independent back to
t_dps_vpulse the secondary DAC is programmed to the recorded VPULSE
value and the relays are switched as shown in the diagram. This connects the
DAC last selected from the test pattern to both outputs; i.e. the DPS’s A output will
match the B output. The recorded values do not change.

• At the end of Sequence & Binning Table execution, the
builtin_after_testing_block sets all DPS voltages to 0V. The DPS Output
Mode is not modified.

• When executing dps() to get a value, the value is returned for the specified DPS
connected to the first DUT in the Active DUTs Set (ADS). The value returned
depends upon the DPS Output Mode of the DPS being read:
• If the DPS read is in t_dps_vpulse mode, the value returned is the A primary

voltage.
 2/27/09 Pg-390

DPS Functions
• If the DPS read is in t_dps_independent mode, the value returned depends
upon whether the specified DPS is an A output or a B output. If connected to an
A DPS output the value returned will be the A primary voltage. If connected to a B
DPS output the value returned will be the B primary voltage.

• When executing dps_vpulse() to get a value, the value returned will always be
the last VPULSE value programmed.

Usage
The following function programs the primary output voltage for the DPS(s) connected to the
specified DutPin of all DUT(s) in the Active DUTs Set (ADS). The effect on each DPS
depends upon the DPS Output Mode of each affected DPS, see Description:

void dps(double value, DutPin *pDutPin);

The following function programs the primary output voltage for the DPS(s) connected to the
specified pin(s) of all DUT(s) in the Active DUTs Set (ADS). The effect on each DPS
depends upon the DPS Output Mode of each affected DPS, see Description:

void dps(double value, PinList* pPinList);

The following function retrieves the currently programmed primary DPS voltage for one
specified DPS. The value actually returned depends upon the DPS Output Mode of the DPS
read. The value is returned for the first DUT in the Active DUTs Set (ADS). See Description:

double dps(DutPin *pDutPin);

The following function programs the secondary DPS output voltage (VPulse) for one DPS. In
Multi-DUT Test Programs, only DPSs of DUTs currently in the Active DUTs Set (ADS) are
affected.:

void dps_vpulse(double value, DutPin *pDutPin);

The following function programs the secondary output voltage (VPulse) for the DPS(s)
connected to the specified DutPin of all DUT(s) in the Active DUTs Set (ADS). The effect
on each DPS depends upon the DPS Output Mode of each affected DPS, see Description:

void dps_vpulse(double value, PinList* pPinList);

The following function retrieves the currently programmed secondary voltage for one
specified DPS. The value actually returned depends upon the DPS Output Mode of the DPS
read. The value is returned for the first DUT in the Active DUTs Set (ADS). See Description:

double dps_vpulse(DutPin *pDutPin);

where:

value specifies the desired voltage. Units may be used, see Specifying Units.
 2/27/09 Pg-391

DPS Functions
pDutPin is used in two contexts:

• In the setter functions, identifies one DPS to be programmed. In Multi-DUT Test
Programs, the DPSs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a DPS in the Pin Assignment
Table.

• In the getter functions, identifies one DPS to be read.
pPinList specifies which DPS(s) are to be programmed. In Multi-DUT Test Programs, the
DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

The dps() and dps_vpulse() getter functions return the currently programmed value for
one DPS. In Multi-DUT Test Programs, the value is retrieved from the first DUT in the Active
DUTs Set (ADS). Operation is affected by the DPS Output Mode, see Description.

Examples
The following example programs the primary voltage for each DPS included in the pin list
named VCC to 5V. :

dps(5 V, VCC);

The following example programs the secondary voltage for each DPS included in the pin list
named VCC to 5.5V.

dps_vpulse(5.5 V, VCC);

3.11.5 DPS Output Mode
See Overview, DUT Power Supply (DPS).

Description

The dps_output_mode_set() function is used to select the DPS Output Mode for one or
more DPS.

The dps_output_mode_get() function is used to determine the currently selected DPS
Output Mode for one DPS.

Each DPS has two programmable voltage values and two outputs. The two outputs (A&B)
can operate in 2 modes, set using dps_output_mode_set():
 2/27/09 Pg-392

DPS Functions
• In VPulse mode (t_dps_vpulse), both DPS outputs are set to the same voltage
and may be switched to an alternate voltage, called VPULSE. The voltage value is
programmed using dps_vpulse().The switch is controlled from the test pattern
using the PINFUNC VPULSE pattern instruction (Memory Test Patterns) or the
VPINFUNC VPULSE, VEC/RPT VPULSE or VAR VPULSE pattern instruction (Logic
Test Patterns).

• In Independent mode (t_dps_independent), the two DPS outputs may be
programmed to different voltages but the test pattern Vpulse control cannot be
used.

Note the following:

• The DPS Output Mode affects the operation of dps() and dps_vpulse(), both
the setter versions and getter versions. Detailed operation is described in DPS
Voltage Programming Functions.

• The DPS Output Mode affects the total current available on each DPS output.
• In t_dps_vpulse mode the maximum combined current from both DPS outputs

is ±400mA.
• In t_dps_independent mode the maximum current from each DPS output is

±200mA.
• Using the DPS 300mA/600mA DPS Option, the maximum output current is

increased to ±600mA (t_dps_vpulse) and ±300mA (t_dps_independent).
See DPS Operating Area.

• The DPS Output Mode affects how DPS current sensing is done, which impacts
how values are determined when using DPS Current Test Limit Functions.

• During initial program load, the DPS Output Mode is set to t_dps_vpulse. The
system software does not otherwise modify the mode.

• The t_dps_independent mode cannot be used when DPS Current Sharing.
• The over-programming inhibit facilities only support t_dps_vpulse mode when

using the DPS as the programming stimulus. See Control of Branch on Error Flag
and Over-programming Control Stimulus Selection.

Usage
The following function sets the DPS Output Mode for the DPS connected to the specified
DutPin:

void dps_output_mode_set(DutPin *pDutPin,
DpsOutputMode mode DEFAULT_VALUE(t_dps_vpulse));
 2/27/09 Pg-393

DPS Functions
The following function sets the DPS Output Mode for the DPS connected to the specified
pins:

void dps_output_mode_set(PinList* pPinList,
DpsOutputMode mode DEFAULT_VALUE(t_dps_vpulse));

The following function returns the DPS Output Mode for the DPS connected to the specified
DutPin:

DpsOutputMode dps_output_mode_get(DutPin *pDutPin);

where:

pDutPin is used in two contexts:

• In the setter function, identifies one DPS to be programmed. In Multi-DUT Test
Programs, the DPSs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a DPS in the Pin Assignment
Table.

• In the getter function, identifies one DPS to be read.
mode is optional and, if specified, determines whether the the target DPS(s) are configured
for VPULSE operation (default, t_dps_vpulse) or independent output
(t_dps_independent).

pPinList specifies which DPS(s) are to be programmed. In Multi-DUT Test Programs, the
DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

dps_output_mode_get() returns the DPS Output Mode for one specified DPS. In Multi-
DUT Test Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
dps_output_mode_set(Vcc, t_dps_vpulse);
DpsOutputMode m = dps_output_mode_get(Vcc);

3.11.6 DPS Current Test Limit Functions
See Overview, DUT Power Supply (DPS).
 2/27/09 Pg-394

DPS Functions
Description

The dps_current_high() and dps_current_low() functions are used to specify
PASS/FAIL test limits used during DPS current tests (i.e. test_supply() and
ac_test_supply()). Optionally, a current sense range may be explicitly specified, more
below.

Note:

• dps_current_high() and dps_current_low() values are set to 0 during
initial program load, but are otherwise not modified by the system software.

• The DPS current sense circuitry operates differently depending on each DPS’s
output mode, set using DPS Output Mode functions:
• In t_dps_vpulse mode, the combined current from both DPS outputs (A&B) is

sensed and can be tested or measured.
• In t_dps_independent, the output current from one output at a time can

sensed and tested or measured. And, the maximum current available on each
output is limited to 1/2 the total current specification.

• The range argument is optionally used to explicitly specify the current-sense
range to be used during subsequent executions of DPS current test(s) (using DPS
Static Current Test Functions and DPS Dynamic Current Test Functions). For a
given DPS, the most recent execution of dps_current_high() or
dps_current_low() determines whether an explicit range is used during
subsequent DPS current tests. When an explicit range value is not specified, the
system software will select the most accurate range (auto-range) based on the
PASS/FAIL limit values used for each DPS. If the high and low compare limits fall
into different ranges, the coarser (lower resolution) range is used.

• The PASS/FAIL limit value set using dps_current_high() and
dps_current_low() may be manipulated (set/tweaked) from an executing test
pattern, see Controlling PE Levels from the Test Pattern. However, this is only
useful when the test pattern is being executed as part of a dynamic DPS current
test (see DPS Dynamic Current Test Functions). Proper operation requires that the
actual range used during the test is identical to the range specified in any
LEVELSET pattern instruction which manipulates these levels. This is the user’s
responsibility.

• Some Magnum 1/2 systems include the DPS 300mA/600mA DPS Option. When
this option is enabled the upper current sense limit and resolution change, see
DPS Current Measurement Ranges.
 2/27/09 Pg-395

DPS Functions
Note: using Magnum 1/2 in vpulse output mode, each DPS has two independently
switchable output connections (A/B). It is the total current of all connected DPS
which are tested/measured by the DPS Static Current Test Functions and DPS
Dynamic Current Test Functions.

Usage
The following functions program the PASS/FAIL current test limits for one DPS:

void dps_current_high(double value, DutPin *pDutPin);

void dps_current_low(double value, DutPin *pDutPin);

Note: the following two funtions were first available in software release h2.xx.yy:
void dps_current_high(double value,

DutPin *pDutPin,
Range range);

void dps_current_low(double value, DutPin *pDutPin, Range range);

The following functions program the PASS/FAIL current test limits for one or more DPS(s):

void dps_current_high(double value, PinList* pPinList);

void dps_current_low(double value, PinList* pPinList);

void dps_current_high(double value,
PinList* pPinList,
Range range);

void dps_current_low(double value,
PinList* pPinList,
Range range);

The following function retrieves the currently programmed PASS/FAIL current test limit for
one DPS:

double dps_current_high(DutPin *pDutPin);

double dps_current_low(DutPin *pDutPin);

where:

value specifies the desired high or low current value. Units may be used (see Specifying
Units).

pDutPin is used in two contexts:
 2/27/09 Pg-396

DPS Functions
• In the setter function, identifies one DPS to be programmed. In Multi-DUT Test
Programs, the DPSs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a DPS in the Pin Assignment
Table.

• In the getter function, identifies one DPS to be read.
pPinList specifies which DPS(s) are to be programmed. In Multi-DUT Test Programs, the
DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

range is used to explicitly select a DPS current range. Legal values are of the Range
enumerated type and are used as follows:

The dps_current_high() and dps_current_low() getter functions return the
currently programmed high or low test limit for one specified DPS. In Multi-DUT Test Pro-
grams, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Table 3.11.6.0-1 DPS Current Measurement Ranges

Range Current Range LSB Comments

range1 ±4uA 2nA

range2 ±40uA 20nA

range3 ±400uA 200nA

range4 ±4mA 2uA

range5 ±40mA 20uA

range61 ±400mA 200uA

range61
±600mA

2mA

±600mA only when using the
DPS 300mA/600mA DPS
Option.

±4A Usable only when DPS
Current Sharing.

Note-1: range6 selects the high current range. When the PASS/FAIL
current test limits exceed ±400mA additional circuitry is used to scale
the current sense signal accordingly.
 2/27/09 Pg-397

DPS Functions
Example
The following example sets the high and low current test limits of all DPS(s) included in the
pin list named VCC:

dps_current_high(30 MA, VCC);
dps_current_low(100 UA, VCC);

The following example sets the high current test limit to 500mA on all DPS(s) included in the
pin list named VCC. The largest DPS measure range will be automatically selected. This
example will only be valid if if t_dps_high_ilimit mode is set using
dps_ilimit_set(), or if the the specified DPS(s) are DPS Current Sharing. If neither of
these conditions are true, the setting is invalid and a fatal error will result.

dps_current_high(500 MA, VCC);

3.11.7 DPS Static Current Test Functions
See Overview, DUT Power Supply (DPS).

Description

The test_supply() function is used to execute a static DPS current test. DPS Dynamic
Current Test Functions are documented separately

See Static DC Tests.

The current of any number of DPS can be tested simultaneously, each with independent
PASS/FAIL test limits. It is the pin list argument to test_supply() which identifies which
DPS are tested.

In software release h1.1.23, two additional test_supply() overloads were added to
support measurement averaging. Note the following:

• Measurement averaging is enabled by including the iacc argument.
• The number of measurements made to obtain the average is set using

iacc_count_set(). Default = 10.
• The value set using iacc_count_set() is only used when measure() = TRUE.
• When averaging is enabled the measurement average is compared to the PASS/

FAIL test limits, set using DPS Current Test Limit Functions, to determine whether
test_supply() returns PASS or FAIL.
 2/27/09 Pg-398

DPS Functions
• When Retrieving DC Test Results only the average value is returned, regardless of
the number of measurements made.

Prior to executing test_supply() the following parameters must be set up:

• DPS connections. See DPS Connect/Disconnect Functions.
• DPS output voltage. See DPS Voltage Programming Functions.
• PASS/FAIL current test limits (and sense range, optional). See DPS Current Test

Limit Functions.
• The system software provides a Built-in Settling Time to DPS tests. The user may

use the partime() function to add additional settling time. See Parametric
Settling Time.

• Enable/disable measurements using measure(). Measured values can be
retrieved by user code, see Retrieving DC Test Results.

Note: using Magnum 1/2 in vpulse mode, each DPS has two independently switchable
output connections. It is the total current of all connected DPS which are tested/
measured by the DPS Static Current Test Functions and DPS Dynamic Current
Test Functions.

It is also possible to connect the Parametric Measurement Unit (PMU) to DPS pins,
temporarily disconnecting the DPS. See PMU: Testing DPS Pins.

Usage
PFState test_supply(PassCond pass_cond, PinList* pPinList);

PFState test_supply(PassCond pass_cond, DutPin DutPin* pDutPin);

Note: the following two overloads were first available in software release h1.1.23:
PFState test_supply(PassCond pass_cond,

DutPin *pDutPin,
PartestOpt opt);

PFState test_supply(PassCond pass_cond,
PinList* pPinList,
PartestOpt opt);

 where:
 2/27/09 Pg-399

DPS Functions
pass_cond specifies how the PASS/FAIL test limits are used. Legal values are of the
PassCond enumerated type, but only the values in the table below may be used with
test_supply():

pPinList identifies one or more DPS to be tested. In Multi-DUT Test Programs, the DPSs
of each DUT currently in the Active DUTs Set (ADS) are affected. The specified pPinList
must only contains pins mapped to a DPS in the Pin Assignment Table.

pDutPin identifies one DPS to be tested. In Multi-DUT Test Programs, the DPSs of each
DUT currently in the Active DUTs Set (ADS) are affected. The specified DutPin must be
mapped to a DPS in the Pin Assignment Table.

opt is used to enable or disable measurement averaging, see Description. Legal values are
of the PartestOpt enumerated type but only iacc and no_iacc are valid in this
context:

test_supply() returns the overall PASS/FAIL result. A PASS result will only be returned if
all DPS(s) tested PASS (i.e. no DC Error Flags are set). In Multi-DUT Test Programs, only
DPSs of DUTs currently in the Active DUTs Set (ADS) affect the test result.

Examples
The following example tests the current of all DPS included in the pin list named VCC. For
the test to pass, the current of each DPS tested must be between (pass_nicl) 800uA and
100mA.

Table 3.11.7.0-1 DPS Current Test PASS/FAIL Limit Options

pass_cond Operation

pass_pcl PASS if the DPS current is greater than dps_current_high()

pass_ncl PASS if the DPS current is less than dps_current_low()

pass_nicl
PASS if the DPS current is between dps_current_low() and
dps_current_high()

Optional
Arguments Description

 iacc
Enable measure averaging. Applies only when measure() = TRUE.
See Description and Measurement Average Count Functions.

no_iacc Default. Disable measure averaging.
 2/27/09 Pg-400

DPS Functions
dps(5 V, VCC);
dps_current_high(100 MA, VCC);
dps_current_low(800 UA, VCC);
PFState result = test_supply(passnicl, VCC);

The example below illustrates setting the voltage on two DPS to output the same voltage
(5V), setting the PASS/FAIL test limits on two DPS to different values, and performing a
static DPS current test on both DPS simultaneously:

dps(5 V, pl_Vcc_Vpp);
dps_current_high(100 MA, VCC);
dps_current_low(800 UA, VCC);
dps_current_high(20 MA, VPP);
dps_current_low(60 UA, VPP);
PFState result = test_supply(passnicl, pl_Vcc_Vpp);

3.11.8 DPS Dynamic Current Test Functions
See Overview, DUT Power Supply (DPS)

Description

The ac_test_supply() function is used to execute a dynamic DPS current test. DPS
Static Current Test Functions are documented separately.

See Dynamic DC Tests.

The ac_test_supply() function executes a test pattern, and the associated pattern
execution stop condition must be specified. Options are listed in Usage, and include
terminating pattern execution if there is a functional failure or executing the pattern to
completion, regardless of functional failures.

Note: in dynamic DC parametric tests, the test pattern can perform branch-on-error
based on the state of the DC Error Flag in each DC Test and Measure System.
The MAR RESET, or CHIPS RESET instructions (Memory Test Patterns) or
VEC/RPT RESET, VAR RESET and VPINFUNC RESET instructions (Logic Test
Patterns) will clear the DC Error FlagDC Error Flag, which can affect the overall
PASS/FAIL result of the ac_test_supply().
 2/27/09 Pg-401

DPS Functions
The ac_test_supply() function has two trigger modes, controlled using the comp_cond
argument, which determines whether test pattern triggers are enabled. Four scenarios are
possible:

• comp_cond = default (no_vcomp) and measure() = FALSE: the DC Comparators
and Error Logic are used and enabled for the entire duration of the executing test
pattern.

• comp_cond = vcomp and measure() = FALSE: the DC Comparators and Error
Logic are used and triggered by the VCOMP token from the executing test pattern.
If any one or more triggered samples fails the test returns FAIL.

• comp_cond = vcomp and measure() = TRUE: the DC A/D Converter is used and
triggered by the VCOMP token from the executing test pattern. This causes a
measurement to be made.

• comp_cond = default (no_vcomp) and measure() = TRUE. Not supported in DC
tests. No warning is issued, testing continues, and ac_test_supply() operates
as though measure() = FALSE. Any DC measurements which are retrieved are
invalid.

When using comp_cond = vcomp, one trigger will be generated in each test pattern cycle
which contains the MAR VCOMP instruction (Memory Test Patterns) or VEC/RPT VCOMP, VAR
VCOMP or VPINFUNC VCOMP instructions (Logic Test Patterns). See Dynamic DC Tests.

Note: when using vcomp, if the pattern does not generate any triggers,
ac_test_supply() will return invalid results. If measure = FALSE, the DC
Comparators and Error Logic will never get triggered, which will result in a PASS
condition. If measure() = TRUE, the DC A/D Converter will never be triggered,
the retrieved measurement values will be invalid (old, stale, etc.) and the test
may return PASS or FAIL based on the invalid measurement data. The system
software cannot check for this error; i.e. it is the user’s responsibility to ensure
that at least one vcomp trigger is issued by the pattern.

ac_test_supply() will not return until test pattern execution terminates.

ac_test_supply() will also fail if any PE error latches are set (latched functional strobes
failed).

Prior to executing ac_test_supply() the following parameters must be set up:

• DPS connections. See DPS Connect/Disconnect Functions.
• DPS output voltage. See DPS Voltage Programming Functions.
 2/27/09 Pg-402

DPS Functions
• PASS/FAIL current test limits (and sense range, optional). See DPS Current Test
Limit Functions.

• The partime() function, used to add additional settling time to the Built-in
Settling Time, is not normally useful in dynamic DC tests. This is because this
delay will occur after programming the DC circuitry but before executing the
functional test pattern; i.e. at a non-useful time. See Parametric Settling Time.

• Enable/disable measurements using measure(). Measured values can be
retrieved by user code, see Retrieving DC Test Results.

• For dynamic tests, the test will also fail if any functional strobes fail. Thus proper
digital PE levels and timing will affect test results, as does the test pattern
executed.

The ac_test_supply() function returns an overall PASS/FAIL result, independent of how
many DPS(s) are tested. In Multi-DUT Test Programs, only DPSs of DUTs currently in the
Active DUTs Set (ADS) affect the test result. Also see Retrieving DC Test Results.

Note: using Magnum 1/2 in vpulse mode, each DPS has two independently switchable
output connections. It is the total current of all connected DPS which are tested/
measured by the DPS Static Current Test Functions and DPS Dynamic Current
Test Functions.

It is also possible to connect the Parametric Measurement Unit (PMU) to DPS pins,
temporarily disconnecting theDPS. See PMU: Testing DPS Pins.

Usage
PFState ac_test_supply(

PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond DEFAULT_VALUE(no_vcomp));

Note: the following two overloads were first available in software release h2.xx.yy:
PFState ac_test_supply(

PassCond pass_cond,
DutPin *pDutPin,
Pattern *pPattern,
PatStopCond stop_cond);
 2/27/09 Pg-403

DPS Functions
PFState ac_test_supply(
PassCond pass_cond,
DutPin *pDutPin,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond);

where:

pass_cond specifies how the PASS/FAIL test limits are used. Legal values are of the
PassCond enumerated type, but only the values in the table below may be used with
ac_test_supply():

pPinList identifies one or more DPS to be tested. In Multi-DUT Test Programs, the DPSs
of each DUT currently in the Active DUTs Set (ADS) are affected. The specified pPinList
must only contains pins mapped to a DPS in the Pin Assignment Table.

pPattern identifies the functional test pattern to be executed.

Table 3.11.8.0-1 DPS Current Test PASS/FAIL Limit Options

pass_cond Operation

pass_pcl PASS if the DPS current is greater than dps_current_high()

pass_ncl PASS if the DPS current is less than dps_current_low()

pass_nicl
PASS if the DPS current is between dps_current_low() and
dps_current_high()
 2/27/09 Pg-404

DPS Functions
stop_cond specifies the pattern execution stop condition. Legal values are of the
PatStopCond enumerated type, but only those in the table below are valid for this test:

Table 3.11.8.0-2 Pattern Execution Stop Condition Options

Stop Condition Summary Description

finish

Execute pattern to completion, regardless of errors.
When execution finishes, the PE error latches and DC Error
Flags are examined. If an error was latched, the result of
ac_test_supply() is FAIL, otherwise the result is PASS

error

Stop pattern execution on first functional or DC Error Flag error
and sets the result of ac_test_supply() to FAIL. Note that
the pattern generator may continue for one or more cycles past
where the error occurred, depending on the cycle time and
where in the cycle the error was detected.

fullec

Execute pattern to completion. Enable full ECR, row error catch,
and column error catch to capture errors during pattern
execution. This argument should be used when performing
Redundancy Analysis (RA) or using BitmapTool.

LEC_only_errors
Enable full ECR, row error catch, and column error catch.
Capture the first 2Meg (221-6) failing vectors. Intended for use
when the ECR is used as an Logic Error Catch (LEC).

LEC_first_vectors

Enable full ECR, row error catch, and column error catch.
Capture the first 2Meg (221-6) vectors executed. Ignores PASS/
FAIL. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

LEC_last_vectors

Enable full ECR, row error catch, and column error catch.
Capture the last 2Meg (221-6) vectors executed. Ignores PASS/
FAIL. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

LEC_before_error

Enable full ECR, row error catch, and column error catch.
Capture the first failing vector plus the previous 2Meg (221-6)
vectors executed. Intended for use when the ECR is used as
an Logic Error Catch (LEC).
 2/27/09 Pg-405

DPS Functions
comp_cond is optional, and if used must be the reserved word vcomp. Including this
argument enables test pattern triggers. See Description and Dynamic DC Tests.

pDutPin identifies one DPS to be tested. In Multi-DUT Test Programs, the DPSs of each
DUT currently in the Active DUTs Set (ADS) are affected. The specified DutPin must be
mapped to a DPS in the Pin Assignment Table.

ac_test_supply() returns the overall PASS/FAIL result. A PASS result will only be
returned if:

• All DPS(s) tested pass (no DC Error Flags are set).
• No functional error latches are set (no functional strobes failed)
• In Multi-DUT Test Programs, only DPSs of DUTs currently in the Active DUTs Set

(ADS) affect the test result.

Examples
In the following example, the output voltage of all DPS in the pin list named VCC is set to 5V.
The min/max DPS current test PASS/FAIL limits are set to 100mA and 1mA. The
ac_test_supply() function executes the test pattern named myPat to completion and
tests the that the DPS current is between the min/max limits. Since the vcomp option is not
specified, the DPS current is monitored during the entire pattern execution. Once test
pattern execution completes, the DC Error Flags and the PE error latches are read by the
system software to determine the overall test result:

LEC_after_error

Enable full ECR, row error catch, and column error catch.
Capture the first failing vector plus the next 2Meg (221-6)
vectors executed. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_center_error

Enable full ECR, row error catch, and column error catch.
Capture the first failing vector plus up to 512K vectors executed
before the failure and up to 512K vectors executed after the
failure. Intended for use when the ECR is used as an Logic
Error Catch (LEC).

Note: in parallel test applications, the test pattern must be executed to completion, to
ensure that DUT(s) which don’t fail are completely tested. In other words, halting the
pattern early (error) because one or more DUT(s) failed prevents DUT(s) which PASS
from being completely tested. This is BAD.

Table 3.11.8.0-2 Pattern Execution Stop Condition Options (Continued)

Stop Condition Summary Description
 2/27/09 Pg-406

DPS Functions
measure(FALSE);
dps(5 V, VCC);
dps_current_high(100 MA, VCC);
dps_current_low(1 MA, VCC);
PFState result = ac_test_supply(pass_nicl, VCC, myPat, finish);

The following example uses the same test conditions and test pattern but uses the vcomp
option. The DC Comparators and Error Logic are strobed in those test pattern cycles
containing the pattern instructions noted in Description:

PFState result = ac_test_supply(pass_nicl,
VCC,
myPat,
finish,
vcomp);

The example below shows how to perform dynamic power supply tests simultaneously on
two different power supplies, named VCC and VPP. Each supply uses unique voltages and
currents limit values. Three pin lists are needed, VCC, VPP, and both_supplies.

The first three lines of code set the voltage and current test limits for VCC. The second three
lines of code set different voltage and current test limits for VPP. The last line executes the
test, simultaneously testing VCC and VPP. The myPat test pattern executes to completion
(finish). The DPS current sense compare window will be open for the entire pattern
execution (no vcomp). In this example, ac_test_supply() will return FAIL if VCC and/
or VPP fail or if the myPat test pattern fails functionally:

dps(5 V, VCC);
dps_current_high(100 MA, VCC);
dps_current_low(0.5 MA, VCC);
dps(5.5 V, VPP);
dps_current_high(20 MA, VPP);
dps_current_low(100 UA, VPP);
int result = ac_test_supply(pass_nicl,

both_supplies,
myPat,
finish);

3.11.9 DPS Vpulse Enable Functions
See Overview, DUT Power Supply (DPS).
 2/27/09 Pg-407

DPS Functions
Note: first available in software release h3.5.xx.

Description

The dps_vpulse_enable() function is used to manage which DUT Power Supply (DPS)s
will respond to the VPULSE signal issued from an executing test pattern.

The dps_vpulse_enabled() function may be used to determine whether a given DPS
will respond to the VPULSE signal issued from an executing test pattern.

Note the following:

• During the initial program load, all DPS are set to not respond to the test pattern
VPULSE signal. The system software does not otherwise affect this operation.

• This function is supported on Magnum 1/2/2x but not Maverick-I/-II. The VPulse
Function used on Maverick-I/-II to enable/disable VPulse operations is not
supported on Magnum 2x but remains usable on the older system types.

Usage
void dps_vpulse_enable(DutPin *pDutPin,

BOOL enable DEFAULT_VALUE(TRUE));

void dps_vpulse_enable(PinList* pPinList,
BOOL enable DEFAULT_VALUE(TRUE));

BOOL dps_vpulse_enabled(DutPin *pDutPin);

where:

pDutPin is used in two contexts:

• Using dps_vpulse_enable(), identifies one DPS to be enabled or disabled. In
Multi-DUT Test Programs, the DPSs of each DUT currently in the Active DUTs Set
(ADS) are affected. The specified DutPin must be mapped to a DPS in the Pin
Assignment Table.

• Using dps_vpulse_enabled(), identifies the DPS for which the enable state is
to be returned.

enable is optional and, if used, specifies whether the specified DPS will respond to the test
pattern VPULSE signal (TRUE) or not response (FALSE). Default = TRUE.
 2/27/09 Pg-408

DPS Functions
pPinList specifies which DPS(s) are to be enabled or disabled. In Multi-DUT Test
Programs, the DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The
specified pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

Example
dps_vpulse_enable(Vcc, TRUE);

dps_vpulse_enable(pl_allDPS, TRUE);

BOOL enabled = dps_vpulse_enabled(Vcc);

3.11.10 VPulse Function
See Overview, DUT Power Supply (DPS).

Description

The vpulse() function is used to enable the secondary DPS voltage, VPulse. Specific
test pattern instructions are also required to actually cause the DPS to switch to this
voltage (more below).

Each DPS has two programmable voltage values, both set using DPS Voltage Programming
Functions. The secondary voltage, called VPulse, is typically used in the following
applications:

• Power supply noise immunity tests.
• Memory V-bump tests.
• As a programming stimulus, when testing devices which use an alternate DPS

voltage as the programming mechanism.
During the initial test program load, all DPS are switched to select the primary output voltage
and the vpulse() option is disabled for all DPS.

To enable the DPS to switch to the VPulse level, under control of the executing test pattern,
requires the following:

• Enable the VPULSE signal to specified DPS using the vpulse() function. If this
step is skipped, the next step has no effect.

• Enable the VPULSE signal from the test pattern using the PINFUNC VPULSE
instruction (Memory Test Patterns) or VEC/RPT VPULSE, VAR VPULSE, or
VPINFUNC VPULSE instructions (Logic Test Patterns).
 2/27/09 Pg-409

DPS Functions
• Ensure the DPS(s) to be used are in t_dps_vpulse mode (see DPS Output
Mode). VPULSE operations are disabled on DPS in t_dps_independent.

In hardware, there is only one VPULSE enable signal, distributed and shared by all DPS,
thus all DPS which are enabled will switch to the secondary voltage when the test pattern
enables the VPULSE signal. The signal changes state when the pattern instruction
containing VPULSE executes, however additional time is required for this signal to reach the
DPS(s) and for those DPS to respond and slew to the secondary voltage value. The user
must design their test patterns to achive the desired effect at the DUT. This may require
some experimentation and tuning of the test pattern.

When a DUT Power Supply (DPS)is in t_dps_vpulse mode, the secondary voltage affects
both DPS outputs (A&B) identically. Conversely, the secondary voltage value has no effect
on any DPS configured in t_dps_independent. See DPS Output Mode.

Both DPS voltage levels can be manipulated from the test pattern. See Controlling PE
Levels from the Test Pattern.

Usage
The following function enables the specified DPS to react to the VPULSE signal from the
test pattern:

void vpulse(DutPin *pDutPin);

The following function enables the one or more DPS to react to the VPULSE signal from the
test pattern:

void vpulse(PinList* pPinList);

The following function disables the VPULSE signal on all DPS:

void vpulse();

where:

pDutPin identifies one DPS. In Multi-DUT Test Programs, the DPS(s) of each DUT
currently in the Active DUTs Set (ADS) are affected. The specified DutPin must be mapped
to a DPS in the Pin Assignment Table.

pPinList specifies which DPS(s) are to be programmed. In Multi-DUT Test Programs, the
DPS(s) of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.
 2/27/09 Pg-410

DPS Functions
Example
The following example enables the secondary DPS output voltage option of all DPS(s) in the
pin list named VPP. This does not, by itself, select the secondary output voltage (see
Description). In Multi-DUT Test Programs, only DPSs of DUTs currently in the Active DUTs
Set (ADS) are affected:

vpulse(VPP);

The following example disables the secondary DPS output voltage option of all DPS(s) and
switches all DPS to output the primary voltage:

vpulse();

3.11.11 DPS Current Sharing
See Overview, DUT Power Supply (DPS).

Description

The CURRENT_SHARE() and SHARE() macros are used to configure DPS current sharing,
by creating and defining a CurrentShare resource (see Resource Types). When the test
program defines multiple CurrentShare resources, the USE_CURRENT_SHARE() macro
should be used, within the body code of the CONFIGURATION() macro, to select one.

To test devices requiring DPS current values exceeding that available from one DPS, up to
10 DPS can be connected to the DUT in parallel. When this is done, the system software
must be advised, using the CURRENT_SHARE macro, about which DPS are shared. When 2
or more DPS are shared the set is called a current share group. By default, no DPS are in
current share mode.

The following rules apply when using current sharing:

• Current sharing begins by electrically wiring multiple DPS together at the DUT.
• Each Magnum 1/2 Site Assembly Board contains 8 DPS, in two groups (A/B) of

four. Each DPS has two outputs, also identified using A and B. A given DPS
output is formally identified using HDTesterPin values i.e. a_dps1a, b_dps1b,
a_dps3b, etc. The prefix indicates the group, the suffix identifies one output of a
given DPS.
 2/27/09 Pg-411

DPS Functions
• When current sharing, the force outputs of each shared DPS must be electrically
connected to the same point, typically at the DUT. Shared DPS can only be
configured in t_dps_vpulse mode, see DPS Output Mode and only the DPS A
output can be specified in the Pin Assignment Table (more below)

• An A-prefix DPS (i.e. a_dps1a, a_dps2b, etc.) can only be shared with other A-
prefix DPSs. Similarly, a B-prefix DPSs (i.e. b_dps1a, b_dps2b, etc.) can only be
shared with other B-prefix DPSs. It is not possible to share an A-prefix DPS with a
B-prefix DPS, etc.

• The underlying DPS hardware design only supports current sharing between
sequentially numbered DPS. For example, it is legal to current share a_dps1a
with a_dps2a and a_dps3a, but not legal to share a_dps1a with a_dps3a
without also including a_dps2a.

• It is not necessary to begin current sharing with any specific DPS. For example, it
is legal to current share a_dps2a with a_dps3a, without also including a_dps1a.

• It is legal to current share across Site Assembly Board boundaries. For example, it
is legal to current share a_dps8a with a_dps9a. This does require Sites-per-
Controller be > 1 in the Pin Assignment Table.

• A given DPS can only be included in one current share group.
• Only the sense line of the lowest numbered DPS in each DPS share group is

used. The sense line(s) of the other shared DPS are not used and should not be
connected (to anything).

• The Magnum 1/2 hardware natively supports sharing up to 10 DPS, to source and
test/measure up to 4A maximum. This requires Sites-per-Controller = 3 (4 DPS
from board-1, 4 from board-2, 2 from board-3).

• When using shared DPS, an additional current test/measure range becomes
available, allowing dps_current_high() and dps_current_low() values up
to ±4A.

• The CURRENT_SHARE macro is used in the test program to define a named current
share group. The SHARE macro is used, in the body of the CURRENT_SHARE
macro, to specify which DPS pin(s) are connected to shared DPS and the number
of shared DPS connected to each pin. In the Pin Assignment Table, for each of
these power pins, the DPS resource assigned must be the lowest numbered
shared DPS, as described above. The other shared DPS will not (must not) be
specified anywhere the Pin Assignment Table.

• In Multi-DUT Test Programs, when a given DUT power pin is identified in a current
share group, the specified number of shared DPSs must be available for each
DUT. For example, given the following Pin Assignment Table entry...

ASSIGN_2DUT(Vcc, a_dps1a, b_dps1a)
 2/27/09 Pg-412

DPS Functions
... the following DPS current share definition will consume 6 DPS:
CURRENT_SHARE(only_1_group) {

SHARE(Vcc, 3)
}

In this example, a_dps1a, a_dps2a, and a_dps3a will supply up to 1.2A to
DUT-1’s Vcc pin, and b_dps1a, b_dps2a, and b_dps3a to supply up to 1.2A to
DUT-2’s Vcc pin. Notice that in Multi-DUT Test Programs, using DPS current
sharing will quickly reduce the number of DUTs which can be used. For example,
when each DUT has a single power input requiring 400mA-800mA, only 4 DUTs
per-Site Assembly Board can be tested (using 6 of the 8 DPS on the board). All
other DPS current sharing applications will typically limit the number of DUTs to 2
per-Site Assembly Board or require Sites-per-Controller > 1 i.e. multiple Site
Assembly Boards.

• As indicated above, both outputs (A and B) of each shared DPS must be
electrically connected to the same point, typically very close to the DUT. Because
of this, it is not legal, in the Pin Assignment Table, to assign the B output of any
shared DPS to a DUT pin i.e. it is not legal, for example, to assign a_dps1b to a
DUT pin if a_dps1a is shared.

• The CURRENT_SHARE macro can be used multiple times, to define more than one
current share group, but only one can be used. A named current share group is
selected using the USE_CURRENT_SHARE() macro, in a CONFIGURATION()
block.

• When using current shared DPS, to provide the best current test resolution
possible, the system software may temporarily disconnect one or more DPS from
the DUT. The software considers the programmed dps_current_high() and
dps_current_low() values, plus the programmed PASS condition (pass_nicl,
pass_ncl, etc.) to determine the number of current share supplies that will
actually be used to perform the test. When the test limits are less than ±400mA
only the master DPS (lowest numbered DPS of a share group) will be used. As
the test limits increase past these values, additional DPS will be used, and the
corresponding current sense resolution decreases. If n DPSs are used for the test,
the resolution of the measured value will be n times the resolution of a single DPS.

Usage
CURRENT_SHARE(share_group_name) {

SHARE(dps_pin, count)
. . .
SHARE(dps_pin, count)

}

 2/27/09 Pg-413

DPS Functions
where:

CURRENT_SHARE is a Test System Macro used to denote the start of the current share
group definition.

name is the name of the current share group being created. Each current share group can
define one or more shared DPS configurations, each with a unique dps_pin.

SHARE is a Test System Macro used to add an entry to the current share group.

dps_pin identifies the DUT power pin connected to the master DPS of a group of shared
DPS. dps_pin is a DutPin (VCC, VDD, etc.) from the Pin Assignment Table. See
Description.

count is the total number of shared DPS connected to dps_pin; i.e. the number of DPS
electrically wired together to each dps_pin.

Examples

Example 1:
In the following example, the current share group being created is named ProdPower. In
this group, two sets of shared DPS are specified. VCC will have 3 shared DPS physically
wired together at the DUT’s VCC pin, with the lowest numbered DPS assigned to the VCC
pin in the Pin Assignment Table. VCCO will have 2 shared DPS physically wired together at
the DUT’s VCCO pin, with the lowest numbered DPS assigned to the VCCO pin in the Pin
Assignment Table.

CURRENT_SHARE(ProdPower) {
SHARE(VCC, 3)
SHARE(VCCO, 2)

}

Assuming that the DUT VCC pin is assigned to a_dps1a in the Pin Assignment Table and
with a SHARE count of 3, then a_dps1a, a_dps2a, and a_dps3a must be wired to the VCC
pin on the DUT board. Similarly, if the DUT VCCO pin is assigned to b_dps1a, then
b_dps1a and b_dps2a must be wired to the VCCO pin on the DUT board.

Example 2:
The following example tests two DUTs, each with 3 independent power inputs. One input,
Vcc, requires up to 800mA. The other two inputs, Vcco and Vref, only require up to 200mA
 2/27/09 Pg-414

DPS Functions
each:

The following (partial) code snippets indicate how this would be defined in the test program:

// Pin Assignment Table:
ASSIGN_2DUT(Vcc, a_dps1a, b_dps1a)
ASSIGN_2DUT(Vcco, a_dps3a, b_dps3a)
ASSIGN_2DUT(Vref, a_dps3b, b_dps3b)

CURRENT_SHARE(only_1_group) {
SHARE(Vcc, 2)

}

Note the following:

• This example represents a Multi-DUT Test Program, testing 2 DUTs in parallel.
• The ASSIGN statements are part of a partial Pin Assignment Table definition,

included to restate the rules regarding how DPS hardware is allocated when DPS
current sharing is used in a Multi-DUT Test Program.

• Vcc is specified to share 2 DPS (per DUT). The master DPS for DUT-1 is
a_dps1a (per the Pin Assignment Table), thus a_dps1b, a_dps2a and a_dps2b
cannot appear in the Pin Assignment Table, and DPS a_dps1b, a_dps2a and
a_dps2b are automatically used as the slave shared DPS for Vcc on DUT-1.

DUT-1

a_dps1

a_dps2

a_dps3

b_dps1

b_dps2

b_dps3

A
B

One Site Assembly
Board (partial)

Vcc

Vcco
Vref

A
B

A
B

A
B

A
B

A
B

DUT-2

Vcc

Vcco
Vref

Note: only DPS force connections shown.

800mA total

200mA ea.

800mA total

200mA ea.

 2/27/09 Pg-415

DPS Functions
• The master DPS for DUT-2 is b_dps1a, thus b_dps1b, b_dps2a, and b_dps2b
cannot appear in the Pin Assignment Table, and b_dps1b, b_dps2a, and
b_dps2b are automatically used as the slave shared DPS for Vcc on DUT-2.

3.11.12 DPS Compensation Capacitors
See DPS Functions, DUT Power Supply (DPS) .

Description

The dps_comp_cap() function is used to select a compensation capacitor for one or more
DPS or to retrieve the currently selected DPS compensation capacitor for one DPS.

During initial program load the minimum compensation value is selected. The system
software does not otherwise change the selection.

The DPS is basically a closed-loop, unity-gain, power operational amplifier (OpAmp), with a
high power output driver. OpAmps configured in a closed loop configuration, like the DPS,
use negative feedback, which consists of connecting the OpAmp output, through a network,
to the OpAmp’s inverting input. At low frequencies signals at the inverting input are
reproduced at the output with a 180 degree phase-shift, due to the inherent inverting
relationship between the inverting input and the output. Thus, as the sensed voltage falls the
OpAmp output voltage will increase to compensate, and vice versa.

However, because the propagation delay through the amplifier is not zero, at higher
frequencies there is some phase shift between the sense voltage and the OpAmp (DPS)
output. At high enough frequencies the phase shift due to the propagation delay adds to the
180 degree phase-shift inherent in the inverting input and will approach 360 degrees. In
other words, the signal can become in-phase, resulting in positive feedback. If this is allowed
to occur the DPS output will oscillate. Even as the phase shift approaches 360 degrees the
DPS output may over-shoot and exhibit ringing.

The purpose of the DPS compensation capacitors is to modify the gain and phase shift of
the DPS (OpAmp) so that, for a particular application, the DPS output does not oscillate or
overshoot/ring. This is required when the DPS must drive a load that includes decoupling
capacitance.

The DPS hardware has three internal compensation capacitors, used to adjust the feedback
loop to compensate for different capacitive loads; a single fixed compensation scheme can
not effectively balance the trade-off between stability and settling time. Compensation of the
 2/27/09 Pg-416

DPS Functions
DPS feedback loop is accomplished by selecting a compensation capacitor of appropriate
size, see table below.

In general, the lowest value compensation option that provides DPS stability should be
used. Using a larger than needed value will slow down measurements, particularly on the
lower current sense ranges, and require more DPS slew/settling time when voltage levels
are changed.

Note: when using the PMU to test DPS pins in a force current test, the PMU
connection to the DPS pins is initially made in voltage-force mode, then the
PMU is switched to force current mode to complete the test. Even though the
PMU compensation capacitors are disconnected automatically when the PMU is
in force-current mode, the initial connection is being made in force-voltage
mode, thus the appropriate PMU compensation capacitor selection should be
made, see PMU Compensation Capacitors.

Usage

Note: the dps_comp_cap() function (only) is used in all Maverick system programs
and for Magnum 1 and Magnum 2 programs. Magnum 2x programs only use
the dps_comp_cap_set() and dps_comp_cap_get() functions. Executing
dps_comp_cap() on Magnum 2x will generate a warning and the
compensation capacitor selection will not be changed.

The following function sets the DPS compensation capacitor value of all DPS:

void dps_comp_cap(int state);

The following function sets the DPS compensation capacitor value for one DPS:

void dps_comp_cap(int state, DutPin *pDutPin);

The following function sets the DPS compensation capacitor value for one or more DPS(s):

void dps_comp_cap(int state, PinList* pPinList);

The following function returns the currently programmed compensation capacitor value for
one DPS:

int dps_comp_cap(DutPin *pDutPin);

The following function sets the DPS compensation capacitor value of all DPS:

void dps_comp_cap(int state);
 2/27/09 Pg-417

DPS Functions
The following function sets the DPS compensation capacitor value for one DPS:

void dps_comp_cap(int state, DutPin *pDutPin);

The following function sets the DPS compensation capacitor value for one or more DPS(s):

void dps_comp_cap(int state, PinList* pPinList);

The following function returns the currently programmed compensation capacitor value for
one DPS:

int dps_comp_cap(DutPin *pDutPin);

where:

state specifies the desired compensation capacitor value:

pDutPin is used in two contexts:

• In the setter function, identifies one DPS to be programmed. In Multi-DUT Test
Programs, the DPSs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a DPS in the Pin Assignment
Table.

• In the getter function, identifies one DPS to be read.
pPinList specifies which DPS(s) are to be programmed. In Multi-DUT Test Programs, the
DPSs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a DPS in the Pin Assignment Table.

The getter version of dps_comp_cap() returns the currently selected compensation
capacitor for one DPS. Legal return values are noted in the table above. In Multi-DUT Test
Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Table 3.11.12.0-1 DPS Compensation Capacitor Selection

State Purpose

0 For bypass caps less than 0.1uF (Default)

1 For bypass caps greater than 0.1uF but less than 1.0uF

2 For bypass caps greater than 1.0uF but less than 10uF.
 2/27/09 Pg-418

DPS Functions
Examples
The following example performs a current test on the DPS(s) included in the pin list named
VCC. The DPS compensation capacitance is set assuming a DPS capacitive load between
0.1uF and 1.0uF:

dps_comp_cap(1);
result = test_supply (pass_nicl, VCC);

3.11.13 DPS 300mA/600mA DPS Option

Note: first available in software release h1.1.23.

Description
An optional Magnum 1/2 hardware configuration allows DUT Power Supply (DPS) to output
up to ±600mA in VPulse mode or ±300mA per output in Independent Mode (see DPS
Output Mode and DPS Operating Area). This extends the DPS output current capability from
±400mA (VPulse mode) and ±200mA (Independent Mode).

This option requires the correct Magnum 1/2 hardware configuration, which can be
evaluated two ways:

• The BoardRevs program will indicate when this option is usable.
• The dps_ilimit_set() function will generate an error if an attempt is made to

use the expanded current capability on systems which do not have the proper
hardware configuration.

When using Magnum 1/2 systems with this hardware configuration all DPS operation
defaults to the original system’s current capabilities; i.e. ±400mA/±200mA max. The
dps_ilimit_set() function must be executed to enable the higher current capability.
This affects all DPS.

3.11.13.1 dps_ilimit_set(), dps_ilimit_get()
See DPS 300mA/600mA DPS Option.
 2/27/09 Pg-419

DPS Functions
Description

The dps_ilimit_set() function is used to enable the high-current option of DUT Power
Supply (DPS) operation, available via the DPS 300mA/600mA DPS Option. See DPS
Operating Area.

Executing dps_ilimit_set() does the following:

• Checks to confirm that the system in use has the required hardware configuration.
If not, a warning is generated and the standard DPS output current ranges apply.

• Enables the DPS hardware to output the higher maximum current.
• Enables the DPS software to allow use of the ±4A DPS current sense range. The

current sense range is selected using DPS Current Test Limit Functions
(dps_current_high() and dps_current_low()).

The dps_ilimit_get() function is used to identify whether the high-current option is
currently enabled.

Note the following:

• dps_ilimit_set() sets a global state which affects all DPS identically.
• During initial program load, the system software sets the mode to

t_dps_default_ilimit. The system software does not otherwise change this
mode.

Usage
The following function is used to set the DPS maximum current operation of all DPS:

void dps_ilimit_set(DpsILimit limit);

The following function is used to get the DPS maximum current selection:

DpsILimit dps_ilimit_get();

where:

limit specifies which DPS current option is to be set. Legal values are of the DpsILimit
enumerated type.

dps_ilimit_get() returns the currently enabled DPS current selection.

Example:
dps_ilimit_set(t_dps_high_ilimit);
DpsILimit l = dps_ilimit_get();
 2/27/09 Pg-420

DPS Functions

 2/27/09 Pg-421

High Voltage Source/Measure Unit (HV) Functions
3.12 High Voltage Source/Measure Unit (HV) Functions
See Site Assembly Board Block Diagram, High Voltage Source/Measure Unit (HV).

This section includes the following:

• Overview
• HV Connect/Disconnect Functions
• HV Voltage Programming Functions
• HV Current Test Limit Functions
• HV Voltage PASS/FAIL Limit Functions
• HV Static Test Functions
• HV Dynamic Test Functions

Other related information includes:

• Static DC Tests and Dynamic DC Tests
• Parametric Settling Time and Built-in Settling Time
• measure()
• Retrieving DC Test Results

3.12.1 Overview
See High Voltage Source/Measure Unit (HV) Functions, High Voltage Source/Measure Unit
(HV).

Each Site Assembly Board contains 16 high voltage source/measure units, effectively one
for each 8 pins. See High Voltage Source/Measure Unit (HV). Note the following:

• A solid-state switch allows each HV to connect to or disconnected from the DUT.
User code must explicitly control these connections. See HV Connect/Disconnect
Functions.

• The HV can be used to supply a positive DC voltage to one or more DUT pin(s).
HV Voltage Programming Functions are used to program the HV output voltage.

• Both HV output current and voltage can be tested using HV Static Test Functions
and HV Dynamic Test Functions. Both Go/NoGo tests and measurements are
supported. However, as noted, each Site Assembly Board has 16 HV units but only
 2/27/09 Pg-422

High Voltage Source/Measure Unit (HV) Functions
8 DC Test and Measure Systems. This means that when testing or measuring HV
output current or voltage it may not always be possible to perform all HV tests in
parallel.

• When testing HV output current the PASS/FAIL test limits are set using HV Current
Test Limit Functions.

• When testing HV output voltage the PASS/FAIL test limits are set using HV
Voltage PASS/FAIL Limit Functions.

• The HV has no voltage or current clamps.

3.12.2 HV Connect/Disconnect Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions.

Description

The hv_connect() function is used to close the solid-state switch(es) connecting High
Voltage Source/Measure Unit (HV) to DUT pins. The hv_disconnect() function is used to
open these switch(es).

During initial program load, all HV connect switches are opened. The system software does
not otherwise control these switches; i.e. once they are closed (or opened), they remain
closed (or opened) until user code changes them again. This is consistent with DPS
operation.

It is common to use hv_connect() in the SITE_BEGIN_BLOCK(), to set HV connections
which are constant for the duration of the test program.

The voltage test/measure signal between the HV and the DC Test and Measure System is
connected to the output-side of the solid-state switch which connects the HV to the DUT.
This means that it is possible to test/measure this voltage, from the DUT, even though the
HV is not connected. See HV Static Test Functions and HV Dynamic Test Functions.

Usage()
The following function connects one specified HV:

void hv_connect(DutPin *pDutPin);

The following function connects one or more specified HV(s):
 2/27/09 Pg-423

High Voltage Source/Measure Unit (HV) Functions
void hv_connect(PinList* pPinList);

The following function disconnects one specified HV:

void hv_disconnect(DutPin *pDutPin);

The following function disconnects one or more specified HV(s):

void hv_disconnect(PinList* pPinList);

where:

pDutPin identifies one HV to be programmed. In Multi-DUT Test Programs, the HVs of
each DUT currently in the Active DUTs Set (ADS) are affected. The specified DutPin must
be mapped to a HV in the Pin Assignment Table.

pPinList specifies which pins are to be affected. In Multi-DUT Test Programs, the HVs of
each DUT currently in the Active DUTs Set (ADS) are affected. The pin list must only contain
pins which are mapped to HV in the Pin Assignment Table.

Example
The example below causes all HV specified in the pin list named pl_HVpins to be
disconnected. Then some test program code is executed, and these same HV are
reconnected.

hv_disconnect(pl_HVpins);
// Other code executes here with all pl_HVpins HV disconnected
hv_connect(pl_HVpins);

3.12.3 HV Voltage Programming Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions.

Description

The hv_voltage_set() function is used to program the output voltage for one or more
High Voltage Source/Measure Unit (HV).

The hv_voltage_get() function is used to get the currently programmed output voltage
for one HV.
 2/27/09 Pg-424

High Voltage Source/Measure Unit (HV) Functions
The HV has a single output voltage range:

HV voltages are typically programmed in Test Blocks, or other C-code called from test
blocks.

All HV output voltages are set to 0V during initial program load. Executing the functions
below takes effect immediately. Once programmed, HV output voltage remains in effect
until:

• Reprogrammed by user code.
• Modified by a test pattern, see Controlling PE Levels from the Test Pattern.
• Sequence & Binning Table execution stops, at which time the

builtin_after_testing_block sets the HV output voltage to 0V.

Usage
The following function programs the output voltage for all HVs. In Multi-DUT Test Programs,
only HVs of DUTs currently in the Active DUTs Set (ADS) are affected:

void hv_voltage_set(double value);

The following function programs the output voltage for one specifed HV:

void hv_voltage_set(double value, DutPin *pDutPin);

The following function programs the output voltage for all HV(s) in the specified pin list:

void hv_voltage_set(double value, PinList* pPinList);

The following function returns the currently programmed output voltage for one specified
HV:

double hv_voltage_get(DutPin *pin);

where:

value specifies the desired output voltage. Units may be used, see Specifying Units.

pDutPin is used in two contexts:

Table 3.12.3.0-1 HV Voltage Range

Range LSB

0V to +28V 2mV
 2/27/09 Pg-425

High Voltage Source/Measure Unit (HV) Functions
• In the setter function, identifies one HV to be programmed. In Multi-DUT Test
Programs, the HVs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a HV in the Pin Assignment
Table.

• In the getter function, identifies one HV to be read.
pPinList identifies one or more HV units to be programmed. In Multi-DUT Test Programs,
only pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must
only contain pins which are mapped to a HV in the Pin Assignment Table.

pin identifies one DutPin to be read. Must be a DutPin mapped to HV in the Pin
Assignment Table.

hv_voltage_get() returns the currently programmed output voltage of the specified v
unit of the first DUT in the Active DUTs Set (ADS).

Examples
The following example programs the output voltage for each HV included in the pin list
named pl_HVpins to 15V. In Multi-DUT Test Programs, only pin(s) of DUT(s) currently in
the Active DUTs Set (ADS) are affected.

hv_voltage_set(15 V, pl_HVpins);

The following example gets the current output voltage for one HV, named HVpin. The value
is returned for the first DUT in the Active DUTs Set (ADS):

double v = hv_voltage_get(HVpin);

3.12.4 HV Current Test Limit Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions.

Description

The hv_ipar_high() and hv_ipar_low() functions are used to set or get the high and
low PASS/FAIL test limits for HV current tests. These are test limits used by
hv_test_supply() and hv_ac_test_supply().

hv_ipar_high() and hv_ipar_low() must be programmed before executing HV Static
Test Functions and HV Dynamic Test Functions which test or measure HV current.
 2/27/09 Pg-426

High Voltage Source/Measure Unit (HV) Functions
are set to zero at test program initialization, but are not otherwise modified by the system
software.

The HV has a single current range:

Both limits can be modified from a test pattern. See Controlling PE Levels from the Test
Pattern.

Note: a commonly made mistake is to assume that programming HV force value or
PASS/FAIL test limit also defines the type of HV test which will execute next. It
is the arguments passed to hv_test_supply() and hv_ac_test_supply()
which define the type of test the HV actually performs (test/measure current or
voltage), and thus which force and test limits will be used.

Usage
The following functions program the high/low current test limit for all HVs. In Multi-DUT Test
Programs, only HVs of DUTs currently in the Active DUTs Set (ADS) are affected:

void hv_ipar_high(double value);

void hv_ipar_low(double value);

The following functions program the high/low current test limit for one specified HV:

void hv_ipar_high(double value, DutPin *pDutPin);

void hv_ipar_low(double value, DutPin *pDutPin);

The following functions program the high/low current test limit for one or more HV(s):

void hv_ipar_high(double value, PinList* pPinList);

void hv_ipar_low(double value, PinList* pPinList);

The following functions get the currently programmed high/low current test limit for one HV:

double hv_ipar_high(DutPin *pin);

double hv_ipar_low(DutPin *pin);

where:

Table 3.12.4.0-1 HV Current Range

Range LSB

0mA to 8mA 4uA
 2/27/09 Pg-427

High Voltage Source/Measure Unit (HV) Functions
value specifies the desired high or low current value. Units may be used (see Specifying
Units).

pDutPin is used in two contexts:

• In the setter function, identifies one HV to be programmed. In Multi-DUT Test
Programs, the HVs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a HV in the Pin Assignment
Table.

• In the getter function, identifies one HV to be read.
pPinList identifies one or more HV units to be programmed. In Multi-DUT Test Programs,
only pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must
only contain pins which are mapped to HV in the Pin Assignment Table.

pin identifies one DutPin to be read. Must be a DutPin mapped to HV in the Pin
Assignment Table.

The hv_ipar_high() and hv_ipar_low() getter functions return the currently
programmed value. The value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
The following example sets the high and low current test limits all HV(s) included in the pin
list named pl_HVpins:

hv_ipar_high(10 MA, pl_HVpins);
hv_ipar_low(30 UA, pl_HVpins);

The following example gets the currently programmed high current test limit for one HV
named hvpin:

double v = hv_ipar_high(hvpin);

3.12.5 HV Voltage PASS/FAIL Limit Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions.

Description

The hv_vpar_high() and hv_vpar_low() functions are used to set or get the high and
low PASS/FAIL test limits for High Voltage Source/Measure Unit (HV) voltage tests. These
 2/27/09 Pg-428

High Voltage Source/Measure Unit (HV) Functions
are test limits used by hv_test_supply() and hv_ac_test_supply() when testing HV
output voltage.

hv_vpar_high() and hv_vpar_low() must be programmed before executing HV Static
Test Functions and HV Dynamic Test Functions which test or measure HV voltage.

Both limits are set to zero at test program initialization, but are not otherwise modified by the
system software.

The HV has a single output voltage range:

Both limits can be modified from a test pattern. See Controlling PE Levels from the Test
Pattern.

Note: a commonly made mistake is to assume that programming HV force value or
PASS/FAIL test limit also defines the type of HV test which will execute next. It
is the arguments passed to hv_test_supply() and hv_ac_test_supply()
which defines the type of test the HV actually performs (test/measure current or
voltage), and thus which force and test limits will be used.

Usage
The following functions set the high/low voltage test limit for all HV(s). In Multi-DUT Test
Programs, only HVs of DUTs currently in the Active DUTs Set (ADS) are affected:

void hv_vpar_high(double value);

void hv_vpar_low(double value);

The following functions set the high/low voltage test limit for one or more HV(s):

void hv_vpar_high(double value, PinList* pPinList);

void hv_vpar_low(double value, PinList* pPinList);

The following functions get the currently programmed high/low voltage test limit for one HV:

double hv_vpar_high(DutPin *pin);

double hv_vpar_low(DutPin *pin);

Table 3.12.5.0-1 HV Voltage Range

Range LSB

0V to +28V 4mV
 2/27/09 Pg-429

High Voltage Source/Measure Unit (HV) Functions
where:

value specifies the desired high or low voltage value. Units may be used (see Specifying
Units).

pPinList identifies one or more HV units to be programmed. In Multi-DUT Test Programs,
only pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must
only contain pins which are mapped to HV in the Pin Assignment Table.

pin identifies one DutPin to be read. Must be a DutPin mapped to HV in the Pin
Assignment Table.

The hv_vpar_high() and hv_vpar_low() getter functions return the currently
programmed value. The value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
The following example sets the high and low voltage test limits all HV(s) included in the pin
list named pl_HVpins:

hv_vpar_high(7.5 V, pl_HVpins);
hv_vpar_low(6.5 V, pl_HVpins);

The following example gets the currently programmed high voltage test limit for one HV
named hvpin:

double v = hv_vpar_high(hvpin);

3.12.6 HV Static Test Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions, DC Sub-System Block Diagram, Static DC Tests.

Description

The hv_test_supply() function is used to statically test or measure HV current or output
voltage. HV Dynamic Test Functions are documented separately.

See Static DC Tests.

As noted in Overview, each Site Assembly Board has 16 HV units and 8 DC Test and
Measure Systems; i.e. in hardware, two HV units are associated with a given DC Test and
Measure System. This means that when testing or measuring HV output current or voltage it
 2/27/09 Pg-430

High Voltage Source/Measure Unit (HV) Functions
may not always be possible to perform all HV tests in parallel. Thus, when executing
hv_test_supply(), if the specified pin list contains HV units which share a given DC Test
and Measure System, the test will be performed in two steps, testing one HV at a time.

In software release h1.1.23, hv_test_supply() support for measurement averaging was
enhanced. Note the following:

• Measurement averaging is enabled by including the PartestOpt iacc argument.
• The number of measurements made to obtain the average is set using

iacc_count_set(). Default = 10.
• The value set using iacc_count_set() is ignored when measure() = FALSE.
• When averaging is enabled the measurement average is compared to the PASS/

FAIL test limits, set using HV Current Test Limit Functions, to determine whether
hv_test_supply() returns PASS or FAIL.

• When Retrieving DC Test Results only the average value is returned, regardless of
the number of measurements made.

Prior to executing hv_test_supply() the following parameters must be set up:

• HV connections. See HV Connect/Disconnect Functions. Note that the voltage (but
not current) test/measure signal between the High Voltage Source/Measure Unit
(HV) and the DC Test and Measure System is connected to the output-side of the
solid-state switch which connects the HV to the DUT. This means that it is possible
to test/measure this voltage, from the DUT, even though the HV is not connected.

• HV output voltage. See HV Voltage Programming Functions.
• PASS/FAIL voltage or current test limits. See HV Current Test Limit Functions and

HV Voltage PASS/FAIL Limit Functions.
• The system software provides a Built-in Settling Time to HV tests. The user may

use the partime() function to add additional settling time. See Parametric
Settling Time.

• Enable/disable measurements using measure(). Measured values can be
retrieved by user code, see Retrieving DC Test Results.

Usage
The following function executes a static HV test. In Multi-DUT Test Programs, only HV(s)
connected to DUT(s) currently in the Active DUTs Set (ADS) are tested:

PFState hv_test_supply(PassCond pass_cond,
PinList* pPinList,
PartestOpt test_type DEFAULT_VALUE(no_iacc));
 2/27/09 Pg-431

High Voltage Source/Measure Unit (HV) Functions
PFState hv_test_supply(
PassCond pass_cond,
DutPin *pDutPin,
PartestOpt test_type DEFAULT_VALUE(no_iacc));

where:

pass_cond determines whether hv_test_supply() tests/measures output current or
voltage, and therefore which PASS/FAIL test limits will be used. pass_cond values are
defined using the PassCond enumerated type. Operation is defined in the following
table:

Table 3.12.6.0-1 HV Test Options and PASS/FAIL Limit Selection

Pass
Condition Comments

pass_pcl
pcl = Positive Current Limit.
Test/measure HV output current. Pass if current is greater than the value
set using hv_ipar_high().

pass_ncl
ncl = Negative Current Limit.
Test/measure HV output current. Pass if current is less than the value set
using hv_ipar_low().

pass_nicl
nicl = Not In Current Limit.
Test/measure HV output current. Pass if current is between the values set
using hv_ipar_high() and hv_ipar_low().

pass_vg
vg = Voltage Greater.
Test/measure HV output voltage. Pass if voltage is greater than the value
set using hv_vpar_high().

pass_vl
vl = Voltage Less.
Test/measure HV output voltage. Pass if voltage is less than the value set
using hv_vpar_low().

pass_nivl
nivl = Not In Voltage Limit.
Test/measure HV output voltage. Pass if voltage is between the values
set using hv_vpar_high() and hv_vpar_low().
 2/27/09 Pg-432

High Voltage Source/Measure Unit (HV) Functions
The diagrams below show this same information graphically. The upper diagram applies
when testing current, the lower diagram applies when testing voltage:

pPinList identifies which HV are to be tested. In Multi-DUT Test Programs, only pin(s) of
DUT(s) currently in the Active DUTs Set (ADS) are tested. The pin list must only contain pins
which are mapped to HV in the Pin Assignment Table. When pPinList contains both HV
units which share a given DC Test and Measure System, the test will be performed in two
steps, testing one HV at a time, in the order they are listed in pPinList.

pDutPin identifies one HV to be tested. In Multi-DUT Test Programs, only pin(s) of DUT(s)
currently in the Active DUTs Set (ADS) are tested. The pin must by mapped to an HV in the
Pin Assignment Table.

test_type is optional, and is used to select one HV test option. Legal values are of the
PartestOpt enumerated type, but only the options noted in the table below are valid:

Table 3.12.6.0-2 HV Test Optional Arguments

Optional
Arguments Comments

 iacc
Enable measure averaging. Applies only when measure() = TRUE.
See Description and Measurement Average Count Functions.

no_iacc Default. Disable measure averaging.

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

hv_ipar_high()

hv_ipar_low()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

hv_vpar_high()

hv_vpar_low()

pass_vg pass_vl pass_nivl

Sets current test

Sets voltage test
 2/27/09 Pg-433

High Voltage Source/Measure Unit (HV) Functions
hv_test_supply() returns the overall PASS/FAIL result. A PASS result will only be
returned if all HV(s) tested PASS (i.e. no DC Error Flags are set). In Multi-DUT Test
Programs, only HVs of DUTs currently in the Active DUTs Set (ADS) affect the test result.

Example
The following example tests output current on all HV units included in the pin list named
pl_HVpins. The test will pass if the current is between the PASS/FAIL limits set using
hv_ipar_high() and hv_ipar_low():

PFState pf = hv_test_supply(pass_nicl, pl_HVpins);

3.12.7 HV Dynamic Test Functions
See High Voltage Source/Measure Unit (HV), High Voltage Source/Measure Unit (HV)
Functions, DC Sub-System Block Diagram, Dynamic DC Tests.

Description

The hv_ac_test_supply() function is used to dynamically test or measure HV current or
output voltage. HV Static Test Functions are documented separately.

See Dynamic DC Tests.

The hv_ac_test_supply() function executes a test pattern, and the associated pattern
stop condition must be specified. Options are listed in Usage, and include terminating
pattern execution if there is a functional failure or executing the pattern to completion,
regardless of functional failures.

Note: in dynamic DC parametric tests, the test pattern can perform branch-on-error
based on the state of the DC Error Flag in each DC Test and Measure System.
The MAR RESET, or CHIPS RESET instructions (Memory Test Patterns) or VEC/
RPT RESET, VAR RESET and VPINFUNC RESET instructions (Logic Test Patterns)
will clear the DC Error Flag, which can affect the overall PASS/FAIL result of the
hv_ac_test_supply().

The hv_ac_test_supply()function has two trigger modes, controlled using the
comp_cond argument, which determines whether test pattern triggers are enabled. Four
scenarios are possible:
 2/27/09 Pg-434

High Voltage Source/Measure Unit (HV) Functions
• comp_cond = default (no_vcomp) and measure() = FALSE: the DC Comparators
and Error Logic are used and enabled for the entire duration of the executing test
pattern.

• comp_cond = vcomp and measure() = FALSE: the DC Comparators and Error
Logic are used and triggered by the VCOMP token from the executing test pattern.
If any one or more triggered samples fails the test returns FAIL.

• comp_cond = vcomp and measure() = TRUE: the DC A/D Converter is used and
triggered by the VCOMP token from the executing test pattern. This causes a
measurement to be made.

• comp_cond = default (no_vcomp) and measure() = TRUE. Not supported in DC
tests. hv_ac_test_supply() operates as though measure() = FALSE. Any DC
measurements which are retrieved are invalid.

When using comp_cond = vcomp, one trigger will be generated in each test pattern cycle
which contains the MAR VCOMP instruction (Memory Test Patterns) or VEC/RPT VCOMP, VAR
VCOMP and VPINFUNC VCOMP instruction s (Logic Test Patterns). See Dynamic DC Tests.

Note: when using vcomp, if the pattern does not generate any triggers,
hv_ac_test_supply() will return invalid results. If measure = FALSE, the DC
Comparators and Error Logic will never get triggered, which will result in a PASS
condition. If measure() = TRUE, any measured values will be invalid (old,
stale, etc.) and the test may return PASS or FAIL based on the invalid
measurement data. The system software cannot check for this error; i.e. it is the
user’s responsibility to ensure that at least one vcomp trigger is issued by the
pattern.

hv_ac_test_supply() will not return until test pattern execution terminates.

hv_ac_test_supply() will also fail if any PE error latches are set (latched functional
strobes failed).

As noted in Overview, each Site Assembly Board has 16 HV units and 8 DC Test and
Measure Systems; i.e. in hardware, two HV units are associated with a given DC Test and
Measure System. When executing hv_ac_test_supply(), it is an error if the specified
pin list contains HV units which share a given DC Test and Measure System:

• The test will return immediately
• The test result for all DUT(s) tested will be FAIL.
• Any test results retrieved will be invalid (stale, etc.) See Retrieving DC Test

Results.
 2/27/09 Pg-435

High Voltage Source/Measure Unit (HV) Functions
Prior to executing hv_ac_test_supply() the following parameters must be set up:

• HV connections. See HV Connect/Disconnect Functions. Note that the voltage (but
not current) test/measure signal between the HV and the DC Test and Measure
System is connected to the output-side of the solid-state switch which connects
the HV to the DUT. This means that it is possible to test/measure this voltage,
from the DUT, even though the HV is not connected.

• HV output voltage. See HV Voltage Programming Functions.
• PASS/FAIL voltage or current test limits. See HV Current Test Limit Functions and

HV Voltage PASS/FAIL Limit Functions.
• The partime() function, used to add additional settling time to the Built-in

Settling Time, is not normally useful in dynamic DC tests. This is because this
delay will occur after programming the DC circuitry but before executing the
functional test pattern; i.e. at a non-useful time. See Parametric Settling Time.

• Enable/disable measurements using measure(). Measured values can be
retrieved by user code, see Retrieving DC Test Results.

• For dynamic tests, the test will also fail if any functional strobes fail. Thus proper
digital PE levels and timing will affect test results, as does the test pattern
executed.

Usage
The following function is used to perform dynamic current or voltage test on one or more
HVs. In Multi-DUT Test Programs, only HV(s) connected to DUT(s) currently in the Active
DUTs Set (ADS) are tested:

PFState hv_ac_test_supply(PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond,

CompCond comp_cond DEFAULT_VALUE(no_vcomp));

where:

pass_cond determines whether hv_ac_test_supply() tests or measures output
current or voltage, and therefore which PASS/FAIL test limits will be used. pass_cond
 2/27/09 Pg-436

High Voltage Source/Measure Unit (HV) Functions
values are defined using the PassCond enumerated type. Operation is defined in the
following table:

Table 3.12.7.0-1 HV Test Options and PASS/FAIL Limit Selection

Pass
Condition Comments

pass_pcl
pcl = Positive Current Limit.
Test/measure HV output current. Pass if current is greater than the value
set using hv_ipar_high().

pass_ncl
ncl = Negative Current Limit.
Test/measure HV output current. Pass if current is less than the value set
using hv_ipar_low().

pass_nicl
nicl = Not In Current Limit.
Test/measure HV output current. Pass if current is between the values set
using hv_ipar_high() and hv_ipar_low().

pass_vg
vg = Voltage Greater.
Test/measure HV output voltage. Pass if voltage is greater than the value
set using hv_vpar_high().

pass_vl
vl = Voltage Less.
Test/measure HV output voltage. Pass if voltage is less than the value set
using hv_vpar_low().

pass_nivl
nivl = Not In Voltage Limit.
Test/measure HV output voltage. Pass if voltage is between the values
set using hv_vpar_high() and hv_vpar_low().
 2/27/09 Pg-437

High Voltage Source/Measure Unit (HV) Functions
The diagrams below shows this same information graphically. The upper diagram applies
when testing current, the lower diagram applies when testing voltage:

pPinList identifies which HV are to be tested. In Multi-DUT Test Programs, only pin(s) of
DUT(s) currently in the Active DUTs Set (ADS) are tested. The pin list must only contain pins
which are mapped to HV in the Pin Assignment Table. When pPinList contains both HV
units which share a given DC Test and Measure System, the test will be performed in two
steps, testing one HV at a time, in the order they are listed in pPinList. When this occurs,
the test pattern will be executed two times.

pPattern identifies the test pattern to be executed by hv_ac_test_supply().

stop_cond controls how test pattern execution terminates. Legal stop_cond values are
defined using the PatStopCond enumerated type. Note that majority of tests will use the

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

hv_ipar_high()

hv_ipar_low()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

hv_vpar_high()

hv_vpar_low()

pass_vg pass_vl pass_nivl

Sets current test

Sets voltage test
 2/27/09 Pg-438

High Voltage Source/Measure Unit (HV) Functions
error or finish options: comp_cond is optional, and controls whether test pattern

Table 3.12.7.0-2 Pattern Execution Stop Condition Options

Stop Condition Summary Description

finish Execute pattern to completion, regardless of errors.

error
Stop pattern execution on first functional or DC Error Flag error
and set the result of ac_partest() to FAIL.

fullec

Execute pattern to completion. Enable the ECR to capture
errors during pattern execution. This argument should be used
when performing Redundancy Analysis (RA) or using
BitmapTool.

LEC_only_errors
Enable the ECR to capture errors during pattern execution. Cap-
ture the first 2Meg (221-6) failing vectors. Intended for use when
the ECR is used as an Logic Error Catch (LEC).

LEC_first_vectors

Enable the ECR to capture errors during pattern execution. Cap-
ture the first 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_last_vectors

Enable the ECR to capture errors during pattern execution. Cap-
ture the last 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_before_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus the previous 2Meg (221-6) vec-
tors executed. Intended for use when the ECR is used as an
Logic Error Catch (LEC).
 2/27/09 Pg-439

High Voltage Source/Measure Unit (HV) Functions
triggers are enabled. See Description. Default = no_vcomp = disabled.

hv_ac_test_supply() returns the overall PASS/FAIL result. A PASS result will only be
returned if:

• All HV(s) tested pass (no DC Error Flags are set).
• No functional error latches are set (no functional strobes failed)
• In Multi-DUT Test Programs, only HVs of DUTs currently in the Active DUTs Set

(ADS) affect the test result.

Example
The following example tests output current on all HV units included in the pin list named
pl_HVpins. The test pattern named myPat will be executed, to completion. Test pattern
triggers are enabled. The test will pass if the current is between the PASS/FAIL limits set
using hv_ipar_high() and hv_ipar_low() AND no functional strobes fail:

PFState pf = hv_ac_test_supply(pass_nicl,
pl_HVpins,
myPat,
finish,
vcomp);

LEC_after_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus the next 2Meg (221-6) vectors
executed. Intended for use when the ECR is used as an Logic
Error Catch (LEC). .

LEC_center_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus up to 512K vectors executed
before the failure and up to 512K vectors executed after the fail-
ure. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

Note: in parallel test applications, the test pattern must be executed to completion, to
ensure that DUT(s) which don’t fail are completely tested. In other words, halting the
pattern early (error) because one or more DUT(s) failed prevents DUT(s) which PASS
from being completely tested. This is BAD.

Table 3.12.7.0-2 Pattern Execution Stop Condition Options (Continued)

Stop Condition Summary Description
 2/27/09 Pg-440

High Voltage Source/Measure Unit (HV) Functions
If the test program is a Multi-DUT Test Program, the return value will be MULTI_DUT, see
above.
 2/27/09 Pg-441

PMU Functions
3.13 PMU Functions
See Parametric Measurement Unit (PMU).

This section includes the following topics:

• Overview
• Types, Enums, etc.
• PMU Connect/Disconnect Functions
• PMU Force Current Functions
• PMU Current Test Limit Functions
• PMU Force Voltage Functions
• PMU Voltage Test Limit Functions
• PMU Voltage Clamp Functions
• Background Voltage Functions
• PMU Static Test Functions
• PMU Dynamic Test Functions
• start_ac_partest(), stop_ac_partest()
• ac_partest_results_store()
• PMU: Testing DPS Pins
• PMU: Testing HV Pins
• parametric_mode()
• PMU as Voltage/Current Source (pmu_connect(), pmu_disconnect())
• PMU Compensation Capacitors

Other related information includes:

• Static DC Tests and Dynamic DC Tests
• Parametric Settling Time and Built-in Settling Time
• measure()
• Retrieving DC Test Results
 2/27/09 Pg-442

PMU Functions
3.13.1 Overview
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

Each Magnum 1/2/2x Site Assembly Board board contains 8 Parametric Measurement Unit
(PMU)s.

The PMU can be used to:

• Force voltage, test or measure current
• Force current, test or measure voltage
• Act as a static voltage source
• Act as a static current source

PMU test options include:

• Perform a Go/NoGo test or make a measurement
• Perform a static PMU test or dynamic PMU test
• Dynamic PMU tests can be triggered by the site controller computer or by triggers

from an executing test pattern.

Note: these options interact. Detailed operation and usage rules are described in
Static DC Tests and Dynamic DC Tests. The user must understand the
information in these sections to obtain valid test results.

The PMU Force Current Functions are used to set or get a PMU force current value.

The PMU Force Voltage Functions are used to set or get a PMU force voltage value.

These parameters can both be set, and do not supersede each other. The actual use of
these values, in hardware, does not occur until a PMU test is executed (using PMU Static
Test Functions or PMU Dynamic Test Functions), or until explicit PMU connections are made
using PMU Connect/Disconnect Functions.

PMU current test PASS/FAIL limits are set using PMU Current Test Limit Functions.

PMU voltage test PASS/FAIL limits are set using PMU Voltage Test Limit Functions.

Again, these parameters can both be set, and do not supersede each other. The actual use
of these values, in hardware, does not occur until a PMU test is executed, using PMU Static
Test Functions or PMU Dynamic Test Functions.
 2/27/09 Pg-443

PMU Functions
The PMU Current Test Limit Functions also set the PMU current range, for both force current
and sense current operation. By default, range setting is implicit, however, an explicit range
can be specified using an argument to the PMU Current Test Limit Functions.

The PMU has two voltage ranges which only apply to PASS/FAIL test limits. By default,
range setting is implicit, however, an explicit range can be specified using an argument to
the PMU Voltage Test Limit Functions.

Explicit PMU range programming is required when changing voltage or current values from
an executing test pattern. See Controlling PE Levels from the Test Pattern.

PMU tests are set up and executed using PMU Static Test Functions and PMU Dynamic
Test Functions. Again, lots of important information is covered in Static DC Tests and
Dynamic DC Tests.

PMU tests are performed on a user specified pin list, which can consist of signal pins, HV
pins, or DPS pins (one type at a time). By default, PMU tests are executed sequentially,
testing one pin at a time, testing pins in the order they occur in the specified pin list. The
parallel options (there are 2) only apply when testing signal pins.

As indicated, the PMU can be used to test DPS pins. See PMU: Testing DPS Pins.

The PMU can be used to test HV pins. See PMU: Testing HV Pins.

The PMU has two voltage clamps, programmed using PMU Voltage Clamp Functions. When
the PMU is forcing current (into a high resistance DUT circuit) the resulting PMU voltage
may reach the maximum positive or negative voltage available from the PMU. The PMU
voltage clamps can be used to independently limit the maximum and minimum voltage
generated by the PMU.

When performing a static PMU test, to sequentially test multiple pins, the other pins can be
forced to a user specified background voltage. This can greatly simplify continuity tests and
leakage tests. See Background Voltage Functions.

The PMU can also be used as a statically connected voltage or current source. See PMU as
Voltage/Current Source. This is normally the only reason for user code to use the PMU
Connect/Disconnect Functions.

Various PMU voltages and currents can be set or modified from an executing test pattern.
See Controlling PE Levels from the Test Pattern.

The PMU is closed-loop feedback system, with stability that is affected by the circuit load.
The PMU has selectable internal compensation capacitors, which are controlled using
pmu_comp_cap() function. The selection is based on the amount of load capacitance
connected to pin(s) being tested or connected to the PMU. See PMU Compensation
Capacitors.
 2/27/09 Pg-444

PMU Functions
3.13.2 Types, Enums, etc.

Description
The following enumerated types are used in support of various PMU Functions:

Usage
The PMUSense enumerated type is used to set the PMU connection when using the PMU as
Voltage/Current Source:

enum PMUSense { REM, LOCAL };

The PMUMode enumerated type is used to specify the PMU or PTU operating mode; i.e.
force voltage or force current:

enum PMUMode { FORCEV, FORCEI };

3.13.3 PMU Connect/Disconnect Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

The pmu_connect() and pmu_disconnect() functions are used to explicitly control
connections between an PMU and one or more pin(s). These functions are normally only
used when the PMU is used as a statically connected voltage or current source and are thus
documented in the section titled PMU as Voltage/Current Source.

Note: standard PMU tests using partest() and ac_partest() automatically
control PMU connections and disconnections to pins; i.e. it is NOT necessary to
use pmu_connect() and pmu_disconnect() when performing these tests.

3.13.4 PMU Force Current Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.
 2/27/09 Pg-445

PMU Functions
Definition

The ipar_force() function is used to set or get the PMU force current value. Note the
following:

• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.

• The PMU has multiple force current ranges. See Usage.
• PMU force current has multiple ranges. See Usage. By default, the range is

implicitly selected, by the system software, based on the force current value
programmed using ipar_force(). Optionally, an explicit range can be specified
using the range argument to ipar_force().

• PMU voltage and current parameters can be modified from an executing test
pattern. See Controlling PE Levels from the Test Pattern. A current range value
must be explicitly specified if the PMU force current will be set or modified from an
executing test pattern. See Controlling PE Levels from the Test Pattern.

• Programming the PMU force current value has no effect on a previously
programmed force voltage, and vice versa. The actual use of these values, in
hardware, does not occur until a PMU test is executed (using PMU Static Test
Functions or PMU Dynamic Test Functions), or until explicit PMU connections are
made using PMU Connect/Disconnect Functions.

• It is possible to change the PMU force current value while the PMU is statically
connected as a current source, BUT the current range cannot be changed
(implicitly or explicitly). Violating this rule will generate a warning in the appropriate
controller window, and the force current will not be modified.

Note: a commonly made mistake is to assume that programming a PMU force value
or PASS/FAIL test limits also defines the type of PMU test which will execute
next. It is the arguments passed to partest() or ac_partest() which define
the type of test the PMU will perform (force current/measure voltage, etc.), and
which force value and test limits will be used.
 2/27/09 Pg-446

PMU Functions
Usage
The following function programs the PMU force current value for all PMUs. Range selection
is implicit:

void ipar_force(double force_value);

The following function programs the PMU force current value for one PMU. Range selection
is implicit:

void ipar_force(double force_value, DutPin *pDutPin);

The following function programs the PMU force current value for one or more PMU(s).
Range selection is implicit:

void ipar_force(double force_value, PinList* pPinList);

The following function programs the PMU force current value and current range for all
PMUs:

void ipar_force(double force_value, Range range);

The following function programs the PMU force current value and current range for one
PMU:

void ipar_force(double force_value,
DutPin *pDutPin,
Range range);

The following function programs the PMU force current value and current range for one or
more PMU(s):

void ipar_force(double force_value,
PinList* pPinList,
Range range);

The following function will return the currently programmed PMU force current value for one
PMU:

double ipar_force(DutPin *pDutPin);

where:

force_value specifies the desired force current value. Units may be used (see Specifying
Units).

pDutPin is used in two contexts:
 2/27/09 Pg-447

PMU Functions
• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.

range is used to explicitly select the force current range. Legal values are of the Range
enumerated type and are used as follows:

The getter version of ipar_force() returns the currently programmed force current value
for one PMU. In Multi-DUT Test Programs, the value is retrieved from the first DUT in the
Active DUTs Set (ADS).

Examples
ipar_force (-100 UA);
ipar_force (-100 UA, D0);
ipar_force (-100 UA, myPinList);
double value = ipar_force(D0);

Table 3.13.4.0-1 PMU Force Current Ranges

Current
Range LSB Range

±2uA 1nA range1

±20uA 10nA range2

±200uA 100nA range3

±2mA 1uA range4

±20mA 10uA range5
 2/27/09 Pg-448

PMU Functions
3.13.5 PMU Current Test Limit Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

Definition

The ipar_high() or ipar_low() functions are used to set or get the PMU current test
PASS/FAIL test limits. These limits apply when using the PMU to force-voltage and test or
measure current.

Note the following:

• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.

• PMU current test limits have multiple ranges. See Usage. By default, the range is
implicitly selected, by the system software, based on the current test limit values
programmed using ipar_high() and ipar_low(). Optionally, an explicit range
can be specified using the range argument to ipar_high() or ipar_low().
When a range is not explicitly specified the system software selects the most
accurate range based on the combination of test limits programmed. If the high
and low test limits fall into different ranges, the system software selects the lower
resolution range, but only if a double-ended test such as pass_nicl is being
performed.

• Both test limits can be modified from a test pattern. See Controlling PE Levels from
the Test Pattern.

• The range value must be explicitly specified if either PMU current test limit will be
set or modified from an executing test pattern. See Controlling PE Levels from the
Test Pattern.

• Programming the PMU current test limits value has no effect on a previously
programmed voltage test limit, and vice versa. The actual use of these values, in
hardware, does not occur until a PMU test is executed (using PMU Static Test
Functions or PMU Dynamic Test Functions).
 2/27/09 Pg-449

PMU Functions
• These test limits are not required to be symmetric around zero.

Note: a commonly made mistake is to assume that programming a PMU force value
or PASS/FAIL test limits also defines the type of PMU test which will execute
next. It is the arguments passed to partest() or ac_partest() which define
the type of test the PMU will perform (force current/measure voltage, etc.), and
which force value and test limits will be used.

Usage
The following function programs the PMU current test high/low test limit for all PMUs. Range
selection is implicit. In Multi-DUT Test Programs, the PMU of each DUT currently in the
Active DUTs Set (ADS) are affected:

void ipar_high(double value);

void ipar_low(double value);

The following function programs the PMU current test high/low test limit for one PMU. Range
selection is implicit:

void ipar_high(double value,
DutPin *pDutPin);

void ipar_low(double value,
DutPin *pDutPin);

The following function programs the PMU current test high/low test limit for one or more
PMU(s). Range selection is implicit:

void ipar_high(double value,
PinList* pPinList);

void ipar_low(double value,
PinList* pPinList);

The following function programs the PMU current test high/low test limit and range for all
PMUs. In Multi-DUT Test Programs, the PMUs of each DUT currently in the Active DUTs Set
(ADS) are affected:

void ipar_high(double value, Range range);

void ipar_low(double value, Range range);

The following function programs the PMUs current test high/low test limit and current range
for one PMU:
 2/27/09 Pg-450

PMU Functions
void ipar_high(double value,
Range range,
DutPin *pDutPin);

void ipar_low(double value,
Range range,
DutPin *pDutPin);

The following function programs the PMUs current test high/low test limit and current range
for one or more PMU(s):

void ipar_high(double value,
Range range,
PinList* pPinList);

void ipar_low(double value,
Range range,
PinList* pPinList);

The following function will return the currently programmed PMUs current test high test limit
or low test limit value for one PMU:

double ipar_high(DutPin *pDutPin);

double ipar_low(DutPin *pDutPin);

where:

value specifies the current value. Units may be used (see Specifying Units).

pDutPin is used in two contexts:

• In the setter functions, identifies one PMUs to be programmed. In Multi-DUT Test
Programs, the PMUss of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMUs to be read.
pPinList identifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUss of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.
 2/27/09 Pg-451

PMU Functions
range is used to explicitly select a PMU current range. Legal values are of the Range
enumerated type and are used as follows:

The getter versions of ipar_high() and ipar_low() return the currently programmed
current test high test limit or low test limit value for one PMU. In Multi-DUT Test Programs,
the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Examples
ipar_high(3.2 MA);
ipar_low(0.1 MA);
ipar_high(3.2 MA, D0);
ipar_low(0.1 MA, D0);
ipar_high(3.2 MA, myPinList);
ipar_low(0.1 MA, myPinList);
double high_val = ipar_high(D0);
double low_val = ipar_low(D0);

3.13.6 PMU Force Voltage Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

Definition

The vpar_force() function is used to set or get the PMU force voltage value. Note the
following:

Table 3.13.5.0-1 PMU Current Test Limit Ranges

Current
Range LSB Range

±2uA 1nA range1

±20uA 10nA range2

±200uA 100nA range3

±2mA 1uA range4

±20mA 10uA range5
 2/27/09 Pg-452

PMU Functions
• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.

• The PMU force voltage has a single range but the minimum/maximum value is
limited based on the type of pins being programmed (signal pins, DPS pins, HV
pins). See Uage.

• Programming the PMU force voltage value has no effect on a previously
programmed force current, and vice versa. The actual use of these values, in
hardware, does not occur until a PMU test is executed (using PMU Static Test
Functions or PMU Dynamic Test Functions), or until explicit PMU connections are
made using PMU Connect/Disconnect Functions.

• The PMU force voltage can be modified from a test pattern. See Controlling PE
Levels from the Test Pattern.

• It is possible to change the PMU force voltage value while the PMU is statically
connected as a current source.

Note: the programmed vclamp() value will limit the PMU force voltage. A warning
message will be displayed when the user’s test program attempts to program
this condition.

Note: a commonly made mistake is to assume that programming a PMU force value
or PASS/FAIL test limits also defines the type of PMU test which will execute
next. It is the arguments passed to partest() or ac_partest() which define
the type of test the PMU will perform (force current/measure voltage, etc.), and
which force value and test limits will be used.

Usage
The following function programs the PMU force voltage for all PMUs:

void vpar_force(double force_value);

The following function programs the PMU force voltage value for one PMU:
 2/27/09 Pg-453

PMU Functions
void vpar_force(double force_value, DutPin *pDutPin);

The following function programs the PMU force voltage value for one or more PMU(s):

void vpar_force(double force_value, PinList* pPinList);

The following function will return the currently programmed PMU force voltage for one PMU:

double vpar_force(DutPin *pDutPin);

where:

force_value specifies the PMU force voltage value. Units may be used (see Specifying
Units). Legal values are:

pDutPin is used in two contexts:

• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.

Table 3.13.6.0-1 PMU Force Voltage Range

Range LSB

Max
Curre
nt

-2.5V to +12.75V

1mV ±20mA

On PE Pins

-5V to +15V On DPS pins

-2.5V to +15V On HV pins

Note: while this may seem to be two voltage ranges, in
hardware only one range exists. The system software will
limit the force voltage if/when the PMU is connected to, or
testing PE pins. The broader voltage output capabilies are
only usable when the PMU is connected to replace a DUT
Power Supply (DPS) (see PMU: Testing DPS Pins) or High
Voltage Source/Measure Unit (HV) (see PMU: Testing HV
Pins).
 2/27/09 Pg-454

PMU Functions
The getter version of vpar_force() returns the currently programmed force voltage value
for one PMU. In Multi-DUT Test Programs, the value is retrieved from the first DUT in the
Active DUTs Set (ADS).

Examples
vpar_force(7 V);

vpar_force(7 V, D0);

vpar_force(7 V, myPinList);

double val = vpar_force(D0);

3.13.7 PMU Voltage Test Limit Functions
See Per-pin Parametric Test Unit (PTU), PMU Functions, Overview.

Definition

The vpar_high() or vpar_low() functions are used to set or get the PMU voltage test
PASS/FAIL test limits. These limits apply when using the PMU to force-current and test or
measure voltage.

Note the following:

• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.

• The PMU voltage PASS/FAIL test limits have multiple ranges, see Usage. The
minimum/maximum values are also limited based on the type of pins being
programmed (signal pins, DPS pins, HV pins). By default, the range is implicitly
selected, by the system software, based on the voltage test limit values
programmed using vpar_high() and vpar_low(). Optionally, an explicit range
can be specified using the range argument to vpar_high() and vpar_low().
When a range is not explicitly specified the system software selects the most
 2/27/09 Pg-455

PMU Functions
accurate range based on the combination of test limits programmed. If the high
and low test limits fall into different ranges, the system software selects the lower
resolution range, but only if a double-ended test such as pass_nivl is being
performed.

• Both test limits can be modified from a test pattern. See Controlling PE Levels from
the Test Pattern.

• The range value must be explicitly specified if either PMU voltage test limit will be
set or modified from the test pattern (see Controlling PE Levels from the Test
Pattern).

• Programming the PMU voltage test limits value has no effect on a previously
programmed current test limit, and vice versa. The actual use of these values, in
hardware, does not occur until a PMU test is executed (using PMU Static Test
Functions or PMU Dynamic Test Functions).

• These test limits are not required to be symmetric around zero.

Note: the programmed vclamp() value will limit the PMU voltage test limits. A
warning message will be displayed when the user’s test program attempts to
program this condition.

Note: a commonly made mistake is to assume that programming a PMU force value
or PASS/FAIL test limits also defines the type of PMU test which will execute
next. It is the arguments passed to partest() or ac_partest() which define
the type of test the PMU will perform (force current/measure voltage, etc.), and
which force value and test limits will be used.

Usage
The following function programs the PMU voltage test high/low test limit value for all PMUs.
Range selection is implicit. In Multi-DUT Test Programs, the PMU of each DUT currently in
the Active DUTs Set (ADS) are affected:

void vpar_high(double value);

void vpar_low(double value);

The following function programs the PMU voltage test high/low test limit for one PMU.
Range selection is implicit:

void vpar_high(double value,
DutPin *pDutPin);
 2/27/09 Pg-456

PMU Functions
void vpar_low(double value,
DutPin *pDutPin);

The following function programs the PMU voltage test high/low test limit for one or more
PMU(s). Range selection is implicit:

void vpar_high(double value,
PinList* pPinList);

void vpar_low(double value,
PinList* pPinList);

The following function programs the PMU voltage test high/low test limit and range for all
PMUs. In Multi-DUT Test Programs, the PMU of each DUT currently in the Active DUTs Set
(ADS) are affected:

void vpar_high(double value, Range range);

void vpar_low(double value, Range range);

The following function programs the PMU voltage test high/low test limit and range for one
PMU:

void vpar_high(double value,
Range range,
DutPin *pDutPin);

void vpar_low(double value,
Range range,
DutPin *pDutPin);

The following function programs the PMU voltage test high/low test limit and range for one
or more PMU(s):

void vpar_high(double value,
Range range,
PinList* pPinList);

void vpar_low(double value,
Range range,
PinList* pPinList);

The following function will return the currently programmed PMU voltage test high/low test
limit for one PMU:

double vpar_high(DutPin *pDutPin);

double vpar_low(DutPin *pDutPin);

where:
 2/27/09 Pg-457

PMU Functions
value specifies the test limit voltage value. Units may be used (see Specifying Units). Legal
values are:

pDutPin is used in two contexts:

• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.

range is used to explicitly select the test limit voltage range. Legal values are of the Range
enumerated type. See Description.

The getter versions of vpar_high() and vpar_low() return the currently programmed
voltage test high/low test limit for one PMU. In Multi-DUT Test Programs, the value is
retrieved from the first DUT in the Active DUTs Set (ADS).

Example
vpar_high(3.2 V);
vpar_low(800 MV);
vpar_high(3.2 V, D0);
vpar_low(800 MV, D0);

Table 3.13.7.0-1 PMU Measure Voltage Ranges

Range
Measure
LSB Range

-2.5V to +4V 1mV range1
On PE Pins

-2.5V to +12.75V 4mV range2

-5V to +15V 4mV range2
On DPS Pins.
See PMU: Testing DPS
Pins.

-2.5V to +15V 4mV range2
On HV Pins.
See PMU: Testing HV
Pins.
 2/27/09 Pg-458

PMU Functions
vpar_high(3.2 V, myPinList);
vpar_low(800 MV, myPinList);
double high_val = vpar_high(D0);
double low_val = vpar_low(D0);

3.13.8 PMU Voltage Clamp Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

Definition

The vclamp() function is used to set the two PMU voltage clamp values.

The positive_clamp() and negative_clamp() functions are used to get the currently
programmed values.

When performing a PMU force current test, the voltage clamps limit the compliance of the
PMU, with independently programmable high and low clamp limits. This limits the voltage
output by the PMU, to protect the DUT. And, as noted below, if carelessly programmed the
voltage clamps can also affect subsequent PMU test results.

Note the following:

• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.

• The PMU voltage clamps have a single range, see Usage.
• It is possible to program the negative PMU voltage clamp to a positive voltage, but

this is not useful. It is possible to program the positive PMU voltage clamp to a
negative voltage, but this is not useful.

• It is illegal to program the negative voltage clamp to a value greater than the
positive voltage clamp.
 2/27/09 Pg-459

PMU Functions
• The PMU voltage clamp values can be modified from a test pattern. See
Controlling PE Levels from the Test Pattern.

Note: the programmed vclamp() value can affect the PMU force voltage set using
vpar_force() and PASS/FAIL limits set using vpar_high() and
vpar_low(). When the user’s code attempts to program this situation a
warning message is generated.

Usage
The following function programs both PMU voltage clamps for all PMUs. In Multi-DUT Test
Programs, only PMUs of DUTs currently in the Active DUTs Set (ADS) are affected:

void vclamp(double positive_clamp, double negative_clamp);

The following function programs both PMU voltage clamps for one PMU:

void vclamp(double positive_clamp,
double negative_clamp,
DutPin *pDutPin);

The following function programs both PMU voltage clamps for one or more PMU(s):

void vclamp(double positive_clamp,
double negative_clamp,
PinList* pPinList);

The following function will return the currently programmed PMU positive voltage clamp
value for one PMU:

double positive_clamp(DutPin *pDutPin);

The following function will return the currently programmed PMU negative voltage clamp
value for one PMU:

double negative_clamp(DutPin *pDutPin);

where:
 2/27/09 Pg-460

PMU Functions
positive_clamp and negative_clamp specify the positive and negative voltage clamp
value. Units may be used (see Specifying Units). Legal values are:

pDutPin is used in two contexts:

• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMU of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.

positive_clamp() and negative_clamp() return the currently programmed clamp
value for one PMU. In Multi-DUT Test Programs, the value is retrieved from the first DUT in
the Active DUTs Set (ADS).

Examples
In this example, vclamp() limits the maximum voltage the PMU can output, the PASS/FAIL
voltage test limits, and any PMU voltage measurements to +8V.

vclamp(8.0 V, 0 V);
vclamp(8.0 V, 0 V, D0);
vclamp(8.0 V, 0 V, myPinList);
double pos_val = positive_clamp(D0);
double neg_val = negative_clamp(D0);

3.13.9 Background Voltage Functions
See Parametric Measurement Unit (PMU), PMU Functions, Overview.

Table 3.13.8.0-1 PMU Voltage Clamp Range

Range LSB

-5V to +16V
100mV

Positive PMU Voltage Clamp

-6V to +15V Negative PMU Voltage Clamp
 2/27/09 Pg-461

PMU Functions
Definition

The back_voltage() function is used to set or get the Parametric Background Voltage
value.

The back_voltage_enable() function is used to globally enable or disable the
background voltage facility.

When sequentially testing multiple pins using a static PMU test (see PMU Static Test
Functions), one pin is tested at a time and the other pins can optionally be forced to a user
specified background voltage. This can greatly simplify continuity tests and leakage tests.
See Parametric Background Voltage.

To use the background voltage feature requires the following:

• Globally enable the background voltage facility using back_voltage_enable().
By default, the background voltage is disabled.

• Program the desired background voltage value using back_voltage().
• Execute a static PMU test (see PMU Static Test Functions), to sequentially test

multiple signal pins. The background voltage is not used when using the PMU to
test DPS pins (see PMU: Testing DPS Pins) or HV pins (see PMU: Testing HV
Pins).

Also note the following:

• The background voltage facility is enabled or disabled globally, i.e. the enable
state is not programmable per-pin, per-PMU, etc.

• The background voltage value can be set globally or on a per-pin basis.
• Changing the background voltage value does not affect the enable/disable state of

the background voltage facility, and vice versa.
• During the static PMU test, any/all DUT pins not specified in the pin list being

tested are left in the state to which they were last set by the test program, and are
unaffected by the background voltage.

• All PMU voltages and currents are set to 0V/0A during the initial program load,
except for the PMU voltage clamps, which are set to maximum values, effectively
disabling both voltage clamps.

• During Sequence & Binning Table execution, PMU voltage and current values are
managed by user-written C-code.

• When Sequence & Binning Table execution stops, all PMUs are set to 0V/0A and
disconnected from all pins. This is done in the
builtin_after_testing_block.
 2/27/09 Pg-462

PMU Functions
• The background voltage has a single voltage range, see Usage.
Using Magnum 1/2/2x, the background voltage is generated by the Per-pin Parametric Test
Unit (PTU), and is used both as noted above for PMU tests and when executing PTU Static
Test Functions to test multiple pins sequentially (the default is parallel). When the
background voltage is enabled, the PTU connection switches of all pins in the pin list being
tested are switched to connect the background voltage to each pin (the PE driver is
disconnected from these pins). Then, for sequential PMU tests, one pin at a time is switched
to PMU and tested or measured, leaving the other pins connected to the background
voltage. For sequential PTU tests, the PTU for one pin at a time is programmed to the
appropriate test value and tested or measured, leaving the other pins connected to the
background voltage. After each pin is tested it is switched back to the background voltage
before the next pin is tested. The process repeats until all pins in the pin list are tested.

Note: when the Per-pin Parametric Test Unit (PTU) supplies the background voltage it is
set to operate on the ±2mA range. The actual background voltage output can be affected
by the current supplied. See PTU Operating Area.
With background voltages enabled, as the test executes:

• Those pins in the pin list being tested which are not currently connected to the
PMU will be set to the background voltage.

• Pins not included in the pin list being tested are not affected.

Usage
The following function globally enables or disables the background voltage facility:

void back_voltage_enable(BOOL state);

The following function returns the current background voltage enable state:

BOOL back_voltage_enable();

The following function is used to set the background voltage value, for all PMUs. In Multi-
DUT Test Programs, only PMUs of DUTs currently in the Active DUTs Set (ADS) are
affected:

void back_voltage(double value);

The following function programs the background voltage value for one PMU:

void back_voltage(double value, DutPin *pDutPin);

The following function programs the background voltage value for one or more PMU(s):

void back_voltage(double value, PinList* pPinList);
 2/27/09 Pg-463

PMU Functions
The following function will return the currently programmed background voltage value for
one PMU:

double back_voltage(DutPin *pDutPin);

where:

state specifies whether the background voltage is enabled (TRUE) or disabled (FALSE).

value specifies the background voltage value. Units may be used (see Specifying Units).
Legal values are:

 pDutPin is used in two contexts:

• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to signal pins in the Pin Assignment Table.

The getter version of back_voltage_enable() returns the current background voltage
enable state.

The getter version of back_voltage() returns the currently programmed background
voltage, for one PMU. In Multi-DUT Test Programs, the value is retrieved from the first DUT
in the Active DUTs Set (ADS).

Examples
back_voltage (0 V);
back_voltage (0 V, D0);
back_voltage (0 V, myPinList);

back_voltage_enable (TRUE);
if (back_voltage_enable())

output("Background voltage is ENABLED");

Table 3.13.9.0-1 Background Voltage Range

Voltage Range LSB

0V to +12V 1mV
 2/27/09 Pg-464

PMU Functions
3.13.10 PMU Static Test Functions
See Overview, Parametric Measurement Unit (PMU), Static DC Tests.

Description

The partest() function is used to execute a static PMU test. PMU Dynamic Test
Functions are documented separately.

See Static DC Tests.

Also note the following:

• It is the pass_cond argument to partest() which determines whether the PMU
will force current or voltage, and which PASS/FAIL test limits are used.

• Static PMU tests are performed on the DUT pins specified in the pin list or
pDutPin argument to the partest() function, which can contain signal pins, HV
pins, or DPS pins, but only one type at a time.

• When testing multiple signal pins, by default, the test is executed sequentially,
testing one pin at a time, in the order they occur in the specified pin list. The
parallel options (there are 2) only apply when testing signal pins. This is controlled
by an argument to partest().

• When testing DPS pins, each PMU supports 2 DPS outputs. This means that when
testing or measuring DPS output current it may not always be possible to test all
DPS pins concurrently. When the pPinList argument contains 2 DPS pins which
share a given PMU, the test will be performed in two steps, testing one DPS output
at a time. See PMU: Testing DPS Pins.

• When testing HV pins, each PMU supports 2 HV outputs. This means that when
testing or measuring HV output current or voltage it may not always be possible to
test all HV pins concurrently. When the pPinList argument contains 2 HV pins
which share a given PMU, the test will be performed in two steps, testing one HV at
a time. See PMU: Testing HV Pins.

• All pins which are not specified in the pPinList argument or the pDutPin
argument remain connected to the tester hardware in the state to which they were
last set by the test program.

partest() supports measurement averaging (first available in software release h1.1.23).
Note the following:

• This information applies when measure() = TRUE.
 2/27/09 Pg-465

PMU Functions
• Measurement averaging is enabled by including the PartestOpt iacc argument.
• The number of measurements made to obtain the average is set using

iacc_count_set(). Default = 10.
• The value set using iacc_count_set() is only used when measure() = TRUE.
• When averaging is enabled the measurement average is compared to the

PASS/FAIL test limits, set using PMU Current Test Limit Functions or PMU Voltage
Test Limit Functions, to determine whether partest() returns PASS or FAIL.

• When Retrieving DC Test Results only the average value is returned, regardless of
the number of measurements made.

PMU Test Checklist
• Set the PMU force current or voltage. See PMU Force Current Functions and PMU

Force Voltage Functions.
• Set the PASS/FAIL test limits. See PMU Current Test Limit Functions and PMU

Voltage Test Limit Functions.
• If performing a force-current test, the PMU voltage clamps should be set. See PMU

Voltage Clamp Functions.
• If performing a sequential test of multiple pins the background voltage may be

useful. See Background Voltage Functions.
• Settling time in addition to the Built-in Settling Time may be needed. See Parametric

Settling Time. Don’t forget to set it back to 0 when done.
• The measure() function is used to switch between measurements and Go/NoGo

tests.
• Don’t forget DUT power, and any required functional set up. Static PMU tests do not

execute a test pattern.
• Specific rules apply when testing pins which are statically connected to the PMU

(which is not common). See PMU as Voltage/Current Source.
• Operation is somewhat more complex when using the PMU to test DPS pins. See

PMU: Testing DPS Pins.
• Operation is somewhat more complex when using the PMU to test HV pins. See

PMU: Testing HV Pins.
• After the test is complete, user code may retrieve test results for further processing,

datalogging, etc. See Retrieving DC Test Results.
 2/27/09 Pg-466

PMU Functions
Note: the system software automatically controls connecting and disconnecting the
PMU, or DPS, to DUT pins. It is not necessary for user code to do this.

Usage
BOOL partest(PassCond pass_cond, DutPin *pDutPin);

BOOL partest(PassCond pass_cond, PinList* pPinList);

BOOL partest(PassCond pass_cond,
DutPin *pDutPin,
PartestOpt opt);

BOOL partest(PassCond pass_cond,
PinList* pPinList,
PartestOpt opt);

BOOL partest(PassCond pass_cond,
DutPin *pDutPin,
PartestOpt type,
PartestOpt accuracy);

BOOL partest(PassCond pass_cond,
PinList*pPinList,
PartestOpt type,
PartestOpt accuracy);

where:
 2/27/09 Pg-467

PMU Functions
pass_cond determines whether the PMU test will force current or voltage, which PASS/
FAIL test limits are used and how they are applied. Legal values are of the PassCond
enumerated type, and operate as described below:.

Table 3.13.10.0-1 Parametric Test Force & Pass/Fail Limit Specification

Pass
Condition Comments

pass_pcl
pcl = Positive Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is greater than ipar_high().

pass_ncl
ncl = Negative Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is less than ipar_low().

pass_nicl
nicl = Not In Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is between ipar_low() and ipar_high().

pass_vg
vg = Voltage Greater Than
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is greater than vpar_high().

pass_vl
vl = Voltage Less Than
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is less than vpar_low().

pass_nivl
nivl = Not In Voltage Limit
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is between vpar_low() and vpar_high().
 2/27/09 Pg-468

PMU Functions
The diagram below shows this operation graphically:

pDutPin identifies one pin to be tested. In Multi-DUT Test Programs, the pins of each DUT
currently in the Active DUTs Set (ADS) are tested. pDutPin may be a signal pin, HV pin or
DPS pin.

pPinList specifies the pin(s) to test. In serial mode tests (see opt and type below), the
pins are tested in the order they are listed in the pin list. The pinlist may only include one
type of pin: signal pins, HV pins, or DPS pins. In Multi-DUT Test Programs, only pin(s) of
DUTs currently in the Active DUTs Set (ADS) are tested.

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ipar_high()

ipar_low()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

vpar_high()

vpar_low()

pass_vg pass_vl pass_nivl

pass_cond sets
Force voltage, test current

pass_cond sets
Force current, test voltage
 2/27/09 Pg-469

PMU Functions
opt is optional and, if specified, controls one of two PMU test options. Legal values are of
the PartestOpt enumerated type:

To specify both options it is necessary to use both the type and accuracy arguments.

• type specifies the execution option (sequential, parallel, parallel_pmu).
• accuracy specifies iacc.

As noted above, iacc is only usable when measure() = TRUE.

The parallel and parallel_pmu options are used to test a group of signal pins in
parallel. A common application is testing leakage current, using a PASS/FAIL specification
for a single pin. Since most DUTs have significantly lower leakage than their specification,
this type of test usually passes for good DUTs. If it fails, then a sequential leakage test is
performed. Additional considerations exist when testing using parallel or
parallel_pmu:

• If pPinList contains pins which share a given PMU multiple PMUs will
automatically be used to perform the test, but only those pins which share a given
PMU can be electrically tested in parallel. However, by default, the PASS/FAIL test
limits are identical for each PMU. It is possible to program these test limits on a
per PMU basis.

Table 3.13.10.0-2 Parametric Test Optional Arguments

Optional
Arguments Comments

sequential
Default. The pins in pPinList are tested sequentially, in the order
listed in the pin list. PMU sense is done at the tester channel of each
pin tested.

parallel
The pins in pPinList are tested in parallel. PMU sense is done at
the tester channel of the first pin in pPinList. Only applies when
testing signal pins.

parallel_pmu
The pins in pPinList are tested in parallel. PMU sense is done at
the PMU. Only applies when testing signal pins.

 iacc
Enable measure averaging. Applies only when measure() = TRUE.
See Description and Measurement Average Count Functions. When
iacc is specified alone the test uses the sequential option.

no_iacc Default. Disable measure averaging.
 2/27/09 Pg-470

PMU Functions
• When using the parallel option, PMU sensing is done based on the pins in the
specified pin list. When multiple PMUs are involved, sensing is done at the tester
channel of first tested pin in the pin list on each PMU.

• When using the parallel or parallel_pmu options with measure() = TRUE, a
single measured value is recorded for the entire group of pins. When retrieving
measured values only the value stored for the first pin in the pin list is valid; i.e.
the measured value is invalid for the other pins in the pin list, and may be a value
from a previous measurement. See Retrieving DC Test Results.

When Retrieving DC Test Results, the measured value obtained using the iacc option is
the average of ten measurements.

Note: the iacc option is intended for use when forcing voltage and measuring current
in the low current measurement ranges. The iacc option can however be
specified for any range and either voltage or current force. Additionally, iacc
can be specified simultaneously with either of the parallel options. Using iacc
increases test time ~1mS for each pin tested.

partest() returns TRUE (PASS) or FALSE (FAIL). All pin(s) tested must PASS otherwise
FAIL is returned. In Multi-DUT Test Programs, only DUT(s) in the Active DUTs Set (ADS)
can affect test results.

Examples

Example 1:
The following example performs a static Go/Nogo PMU test on the pin list named
Input_pins. If this pin list contains more than one pin which share a given PMU, each pin
is tested sequentially. Since the PassCond specifies pass_nicl the PMU will force voltage
(+5V) and test current. No additional settling time has been programmed (here). The test will
pass if the current for each pin tested is between +1uA and +25nA:

measure(FALSE); // Set Go/NoGo testing
vpar_force(5 V);
ipar_high(1 UA);
ipar_low(25 NA);
BOOL result = partest(pass_nicl, Input_pins); // Force V, test I

Example 2:
The following example performs a static Go/Nogo PMU test on the pin list named DBus. If
this pin list contains more than one pin which share a given PMU these pins are all tested in
parallel; i.e. electrically connected and tested as a group. Since the PassCond specifies
 2/27/09 Pg-471

PMU Functions
pass_nicl the PMU will force voltage and test current. An additional 2mS settling time has
been programmed. The test will FAIL if the total current drawn by all pins which share a
given PMU is more than ±1uA. PMU sensing at the first tested pin which share a given
PMU:

measure(FALSE); // Set Go/NoGo testing
vpar_force(5 V);
ipar_high(1 UA);
ipar_low(-1 UA);
partime (2 MS); // Additional settling time
BOOL result = partest(pass_nicl, DBus, parallel);

Example 3:
The following example enables the measure() mode, and performs a sequential static
PMU test on all pins in the pin list named IO_pins. The high accuracy option (iacc) is
selected which results in 10 measurements being made for each pin tested, with the
average compared to the test limits to determine if the test passes or fails.

measure(TRUE); // Set measure mode testing
vpar_force(5 V);
ipar_high(50 NA);
ipar_low(-50 NA);
BOOL result = partest(pass_nicl, IO_pins, iacc);

Example 4:
The following example performs a PMU force voltage test. The force voltage, PASS/FAIL
test limits, background voltage, parametric settling time, etc. are specified elsewhere in the
program, which is very common!

BOOL result = partest(pass_nicl, Input_pins);

3.13.11 PMU Dynamic Test Functions
See Overview, Parametric Measurement Unit (PMU), Dynamic DC Tests.

Description

The ac_partest() function is used to execute a dynamic PMU test. PMU Static Test
Functions are documented separately .
 2/27/09 Pg-472

PMU Functions
See Dynamic DC Tests.

Also note the following:

• Dynamic PMU test perform a DC test while a test pattern is executing (more below).
• It is the pass_cond argument to ac_partest() which determines whether the

PMU will force current or voltage, and which PASS/FAIL test limits are used.
• Dynamic PMU tests are performed on the DUT pins specified in the pin list or

pDutPin argument to ac_partest(), which can contain signal pins, HV pins, or
DPS pins, but only one type at a time.

• When testing signal pins, unlike static PMU tests, dynamic PMU tests do not support
a sequential test mode. During dynamic PMU tests, before the test pattern is
executed, all pins in the specified pin list which share a given PMU are electrically
connected in parallel and connected to the PMU. This means that the PMU test is
performed on all pins at the same time, and that pins which don’t share a given
PMU are tested by different PMU(s). In most applications, ac_partest() is used
to test a single pin.

• When testing DPS pins, each PMU supports 2 DPS outputs. This means that when
testing or measuring DPS output current it may not always be possible to test all
DPS pins concurrently. When the pPinList argument contains 2 DPS pins which
share a given PMU, the test will be performed in two steps, testing one DPS output
at a time. This will require executing the test pattern two times. See PMU: Testing
HV Pins.

• When testing HV pins, each PMU supports 2 HV outputs. This means that when
testing or measuring HV output current or voltage it may not always be possible to
test all HV pins concurrently. When the pPinList argument contains 2 HV pins
which share a given PMU, the test will be performed in two steps, testing one HV at
a time. This will require executing the test pattern two times. See PMU: Testing HV
Pins.

• All pins which are not specified in the pPinList argument or the pDutPin
argument remain connected to the tester hardware in the state to which they were
last set by the test program.

As indicated, a dynamic PMU test executes a test pattern. Note the following:

• A pattern execution stop option must be specified, Options include terminating the
pattern if there is a functional failure or executing the pattern to completion,
regardless of functional failures.
 2/27/09 Pg-473

PMU Functions
• When the test pattern terminates, the system software interrogates the pin
electronics error latches checking for functional failures and the DC Error Flags
checking for DC failures. If either of these indicate a failure, then the
ac_partest() function returns FAIL.

Note: in dynamic DC parametric tests, the test pattern can perform branch-on-error
based on the state of the DC Error Flag in each DC Test and Measure System.
The MAR RESET or CHIPS RESET instructions (Memory Test Patterns) or VEC/
RPT RESET, VAR RESET and VPINFUNC RESET instructions (Logic Test Patterns)
will clear all DC Error Flags, which can affect the overall PASS/FAIL result of the
hv_ac_test_supply().

The ac_partest()function has two trigger modes which determine whether test pattern
triggers are enabled. This is controlled using the comp_cond argument. Four scenarios are
possible:

• comp_cond = default (no_vcomp) and measure() = FALSE: the DC Comparators
and Error Logic are used and enabled for the entire duration of the executing test
pattern. If at any time during pattern execution the tested parameter fails the test
returns FAIL.

• comp_cond = vcomp and measure() = FALSE: the DC Comparators and Error
Logic are used and are triggered by the VCOMP token from the executing test
pattern. If any one or more triggered samples fails the test returns FAIL.

• comp_cond = vcomp and measure() = TRUE: the DC A/D Converter is used and
triggered by the VCOMP token from the executing test pattern. Each trigger causes
a measurement to be made.

• comp_cond = default (no_vcomp) and measure() = TRUE. Not supported in DC
tests. ac_partest() operates as though measure() = FALSE. Any DC
measurements which are retrieved are invalid.

When using comp_cond = vcomp, one trigger will be generated in each test pattern cycle
which contains the MAR VCOMP instruction (Memory Test Patterns) or VEC/RPT VCOMP, VAR
VCOMP and VPINFUNC VCOMP instructions (Logic Test Patterns). See Dynamic DC Tests.
 2/27/09 Pg-474

PMU Functions
Note: when using vcomp, if the pattern does not generate any triggers,
ac_partest() will return invalid results. If measure = FALSE, the DC
Comparators and Error Logic will never be triggered, which will result in a PASS
condition. If measure() = TRUE, any measured values will be invalid (old,
stale, etc.) and the test may return PASS or FAIL based on the invalid
measurement data. The system software cannot check for this error; i.e. it is the
user’s responsibility to ensure that at least one vcomp trigger is issued by any
pattern used by ac_partest().

Note: whether using test pattern triggers or not, the DC Error Flag will affect test
pattern’s branch-on-error operations (proper pipelining is required for intentional
use). The test pattern MAR RESET and CHIPS RESET instructions (Memory Test
Patterns) and VEC/RPT RESET, VAR RESET and VPINFUNC RESET instructions
(Logic Test Patterns) will clear all DC Error Flags. If measurements are disabled,
after pattern execution stops, the DC Error Flag remains set the dynamic PMU
test will return FAIL.

Note: the system software automatically controls connecting and disconnecting the
PMU to DUT pins. It is not necessary for user code to do this.

PMU Test Checklist
• Set the PMU force current or voltage. See PMU Force Current Functions and PMU

Force Voltage Functions.
• Set the PASS/FAIL test limits. See PMU Current Test Limit Functions and PMU

Voltage Test Limit Functions.
• If performing a force-current test, the PMU voltage clamps should be set. See PMU

Voltage Clamp Functions.
• Dynamic PMU tests do not utilize the background voltage.
• Setting a non-zero Parametric Settling Time is typically not useful (waste of test

time) when performing dynamic PMU tests. See Parametric Settling Time.
• Don’t forget DUT power. And, since functional failures will also cause

ac_partest() to return FAIL the AC timing and PE levels are important.
• Specific rules apply when testing pins which are statically connected to the PMU

(which is not common). See PMU as Voltage/Current Source.
 2/27/09 Pg-475

PMU Functions
• Additional rules apply when using the PMU to test DPS pins. See PMU: Testing
DPS Pins.

• Additional rules apply when using the PMU to test HV pins. See PMU: Testing HV
Pins.

• After the test is complete, user code may retrieve test results for further processing,
datalogging, etc. See Retrieving DC Test Results.

Note: the system software automatically controls connecting and disconnecting the
PMU, or DPS, to DUT pins. It is not necessary for user code to do this.

Usage
BOOL ac_partest(PassCond pass_cond,

DutPin *pDutPin,
Pattern *pPattern,
PatStopCond stop_cond);

BOOL ac_partest(PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond);

BOOL ac_partest(PassCond pass_cond,
DutPin *pDutPin,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond);

BOOL ac_partest(PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond);

where:
 2/27/09 Pg-476

PMU Functions
pass_cond determines whether the PMU test will force current or voltage, which
PASS/FAIL test limits are used and how they are applied. Legal values are of the PassCond
enumerated type, and operate as described below:.

Table 3.13.11.0-1 Parametric Test Force & Pass/Fail Limit Specification

Pass
Condition Comments

pass_pcl

pcl = Positive Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is greater than ipar_high() AND all functional
strobes PASS.

pass_ncl

ncl = Negative Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is less than ipar_low() AND all functional strobes
PASS.

pass_nicl

nicl = Not In Current Limit
PMU forces voltage (vpar_force()). Test passes if the tested/
measured current is between ipar_low() and ipar_high() AND all
functional strobes PASS.

pass_vg

vg = Voltage Greater Than
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is greater than vpar_high() AND all functional
strobes PASS.

pass_vl

vl = Voltage Less Than
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is less than vpar_low() AND all functional strobes
PASS.

pass_nivl

nivl = Not In Voltage Limit
PMU forces current (ipar_force()). Test passes if the tested/
measured voltage is between vpar_low() and vpar_high() AND all
functional strobes PASS.
 2/27/09 Pg-477

PMU Functions
The diagram below shows this operation graphically:

pDutPin identifies one pin to be tested. In Multi-DUT Test Programs, the same pin of each
DUT currently in the Active DUTs Set (ADS) is tested.

pPinList specifies the pin(s) to test. When testing signal pins, all pins in pPinList are
connected in parallel before the pattern is executed, see Description. pPinList may only
include one type of pin: signal pins, HV pins or DPS pins.

pPattern identifies the test pattern to be executed.

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ipar_high()

ipar_low()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

vpar_high()

vpar_low()

pass_vg pass_vl pass_nivl

pass_cond sets
force voltage, test current

pass_cond sets
force current, test voltage
 2/27/09 Pg-478

PMU Functions
stop_cond specifies the pattern execution stop condition. Legal values are of the
enumerated type, but only those in the table below are valid for this test:

Table 3.13.11.0-2 Pattern Execution Stop Condition Options

Stop Condition Summary Description

finish Execute pattern to completion, regardless of errors.

error
Stop pattern execution on first functional or DC Error Flag error
and set the result of ac_partest() to FAIL.

fullec

Execute pattern to completion. Enable the ECR to capture
errors during pattern execution. This argument should be used
when performing Redundancy Analysis (RA) or using
BitmapTool.

LEC_only_errors
Enable the ECR to capture errors during pattern execution. Cap-
ture the first 2Meg (221-6) failing vectors. Intended for use when
the ECR is used as an Logic Error Catch (LEC).

LEC_first_vectors

Enable the ECR to capture errors during pattern execution. Cap-
ture the first 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_last_vectors

Enable the ECR to capture errors during pattern execution. Cap-
ture the last 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_before_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus the previous 2Meg (221-6) vec-
tors executed. Intended for use when the ECR is used as an
Logic Error Catch (LEC).
 2/27/09 Pg-479

PMU Functions
comp_cond is optional, and if used must be the reserved word vcomp. Including this
argument enables test pattern triggers. See Description and Dynamic DC Tests for more
details.

ac_partest() returns TRUE (PASS) or FALSE (FAIL). All pin(s) tested must PASS
otherwise FAIL is returned. All latched functional strobes must PASS. In Multi-DUT Test
Programs, only DUT(s) in the Active DUTs Set (ADS) can affect test results.

Examples

Example 1:
The following example performs a dynamic Go/Nogo PMU test on the pin list named Vcc
(likely a DPS pin). Since the PassCond specifies pass_nicl the PMU will force voltage
(+5V) and test current. The PASS/FAIL test limits are set to +10mA and +100uA. The test
pattern named myPat is executed to completion. Since the vcomp option is not specified,
the DC Comparators and Error Logic are enabled for the duration of the test pattern. Once
pattern execution terminates, the DC Error Flags and the PE error latches are examined to
determine if the test passed or failed. Failures in any of these will cause ac_partest() to
return FAIL.

LEC_after_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus the next 2Meg (221-6) vectors
executed. Intended for use when the ECR is used as an Logic
Error Catch (LEC). .

LEC_center_error

Enable the ECR to capture errors during pattern execution. Cap-
ture the first failing vector plus up to 512K vectors executed
before the failure and up to 512K vectors executed after the fail-
ure. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

Note: in parallel test applications, the test pattern must be executed to completion, to
ensure that DUT(s) which don’t fail are completely tested. In other words, halting the
pattern early (error) because one or more DUT(s) failed prevents DUT(s) which PASS
from being completely tested. This is BAD.

Table 3.13.11.0-2 Pattern Execution Stop Condition Options (Continued)

Stop Condition Summary Description
 2/27/09 Pg-480

PMU Functions
// Not shown are PE level setups and AC timing setup, both critical
// for proper functional test PASS/FAIL operation
vpar_force(5 V);
ipar_high(10 MA);
ipar_low(100 UA);
int test_result = ac_partest(pass_nicl, VCC, myPat, finish);

Example 2:
This example performs a similar test, but since the vcomp option is specified, the DC
Comparators and Error Logic are triggered in test pattern cycles which contain a VCOMP
instruction. One DC trigger will occur for each pattern instruction which contains the MAR
VCOMP instruction (memory patterns) or VEC/RPT VCOMP, VAR VCOMP, or VPINFUNC VCOMP
instructions (logic patterns).

test_result = ac_partest(pass_nicl,
VCC,
myPat,
finish,
vcomp);

3.13.12 start_ac_partest(), stop_ac_partest()
See Overview, Parametric Measurement Unit (PMU).

Description

The start_ac_partest() and stop_ac_partest() functions enable a specialized AC
PMU test capability, as described below.

The start_ac_partest() function does the following:

• Records the current connection state of the pins specified in the pPinlist or
pDutPin argument.

• Sets up the appropriate PMUs to perform the specified type of PMU test (force
voltage and test current or force current and test voltage).

• Connects the PMU to the pins in the specified pPinlist or pDutPin argument.
Multiple PMUs may be involved.

• Starts execution of a specified test pattern (using start_pattern()), then
immediately returns control to the user’s test program code.
 2/27/09 Pg-481

PMU Functions
• Note: the start_ac_partest() function does not trigger a PMU test or
measurement or otherwise control the test pattern. More below.

The stop_ac_partest() function does the following:

• Stops any executing test pattern, if any.
• Restores the PMU and tester pins to the configuration prior to executing

start_ac_partest() (this is the same operation that occurs after performing a
standard ac_partest()).

After executing start_ac_partest() the PMU can effectively perform a Go/NoGo test by
having a test pattern trigger the DC Comparators and Error Logic using a VCOMP instruction.
The test pattern can be that specified as the pPattern argument to the
start_ac_partest() function or, assuming that pattern execution completed, any other
functional pattern(s) executed between start_ac_partest() and
stop_ac_partest(). Each occurrence of the MAR VCOMP instruction (Memory Test
Patterns) or VEC/RPT VCOMP, VAR VCOMP, or VPINFUNC VCOMP instructions (Logic Test
Patterns) will trigger the DC Comparators and Error Logic once, setting the DC Error Flag if
the DC parameter being tested fails the selected PASS/FAIL limits.

As noted above, immediately after executing start_ac_partest(), control returns to the
test program C-code. This allows the following:

• If the pattern executed by start_ac_partest() contains a MAR PAUSE
instruction (Memory Test Patterns) or VAR PAUSE (Logic Test Patterns) user
C-code can be executed before restart() is used to restart that pattern. This
code can modify APG registers, counters, etc., or modify timing, pin/DPS voltages,
etc.

• Once execution of the pattern started by start_ac_partest() completes,
additional test patterns can be executed using funtest(). These patterns may
also use VCOMP to trigger the DC Comparators and Error Logic.

There are some rules and limitations to what can be done between the
start_ac_partest() and stop_ac_partest():

• start_ac_partest() and stop_ac_partest() must be used as a pair. That
is, each start_ac_partest() must have a corresponding
stop_ac_partest(). The system software will not allow another DC parametric
test to execute if stop_ac_partest() has not been executed, and if detected,
the error is fatal.

• In this mode, it is not possible to cause the PMU to make a measurement.
 2/27/09 Pg-482

PMU Functions
• After executing the start_ac_partest() function and before executing the
stop_ac_partest() function, the PMU remains configured and connected to
the specified pin(s). During this time, the only way to trigger the DC Comparators
and Error Logic is from an executing test pattern, using the VCOMP instructions
noted above.

• After executing the start_ac_partest() function and before executing the
stop_ac_partest() function it is a fatal error to try to change the PMU force
parameter type, high/low current test PASS/FAIL limits, or the pins connected to
the PMU. It is OK to modify the voltage test PASS/FAIL limits (because no range
changes are possible).

• After executing the start_ac_partest() function and before executing the
stop_ac_partest() function it is legal to modify the PMU force value, from the
test pattern, see Controlling PE Levels from the Test Pattern.

• After executing the start_ac_partest() function and before executing the
stop_ac_partest() function it is possible to modify other voltages from user
code or by Controlling PE Levels from the Test Pattern.

• The test pattern(s) can branch-on-error based on the current state of the DC Error
Flag or the PE error flags. And, the DC Error Flag and PE error flags will be
cleared using the MAR RESET and CHIPS RESET instructions (Memory Test
Patterns) and VEC/RPT RESET, VAR RESET and VPINFUNC RESET instructions
(Logic Test Patterns).

• Use APG counter(s) as flags if the PASS/FAIL results of a given VCOMP trigger
must be known after the test pattern execution completes. In the pattern,
increment the desired APG counter based on a branch-on-error execution
decision. After pattern execution completes, read the desired counter(s) using the
count() function.

Usage
void start_ac_partest(PassCond pass_cond,

DutPin *pDutPin,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond);

void start_ac_partest(PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond,
CompCond comp_cond);
 2/27/09 Pg-483

PMU Functions
void stop_ac_partest();

where:

pass_cond determines whether the PMU test is forcing current or voltage, and how the
PASS/FAIL test limits are to be used. For details, see ac_partest().

pDutPin identifies one pin to be connected to a PMU. In Multi-DUT Test Programs, the
same pin of each DUT currently in the Active DUTs Set (ADS) is tested.

pPinList specifies the pin(s) to be connected to a PMU. When testing signal pins, all pins
in the pin list are connected in parallel before the pattern is executed, see Description.
pPinList may only include one type of pin: signal pins, HV pins, or DPS pins. In Multi-DUT
Test Programs, only pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are tested.

pPattern identifies the test pattern to be started.

stop_cond specifies the pattern execution stop condition. For details, see ac_partest().

comp_cond must specify vcomp to enable the test pattern to trigger the DC Comparators
and Error Logic. See Description.

3.13.13 ac_partest_results_store()
See Overview, Parametric Measurement Unit (PMU).

Note: first available in software release h3.4.xx.

The ac_partest_results_store() function is used to retrieve values measured by
Parametric Measurement Unit (PMU) in the following specific situation:

• A functional test pattern is executed using start_ac_partest().
• The test pattern executes an instruction containing MAR VCOMP (Memory Test

Patterns) or VEC/RPT VCOMP, VAR VCOMP or VPINFUNC VCOMP (Logic Test
Patterns) to trigger a PMU measurement.

• measure() = TRUE.
• Pattern execution is paused by executing a MAR PAUSE (Memory Test Patterns) or

VAR PAUSE (Logic Test Patterns) pattern instruction.
• User code must retrieve/save the just-measured value(s) before restarting pattern

execution using restart(). More below.
 2/27/09 Pg-484

PMU Functions
• The test pattern contains at least one additional VCOMP trigger which, if
executed, will over-write any previously measured values; i.e. the values retrieved
above.

To retrieve the measured values requires using the combination of:

• ac_partest_results_store(), which reads the measured values from
hardware and puts them into the system software’s (private) PMU measurement
data structure.

• Pin_meas() to retrieve these values allowing them to be stored in user-allocated
data structures.

Executing ac_partest_results_store() after a test pattern ends normally (i.e. is not
paused) is harmless.

Usage
void ac_partest_results_store();

Example
CArray<double,double> meas_results;

// Setup in preparation for pattern-triggered PMU measurement.
// Includes AC/DC/DPS setup, etc.
measure(TRUE);
start_ac_partest(pass_nivl, testPins, myPat, finish, vcomp);

// Execution will continue after myPat pauses.

// The following are repeated as necessary
ac_partest_results_store(); // Move values from HW to SW
Pin_meas(meas_results); // Get values into user struct
// Do something with values...
restart(); // Presumably to trigger another PMU measurement
// Repeat previous 3 steps as desired.

3.13.14 PMU: Testing DPS Pins
See Overview, Parametric Measurement Unit (PMU).
 2/27/09 Pg-485

PMU Functions
Overview
Static PMU tests are executed using the partest() function. Dynamic PMU tests are
executed using the ac_partest() function. Both functions require a pin list argument to
specify which DUT pins are to be tested. This pin list must contain only one type of pin:
signal pins, or HV pins, or DPS pins. This section describes operation when the pin list
contains DPS pins.

The model below shows how the Magnum 1/2 PMU connects to a DPS pin:

Figure-39: Magnum 1/2 PMU on DPS Block Diagram
When the pin list contains DPS pins the system software controls a sequence of events,
which is different for Static PMU Tests on DPS Pins vs. Dynamic PMU Tests on DPS Pins,
as noted below.

Note: the sequences below only apply when testing DPS pins using the PMU. In both
static and dynamic tests, the connections between the DPS(s) and PMU are
automatically controlled by the system software during the test; i.e. user code
should NOT to do this.

To 16 PE Channels,
2 HV and 16 PTUs

(via PMU)

Sense

Force

Solid-state
Switches

 Forcea

DPS

To DUT

t_dps1a

t_dps1b

Force 1a

Force 1b

Sense 1b

Sense 1a

PMU
(1 of 8)

I Sensea

I Senseb

 Forceb

Sensea

Senseb

Board

Current
sense to
DC Test

and
Measure

System

To DC
Test and
Measure
System

8 split DPS per Site Assembly Board
 2/27/09 Pg-486

PMU Functions
Static PMU Tests on DPS Pins

Note: if a decoupling capacitor exists on the DPS pin(s) to be tested, the DPS will be
used to pre-charge these pin(s) to the PMU force voltage. This is required
because the PMU cannot drive highly capacitive nodes. The sequence below
changes based on whether pmu_comp_cap() is set = 0, which indicates that
DPS the pin(s) do NOT have any added capacitance.

Note: using Magnum 1 and Magnum 2, each DPS has 2 outputs (split DPS). When
the DPS is configured in t_dps_vpulse mode (default, see DPS Output Mode)
both outputs are derived from a single D/A converter (DAC) and will always be
at the same voltage (and the test pattern VPULSE signal affects both outputs
identically, see DPS Output Mode). In t_dps_independent mode the outputs
may be at different voltages and VPULSE cannot be used. This is important
here because the following sequence affects both outputs of a given DPS when
it is configured in t_dps_vpulse mode. This does not apply to Magnum 2x or
Maverick-I/-II.

1. The currently programmed DPS voltage of the pin(s) to be tested is saved. This step is
skipped if pmu_comp_cap() = 0.

2. The DPS(s) on the pin(s) to be tested is programmed to the PMU force-voltage value
(the value currently set by vpar_force()), to pre-charge these pin(s) to the desired
PMU force voltage. See Note:. This step is skipped if pmu_comp_cap() = 0.

3. The PMU is set to force vpar_force().

4. The PMU(s) are connected to the pin(s) to be tested, in parallel with the DPS.

5. The DPS is then disconnected from these pin(s). This leaves the PMU connected as the
sole power source on the pin(s) being tested.

6. The PMU is set to force the programmed force value. This may change the PMU mode
from force voltage to force current, as determined by the first argument to partest().

7. The Built-in Settling Time time occurs.

8. The user programmed Parametric Settling Time occurs.

9. The PMU performs the specified Go/NoGo test or measurement (see measure()).

10.The PMU mode is switched back to force voltage. It is still forcing vpar_force().
 2/27/09 Pg-487

PMU Functions
11. The DPS is programmed to the current PMU force-voltage value. This step is skipped if
pmu_comp_cap() = 0.

12.The DPS is reconnected to the DUT pin(s), in parallel with the PMU.

13.The PMU is disconnected from the DUT.

14. If a sequential PMU test is being performed the process repeats for each pin in the pin
list argument to partest().

15.Once all pins are tested, PASS/FAIL is determined, and any measured values can be
retrieved.

16.The DPS is programmed back to the voltage value saved in step-1. This step is skipped
if pmu_comp_cap() = 0.

Dynamic PMU Tests on DPS Pins
In dynamic tests, the DC Comparators and Error Logic can be enabled for the duration of the
test pattern execution (default) or triggered from the test pattern. See Dynamic DC Tests.

As with static tests, the sequence below is different if pmu_comp_cap() = 0 (see Note:)

1. The currently programmed DPS voltage of the pin(s) to be tested is saved. This step is
skipped if pmu_comp_cap() = 0.

2. The DPS(s) on the pin(s) to be tested is programmed to the PMU force-voltage value
(the value currently set by vpar_force()), to pre-charge these pin(s) to the desired
PMU force voltage. This step is skipped if pmu_comp_cap() = 0.

3. The PMU is set to force vpar_force().

4. The PMU(s) are connected to the pin(s) to be tested, in parallel with the DPS.

5. The DPS is then disconnected from these pin(s). This leaves the PMU connected as the
sole power source on the pin(s) being tested.

6. The PMU forces the programmed force value. This may change the PMU mode from
force voltage to force current, as determined by the first argument to ac_partest().

7. The Built-in Settling Time time occurs.

8. The user programmed Parametric Settling Time occurs. A non-zero value is typically not
useful during dynamic tests.

9. Four scenarios are possible in the next step, based on the state of measure() and
whether the vcomp argument is specified as an argument to ac_partest():
 2/27/09 Pg-488

PMU Functions
• If measure() = FALSE and vcomp argument is not specified: the DC Comparators
and Error Logic are enabled by the site computer and remain enabled for the
entire duration of test pattern execution (next).

• If measure() = FALSE and vcomp argument is specified: the DC Comparators
and Error Logic will be (must be) triggered from the test pattern using the MAR
VCOMP instruction (Memory Test Patterns) or VEC/RPT VCOMP, VAR VCOMP, or
VPINFUNC VCOMP instructions (Logic Test Patterns). If no VCOMP triggers are
received from the APG the DC portion of the test cannot fail.

• If measure() = TRUE and vcomp argument is specified: the DC A/D Converter
will be (must be) triggered from the test pattern using the MAR VCOMP instruction
(Memory Test Patterns) or VEC VCOMP, VAR VCOMP, or VPINFUNC VCOMP
instructions (Logic Test Patterns). If no VCOMP triggers are received from the APG
the DC portion of the test cannot fail.

• If measure() = TRUE and vcomp argument is not specified: this is invalid.. A
warning is issued, testing continues, and the test operates as though measure()
= FALSE. Any DC measurements which are retrieved are invalid.

When using vcomp, the DC Error Flag will affect test pattern branch-on-error operations,
and will be cleared using the MAR RESET and CHIPS RESET instructions (Memory Test
Patterns) and VEC RESET, VAR RESET and VPINFUNC RESET (Logic Test Patterns).

10.The test pattern is executed, and will stop based on the pattern stop options specified to
ac_partest().

11. The PMU mode is switched back to force voltage.

12.The DPS is programmed to the PMU force-voltage value. This step is skipped if
pmu_comp_cap() = 0.

13.The DPS is reconnected to the DUT pin(s), in parallel with the PMU.

14.The PMU is disconnected from the DUT.

15.The DPS is programmed back to the voltage value saved in step-1. This step is skipped
if pmu_comp_cap() = 0.

16.PASS/FAIL is determined by reading both the DC Error Flags and the PE error latches.

3.13.15 PMU: Testing HV Pins
See Overview, Parametric Measurement Unit (PMU), High Voltage Source/Measure Unit
(HV).
 2/27/09 Pg-489

PMU Functions
Overview
Static PMU tests are executed using the partest() function. Dynamic PMU tests are
executed using the ac_partest() function. Both functions require a pin list argument to
specify which DUT pins are to be tested. This pin list must contain only one type of pin:
signal pins, or HV pins, or DPS pins. This section describes operation when the pin list
contains HV pins.

The model below shows how the PMU connects to an HV pin:

Figure-40: Magnum 1/2 PMU-on-HV Block Diagram
Each Site Assembly Board has 16 HV units and 8 PMUs; i.e. in hardware, two HV units are
associated with a given PMU. Neither the HV hardware nor the PMU hardware is designed
to connect a given PMU to two HV units at the same time. Thus when using partest() or
ac_partest() to test HV pins if the specified pin list contains HV units which share a given
PMU, the test will be performed in two steps, connecting the PMU to one HV at a time.
When using ac_partest(), the test pattern will be executed two times.

When using the PMU to test HV pins the sequence of events is different for Static PMU Tests
on HV Pins vs. Dynamic PMU Tests on HV Pins, as noted below.

Note: the sequences below only apply when testing HV pins using the PMU. Also, in
both static and dynamic testing, the HV(s) and PMU are automatically
connected and disconnected by the system software during the test; i.e. user
code should NOT to do this.

Sense

Force

Solid-state

 Force

HV

To DUT

System
PMU
(1 of 8)

I Sense

To 16 PE Channels, 16 PTUs,
1 DPS and 1 more HV unit.

Sense

Current sense to
DC Test and

Measure System

I-sense

Voltage sense to
DC Test and

Measure System

Switches

Board

To DC Test and
Measure System
 2/27/09 Pg-490

PMU Functions
Static PMU Tests on HV Pins
1. The currently programmed output voltage of each HV being tested is saved.

2. The HV being tested is programmed to the PMU force-voltage value (the value currently
set by vpar_force()), to pre-charge these pin(s) to the desired PMU force voltage.

3. The PMU is set to force the current vpar_force() value.

Note: the High Voltage Source/Measure Unit (HV) cannot source a negative voltage. It
is a fatal error to attempt a PMU-on-HV test with a negative force voltage
(vpar_force()) or negative test limits (vpar_high(), vpar_low()).

4. In parallel with the HV, the PMU is connected to the HV being tested.

5. The HV is disconnected, leaving only the PMU connected to the HV pin.

6. The PMU is set to force the parameter specified by partest(). This may change the
PMU mode from force voltage to force current.

7. The Built-in Settling Time time occurs.

8. The user programmed Parametric Settling Time occurs.

9. The PMU performs the specified Go/NoGo test or measurement. See measure().

10.The PMU mode is switched back to force voltage.

11. The HV is programmed to the current PMU force-voltage value.

12.The HV is reconnected, in parallel with the PMU.

13.The PMU is disconnected from the HV pin.

14.The HV is programmed back to the voltage value saved in step-1.

15.As noted above, a given partest() may connect to and test one or two HV units. Once
all HVs are tested, PASS/FAIL is determined, and any measured values can be
retrieved. PASS/FAIL is determined by reading either the DC Error Flag (measure() =
FALSE) or retrieving the measured value and comparing it with the PMU PASS/FAIL test
limits.

Dynamic PMU Tests on HV Pins
Note that steps 1 through 7 are identical to static tests.

1. The currently programmed voltage of the HV being tested is saved.
 2/27/09 Pg-491

PMU Functions
2. The HV being tested is programmed to the PMU force-voltage value (the value currently
set by vpar_force()), to pre-charge these pin(s) to the desired PMU force voltage.

Note: the High Voltage Source/Measure Unit (HV) cannot source a negative voltage. It
is a fatal error to attempt a PMU-on-HV test with a negative force voltage
(vpar_force()) or negative test limits (vpar_high(), vpar_low()).

3. The PMU is set to force the current vpar_force() value.

4. In parallel with the HV, the PMU is connected to the HV pins being tested.

5. The HV is disconnected, leaving only the PMU connected to the HV pin.

6. The PMU is set to force the value specified by partest(). This may change the PMU
mode from force voltage to force current.

7. The Built-in Settling Time time occurs.

8. The user programmed Parametric Settling Time occurs. A non-zero value is typically not
useful during dynamic tests.

9. Four scenarios are possible in the next step, based on the state of measure() and
whether the vcomp argument is specified as an argument to ac_partest():

• If measure() = FALSE and vcomp argument is not specified: the DC Comparators
and Error Logic are enabled by the site computer and remain enabled for the
entire duration of test pattern execution (next).

• If measure() = FALSE and vcomp argument is specified: the DC Comparators
and Error Logic will be (must be) triggered from the test pattern using the MAR
VCOMP instruction (memory patterns) or VEC VCOMP, VAR VCOMP, or VPINFUNC
VCOMP instructions (logic patterns. If no VCOMP triggers are received from the APG
the DC portion of the test cannot fail.

• If measure() = TRUE and vcomp argument is specified: the DC A/D Converter
will be (must be) triggered from the test pattern using the MAR VCOMP instruction
(Memory Test Patterns) or VEC/RPT VCOMP, VAR VCOMP, or VPINFUNC VCOMP
instructions (Logic Test Patterns). If no VCOMP triggers are received from the APG
the DC portion of the test cannot fail.

• If measure() = TRUE and vcomp argument is not specified: this is invalid.. A
warning is issued, testing continues, and the test operates as though measure()
= FALSE. Any DC measurements which are retrieved are invalid.
 2/27/09 Pg-492

PMU Functions
When using vcomp, the DC Error Flag will affect test pattern branch-on-error operations,
and will be cleared using the MAR RESET and CHIPS RESET instructions (Memory Test
Patterns) and VEC/RPT RESET, VAR RESET and VPINFUNC RESET (Logic Test Patterns).

10.The test pattern is executed, and will stop based on the pattern stop options specified to
ac_partest().

11. The PMU mode is switched back to force voltage.

12.The HV is programmed to the current PMU force-voltage value.

13.The HV is reconnected, in parallel with the PMU.

14.The PMU is disconnected from the HV pin.

15.The HV is programmed back to the voltage value saved in step-1.

16.PASS/FAIL is determined by reading either the DC Error Flag (measure() = FALSE) or
retrieving the measured value and comparing it with the PMU PASS/FAIL test limits. And,
if any PE error latches are set the test fails, regardless of the DC test result.

3.13.16 parametric_mode()
See Overview.

Description
The parametric_mode() function can be used to determine the test/measurement mode
of the most recently executed partest(), ac_partest(), hv_test_supply(),
hv_ac_test_supply(), ptu_partest() test_supply() or ac_test_supply().

Note the following:

• Two modes are possible: test current or test voltage. The mode of each test is
controlled by the PassCond argument passed to the test function:
• pass_pcl, pass_ncl, and pass_nicl test current.
• pass_vg, pass_vl, and pass_nivl test voltage.

• Only one global mode state exists; i.e. a separate state is not independently kept
for partest() vs. test_supply() or per pin, per DUT, etc.

Usage
int parametric_mode();
 2/27/09 Pg-493

PMU Functions
where 0 is returned if the last executed parametric test tested/measured current, or 1 if the
last executed test tested/measured voltage.

Example
int result = partest(pass_nicl, pl_pins);

output(" The last parametric test executed was a \\");
if (parametric_mode() == 0) output("current test");
else output("voltage test");

3.13.17 PMU as Voltage/Current Source
See Overview, Parametric Measurement Unit (PMU).

Description

The PMU can be statically connected to DUT pin(s) for use as a voltage or current source.
The pmu_connect() function is used to connect the PMU and pmu_disconnect() to
disconnect the PMU.

Note: standard PMU tests, i.e. partest() or ac_partest(), automatically control
PMU connections and disconnections to DUT pins; i.e. it is NOT necessary to
use pmu_connect() or pmu_disconnect() when performing these tests.

Note: see Limitations.

Arguments passed to the pmu_connect() function are used to:

• Specify which DUT pins are to be connected to the PMU. Only signal pins and HV
pins are legal.

• Optionally specify whether to force voltage or current. When not specified, the
default connection is force-voltage mode.

• Optionally specify a current range. If not specified, the highest voltage or current
range is selected.

• Optionally specify whether the PMU is to sense at a tester channel or at the PMU.
If not specified, the sensing is at the tester channel.

Note the following:
 2/27/09 Pg-494

PMU Functions
• pmu_connect() statically connects the specified pin(s) to their associated PMU.
• Using pmu_connect(), the pins to be connected are identified using the

pPinlist or pDutPin argument. Each execution of pmu_connect() records the
specified pPinlist or pDutPin. The version of pmu_disconnect() which
includes a pPinlist or pDutPin argument will only accept a pPinlist or
pDutPin previously passed to pmu_connect(). Using pmu_disconnect() with
any other argument value generates a warning and no pins are disconnected.

• It is illegal to attempt to connect a pin to its PMU when it is already connected to
its PMU. A warning is issued.

• The PMU will remain connected to the specified pins until disconnected by calling
pmu_disconnect(). Pins will remain connected across test blocks, and are not
disconnected at the end of the Sequence & Binning Table execution.

• Executing pmu_connect() does not disconnect any pin(s) previously connected
to their associated PMU. Executing pmu_disconnect() only disconnect the
specified pin(s)from their associated PMU.

• It is not legal to connect a PMU to a pin which is currently statically connected to
a PTU. If this is attempted, a warning is issued for each violating pin and the PMU
connection to these pins is not completed. Other pins which are not violating the
rule will be connected to their associated PMU.

• It is possible to use pmu_connect() prior to partest() or ac_partest().
However, when this is done the system software requires that the pins passed to
pmu_connect() and partest() or ac_partest() contain exactly the same pin
members. At the time partest() or ac_partest() are executed if any pin
discrepancies are detected a warning message is generated and the test is not
executed. And, if PMU measurements were enabled (see measure()) any values
retrieved will be invalid (see Retrieving DC Test Results).

• When pins are connected using pmu_connect(), subsequent executions of
partest() or ac_partest() do not manage PMU-to-pin connections as is
done when executing these tests normally. Executing pmu_disconnect() causes
the PMU to be restored to normal operation.

• The PMU force parameter value must be programmed prior to executing
pmu_connect() or default values will be used (0V/0mA). The vpar_force()
function is used to set a PMU force voltage level. The ipar_force() function is
used to set a PMU force current level.

• Whether forcing voltage or current, the PMU voltage clamps, set using vclamp(),
will limit the output voltage of the PMU.
 2/27/09 Pg-495

PMU Functions
Note: careful consideration must be given to setting proper PMU voltage clamp
values, especially when using the PMU to force current. The PMU output
voltage range is -2.5V to +12.75V. When forcing current, if the DUT doesn’t
adequately load the PMU, only the voltage clamps, set using vclamp(), will
prevent the PMU from reaching one of these voltages. This is true even when
forcing 0nA current.

The pmu_connect_at() function determines how subsequent PMU connections are
sequenced to the DUT pins and whether connections are made in force voltage mode prior
to forcing current. Once set, the mode does not change until pmu_connect_at() is
executed again. Two options exist:

• A break-before-make sequence, in which the DUT pin(s) are first disconnected
from the PE channel, then the PMU is switched to the pins, and finally the PMU
force voltage or current is programmed. This is the default and set using
pmu_connect_at(FALSE).

• A make-before-break sequence, in which the PMU voltage or current is first
programmed, then the PMU connections are made to the DUT pins, and finally the
PE channel is disconnected from the pins.
This is set using pmu_connect_at(TRUE).

• Executing pmu_connect_at(TRUE) also sets a flag which causes all subsequent
PMU connections to be made in force-voltage mode, at the voltage last
programmed using vpar_force(). This occurs even if the PMU is subsequently
changed to force-current mode. Executing pmu_connect_at(FALSE) clears this
flag, allowing the PMU connections to be made with the PMU in force-current
mode.

Using pmu_disconnect(), the sequence of disconnecting the PMU and reconnecting pins
to PE channels is the reverse of the pmu_connect() sequence. The version of
pmu_disconnect() which includes a pPinlist or pDutPin argument will only accept a
pPinlist or pDutPin previously passed to pmu_connect(). Using
pmu_disconnect() with any other argument value generates a warning and no pins are
disconnected.

PMU force voltage sensing can be at the PMU (local sensing) or at a PE channel (remote
sensing). If not specified, remote sensing is used.

Each PMU can connect to 16 signal pins. Thus the pin list passed to pmu_connect() may
include pins which connect to different PMUs. In this scenario, if remote sensing is used,
sensing occurs at the first pin of the specified pin list which connects to a given PMU. Note
that when the PMU is forcing current, voltage sensing is always internal to the PMU.
 2/27/09 Pg-496

PMU Functions
System software does not allow the PMU force mode to be changed while the PMU is
connected. Thus, it is not possible to execute pmu_connect(..FORCEV..) following by
pmu_connect(..FORCEI..) without executing pmu_disconnect() between them.

It is possible to change the force voltage or current value while the PMU is connected to PE
channels. However, when forcing a current, it is not possible to change the current range
while the PMU is connected to the DUT. Therefore, it is appropriate to use an explicit range
value for:

• Any ipar_force() done in preparation for using pmu_connect()
• The pmu_connect(... FORCEI..., range...) option
• Any ipar_force() done while the PMU is connected to the DUT.

Limitations
As of 5/2008 the following limitations exist.:

• pmu_connect() only supports connections to PE channels (signal pins) and HV
pins; i.e. not DPS pins.

• It is not possible to set up FORCEV and FORCEI at the same time, even though
using PMUs on different channels. It is possible to set up different conditions for
FORCEV - or - FORCEI by calling pmu_connect() multiple times, each with a pin
list constrained to a single single PMU(via the specified pin list).

• Do not use pin_connect() to re-connect signal pins which are currently
connected to the PMU.

Usage
Three functions are documented below. The multiple overloads of pmu_connect() provide
for different combinations of argument usage. Only those combinations defined below are
supported.

void pmu_connect_at(BOOL state);

Note: the pmu_connect() function overloads below which do NOT accept the
force_type argument will, by design, force a voltage.

void pmu_connect(DutPin *pDutPin);

void pmu_connect(PinList* pPinList);

void pmu_connect(DutPin *pDutPin, Range range);

void pmu_connect(PinList* pPinList, Range range);
 2/27/09 Pg-497

PMU Functions
void pmu_connect(DutPin *pDutPin, PMUSense sense_type);

void pmu_connect(PinList* pPinList, PMUSense sense_type);

void pmu_connect(DutPin *pDutPin,
PMUSense sense_type,
Range range);

void pmu_connect(PinList* pPinList,
PMUSense sense_type,
Range range);

 void pmu_connect(DutPin *pDutPin, PMUMode force_type);

void pmu_connect(PinList* pPinList, PMUMode force_type);

void pmu_connect(DutPin *pDutPin,
PMUMode force_type,
Range range);

void pmu_connect(PinList* pPinList,
PMUMode force_type,
Range range);

void pmu_disconnect();

void pmu_disconnect(DutPin *pDutPin);

void pmu_disconnect(PinList*pPinList); // See Limitations

where:

state specifies how subsequent PMU connections, using pmu_connect(), and
disconnections, using pmu_disconnect(), are made. If state is FALSE the break-
before-make mode is used. If state is TRUE the make-before-break mode is used. See
Description.

pDutPin identifies one pin to be connected to or disonnected from its associated PMU. In
Multi-DUT Test Programs, the same pin of each DUT currently in the Active DUTs Set (ADS)
is affected. pDutPin may only include one type of pin; i.e. only signal pins or only HV pins.
 2/27/09 Pg-498

PMU Functions
Note: prior to executing pmu_connect() or pmu_disconnect(), user code is
responsible for programming a PMU force voltage/current value that is
consistent with the voltage state of the DUT pin at the time the PMU connection
is made. This is especially true when state = TRUE because the DUT pin is
not yet disconnected from the pin channel when the PMU is connected,
potentially allowing the PMU and tester channel to be at different voltages.
Using state = FALSE causes the DUT pin to float before the PMU is
connected, potentially reducing any voltage differences. In general, any voltage
difference between the PMU voltage and the actual voltage on the DUT pin(s)
can cause undesirable voltage transients as the PMU connection is made.

pPinList specifies which pins to connected to, or disconnected from, the PMU. The pin list
can not contain DPS pins, see Limitations.

range specifies a PMU current range only, but affects both force current mode, and the
current test/measure range when in force voltage mode. Legal values are of the Range
enumerated type and are used as follows:

sense_type is used to specify the PMU sense mode when forcing voltage. Legal values
are of the PMUSense enumerated type: REM selects remote PMU sensing (at the tester
channel); LOCAL selections local PMU sense (at the PMU). If sense_type is not specified,
default operation is remote sense, at the first pin in pPinList, per PE board. sense_type
affects force voltage sensing only; i.e. test/measure voltage sensing is always done at the
tester channel.

Table 3.13.17.0-1 PMU Force Current Ranges

Current
Range LSB Range

±2uA 1nA range1

±20uA 10nA range2

±200uA 100nA range3

±2mA 1uA range4

±20mA 10uA range5
 2/27/09 Pg-499

PMU Functions
force_type is used to specify the PMU force mode. Legal values are of the PMUMode
enumerated type: FORCEV selects the force voltage mode; FORCEI selects the force current
mode. If force_type is not specified, default operation is force voltage.

Example
In the following example, the PMU is programmed to force -2V and is connected in parallel
to all pins defined by the pin list called Data_bus. Note that multiple PMU(s) may be used if
some pins of Data_bus connect to a different PMU than other pins. Additional test program
code is executed, then the PMU is disconnected. PMU sensing is done remotely, at the DUT
pin(s). The PMU connection mode is based on the most recent execution of
pmu_connect_at().

vpar_force(-2 V); // Set force voltage
pmu_connect(Data_bus); // Connect PMU(s) to all Data_bus pin(s)
// Other test program code executed here
pmu_disconnect(); // Disconnect PMU from all pins

3.13.18 PMU Compensation Capacitors
See Overview, Parametric Measurement Unit (PMU).

Description

Using the PMU, the pmu_comp_cap() function is used to select an internal compensation
capacitor based on the anticipated load on pin(s) to be tested.

The PMU is a closed-loop feedback system with stability that is affected by the circuit load.
Because of the wide range of possible load capacitance, a single fixed compensation
scheme can not effectively balance the trade-off between stability and output settling time.
PMU feedback loop compensation is accomplished by selecting between three
compensation options (more below).

In general, the smallest compensation capacitor value that assures stability for the given
load capacitance should be used. Using a larger than needed compensation capacitor will
only slow down measurements, particularly on the lower PMU current ranges, requiring
increased slewing/settling time when voltage levels are changed.

The minimum compensation capacitor value is selected during initial program load. The
selection is not otherwise changed by the system software.
 2/27/09 Pg-500

PMU Functions
PMU compensation capacitors are disabled when performing force current tests.

Note: when performing PMU: Testing DPS Pins, or PMU: Testing DPS Pins, in a force
current mode, the PMU connection to the DPS pins is initially made in voltage
force mode, then the PMU is switched to force current mode to complete the
test. Even though the PMU compensation capacitors are disconnected
automatically when the PMU is in force current mode, the initial connection is
being made in force voltage mode, thus the appropriate compensation capacitor
selection should be made.

Note: connecting the PMU in force voltage mode to a DUT pin, whether a DPS pin or
signal pin, having a total capacitance greater than 1.0uF is not advised.

Usage
The following function is used to set the PMU compensation capacitor for all PMUs:

void pmu_comp_cap(int value);

The following function is used to set the PMU compensation capacitor for a specified PMU:

void pmu_comp_cap(int value, DutPin* dutpin);

The following function is used to set the PMU compensation capacitor for one or more
PMUs:

void pmu_comp_cap(int value, PinList* pPinList);

The following function returns the currently selected PMU compensation capacitor for one
PMU:

int pmu_comp_cap(DutPin *pDutPin);

where:
 2/27/09 Pg-501

PMU Functions
value selects the desired compensation capacitor. Legal values are described in the table
below:

pDutPin is used in two contexts:

• In the setter functions, identifies one PMU to be programmed. In Multi-DUT Test
Programs, the PMUs of each DUT currently in the Active DUTs Set (ADS) are
affected.

• In the getter functions, identifies one PMU to be read.
pPinList specifies which PMU(s) are to be programmed. In Multi-DUT Test Programs, the
PMUs of each DUT currently in the Active DUTs Set (ADS) are affected.

The getter version of pmu_comp_cap() returns one of the values noted in the table above.
In Multi-DUT Test Programs, the value is retrieved from the first DUT in the Active DUTs Set
(ADS).

Example
In this example the continuity of the Vcc power pin of a device having a .05 uF bypass
capacitor is tested using the PMU. Because the PMU is first connected to the power pin in
voltage force mode, a PMU comp cap is specified. After the test, the default capacitor is
selected so that subsequent PMU tests will not have excessively long settling times.

pmu_comp_cap(1);
BOOL result = partest(pass_nivl, vcc_pin);
pmu_comp_cap(0);

Table 3.13.18.0-1 PMU Compensation Capacitor Selection

Value Purpose

0 Intended for normal measurements on tester signal pins. This value should be
specified for DUT capacitance values up to ~ 3000pF. Default.

1 Intended for use when the PMU, in force voltage mode, connects to a DPS
pin. This value should be specified for any pin with capacitance greater than
3000pF but less than 0.1uF.

2 Intended for use when the PMU, in force voltage mode, connects to a DPS
pin. This value should be specified when connecting to any pin with
capacitance greater than 0.1uF but less than 1.0uF.
 2/27/09 Pg-502

PTU Functions
3.14 PTU Functions
See Per-pin Parametric Test Unit (PTU), Site Assembly Board, Pin Electronics (PE) Block
Diagram, PE Driver Block Diagram.

This section includes the following:

• Overview
• PTU Usage
• PTU Connect/Disconnect Functions
• PTU Force-current Functions
• PTU Current Test Limit Functions
• PTU Force-voltage Functions
• PTU Voltage Test Limit Functions
• PTU Voltage Clamp Functions
• PTU Static Test Functions
• PTU as Voltage/Current Source

Other related information includes:

• Static DC Tests and Dynamic DC Tests
• Parametric Settling Time and Built-in Settling Time
• measure()
• Retrieving DC Test Results

3.14.1 Overview
See Per-pin Parametric Test Unit (PTU), PTU Functions.

As the name implies, each of the 128 pins on a Site Assembly Board has an independent
Per-pin Parametric Test Unit (PTU). The PTU provides the following:

• Per-pin DC parametric tests. Force voltage and test current or force current and
test voltage.

• A statically connected voltage or current source.
 2/27/09 Pg-503

PTU Functions
• The PTU is the source of the VZ voltage used in certain Magnum PE Driver
Modes.

• The PTU is the source of the VIHH voltage used in certain Magnum PE Driver
Modes.

• The PTU is the source of the Parametric Background Voltage used in certain PMU
and PTU test modes.

The PTU output voltage and current capabilities are affected by the selected current
range. See PTU Operating Area.
The PTU provides for concurrent DC Go/NoGo tests on multiple pins, in parallel. However,
DC measurements using the PTU also utilize the Parametric Measurement Unit (PMU), to
route the parameter being measured to the DC Sub-System. Since there are 8 PMUs per
Site Assembly Board PTU measurements may not be done concurrently. More below.

As noted, each PTU can force current and test voltage, or force voltage and test current.
See:

• PTU Force-current Functions
• PTU Current Test Limit Functions
• PTU Force-voltage Functions
• PTU Voltage Test Limit Functions

The PTU(s) can be used to perform static parametric tests. See PTU Static Test Functions.

Each PTU has a positive and negative programmable voltage clamp. See PTU Voltage
Clamp Functions.

Normally, the system software automatically manages PTU(s) connect and disconnect
operations during PTU tests. For those special occasions, it is also possible to manually
manage PTU connections. See PTU Connect/Disconnect Functions.

The PTU(s) can also be used as statically connected voltage or current source(s). See PTU
as Voltage/Current Source.

As noted above, to make a PTU measurement (as opposed to a Go/NoGo test) the
Parametric Measurement Unit (PMU) is involved. The hardware model is shown in the DC
Sub-System Block Diagram. When making a PTU measurement (measure() = TRUE) one
PTU at a time is connected to its associated PMU. The output of the PMU is selected by the
DC Source Select MUX and routed to the DC Test and Measure System, where the DC A/D
Converter makes the measurement. See Static DC Tests, Dynamic DC Tests, and Retrieving
DC Test Results.
 2/27/09 Pg-504

PTU Functions
3.14.2 PTU Usage
See Per-pin Parametric Test Unit (PTU), PTU Functions.

The two most common applications for the PTU are continuity tests (opens and shorts
tests) and (adjacent channel) leakage tests.

In both applications, it is common that one group of pins is forced to a low voltage while
other (adjacent) pins are forced to a high voltage. Then the amount of current is tested on
each pin. Or, all pins are forced to a negative current and the voltage on each pin is tested.

In these applications, using the system PMU typically requires a sequential test, where all
pins are forced to a low (or high) voltage by a PE driver (or background voltage) and one pin
at a time is forced to the opposite voltage and tested for current. This method of sequential
testing is not required when the test system has a PTU, which makes it possible to test all
pins concurrently.

The diagram below illustrates this graphically:

The following step are used to configure the PTUs to perform this test:

• Define 3 pin lists:
- pl_even_pins: to force 0V
- pl_odd_pins: to force 3.3V
- pl_test_pins: includes pins from both pl_even_pins and pl_odd_pins

• Using ptu_vpar_force_set(), program the force-voltage for pl_even_pins to
0V.

• Using ptu_vpar_force_set() again, program the force-voltage for
pl_odd_pins to 3.3V.

DUTForce

3.3V
0V

3.3V
0V

3.3V
0V

3.3V
0V
3.3V
0V
3.3V
0V
3.3V
0V

Force

3.3V
 2/27/09 Pg-505

PTU Functions
• Using ptu_ipar_high_set(), program the high test limit for pl_odd_pins to
the desired value. Using ptu_ipar_low_set(), program the low test limit for
pl_odd_pins to the desired value.

• Repeat this for pl_even_pins.
• Using ptu_partest(), execute the PTU test and specify pl_test_pins as the

pins to be tested.
• Reverse the force-voltage and test limits for the pl_even_pins and

pl_odd_pins, and execute ptu_partest() again.

3.14.3 PTU Connect/Disconnect Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions, PTU as Voltage/Current Source.

The ptu_connect() and ptu_disconnect() functions are used to explicitly control
static connections between a PTU and its associated pin. These functions are normally only
used when using PTU(s) as a statically connected voltage or current source and are thus
documented in the section titled PTU as Voltage/Current Source.

Note: standard PTU tests using ptu_partest() automatically control PTU
connections and disconnections to pins; i.e. it is NOT necessary to use
ptu_connect() or ptu_disconnect() when performing these tests.

3.14.4 PTU Force-current Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions.

Description

The ptu_ipar_force_set() function is used to set a PTU force-current value, for one or
more pin(s).

The ptu_ipar_force_get() function is used to read the currently programmed force-
current value from one specified PTU.
 2/27/09 Pg-506

PTU Functions
The PTU has 8 force-current ranges:

ptu_ipar_force_set() is used for both static force-current PTU applications (see PTU
as Voltage/Current Source) and for DC parametric tests in which the PTU will force current
(ptu_partest()).

By default, the current range is selected automatically based on the force-current value
programmed, however it is also possible to explicitly set the current range using the range
argument to ptu_ipar_force_set(). Once explicitly set, the range value doesn’t change
except as follows:

• User code explicitly selects the a different range using ptu_ipar_force_set().
• User code executes ptu_ipar_force_set() without specifying an explicit range

value.
If the PTU is in the force-current mode and is currently connected to the pin (see PTU as
Voltage/Current Source), executing ptu_ipar_force_set() causes the output current of
the PTU to change immediately, provided the current range does not need to change. Once
the PTU is connected to its pin (see ptu_connect()), no voltage range or current range
changes are permitted. If a range change is attempted, a warning is issued and no changes
are made to the hardware.

Table 3.14.4.0-1 PTU Force-Current Ranges

Current
Range Range Resolution

±2uA range1 1nA

±8uA range2 4nA

±32uA range3 16nA

±128uA range4 64nA

±512uA range5 256nA

±2mA range6 1uA

±8mA range7 4uA

±32mA range8 16uA

Note: the PTU output voltage and current capabilities are
affected by the selected current range. See PTU
Operating Area.
 2/27/09 Pg-507

PTU Functions
The system software programs the PTU force-current value to 0 during initial test program
load. When execution of the Sequence & Binning Table stops, the
builtin_after_testing_block programs all PTU to force 0V @ 0nA.

The PTU force-current can be modified from a test pattern. See Controlling PE Levels from
the Test Pattern.

Note: a commonly made mistake is to assume that programming PTU force value or
PASS/FAIL test limit also defines the type of PTU test which will execute next. It
is the arguments passed to ptu_partest() which defines the type of test the
PTU actually performs (force-current/measure-voltage, etc.), and thus which
force and test limits will be used.

Usage
The following function programs the force-current value for all PTUs:

void ptu_ipar_force_set(double value,
Range range DEFAULT_VALUE(norange));

The following function programs the force-current value for one specified PTU:

void ptu_ipar_force_set(double value,
DutPin *pDutPin,
Range range DEFAULT_VALUE(norange));

The following function programs the force-current value for one or more specified PTU:

void ptu_ipar_force_set(double value,
PinList* pPinlist,
Range range DEFAULT_VALUE(norange));

The following functions gets the currently programmed force-current value from the
specified PTU:

double ptu_ipar_force_get(DutPin *pDutPin);

where:

value is the desired PTU force-current. Units may be used (see Specifying Units).

pDutPin is used in two contexts:
 2/27/09 Pg-508

PTU Functions
• In the setter function, identifies one PTU to be programmed. In Multi-DUT Test
Programs, the PTUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one PTU to be read.
pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table.

range is optional, and if used explicitly selects a PTU current range. See Description. Legal
range values must be one of the Range enumerated types, but the preferred method is to
use values from Table 3.14.4.0-1.

ptu_ipar_force_get() returns the currently programmed PTU force-current value for
the specified pin. The value is returned for the first DUT in the Active DUTs Set (ADS) (see
Using Getter Functions).

Example
ptu_ipar_force_set(1 MA, pl_even_pins);
ptu_ipar_force_set(1 MA, pl_even_pins, range6);
double i = ptu_ipar_force_get(D0);

3.14.5 PTU Current Test Limit Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions.

Description

The ptu_ipar_high_set() and ptu_ipar_low_set() functions are used to set PTU
current-test PASS/FAIL limits. These are the high/low test limits used by ptu_partest()
when performing a force-voltage/test-current test.

The ptu_ipar_high_get() function reads the currently programmed upper current-test
limit for one specified PTU. The ptu_ipar_low_get() function reads the currently
programmed low current-test limit for one specified PTU.

ptu_ipar_high_set() and ptu_ipar_low_set() must be programmed before
executing the test.
 2/27/09 Pg-509

PTU Functions
Both limits are set to zero at test program initialization, and are otherwise not modified by the
system software.

Both limits can be modified from a test pattern. See Controlling PE Levels from the Test
Pattern.

The PTU has 8 force-current ranges:

When a range is not explicitly programmed, the system software selects the most accurate
range based on the values programmed using ptu_ipar_high_set() and
ptu_ipar_low_set(). If the high and low limits fall into different ranges, the system
software sets the range to the coarser (lower resolution) range.

Note: a commonly made mistake is to assume that programming PTU force value or
PASS/FAIL test limit also defines the type of PTU test which will execute next. It
is the arguments passed to ptu_partest() which defines the type of test the
PTU actually performs (force-current/measure-voltage, etc.), and thus which
force and test limits will be used.

Table 3.14.5.0-1 PTU Force-Current Ranges

Current
Range Range Resolution

±2uA range1 1nA

±8uA range2 4nA

±32uA range3 16nA

±128uA range4 64nA

±512uA range5 256nA

±2mA range6 1uA

±8mA range7 4uA

±32mA range8 16uA

Note: the PTU output voltage and current capabilities are
affected by the selected current range. See PTU
Operating Area.
 2/27/09 Pg-510

PTU Functions
Usage
The following functions program the high/low current-test limit value for all PTUs:

void ptu_ipar_high_set(double value,
Range range DEFAULT_VALUE(norange));

void ptu_ipar_low_set(double value,
Range range DEFAULT_VALUE(norange));

The following functions program the high/low current-test limit value for one specified PTU:

void ptu_ipar_high_set(double value,
DutPin *pDutPin,
Range range DEFAULT_VALUE(norange));

void ptu_ipar_low_set(double value,
DutPin *pDutPin,
Range range DEFAULT_VALUE(norange));

The following functions program the high/low current-test limit for one or more PTU(s):

void ptu_ipar_high_set(double value,
PinList* pPinlist,
Range range DEFAULT_VALUE(norange));

void ptu_ipar_low_set(double value,
PinList* pPinlist,
Range range DEFAULT_VALUE(norange));

The following functions get the currently programmed high/low current-test limit for one
specified PTU:

double ptu_ipar_high_get(DutPin *pDutPin);

double ptu_ipar_low_get(DutPin *pDutPin);

where:

value is the desired test limit. Units may be used (see Specifying Units).

pDutPin is used in two contexts:

• In the setter function, identifies one PTU to be programmed. In Multi-DUT Test
Programs, the PTUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one PTU to be read.
 2/27/09 Pg-511

PTU Functions
pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table.

range is optional, and if used explicitly selects a PTU current range. See Description. Legal
range values must be one of the Range enumerated types, but the preferred method is to
use values from Table 3.14.4.0-1.

ptu_ipar_high_get() and ptu_ipar_low_get() return the currently programmed
PTU high/low current-test limit value for the specified pin. The value is returned for the first
DUT in the Active DUTs Set (ADS) (see Using Getter Functions).

Example
ptu_ipar_high_set(138 UA, pl_tested_pins);
ptu_ipar_low_set(0 UA, pl_tested_pins);
double v = ptu_ipar_low_get(D0);

3.14.6 PTU Force-voltage Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions.

Description

The ptu_vpar_force_set() function is used to set a PTU force-voltage value.

The ptu_vpar_force_get() function is used to read the currently programmed force-
voltage value from one specified PTU.

ptu_vpar_force_set() is used for both static force-voltage PTU usage (see PTU as
Voltage/Current Source) and for DC parametric tests in which the PTU will force voltage
(ptu_partest()).

The PTU has one force-voltage range:

Table 3.14.6.0-1 PTU Force-voltage Range

Voltage Range LSB

-2V to +12V 1mV
 2/27/09 Pg-512

PTU Functions
Note: the PTU output voltage and current capabilities are affected by the selected current
range. See PTU Operating Area.
If the PTU is in the force-voltage mode and is currently connected to its pin (see PTU as
Voltage/Current Source), executing ptu_vpar_force_set() causes the output voltage of
the PTU to change immediately.

The system software programs the PTU force-voltage value to 0V during initial test program
load. When execution of the Sequence & Binning Table stops, the
builtin_after_testing_block set the value to 0V for all PTUs.

The PTU force-voltage can be modified from a test pattern. See Controlling PE Levels from
the Test Pattern.

Note: ptu_vclamp_set() will limit the PTU force-voltage. A warning message will
be displayed when the user’s test program attempts to program this condition,
but testing will otherwise continue.

Note: a commonly made mistake is to assume that programming PTU force-value or
PASS/FAIL test limit also defines the type of PTU test which will execute next. It
is the arguments passed to ptu_partest() which defines the type of test the
PTU actually performs (force-current/measure-voltage, etc.), and thus which
force and test limits will be used.

Usage
The following function programs the force-voltage value for all PTUs:

void ptu_vpar_force_set(double value);

The following function programs the force-voltage value for one specified PTU:

void ptu_vpar_force_set(double value,
DutPin *pDutPin);

The following function programs the force-voltage value for one or more PTU(s):

void ptu_vpar_force_set(double value,
PinList* pPinlist);

The following function returns the currently programmed force-voltage value from the
specified PTU:

double ptu_vpar_force_get(DutPin *pDutPin);
 2/27/09 Pg-513

PTU Functions
where:

value is the desired PTU force-voltage. Units may be used (see Specifying Units).

pDutPin is used in two contexts:

• In the setter function, identifies one PTU to be programmed. In Multi-DUT Test
Programs, the PTUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one PTU to be read.
pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table.

ptu_vpar_force_get() returns the currently programmed PTU force-voltage value for
the specified pin. The value is returned for the first DUT in the Active DUTs Set (ADS) (see
Using Getter Functions).

Example
ptu_vpar_force_set(3.4 V, pl_tested_pins);
double value = ptu_vpar_force_get(D0);

3.14.7 PTU Voltage Test Limit Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions.

Description

The ptu_vpar_high_set() and ptu_vpar_low_set() functions are used to set PTU
voltage-test PASS/FAIL limits. These are the high/low test limits used by ptu_partest()
when performing a force-current/test-voltage test.

The ptu_vpar_high_get() and ptu_vpar_low_get() functions are used to read the
currently programmed PASS/FAIL limit values from one specified PTU.

ptu_vpar_high_set() and ptu_vpar_low_set() must be programmed before
executing the test.
 2/27/09 Pg-514

PTU Functions
Both ptu_vpar_high_set() and ptu_vpar_low_set() are set to 0V at test program
initialization, but are not otherwise changed by the system software.

Both limits can be modified from a test pattern. See Controlling PE Levels from the Test
Pattern.

The PTU has one voltage range for PASS/FAIL test limits:

Note: the PTU output voltage and current capabilities are affected by the selected current
range. See PTU Operating Area.

Note: ptu_vclamp_set() will limit the PTU voltage-test limits. A warning message
will be displayed when the user’s test program attempts to program this
condition, but testing will otherwise continue.

Note: a commonly made mistake is to assume that programming PTU force value or
PASS/FAIL test limit also defines the type of PTU test which will execute next. It
is the arguments passed to ptu_partest() which defines the type of test the
PTU actually performs (force-current/measure-voltage, etc.), and thus which
force and test limits will be used.

Usage
The following functions program the high/low voltage-test limit for all PTUs:

void ptu_vpar_high_set(double value);

void ptu_vpar_low_set(double value);

The following functions program the high/low voltage-test limit for one specified PTU:

void ptu_vpar_high_set(double value, DutPin *pDutPin);

void ptu_vpar_low_set(double value, DutPin *pDutPin);

The following functions program the high/low voltage-test limit for one or more PTU(s):

void ptu_vpar_high_set(double value, PinList* pPinlist);

Table 3.14.7.0-1 PTU Voltage-test Limit Ranges

Voltage Range LSB

-2V to +12V 2mV
 2/27/09 Pg-515

PTU Functions
void ptu_vpar_low_set(double value, PinList* pPinlist);

The following functions get the currently programmed high/low voltage-test limit for one
specified PTU:

double ptu_vpar_high_get(DutPin *pDutPin);

double ptu_vpar_low_get(DutPin *pDutPin);

where:

value is the desired test limit. Units may be used (see Specifying Units).

pDutPin is used in two contexts:

• In the setter function, identifies one PTU to be programmed. In Multi-DUT Test
Programs, the PTUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one PTU to be read.
pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table.

ptu_vpar_high_get() and ptu_vpar_low_get() return the currently programmed
PTU high/low voltage-test limit value for the specified pin. The value is returned for the first
DUT in the Active DUTs Set (ADS) (see Using Getter Functions).

Example
ptu_vpar_high_set(3.3 V, pl_tested_pins);
ptu_vpar_low_set(0 V, pl_tested_pins);
double value = ptu_vpar_low_get(D0);

3.14.8 PTU Voltage Clamp Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions.

Description

The ptu_vclamp_set() function is used to program the voltage clamps for one or more
PTU(s).
 2/27/09 Pg-516

PTU Functions
The ptu_positive_vclamp_get() and ptu_negative_vclamp_get() functions are
used to get the currently programmed positive and negative voltage clamp values for a
specified PTU.

The ptu_vclamp_enable() function is used to enable and disable both PTU voltage
clamps. By default, PTU voltage clamps are disabled.

The ptu_vclamp_enabled() function is used to get the PTU voltage clamp enable state
for one pin.

The PTU has programmable high/low voltage clamps:

Note the following:

• PTU voltage clamps are enabled only when the PTU is in the force-current mode.
• The negative clamp value must be programmed to a value less than the positive

clamp value.
• The PTU voltage clamps affect the following:

• The voltage output by the PTU, programmed using ptu_vpar_force_set().
• Voltage-test limits, programmed using ptu_vpar_high_set() and
ptu_vpar_low_set().

If any of these are programmed outside the ptu_vclamp_set() range, a warning
is output in the appropriate controller output window, but testing otherwise
continues.

• At test program initialization, the voltage clamps are disabled. The clamps are not
otherwise set by the system software.

• Both clamp values can be modified from a test pattern. See Controlling PE Levels
from the Test Pattern.

Table 3.14.8.0-1 PTU Voltage Clamp Range & LSB

Range LSB

0.5V to +12V
4mV

Positive Clamp

-2V to +11V Negative Clamp
 2/27/09 Pg-517

PTU Functions
Note: careful consideration must be given to setting proper clamp values when using
the PTU to force current. The PTU output voltage range is -2V to +12V. When
forcing current, if the DUT doesn’t adequately load the PTU, only the voltage
clamps will prevent the PTU from reaching one of these voltages.

Usage
The following function programs both voltage clamps for all PTUs:

void ptu_vclamp_set(double positive_clamp,
double negative_clamp);

The following function programs both voltage clamps for one specified PTU:

void ptu_vclamp_set(double positive_clamp,
double negative_clamp,
DutPin *pDutPin);

The following function programs both voltage clamps for one or more PTU(s):

void ptu_vclamp_set(double positive_clamp,
double negative_clamp,
PinList* pPinlist);

The following functions get the currently programmed voltage clamp value for one PTU.
Separate functions are used to get the positive vs. negative clamp:

double ptu_negative_vclamp_get(DutPin *pDutPin);

double ptu_positive_vclamp_get(DutPin *pDutPin);

The following function is used to enable or disable both voltage clamps for all PTU:

void ptu_vclamp_enable(BOOL state);

The following function is used to enable or disable both voltage clamps for one specified
PTU:

void ptu_vclamp_enable(BOOL state, DutPin *pDutPin);

The following function is used to enable or disable both voltage clamps for one or more
PTU(s):

void ptu_vclamp_enable(BOOL state, PinList* pPinlist);

The following function is used to get the enable state of the voltage clamps for one PTU:

BOOL ptu_vclamp_enabled(DutPin *pDutPin);
 2/27/09 Pg-518

PTU Functions
where:

positive_clamp and negative_clamp specify the desired positive and negative
voltage clamp values. Units may be used (see Specifying Units).

pDutPin is used in two contexts:

• In the setter functions, identifies one PTU to be programmed. In Multi-DUT Test
Programs, the PTUs of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one PTU to be read.
state specifies whether the voltage clamps are to be enabled (TRUE) or disabled (FALSE).

pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table.

ptu_negative_vclamp_get() and ptu_positive_vclamp_get() return the
currently programmed PTU voltage clamp value for the specified pin. The value is returned
for the first DUT in the Active DUTs Set (ADS) (see Using Getter Functions).

ptu_vclamp_enabled() returns TRUE if the voltage clamps of the specified pin are
enabled, otherwise FALSE is returned. The value is returned for the first DUT in the Active
DUTs Set (ADS).

Example
ptu_vclamp_set(3.4 V, -0.5 V, pl_tested_pins);
double v = ptu_negative_vclamp_get(D0);

ptu_vclamp_enable(TRUE, pl_tested_pins);
BOOL state = ptu_vclamp_enabled(D0);

3.14.9 PTU Static Test Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions, DC Sub-System Block Diagram,
Static DC Tests.
 2/27/09 Pg-519

PTU Functions
Description

The ptu_partest() function is used to perform a static DC parametric test using the
PTUs. PTU Dynamic Test Functions are documented separately.

As the name implies, each Magnum 1/2/2x test channel has an independent PTU, allowing
tests on multiple pins concurrently. The two most common applications are continuity tests
and (adjacent channel) leakage tests. See PTU Usage.

Also review Static DC Tests.

With static PTU tests it is possible to test the specified pins sequentially; i.e. one at a time, or
in parallel. This is controlled by the PartestOpt argument to ptu_partest(). Using the
PTU, the most benefit is obtained when testing multiple pins in parallel, thus the default is
parallel. With static PTU tests, the Parametric Background Voltage may be used, if enabled
(see Background Voltage Functions).

Note: when using ptu_partest(), the system software automatically controls
connecting and disconnecting the PTU to pins. It is not necessary for user
code to do this.

In software release h1.1.23, two new ptu_partest() overloads were added to support
measurement averaging. Note the following:

• Measurement averaging is enabled by including the PartestOpt iacc argument.
• The number of measurements made to obtain the average is set using

iacc_count_set(). Default = 10.
• The value set using iacc_count_set() is ignored when measure() = FALSE.
• When averaging is enabled the measurement average is compared to the PASS/

FAIL test limits, set using PTU Current Test Limit Functions or PTU Voltage Test
Limit Functions, to determine whether ptu_partest() returns PASS or FAIL.

• When Retrieving DC Test Results only the average value is returned, regardless of
the number of measurements made.

Prior to executing the test the following parameters must be set up:

• Force-voltage or current value. See PTU Force-voltage Functions and
PTU Force-current Functions.

• PASS/FAIL voltage or current-test limits. See PTU Current Test Limit Functions and
PTU Voltage Test Limit Functions. These functions also set the test/measure range
values.
 2/27/09 Pg-520

PTU Functions
• The system software provides a Built-in Settling Time to PTU current-tests. The
user may use the partime() function to add additional settling time. See
Parametric Settling Time.

• PTU voltage clamps. See PTU Voltage Clamp Functions.
• Enable/disable measurements using measure(). Note that PTU measurements

use the system PMU(s) and typically must be performed sequentially. See
Overview. Measured values can be retrieved by user code, see Retrieving DC Test
Results.

• Background voltage. Applies only when ptu_partest() is executed with the
sequential PartestOpt. In this mode, one pin at a time in the specified pin list
is tested (its PTU is set to the force-voltage or current value) while the PTU(s) of
the other pins in the specified pin list are set to the background voltage. See
Background Voltage Functions.

• If any PTU(s) are statically connected to their pin(s) additional rules apply. See PTU
Tests on Statically Connected Pins.

Usage
The following functions execute a static PTU test:

PFState ptu_partest(PassCond pass_cond,
DutPin *pDutPin,

PartestOpt test_type DEFAULT_VALUE(parallel));

PFState ptu_partest(PassCond pass_cond,
PinList* pPinList,

PartestOpt test_type DEFAULT_VALUE(parallel));

Note: the following functions were first available in software release h1.1.23.

PFState ptu_partest(PassCond pass_cond,
PinList* pPinList,
PartestOpt type,
PartestOpt accuracy);

PFState ptu_partest(PassCond pass_cond,
DutPin *pDutPin,
PartestOpt type,
PartestOpt accuracy);

where:
 2/27/09 Pg-521

PTU Functions
pass_cond determines whether the PTU test is forcing current or voltage, and how the
PASS/FAIL test limits will be used. pass_cond values are defined using the PassCond
enumerated type. Operation is defined in the following table:

Table 3.14.9.0-1 PTU Test Force & PASS/FAIL Limit Options

Pass
Condition Comments

pass_pcl

pcl = Positive Current Limit.
Force the voltage set using ptu_vpar_force_set(). Test/measure
PTU output current. Pass if current is greater than the value set using
ptu_ipar_high_set().

pass_ncl

ncl = Negative Current Limit.
Force the voltage set using ptu_vpar_force_set(). Test/measure
PTU output current. Pass if current is less than the value set using
ptu_ipar_low_set().

pass_nicl

nicl = Not In Current Limit.
Force the voltage set using ptu_vpar_force_set(). Test/measure
PTU output current. Pass if current is between the values set using
ptu_ipar_high_set() and ptu_ipar_low_set().

pass_vg

vg = Voltage Greater.
Force the current set using ptu_ipar_force_set(). Test/measure
PTU output voltage. Pass if voltage is greater than the value set using
ptu_vpar_high_set().

pass_vl

vl = Voltage Less.
Force the current set using ptu_ipar_force_set(). Test/measure
PTU output voltage. Pass if voltage is less than the value set using
ptu_vpar_low_set().

pass_nivl

nivl = Not In Voltage Limit.
Force the current set using ptu_ipar_force_set(). Test/measure
PTU output voltage. Pass if voltage is between the values set using
ptu_vpar_high_set() and ptu_vpar_low_set()
 2/27/09 Pg-522

PTU Functions
The diagrams below shows this same information graphically. The upper diagram applies
when forcing voltage and testing current. The lower diagram applies when forcing current
and testing voltage:

pDutPin identifies one pin to be tested. In Multi-DUT Test Programs, only pins of DUT(s)
currently in the Active DUTs Set (ADS) are affected. The specified DutPin must be mapped
to a signal pin in the Pin Assignment Table.

pPinList specifies which pins(s) are to be tested. In Multi-DUT Test Programs, only pin(s)
of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only contain
DutPins mapped to a signal pins in the Pin Assignment Table.

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ptu_ipar_high_set()

ptu_ipar_low_set()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ptu_vpar_high_set()

ptu_vpar_low_set()

pass_vg pass_vl pass_nivl

Sets Force-voltage Test

Sets Force-current Test
 2/27/09 Pg-523

PTU Functions
test_type is optional, and is used to select several PTU test options. Legal values are of
the PartestOpt enumerated type, but only the options noted in the table below are valid.
Default = parallel:

To specify both options it is necessary to use both the type and accuracy arguments (this
capability was added in software release h1.1.23):

• type specifies the execution option (sequential, parallel, parallel_pmu)
• accuracy specifies iacc.

As noted above, iacc is only usable when measure() = TRUE.

ptu_partest() returns TRUE (PASS) or FALSE (FAIL). All pin(s) tested must PASS
otherwise FAIL is returned. In Multi-DUT Test Programs, only DUT(s) in the Active DUTs Set
(ADS) can affect test results.

Example
PFState result = ptu_partest(pass_nicl,

pl_leak_pins,
parallel);

Table 3.14.9.0-2 PTU Test Optional Arguments

Optional
Arguments Comments

parallel
Default. Test all pins in pPinList in parallel. Background voltage is
not used. sequential is always enabled when measure() = TRUE

parallel_pmu Not supported in PTU tests. Causes a fatal runtime error.

sequential
Sequentially test each pin in pPinList. Background voltage is used,
if enabled (see Background Voltage Functions). sequential is
always enabled when measure() = TRUE .

 iacc
Enable measure averaging. Applies only when measure() = TRUE.
See Description and Measurement Average Count Functions. When
iacc is specified alone the test uses the sequential option.

no_iacc Default. Disable measure averaging.
 2/27/09 Pg-524

PTU Functions
3.14.10 PTU Dynamic Test Functions
See Per-pin Parametric Test Unit (PTU), PTU Functions, DC Sub-System Block Diagram.

Note: first available in software release h2.2.7/h1.1.7.

Description

The ptu_ac_partest() function is used to perform a dynamic DC parametric test using
the PTUs. PTU Static Test Functions are documented separately.

In a dynamic PTU test, while a specified test pattern is executing each PTU will force a
voltage or current and test or measure the opposite parameter.

Note: the information in Dynamic DC Tests is not correct for dynamic PTU tests. The
correct operation described below. For reference, some of the differences
between dynamic PTU and dynamic PMU tests are also noted below.

The PTU sub-system hardware design makes the operation of dynamic PTU Go/NoGo tests
vs. dynamic PTU measurements different in significant ways. The switch between dynamic
PTU Go/NoGo tests and measurements is controlled using the measure() function:

• ptu_ac_partest() when measure() = FALSE = Go/NoGo test.
• ptu_ac_partest() when measure() = TRUE = measurement test.

The remainder of this section includes:

• The Basics
• Dynamic PTU Measurement Test
• Dynamic PTU Go/NoGo Test
• Setup Checklist
• PTU vs. PMU Differences
• Usage
• Example
 2/27/09 Pg-525

PTU Functions
The Basics
The ptu_ac_partest() function executes a specified test pattern, and the desired pattern
stop condition must be specified using the stop_cond argument. Options are listed in
Usage, and include terminating pattern execution if a functional failure occurs or executing
the pattern to completion, regardless of functional failures. Note that when executing a
Dynamic PTU Go/NoGo Test, the functional strobes are routed to the DC comparators of the
PTU(s) involved in the test. In this scenario, any latched PTU failure will be treated the same
as latched functional fails, stopping pattern execution if
stop_cond = error. See Error Flag vs. Error Latch.

ptu_ac_partest() will not return until test pattern execution terminates.

The ptu_ac_partest() function does not provide a sequential option; i.e. all pins in the
specified pin list are tested concurrently, using the PTU associated with each pin.

Note: when using ptu_ac_partest() the system software automatically controls
connecting and disconnecting the PTU to pins. It is not necessary for user
code to do this.

ptu_ac_partest() will fail if any functional strobes fail.

Dynamic PTU Measurement Test
A dynamic PTU measurement test is performed when ptu_ac_partest() is executed
and measure() = TRUE. Dynamic PTU Go/NoGo Tests are documented separately.

In general, the output of one PTU may be routed to the A/D converter (ADC) in each DC Test
and Measure System, and the test pattern VCOMP signal triggers the ADC to make a
measurement. This is the same ADC used for PMU tests, DPS and HV current tests and
operation is as described in Dynamic DC Tests.

The pPinList argument to ptu_ac_partest(), identifies which PTU(s) (pin(s)) are to be
tested. When measurements are enabled, functional strobes on these pins can’t fail.

The pass_cond argument controls several things:

• It determines the PTU force parameter applied during the test (force voltage vs.
current). This operates the same during Dynamic PTU Go/NoGo Tests.

• It determines the test parameter type; i.e. measure current or voltage. This will
always be the opposite of the force parameter type. This operates the same during
Dynamic PTU Go/NoGo Tests.
 2/27/09 Pg-526

PTU Functions
• It determines how the PASS/FAIL test limits are used. See Usage. This operates
differently during Dynamic PTU Go/NoGo Tests.

When executing ptu_ac_partest() and measure() = TRUE the ADC will receive one
trigger for each executed pattern instruction containing the MAR VCOMP instruction (Memory
Test Patterns) or VEC/RPT VCOMP, VAR VCOMP or VPINFUNC VCOMP instruction (Logic Test
Patterns). See Dynamic DC Tests.

Note: when executing ptu_ac_partest() and measure() = TRUE, if the test
pattern does not trigger the ADC, ptu_ac_partest() will return invalid
results. The system software cannot check for this error; i.e. it is the user’s
responsibility to ensure that at least one VCOMP trigger is issued by the pattern.

To determine the test result, once the test pattern execution ends, the system software
retrieves the measured value(s) and compares them to the PASS/FAIL test limits, set using
PTU Current Test Limit Functions and PTU Voltage Test Limit Functions. These same
measurements can be retrieved, see Retrieving DC Test Results.

The ADC only stores one value. If the test pattern triggers the ADC more than once:

• Only the last measurement is used to determine PASS/FAIL
• Only the last measurement is returned when Retrieving DC Test Results.

As noted in Overview, each Site Assembly Board has 128 PTUs (one per pin) and 8 DC Test
and Measure Systems; i.e. in hardware, 16 PTUs are associated with a given DC Test and
Measure System. When executing ptu_ac_partest() and measure() = TRUE, it is an
error if the specified pin list contains multiple PTUs which share a given DC Test and
Measure System. When this rule is violated:

• ptu_ac_partest() will return immediately, without actually performing the test.
• The test result for all DUT(s) tested will be FAIL.
• Any measured values retrieved will be invalid (stale, etc.) See Retrieving DC Test

Results

Dynamic PTU Go/NoGo Test
A dynamic PTU Go/NoGo test is performed when ptu_ac_partest() is executed and
measure() = FALSE. Also see Dynamic PTU Measurement Test.

In general, during the pattern execution, the PTU pins being tested must be strobed from the
test pattern. Each strobe causes the PTU’s DC Comparators and Error Logic to sample the
test parameter, comparing it to the PTU PASS/FAIL test limits to determine the test result. If
the pattern strobe is latched (see Error Flag vs. Error Latch) and the comparator indicates a
 2/27/09 Pg-527

PTU Functions
fail condition the pin’s error logic will latch the failure, which will result in the test failing. Note
that a dynamic PTU Go/NoGo test operates differently than a similar dynamic PMU Go/
NoGo test, for two reasons:

• Each PTU has its own set of DC comparators; i.e. a PTU DC comparator per-pin.
• The test pattern VCOMP signal is not routed to the PTU comparators and thus

can’t be used to trigger a PTU Go/NoGo test. Instead, a given PTU’s DC
comparator is triggered by the functional strobes for that pin. These are the same
signals which normally strobe a pin’s functional comparators. More below.

The PASS/FAIL test limits, set using PTU Current Test Limit Functions and PTU Voltage Test
Limit Functions, are the DC comparator references used during the test.

The pPinList argument to ptu_ac_partest(), identifies which PTU(s) (pin(s)) are to be
tested. As indicated below, these pins will not be functionally tested during the PTU test.

When executing ptu_ac_partest() and measure() = FALSE the pass_cond argument
controls the following:

• It determines the PTU force parameter applied during the test (force voltage vs.
current). This operates the same during Dynamic PTU Measurement Tests.

• It determines the test parameter type; i.e. test current or voltage. This will always
be the opposite of the force parameter type. This operates the same during
Dynamic PTU Measurement Tests.

As described below, the pass_cond argument does not affect how the PASS/FAIL test
limits are used when performing a dynamic PTU Go/NoGo test. This is different than when
executing Dynamic PTU Measurement Tests.

Regarding the use of functional strobes to trigger the PTU DC comparators, note the
following:

• During a pattern execution, a given pin’s functional strobe signal can be used for
one purpose: either to strobe for functional fails, using the pin’s functional
comparators, or to strobe that pin’s PTU DC comparator. The test pattern strobe
operation and programming methods are identical for both applications. Strobe
timing, timing rules, and window vs. edge strobe operation is also identical.

• The pPinList argument to ptu_ac_partest(), which identifies which PTU(s)
(pin(s)) are to be tested, also configures a MUX for those pin(s), to route that pin’s
strobe signal to its PTU DC comparators. This means that when executing
ac_ptu_partest(), the pins in the pPinList will not be strobed for functional
failures. The MUX is controlled automatically and restored to normal functional
operation by ptu_ac_partest().
 2/27/09 Pg-528

PTU Functions
• The output of a PTU’s DC comparator is routed to the same error logic that is used
for functional testing. The remainder of the system does not know or care whether
a given error (failing strobe) originated from a pin’s PTU DC comparators or from
the pin’s functional comparators. This means that the following operate the same
for both applications:
• Error latch vs. error flag operation (see Error Flag vs. Error Latch).
• Test pattern branch-on-error/abort, for both Memory Test Patterns and Logic Test

Patterns.
• MAR RESET/NOLATCH instructions (Memory Test Patterns).
• VEC/RPT RESET/NOLATCH and VAR RESET/NOLATCH instructions (Logic Test

Patterns).
• The Error Catch RAM (ECR) will capture PTU strobe fails the same as functional

fails.
• When ptu_ac_partest() is executed and measure() = FALSE, the PassCond

argument only determines the PTU force parameter (force current vs. voltage) and
tested parameter; i.e. it has no effect on how the PASS/FAIL test limits, set using
PTU Current Test Limit Functions and PTU Voltage Test Limit Functions, are used.
It is the strobe type(s) generated from the test pattern, for each pin, which
determine how the PASS/FAIL test limits are used. Note that it is possible, with a
single execution of ptu_ac_partest(), to test any or all of the 4 possible test
conditions, on a per-PTU (per-in) basis. The following table shows how the various
strobe types operate:

Equivalent
Voltage
Test

Condition

Equivalent
Current
Test

Condition Pattern Strobe Type

pass_vg pass_pcl Strobe-high

pass_nivl pass_nicl Strobe-Z

pass_vl pass_ncl Strobe-low

n/a n/a

Strobe-V (valid). This strobe will pass
if the test parameter is either above
the high limit or below the low limit.
There is no equivalent for the other
DC test types.
 2/27/09 Pg-529

PTU Functions
• If a given PTU is strobed by more than one strobe type it is not possible to
determine which one(s) failed; i.e. did a strobe-high fail (equivalent to pass_vg) or
strobe-Z fail (equivalent to pass_nivl), etc.

• The strobes generated by the APG data generator and APG chip selects only
provide two strobe types: strobe-high and strobe-low; i.e. not strobe-Z or strobe-V.
This might seem to indicate that a pure Memory Test Pattern cannot to do the
equivalent of pass_nicl/pass_nivl using these APG data sources. However,
these strobe types can be obtained in a memory pattern by using the pin
scrambler, to select a scramble map which has t_strobe_valid and/or
t_strobe_mid mapped to pins involved in the PTU test. In Logic Test Patterns,
the Z and V tokens enable these strobe types.

Setup Checklist
Prior to executing ptu_ac_partest() the following parameters must be setup:

• Force-voltage or current value. See PTU Force-voltage Functions or PTU Force-
current Functions.

• The PTU voltage clamps (if forcing current). See PTU Voltage Clamp Functions
• PASS/FAIL voltage or current-test limits. See PTU Current Test Limit Functions and

PTU Voltage Test Limit Functions. When forcing voltage, the PTU Current Test Limit
Functions functions also set the current range value.

• The partime() function, used to add additional settling time to the Built-in
Settling Time, is not normally useful in dynamic DC tests. This is because this
delay will occur after programming the DC circuitry but before executing the
functional test pattern; i.e. at a non-useful time. See Parametric Settling Time.

• Enable/disable measurements using measure().
• For dynamic tests, the test will also fail if any functional strobes fail. Thus, proper

digital PE levels and timing will affect test results, as does the test pattern
executed.

• If any PTU(s) are statically connected to their pin(s) additional rules apply. See PTU
Tests on Statically Connected Pins.

PTU vs. PMU Differences
Some important differences between PMU and PTU operation are outlined here, purely for
reference.

• Errors from a given PTU’s DC comparator can set both that pin’s error flag and
error latch, depending on the same LATCH/NOLATCH test pattern options used
during functional testing, see Error Flag vs. Error Latch. Once any error latch is set
 2/27/09 Pg-530

PTU Functions
that pin will fail, regardless of the use of MAR/VEC/VAR RESET. This operation is
different than the dynamic PMU, DPS and HV Go/NoGo tests, which only affect a
DC error flag, which can be RESET from the test pattern.

• Also unlike PMU, DPS and HV Go/NoGo tests, it is not possible to enable the PTU
DC comparators from the computer. Thus, it is not possible to enable the
comparators, execute the pattern, and afterwards check to see if any transients
tripped any comparator thresholds; e.g. all PTU Go/NoGo tests are triggered by
functional strobes from an executing test pattern. This is the reason the
comp_cond argument is not used by ptu_ac_partest().

• As indicated above, when performing dynamic PMU, DPS and HV DC tests, how
the PASS/FAIL test limits are used is determined by the PassCond argument to
the corresponding test function. This is also true when executing Dynamic PTU
Measurement Tests but not during Dynamic PTU Go/NoGo Tests. During the
former, only one test condition can be tested for each test pattern execution:
pass_ncl, pass_nivl, pass_vl, etc. During Dynamic PTU Go/NoGo Test, any
combination of these limits can be used, on a per-PTU (per-pin) basis. See
Dynamic PTU Go/NoGo Test.

Usage
The following function is used to perform dynamic PTU tests on one or more pins:

PFState ptu_ac_partest(PassCond pass_cond,
PinList* pPinList,
Pattern *pPattern,
PatStopCond stop_cond);

where:

pass_cond determines the PTU force parameter type (current or voltage) and test/measure
parameter type (opposite of the force type). And, during Dynamic PTU Measurement Tests
(but not Dynamic PTU Go/NoGo Tests) determines how the PASS/FAIL test limits will be
 2/27/09 Pg-531

PTU Functions
used. pass_cond values are defined using the PassCond enumerated type. Operation is
defined in the following table:

The diagrams below shows how the PASS/FAIL limits are used during Dynamic PTU
Measurement Tests. The upper diagram applies when forcing voltage and testing current.

Table 3.14.10.0-1 PTU Test Force & PASS/FAIL Limit Options

Pass
Condition Comments

pass_pcl

pcl = Positive Current Limit.
Force the voltage set using ptu_vpar_force_set() and test/measure
PTU output current. Measurements pass if current is greater than the
value set using ptu_ipar_high_set().

pass_ncl

ncl = Negative Current Limit.
Force the voltage set using ptu_vpar_force_set() and test/measure
PTU output current. Measurements pass if current is less than the value
set using ptu_ipar_low_set().

pass_nicl

nicl = Not In Current Limit.
Force the voltage set using ptu_vpar_force_set() and test/measure
PTU output current. Measurements pass if current is between the values
set using ptu_ipar_high_set() and ptu_ipar_low_set().

pass_vg

vg = Voltage Greater.
Force the current set using ptu_ipar_force_set() and test/measure
PTU output voltage. Measurements pass if voltage is greater than the
value set using ptu_vpar_high_set().

pass_vl

vl = Voltage Less.
Force the current set using ptu_ipar_force_set() and test/measure
PTU output voltage. Measurements pass if voltage is less than the value
set using ptu_vpar_low_set().

pass_nivl

nivl = Not In Voltage Limit.
Force the current set using ptu_ipar_force_set() and test/measure
PTU output voltage. Measurements pass if voltage is between the values
set using ptu_vpar_high_set() and ptu_vpar_low_set()
 2/27/09 Pg-532

PTU Functions
The lower diagram applies when forcing current and testing voltage. See Dynamic PTU Go/
NoGo Test for equivalent operation using functional strobes:

pPinList specifies which PTU(s) are to be affected. In Multi-DUT Test Programs, only
pin(s) of DUT(s) currently in the Active DUTs Set (ADS) are affected. The pin list must only
contain DutPins mapped to a signal pins in the Pin Assignment Table. When performing s
Dynamic PTU Measurement Test pPinList may only contain one pin for each ADC, see
Dynamic PTU Measurement Test.

pPattern identifies the test pattern to be executed.

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ptu_ipar_high_set()

ptu_ipar_low_set()

pass_pcl pass_ncl pass_nicl

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

PASS

PASS

ptu_vpar_high_set()

ptu_vpar_low_set()

pass_vg pass_vl pass_nivl

Sets Force-voltage Test

Sets Force-current Test
 2/27/09 Pg-533

PTU Functions
stop_cond controls how test pattern execution terminates. Legal stop_cond values are
defined using the PatStopCond enumerated type. Note that majority of tests will use the
error or finish options:

Table 3.14.10.0-2 Pattern Execution Stop Condition Options

Stop Condition Summary Description

finish

Execute pattern to completion, regardless of errors.
When execution finishes, the PE error latches and DC Error
Flags are examined. If an error was latched, the result of
ptu_ac_partest() is FAIL, otherwise the result is PASS

error

Stop pattern execution on first functional or DC Error Flag error
and sets the result of ptu_ac_partest() to FAIL. Note that
the pattern generator may continue for one or more cycles past
where the error occurred, depending on the cycle time and
where in the cycle the error was detected.

fullec

Execute pattern to completion. Enable full ECR, row error catch,
and column error catch to capture errors during pattern
execution. This argument should be used when performing
Redundancy Analysis (RA) or using BitmapTool.

LEC_only_errors
Enable full ECR, row error catch, and column error catch.
Capture the first 2Meg (221-6) failing vectors. Intended for use
when the ECR is used as an Logic Error Catch (LEC).

LEC_first_vectors

Enable full ECR, row error catch, and column error catch. Cap-
ture the first 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_last_vectors

Enable full ECR, row error catch, and column error catch. Cap-
ture the last 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_before_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus the previous 2Meg (221-6) vec-
tors executed. Intended for use when the ECR is used as an
Logic Error Catch (LEC).
 2/27/09 Pg-534

PTU Functions
ptu_ac_partest() returns TRUE (PASS) or FALSE (FAIL). All pin(s) tested must PASS
otherwise FAIL is returned. All latched functional strobes must PASS. In Multi-DUT Test
Programs, only DUT(s) in the Active DUTs Set (ADS) can affect test results.

Example
PFState pf = ptu_ac_partest(pass_nicl,

pl_leakpins,
leaksetup_pat,
finish);

3.14.11 PTU as Voltage/Current Source
See Per-pin Parametric Test Unit (PTU), PTU Functions, PTU Connect/Disconnect
Functions.

LEC_after_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus the next 2Meg (221-6) vectors
executed. Intended for use when the ECR is used as an Logic
Error Catch (LEC).

LEC_center_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus up to 512K vectors executed
before the failure and up to 512K vectors executed after the fail-
ure. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

Note: in parallel test applications, the test pattern must be executed to completion, to
ensure that DUT(s) which don’t fail are completely tested. In other words, halting the
pattern early (error) because one or more DUT(s) failed prevents DUT(s) which PASS
from being completely tested. This is BAD.

Table 3.14.10.0-2 Pattern Execution Stop Condition Options (Continued)

Stop Condition Summary Description
 2/27/09 Pg-535

PTU Functions
Description

The ptu_connect() function is used to close the solid-state switch(es) connecting a PTU
to its associated DUT pin. The ptu_disconnect() function is used to open these
switch(es).

Note: standard PTU tests, i.e. ptu_partest() automatically control PTU
connections and disconnections to DUT pins; i.e. it is NOT necessary to use
ptu_connect() or ptu_disconnect() when performing these tests. These
functions are used when the PTU is being used as a statically connected voltage
or current source.

Arguments passed to the ptu_connect() function are used to:

• Specify which pins are to be connected to their corresponding PTU.
• Optionally specify whether to force-voltage or current.
• Optionally specify a current range (applies to force-current use only).

Connection rules:

• A given PTU can only be connected or disconnected from its associated pin.
• When ptu_connect() connects a given PTU to its pin, it will remain connected

until disconnected by calling ptu_disconnect(). Connections remain across test
blocks, and are not disconnected at the end of the Sequence & Binning Table
execution.

• Executing ptu_connect() does not disconnect any pin(s) previously connected
to their associated PTU. Executing ptu_disconnect() only disconnect the
specified pin(s) from their associated PTU.

• It is not legal to connect a PTU to a pin which is currently statically connected to a
PMU. If this is attempted, a warning is issued for each violating pin and the PTU
connection to these pins is not completed. Other pins which are not violating the
rule will be connected to their associated PTU.

• By default, ptu_connect() sets the force mode to force voltage (FORCEV). The
force_type argument can be used to explicitly specify the PTU force mode.

• It is not possible to change the force mode (FORCEV vs. FORCEI) while a PTU is
connected to its pin.
 2/27/09 Pg-536

PTU Functions
• Executing ptu_vpar_force_set() or ptu_ipar_force_set() has no
immediate effect on any PTU(s) which are not currently connected to their pins.
The force value is saved but no hardware changes occur. For any PTU(s) which
are currently connected to their pin(s) the force value changes at the pin
immediately.

• Once a given PTU is connected to its pin using ptu_connect(), no current range
changes are permitted. If a range change is attempted, a warning is issued and no
changes are made to the hardware, including setting a different force value.
Testing will otherwise continue

• PTU voltage clamps, set using ptu_vclamp_set(), will limit the output voltage of
the PTU. The voltage clamp is only active when the PTU is in the FORCEI mode.
At test program initialization the voltage clamps are disabled; user code must
execute ptu_vclamp_set() to set desired clamp values.

Note: careful consideration must be given to setting proper clamp values when using
the PTU to force current. The PTU output voltage range is -2V to +12V. When
forcing current, if the DUT doesn’t adequately load the PTU, only the voltage
clamps will prevent the PTU from reaching one of these voltages.

PTU voltage/current ranges operate as follows:

• The PTU has a single voltage range:

Note: the PTU output voltage and current capabilities are affected by the selected
current range. See PTU Operating Area.

The information below applies to current range operation.

• By default, when forcing voltage the current range is set to the coarsest value.
• By default, when forcing current the force range is set based on the last executed

ptu_ipar_force_set().

Table 3.14.11.0-1 PTU Force-voltage Range

Voltage Range LSB

-2V to +12V 1mV
 2/27/09 Pg-537

PTU Functions
• By default, the measure-current range defaults to that set by the last execution of
ptu_ipar_high_set() and ptu_ipar_low_set(). Optionally, the
meas_range argument can be used to specify a current measure range value, as
follows:

PTU Tests on Statically Connected Pins
Normally, to perform conventional DC parametric tests using ptu_partest() it is NOT
necessary to use ptu_connect() or ptu_disconnect(), the system software
automatically controls connections, as needed. However, it is possible to use
ptu_connect() prior to ptu_partest(). The following rules apply:

• When (some) pins have been explicitly connected to their PTU, the system
software supports two test scenarios:
• The members of the pin list specified in ptu_partest() exactly match the set

of pins currently statically connected to their PTU.
• The members of the pin list specified in ptu_partest() contain NO pins

currently statically connected to their PTU.

Table 3.14.11.0-2 PTU Force-Current Ranges

Current
Range Range Resolution

±2uA range1 1nA

±8uA range2 4nA

±32uA range3 16nA

±128uA range4 64nA

±512uA range5 256nA

±2mA range6 1uA

±8mA range7 4uA

±32mA range8 16uA

Note: the PTU output voltage and current capabilities are
affected by the selected current range. See PTU
Operating Area.
 2/27/09 Pg-538

PTU Functions
• If these rules are violated, a warning is issued and ptu_partest() is
terminated early, returning FAIL for each DUT in the Active DUTs Set (ADS).
And, if measured values were enabled (see measure()) any values retrieved
will be invalid (see Retrieving DC Test Results).

• Executing ptu_partest() has no effect on PTU(s) which are statically
connected to pin(s).

• When executing ptu_partest(), if any PTU(s) are currently connected to their
pin(s), it is an error to specify a pass_cond which sets a force mode which is
different than the mode currently being forced.

• When a Force-V/Measure-I ptu_partest() is invoked on PTU(s) which are
connected to their pin(s), if any currently set values of ptu_ipar_high_set()
and/or ptu_ipar_low_set() will cause a range change, a warning will be
issued, the ptu_partest() exits, returning FAIL for each DUT in the Active DUTs
Set (ADS). And, if measured values were enabled (see measure()), any values
retrieved will be invalid (see Retrieving DC Test Results). Note that this restriction
does not apply to Force-I/Measure-V tests because the PTU has a single voltage
range and a range change cannot occur.

Limitations
The following limitations exist:

• It is not possible to set up FORCEV and FORCEI at the same time, even using
PTUs on different pins. It is possible to set up different conditions for FORCEV - or
- FORCEI by calling ptu_connect() multiple times, each with a pin list which
does not intersect the other.

Usage
The following functions are used to statically connect the PTU(s) to the specified pin(s):

void ptu_connect(DutPin *pDutPin);

void ptu_connect(PinList* pPinList);

void ptu_connect(DutPin *pDutPin, Range meas_range);

void ptu_connect(PinList* pPinList, Range meas_range);

void ptu_connect(DutPin *pDutPin, PMUMode force_type);

void ptu_connect(PinList* pPinList, PMUMode force_type);

void ptu_connect(DutPin *pDutPin,
PMUMode force_type,
Range meas_range);
 2/27/09 Pg-539

PTU Functions
void ptu_connect(PinList* pPinList,
PMUMode force_type,
Range meas_range);

The following functions are used to disconnect PTU(s) from the specified pin(s):

void ptu_disconnect(DutPin *pDutPin);

void ptu_disconnect(PinList* pPinlist);

where:

pDutPin identifies one pin to be connected or disconnected to/from their corresponding
PTU. In Multi-DUT Test Programs, only pins of DUT(s) currently in the Active DUTs Set
(ADS) are affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

pPinList specifies which pin(s) will be statically connected or disconnected to/from their
corresponding PTU. In Multi-DUT Test Programs, only pin(s) of DUT(s) currently in the
Active DUTs Set (ADS) are affected. The pin list must only contain DutPins mapped to
signal pins in the Pin Assignment Table.

range is used to select a PTU current measure range. See Description. Values must be of
the Range enumerated types, but the preferred method is to use values from Table 3.14.4.0-
1. This parameter is ignored when a given PTU is in the force-voltage mode.

force_type is used to specify whether the PTU will force current (FORCEI) or voltage
(FORCEV). See Description.

Example
ptu_connect(pl_vref_pin);
ptu_disconnect(pl_vref_pin);
 2/27/09 Pg-540

Pin Electronics Voltages/Currents
3.15 Pin Electronics Voltages/Currents
See Software.

This section documents the various DC voltage and current parameters associated with the
Pin Electronics (PE) circuitry used during functional tests:

• Pin Electronics Levels
• Types, Enums, etc.
• PE: Drive Voltages: VIH/VIL
• VIHH Voltage
• PE Comparator Voltages: VOH/VOL
• PE Load Reference Voltage: VZ
• rl_set(), rl_get()
• rl_bitmask_get()
• rl_ohms_get()
• 50-ohm Termination Voltage: VTT
• pe_driver_mode_set(), pe_driver_mode_get()
• PE Connect/Disconnect Functions

3.15.1 Pin Electronics Levels
See Pin Electronics Voltages/Currents, Pin Electronics (PE).
 2/27/09 Pg-541

Pin Electronics Voltages/Currents
Each Pin Electronics (PE) channel has the following programmable voltage and current
parameters:

3.15.2 Types, Enums, etc.
See Pin Electronics Voltages/Currents.

The following declarations are used to specify the termination resistance value when the
Magnum PE Driver Modes is in Vz Mode (see Magnum PE Driver Modes). This is
programmed using the vz() function (see RL Values):

Table 3.15.1.0-1 Pin Electronics DC Parameters

Param.
Set
Func. Purpose

VIL vil() Logic-0 drive voltage.

VIH vih() Logic-1 drive voltage.

VIHH vihh() Third drive level. See VIHH Maps and Vihh Mode in Magnum PE
Driver Modes.

VOL vol() Strobe-0 comparator reference voltage.

VOH voh() Strobe-1 comparator reference voltage.

VZ vz() Reference voltage for programmable driver termination. See Vz
Mode in Magnum PE Driver Modes .

VTT vtt() Reference voltage for 50Ω driver termination. See Vtt Mode in
Magnum PE Driver Modes.

#define VZRS1 0x01

#define VZRS2 0x02

#define VZRS3 0x04

#define VZRS4 0x08

#define VZRS5 0x10
 2/27/09 Pg-542

Pin Electronics Voltages/Currents
The PEDriverMode enumerated type is used to access the Magnum PE Driver Modes:

enum PEDriverMode { t_pe_nomode, t_pe_vzmode, t_pe_vihhmode,
t_pe_vttmode, t_pe_dclkmode};

3.15.3 PE: Drive Voltages: VIH/VIL
See PE Driver, Pin Electronics Voltages/Currents.

Description

The vil() and vih() functions are used to set or get the VIL and VIH PE driver voltage.

During functional tests, the PE Driver has several possible states, as controlled from the
executing test pattern and timing system:

• Drive logic-0 = VIL voltage.
• Drive logic-1 = VIH voltage.
• Drive to third voltage level = VIHH (see VIHH Voltage and VIHH Maps).
• Tri-state to selectable resistor terminated to VZ voltage (see vz()). VIHH not

available.
• Tri-state to 50Ω terminated to VTT voltage (see vtt()).
• Tri-state to un-terminated line (no VTT, no VZ)

Using Magnum 1, on a per-pin basis, not all of these states are available/usable at one
same time, see PE Driver and Magnum PE Driver Modes.

Note the following:

• Each pin of the Magnum 1/2/2x Site Assembly Board has independent VIL and VIH
capabilities.

#define VZRS6 0x20

#define VZRS7 0x40

#define VZRS8 0x80
 2/27/09 Pg-543

Pin Electronics Voltages/Currents
• When using Magnum 1/2/2x to execute a Maverick-II program which uses the
vil_offset() and/or vih_offset() functions, the operation of these functions
(both set and get operation) is preserved. All 16 pins on a Maverick-II PE board
share a common VIL reference and a common VIH reference. Each pin also has a
separate VIL offset reference and VIH offset reference, allowing VIL and/or VIH to
be set to different values on each pin. In Maverick-II hardware, VIL and VIH are
each implemented as a per-board rail value, which sets the base value for all pins
on the board, plus a per-pin offset. The offset range is ±2.5V.

• During initial program load, all PE driver voltages are set to 0V.
• During execution of the Sequence & Binning Table user-code determines the value

of each parameter.
• When Sequence & Binning Table execution stops, all PE driver voltages are set to

0V via the builtin_after_testing_block.
• These levels can also be statically driven to the DUT (i.e. without executing a test

pattern) using the setpin(), pin_dc_state_set(), set_address(),
set_data() and set_chips_on()functions.

• These levels can also be modified from an executing test pattern. See Controlling
PE Levels from the Test Pattern.

Note: proper driver operation requires that vih() be programmed to a value greater
than vil(). If vih_offset() and/or vil_offset() are used,
vih() + vih_offset() must be greater than vil() + vil_offset().

Usage
The following function sets the VIH/VIL level for all pins:

void vih(double Value);

void vil(double Value);

The following function sets the VIH/VIL level for one pin:

void vih(double Value, DutPin *pDutPin);

void vil(double Value, DutPin *pDutPin);

The following function sets the VIH/VIL level for all pins in the specified pin list:

void vih(double Value, PinList* pPinList);

void vil(double Value, PinList* pPinList);

The following function sets the VIH/VIL offset level for one pin:
 2/27/09 Pg-544

Pin Electronics Voltages/Currents
void vih_offset(double Value, DutPin *pDutPin);

void vil_offset(double Value, DutPin *pDutPin);

The following function sets the VIH/VIL offset level for all pins in the specified pin list. Not
usable on Maverick-I:

void vih_offset(double Value, PinList* pPinList);

void vil_offset(double Value, PinList* pPinList);

The following functions return the currently programmed VIH/VIL level for the specified pin:

double vih(DutPin *pDutPin);

double vil(DutPin *pDutPin);

The following function returns the currently programmed VIH/VIL offset level for the
specified pin:

double vih_offset(DutPin *pDutPin);

double vil_offset(DutPin *pDutPin);

where:

Value specifies the desired voltage level. Units may be used (see Specifying Units). Legal
values for each voltage are shown below:

Note: proper driver operation requires that vih() be programmed to a value greater
than vil(). If using the offset values, vih() + vih_offset() must be
greater than vil() + vil_offset().

pDutPin is used in two contexts:

Table 3.15.3.0-1 PE Driver Levels Range & Resolution

Parameter Range Resolution

VIH -1V to +7V 5mV

VIL -1V to +7V 5mV

VIH Offset ±2.5V 5mV Supported for backwards
compatibility with Magnum 1 only.VIL Offset ±2.5V 5mV
 2/27/09 Pg-545

Pin Electronics Voltages/Currents
• In the setter functions, identifies one pin to be programmed. In Magnum 1, 2 & 2x
Parallel Tests, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one pin to be read.
pPinList specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pins of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a signal pins in the Pin Assignment Table.

The vih() and vil() getter functions return the currently programmed value. The value is
retrieved for the first DUT in the Active DUTs Set (ADS).

Examples
vih(3.5 V);
vih(3500 MV);

3.15.4 VIHH Voltage
See PE Driver, Pin Electronics Voltages/Currents, VIHH Maps, PTU, Magnum PE Driver
Modes.

Description

The vihh() function is used to program the VIHH voltage level or get the currently
programmed value.

Note the following:

• VIHH is supplied by the Per-pin Parametric Test Unit (PTU), which is set to operate
on the ±32mA range when a given pin’s PE driver mode is set to Vihh Mode (see
Magnum PE Driver Modes). This range selects the 81 output termination, thus the
actual VIHH output voltage will be affected by the VIHH current supplied to the
DUT. See PTU Operating Area. Note that rl_set() does not affect the output
termination for pins in Vihh Mode.

• During initial program load VIHH is set to 0V.
 2/27/09 Pg-546

Pin Electronics Voltages/Currents
• During execution of the Sequence & Binning Table user code determines the value
of VIHH.

• When Sequence & Binning Table execution stops VIHH is set to 0V via the
builtin_after_testing_block.

• VIHH can be modified from an executing test pattern. See Controlling PE Levels
from the Test Pattern.

• During test pattern execution, the VIHH selection can also affected by the
over-programming logic (see Over-programming Controls and Parallel Test). In
simple terms, when enabled, this logic prevents over-programming of
programmable devices by temporarily inhibiting the switch to the VIHH voltage
when certain conditions are met. See Over-programming Controls and Parallel
Test.

In addition to programming the VIHH voltage level, actual use of the VIHH level has several
additional requirements. See VIHH Maps.

Usage
The following function sets the VIHH voltage level on all pins:

void vihh(double Value);

The following function sets the VIHH level on one pin:

void vihh(double Value, DutPin *pDutPin);

The following function sets the VIHH level on all pins in the specified pin list:

void vihh(double Value, PinList* pPinList);

The following function returns the currently programmed VIHH voltage level for one pin:

double vihh(DutPin *pDutPin);

where:

Value specifies the desired VIHH voltage. Units may be used (see Specifying Units). Legal
values for VIHH are shown below:

pDutPin is used in two contexts:

Table 3.15.4.0-1 VIHH Voltage Level Range & Resolution

Parameter Range Resolution

VIHH 0V to +12.5V 5mV
 2/27/09 Pg-547

Pin Electronics Voltages/Currents
• In the setter functions, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one pin to be read.
pPinList specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pins of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a signal pins in the Pin Assignment Table.

The vihh() getter function returns the currently programmed value. In Multi-DUT Test Pro-
grams, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
vihh(10 V);
vihh(11.5 V, TM_pins); // Pin list
vihh(11.5 V, one_pin); // DutPin
double value = vihh(one_pin); // DutPin

3.15.5 PE Comparator Voltages: VOH/VOL
See PE Comparators, Pin Electronics Voltages/Currents.

Description

The vol() and voh() functions are used to set or get the reference voltages for the PE
Comparators.

During functional tests, the PE Comparators are used to sample (strobe) the output of the
DUT, to determine whether that output is logically correct in both the time domain and
voltage domain.

The comparator reference voltages are (conventionally) identified as VOL (voltage output
low) and VOH (voltage output high).
 2/27/09 Pg-548

Pin Electronics Voltages/Currents
Magnum 1/2/2x can functionally test for four logic states:

When a DUT output is strobed for a logic-1 (high), the strobe will pass if the DUT output
voltage is above the VOH comparator reference for the duration of a window strobe or at the
time of an edge strobe. Similarly, when a DUT output is strobed for a logic-0 (low), the strobe
will pass if the DUT output voltage is below the VOL comparator reference for the duration of
a window strobe or at the time of an edge strobe.

Note the following:

• VOL and VOH are per-pin parameters.
• During initial program load, VOL and VOH are set to 0V.
• During execution of the Sequence & Binning Table, user code determines the

values of VOL and VOH.
• When Sequence & Binning Table execution stops, VOL and VOH are set to 0V via

the builtin_after_testing_block.
• VOL and VOH can be programmed from an executing test pattern. See Controlling

PE Levels from the Test Pattern.

Usage
The following functions set the VOH/VOL level for all pins:

void voh(double Value);

void vol(double Value);

The following function sets the VOH/VOL level for one pin:

void voh(double Value, DutPin *pDutPin);

void vol(double Value, DutPin *pDutPin);

The following function sets the VOH/VOL level for all pins in the specified pin list:

void voh(double Value, PinList* pPinList);

VOH

VOL

Strobe
High

Strobe Strobe Strobe
Low Tri-state Valid

PASS

FAIL

FAIL

FAIL

FAIL

FAIL FAIL

FAIL

PASS

PASS PASS

PASS
 2/27/09 Pg-549

Pin Electronics Voltages/Currents
void vol(double Value, PinList* pPinList);

The following functions return the currently programmed VOH/VOL level for the specified
pin:

double voh(DutPin *pDutPin);

double vol(DutPin *pDutPin);

where:

Value specifies the desired voltage level. Units may be used (see Specifying Units). Legal
values for each voltage are shown below:

pDutPin is used in two contexts:

• In the setter functions, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one pin to be read.
pPinList specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pins of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a signal pins in the Pin Assignment Table.

The voh() and vol() getter functions return the currently programmed value. In Multi-DUT
Test Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Examples
voh(3.5 V);
voh(3500 MV);

Table 3.15.5.0-1 PE Comparator Levels Range & Resolution

Parameter Range Resolution

VOH -1V to +7V 5mV

VOL -1V to +7V 5mV
 2/27/09 Pg-550

Pin Electronics Voltages/Currents
3.15.6 PE Load Reference Voltage: VZ
See PE Driver, Magnum PE Driver Modes, Pin Electronics Voltages/Currents.

Description

The vz() setter function does the following:

• Programs the VZ load termination voltage for one or more pin(s)
• Optionally, selects the load termination resistance RL for one or more pin(s).

Note that the rl_set() function may also be used to select the RL value for one or more
pin(s).

During functional test execution, for the pin(s) in Vz Mode (see Magnum PE Driver Modes),
the RL selection determines the resistive load applied to the DUT output(s) when the PE
Driver tri-states, as:

where VZ and RL are programmable, VOL and VOH are actual DUT output voltages (under
load), and IOL and IOH are the load currents. As seen below, RL is selected from a discrete
set of values which makes selecting an exact RL value suitable to simultaneously obtain
both the desired IOL and IOH difficult.

VZ IOL VOH×() IOH VOL×()+
IOL IOH+

---=

RL VZ VOH–
IOH

--------------------------=

RL VZ VOL–
IOL

-------------------------=
 2/27/09 Pg-551

Pin Electronics Voltages/Currents
vz() optionally selects the load termination resistance, RL, for the pin(s) in Vz Mode . There
are 8 discrete RL values (±20%), see table below. The values in the table below include the
nominal 50Ω (30Ω-85Ω) resistance of the FET switch which connects the PTU to the
DUT:

Table 3.15.6.0-1 RL Values

RL
Nominal

Min
(-20%)

Max
(+20%)

Actual RL
(including 50Ω)

Min
(/w 30Ω)

Max
(/w 85Ω)

Select
Token

500K 400K 600K 500K 400K 600K VZRS1

125K 100K 150K 125K 100K 150K VZRS2

31.25K 25K 35.5K 31.3K 25030 37585 VZRS3

7.81K 6248 9372 7.86K 6278 9457 VZRS4

1.95K 1560 2340 2.0K 1590 2425 VZRS5

500 400 600 550 430 685 VZRS6

125 100 150 175 130 235 VZRS7

31 25 37.5 81 55 122.5 VZRS8

The effect of the series 50Ω was not included in the 2 largest RL values.
 2/27/09 Pg-552

Pin Electronics Voltages/Currents
The 8 discrete RL values can be combined (in parallel only) to obtain additional resistance
values. However, as shown in the graph below, many parallel combinations result in
effectively the same value. This graph does include the 50Ω FET switch resistance:

Figure-41: Parallel RL Values
When combining multiple RL resistors (in parallel only) the 50Ω (30-85 ohms) must be
added to the resulting parallel resistance calculation. Also, the PTU voltage limits and
maximum current the PTU can supply may constrain the use of some parallel RL
combinations.

The rl_bitmask_get() function can be used to obtain a bit-mask suitable for use as the
RlSelect argument to the vz() function. Using this function, the user specifies the desired
RL value and rl_bitmask_get() returns both the bit-mask which would result in the
closest available value and the resulting value.

Note the following:

• VZ is programmable per-pin.
• During initial program load VZ is set to 0V.
• During execution of the Sequence & Binning Table, user code determines the

value VZ.

73.43Ω

143.6Ω

423Ω

1514Ω

5930Ω

23.9KΩ

100000Ω

78.8

500000Ω

48.74Ω

113.11Ω
 2/27/09 Pg-553

Pin Electronics Voltages/Currents
• During initial program load RL is set to 500K. The system software does not
otherwise modify the RL selections.

• When a given pin’s PE driver mode is set to Vz Mode (see Magnum PE Driver
Modes) the last programmed RL value is selected.

• When Sequence & Binning Table execution stops, VZ is set to 0V via the
builtin_after_testing_block.

• VZ can be programmed from an executing test pattern. See Controlling PE Levels
from the Test Pattern.

Usage
The following function sets the VZ value for one pin. The value of RL is not modified:

void vz(double value, DutPin* pDutPin);

The following function sets the VZ value for one or more pin(s). The value of RL is not
modified:

void vz(double Value, PinList*pPinList);

The following function sets VZ and RL value for one pin:

void vz(double value, int rl_val, DutPin *dutpin);

The following function sets VZ and RL value for one or more pin(s):

void vz(double value, int rl_val, PinList* pinlist);

The following function gets the currently programmed VZ value for one pin:

double vz(DutPin* pDutPin);

where:

Value specifies the desired VZ value. Units may be used (see Specifying Units). Legal
values are shown below:

pDutPin (dutpin) is used in two contexts:

Table 3.15.6.0-2 VZ Level Range and Resolution

Parameter Range Resolution

VZ -1V to +7V 5mV
 2/27/09 Pg-554

Pin Electronics Voltages/Currents
• In the setter functions, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one pin to be read.
pPinList (pinlist) specifies which pin(s) are to be programmed. In Multi-DUT Test
Programs, only pins DUT(s) currently in the Active DUTs Set (ADS) are affected. The
specified pin list must only contains pins mapped to a signal pins in the Pin Assignment
Table.

rl_val is used to select the desired termination resistance, RL. rl_val is a bit-wise value
specified using one or more Select Token values shown in the RL Values table or using
rl_bitmask_get(). Combinations of resistance values are specified by OR’ing two or
more values together (see Example). The values 0 and >255 are illegal.

The vz() getter function returns the currently programmed value for one pin. In Multi-DUT
Test Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
The following example sets VZ to 1.8V on all pins in the data_bus pin list. Only pins of
DUT(s) in the Active DUTs Set (ADS) are affected. The value of RL is not modified:

vz(1.8 V, data_bus);

The following example returns the currently programmed VZ value for the D0 pin. The value
is retrieved from the first DUT in the Active DUTs Set (ADS):

double v = vz(D0);

The following example sets VZ to 1.8V on all pins in the data_bus pin list. The value of RL
is set to 1532Ω, which is the parallel combination of 4 resistance values taken from the RL
Values table. Only pins of DUT(s) in the Active DUTs Set (ADS) are affected:

vz(1.8 V, (VZRS1 | VZRS3 | VZRS4 | VZRS5), data_bus);

Or...

DWORD mask;
double closest = rl_bitmask_get(1532, &mask);
vz(1.8 V, mask, data_bus);
 2/27/09 Pg-555

Pin Electronics Voltages/Currents
3.15.7 rl_set(), rl_get()
See PTU, PE Driver, Magnum PE Driver Modes, PE Load Reference Voltage: VZ.

Description

The rl_set() function is used to select the termination resistance value, RL, for one or
more pins which are in Vz Mode (see Magnum PE Driver Modes).

The rl_get() function is used to get the bit-mask used to set the currently programmed
RL value for one pin. The current PE driver mode does not affect the value returned.

Note the following:

• Executing rl_set() has no immediate effect on pins which are not in Vz Mode.
However, when a given pin’s PE driver mode is set to Vz Mode (see Magnum PE
Driver Modes) the last programmed RL value is selected.

• Details about RL values and usage options are covered in PE Load Reference
Voltage: VZ.

• The vz() function can also be used to select the RL value for one or more pin(s).

Usage
The following function sets the RL value for one pin:

void rl_set(int value, DutPin * dutpin);

The following function sets the RL value for one or more pin(s):

void rl_set(int value, PinList* pinlist);

The following function gets the bit-mask used to set the currently programmed RL value for
one pin:

int rl_get(DutPin * dutpin);

where:

value is a bit-wise value used to select the desired termination resistance, RL. The value is
may be specified using one or more Select Token values from the RL Values table or
using rl_bitmask_get(). Combinations of resistance values are specified by OR’ing two
or more values together (see Example). The values 0 and >255 are illegal.

dutpin is used in two contexts:
 2/27/09 Pg-556

Pin Electronics Voltages/Currents
• In the setter function, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pin(s) of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter functions, identifies one pin to be read.
pinlist specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pin(s) of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pinlist must only contains pins mapped to signal pins in the Pin Assignment Table. Only
pins in Vz Mode are immediately affected, see Description.

rl_get() returns the bit-mask used to set the currently programmed RL value for the
specified pin. In Multi-DUT Test Programs, the value is retrieved from the first DUT in the
Active DUTs Set (ADS).

Example
The following example sets the value of RL to 1532Ω for all pins in the data_bus pin list.
1532Ω is the parallel combination of 4 resistance values taken from the RL Values table.
Only pins of DUT(s) in the Active DUTs Set (ADS) are affected:

rl_set((VZRS1 | VZRS3 | VZRS4 | VZRS5), data_bus);

Or...

DWORD mask;
double closest = rl_bitmask_get(1532, &mask);
rl_set(mask, data_bus);

The following example returns the bit-mask used to set the currently programmed RL value
for the D0 pin. The value is retrieved from the first DUT in the Active DUTs Set (ADS)

int rl = rl_get(D0);

3.15.8 rl_bitmask_get()
See PTU, PE Driver, Magnum PE Driver Modes, PE Load Reference Voltage: VZ.

Description
The rl_bitmask_get() function may be used to obtain a bitmask suitable for use as the
RlSelect argument to the vz() function and rl_set() function. This is the argument
 2/27/09 Pg-557

Pin Electronics Voltages/Currents
which determines the load termination resistance, RL, for the pin(s) in Vz Mode (see
Magnum PE Driver Modes).

Note the following:

• The 1st argument to rl_bitmask_get() specifies the desired RL resistance.
• rl_bitmask_get() then determines the closest obtainable value, considering the

256 possible RL values, see RL Values.
• The 2nd argument returns a bitmask representing this closest value. This argument

is suitable for use as the RlSelect argument to the vz() function and rl_set()
function.

• rl_bitmask_get() returns this (closest) value, allowing user code to compare
or calculate the difference between the desired value and the value represented
by the bitmask.

Usage
double rl_bitmask_get(double desired, DWORD * closest);

where:

desired specifies the desired RL value, in ohms.

closest is a pointer to an existing DWORD variable used to return a bitmask corresponding
to the RL value closest to desired.

rl_bitmask_get() returns the RL value represented by bitmask, in ohms.

Example
The following example obtains a bitmask representing the obtainable RL value nearest to
1000 ohms. The difference between 1000 ohms and this RL value is calculated and if OK
the bitmask is passed to vz() to enable this RL value on all pins in the myPL pin list.

DWORD bitmask;
double closest = rl_bitmask_get(1000, &bitmask);
double difference = closest - 1000;
if(difference == OK) // ... whatever OK is...

vz(1.85 V, bitmask, myPL);
 2/27/09 Pg-558

Pin Electronics Voltages/Currents
3.15.9 rl_ohms_get()
See PTU, PE Driver, Magnum PE Driver Modes.

Note: first available in software release h2.2.8/h1.2.8.

Description
The rl_ohms_get() function returns the current RL value for a specified pin, in ohms,
based on the pin’s current RL hardware configuration. See RL Values, PE Load Reference
Voltage: VZ, rl_set().

Note the following:

• The value returned is a calculation, based on the currently programmed RL
hardware configuration for the specified pin.

• As indicated elsewhere, there are 8 discrete RL values (±20%, see RL Values)
which may be selected individually or may be combined (in parallel only) to obtain
additional resistance values. An additional 50Ω (30Ω-85Ω) resistance is added to
the combined RL value. This represents the resistance of the FET switch which
connects the PTU to the DUT.

Usage

The following function returns the calculated RL value for one pin:

double rl_ohms_get(DutPin *pDutPin);

where:

dutpin identifies the pin to be read.

rl_ohms_get() returns the calculated RL value for dutpin. In Multi-DUT Test Programs,
the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example:

double r = rl_ohms_get(myPin);
 2/27/09 Pg-559

Pin Electronics Voltages/Currents
3.15.10 50-ohm Termination Voltage: VTT
See PTU, PE Driver, Magnum PE Driver Modes.

Description

The vtt() function is used to set or get the 50Ω PE Driver termination voltage, VTT.

Note the following:

• VTT is a per-pin parameter.
• During initial program load VTT is set to 0V.
• During execution of the Sequence & Binning Table, user code determines the

value VTT.
• When Sequence & Binning Table execution stops, VTT is set to 0V via the

builtin_after_testing_block.
• VTT can also be programmed from an executing test pattern. See Controlling PE

Levels from the Test Pattern.
The vtt() getter function is used to retrieve the currently programmed VTT voltage for one
specified pin.

Usage

The following function sets the VTT value all pins in the program:

void vtt(double value);

The following function sets the VTT value for one pin:

void vtt(double Value, DutPin *pDutPin);

The following function sets the VTT value for one or more pin(s):

void vtt(double Value, PinList* pPinList);

The following function returns the currently programmed VTT level for the specified pin:

double vtt(DutPin *pDutPin);

where:
 2/27/09 Pg-560

Pin Electronics Voltages/Currents
Value specifies the desired VTT value. Units may be used (see Specifying Units). Legal
values are shown below:

pDutPin is used in two contexts:

• In the setter function, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one pin to be read.
pPinList specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pins of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a signal pins in the Pin Assignment Table.

The vtt() getter function returns currently programmed value. In Multi-DUT Test
Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
vtt(1.5 V, pl_IOpins);
double v = vtt(D0);

3.15.11 pe_driver_mode_set(), pe_driver_mode_get()
See PTU, PE Driver, Magnum PE Driver Modes.

Description

The pe_driver_mode_set() function is used to set the PE driver mode for one or more
pin(s). See PE Driver and Magnum PE Driver Modes.

The pe_driver_mode_get() function may be used to get the current PE driver mode for
one pin.

Table 3.15.10.0-1 VTT Range & Resolution

Range Resolution

-1V to +7V 5mV
 2/27/09 Pg-561

Pin Electronics Voltages/Currents
Note: the pe_driver_mode_set() function will not affect pins which are not currently
connected. This is an issue when pe_driver_mode_set() is used in the Site
Begin Block. The system software automatically connects all PE pins in the Site
Begin Block, but this does not occur until after all user-code has been executed.
For this reason, it is recommended that pe_driver_mode_set() be executed
in a Before-testing Block or Test Block.

The PE Driver has four modes of operation:

• Vihh Mode
• Vz Mode
• Vtt Mode
• Dclk Mode

Details are described in Magnum PE Driver Modes.

During initial program load, all pins are set to Vz Mode. The system software does not
otherwise modify any PE driver modes.

Each pin of a given pin-pair (see Functional Pin-pairs) can be in a different PE driver mode.

Executing pe_driver_mode_get() in simulation mode always returns t_pe_nomode,
regardless of the mode set using pe_driver_mode_set().

Usage
The following function sets the PE driver mode for one pin:

void pe_driver_mode_set(PEDriverMode mode, DutPin * dutpin);

The following function sets the PE driver mode for one or more pin(s) :

void pe_driver_mode_set(PEDriverMode mode, PinList* pinlist);

The following function returns the current PE driver mode for one pin:

PEDriverMode pe_driver_mode_get(DutPin * dutpin);

where:

mode specifies the desired PE driver mode. Legal values are of the PEDriverMode
enumerated type. t_pe_nomode should not be used.

dutpin is used in two contexts:
 2/27/09 Pg-562

Pin Electronics Voltages/Currents
• In the setter function, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one pin to be read.
pinlist specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, the
pins of each DUT currently in the Active DUTs Set (ADS) are affected. The specified
pPinList must only contains pins mapped to a signal pins in the Pin Assignment Table

pe_driver_mode_get() returns the currently set PE driver mode for one pin. In Multi-
DUT Test Programs, the value is retrieved from the first DUT in the Active DUTs Set (ADS).

Example
pe_driver_mode_set(t_pe_vzmode, pl_IOpins);
PEDriverMode mode = pe_driver_mode_get(D0);

3.15.12 PE Connect/Disconnect Functions
See Pin Electronics (PE), Pin Electronics Voltages/Currents.

Description

Note: these functions operate quite differently on Maverick-I/-II vs. Magnum 1/2/2x:
more below.

Note: during initial program load, the system software automatically connects all used
digital pins (signal pins) at the end of the Site Begin Block execution (after all
user-code, if any, has executed). At the time this occurs all pin voltages have
previously been set = 0V.

Note: during Sequence & Binning Table execution, the system software automatically
connects all used digital pins (signal pins) during the execution of the
builtin_before_testing_block. This occurs before any user-written code
executes in a Before-testing Block (if any) or Test Block.
 2/27/09 Pg-563

Pin Electronics Voltages/Currents
The disconnect() function is used to effectively disconnect Pin Electronics (PE) circuitry
from the DUT pin. The word effectively is used because there is no physical relay or switch
between the PE driver/comparator and the DUT. Instead, executing disconnect() does
the following:

• The PE Driver is tri-stated.
• The PTU is disconnected. This disables the Vz/RL load or VIHH depending on the

current driver mode (see Magnum PE Driver Modes).

Note: the previous description also applies when the system software performs the
connect/disconnect operations as described below.

The pin_connect() function is used effectivly re-connect the Pin Electronics (PE) circuitry
to the DUT pin. This presumes the pin was previously disconnected using disconnect().
See above.

Note: when executing Static DC Tests and Dynamic DC Tests all PE channel
disconnect/connect operations are automatically controlled by the system
software; i.e. it is NOT necessary for user-code to use the functions
documented here except in very special situations.

PE connections are controlled as follows:

• The initial program load opens all PE connections to the DUT. See Note:.
• When the Sequence & Binning Table is executed the state of the PE Driver and

PTU are not changed by the system software; i.e. they are only effectively
connected when a test is executed which controls the underlying hardware. See
Note:.

• User-code can connect and/or disconnect PE channels using the functions
documented here (see Note:). Any connection changes made by user-code remain
in effect until execution of the Sequence & Binning Table stops (next).

• When Sequence & Binning Table execution ends and after execution of any
user-defined After-testing Block(s) the system software executes the
builtin_after_testing_block, which disconnects all used PE channels from
the DUT. See Note:.

• DPS, HV and PMU connections are NOT affected using the functions documented
here.
 2/27/09 Pg-564

Pin Electronics Voltages/Currents
Usage
The following function disconnects one specified PE channel:

void disconnect(DutPin *pDutPin);

The following function disconnects the specified PE channels:

void disconnect(PinList* pPinList);

The following function connects one specified PE channel:

void pin_connect(DutPin *pDutPin);

The following function connects the specified PE channels:

void pin_connect(PinList* pPinList);

The following function connects all PE channels used in the test program:

void pin_connect();

where:

dutpin is used in two contexts:

• Using pin_connect(), identifies one pin to be connected. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• Using disconnect(), identifies the pin to be disconnected. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

pPinList identifies which pin(s) are to be connected or disconnected. In Multi-DUT Test
Programs, the pins of each DUT currently in the Active DUTs Set (ADS) are affected. The
specified pPinList must only contains pins mapped to signal pins in the Pin Assignment
Table.

Example
The following example disconnects the PE channels identified by the pin list named
PL_address_high. Other code executes as desired. Then, all used PE channels are
connected.

disconnect(PL_address_high);
// Other test program code goes here as desired
pin_connect();
 2/27/09 Pg-565

Pin Electronics Voltages/Currents
 2/27/09 Pg-566

Pin Scramble Functions & Macros
3.16 Pin Scramble Functions & Macros
See Pin Scramble MUX, Software.

This section contains the following:

• Overview
• Pin Scramble Macros

• SCRAMBLE_32DUT Work-around
• Default Pin Scramble Map

3.16.1 Overview
See Pin Scramble Functions & Macros, Pin Scramble MUX.

In software, the Pin Scramble Macros documented in this section are used to define one or
more named Pin Scramble Table(s), each of which defines up to 64 Pin Scramble Map(s)
(PS1 to PS64). Each map identifies which test pattern data source is mapped to each timing
channel via the Pin Scramble MUX.

The Pin Scramble MUX allows the test pattern to control/change which pattern data source
is mapped to the Timing & Formatting logic of each timing channel in each pattern cycle.
This capability can greatly simplify test program and test pattern creation. For example,
when testing a serial memory, the APG will use one instruction to update the X/Y addresses,
data, and read/write state, and a series of following instructions (typically a pattern
subroutine) to sequence the individual bits of these addresses/data to one pin of the DUT. It
is the Pin Scramble MUX and Pin Scramble RAM which make this possible in hardware. It is
the Pin Scramble Macros which are used to define how this hardware is initialized. It is the
test pattern which controls the Pin Scramble MUX, cycle-by-cycle, for each timing channel.

As the test program is initially loaded, one Pin Scramble Table is selected and loaded. This
initializes the Pin Scramble RAM with 64 Pin Scramble Maps. All 64 maps are initially set to
the Default Pin Scramble Map. User code modifies these as necessary using the Pin
Scramble Macros.

During test pattern execution, in each pattern cycle, the APG outputs a pin scramble
selection (one of PS1 through PS64), which selects one map in the Pin Scramble RAM. The
output of the Pin Scramble RAM directs the Pin Scramble MUX to select the source of
 2/27/09 Pg-567

Pin Scramble Functions & Macros
pattern data, strobe control, and I/O control, independently for each of the 64 timing
channels, each of which drives 2 tester pins (see Functional Pin-pairs).

In the test pattern, the default pin scramble map selection is PS1. To explicitly select a pin
scramble map the PINFUNC PS# instruction is used (Memory Test Patterns) or the VEC/
RPT PS# and VPINFUNC PS# instruction is used (Logic Test Patterns).

Multiple Pin Scramble Tables can be defined in the test program, however only one can be
loaded (see Single Resource Types). If only one Pin Scramble Table is defined the system
software will automatically select it during test program initialization. When multiple tables
are defined two options are available:

• User code explicitly selects one Pin Scramble Table using the
USE_PIN_SCRAMBLE() macro. This is one of the Configuration Macros, and must
be used within a CONFIGURATION() or SITE_CONFIGURATION() block.

• When user code does not select a Pin Scramble Table the system software
automatically presents a selection dialog. Note, however, that this dialog is
presented for each Site, which is not very user friendly.

Given the name of a Pin Scramble Map, the PinScramble_find() function can be used
to get a pointer to a Pin Scramble Map.

Note: the error signals to the Error Catch RAM (ECR) are NOT affected (descrambled)
by the pin scramble MUX. There is only one, fixed, error line from each PE
channel to the Error Catch RAM.

3.16.2 Pin Scramble Macros
See Pin Scramble Functions & Macros, Pin Scramble MUX.

Description

The PIN_SCRAMBLE() macro is used to create a new Pin Scramble Table.

The SCRAMBLE_MAP()macro is used, within the body code of the PIN_SCRAMBLE()
macro, to select which which of the 64 Pin Scramble Maps is being defined.

The USE_PIN_SCRAMBLE() macro is used to select one Pin Scramble Table, by name,
when multiple tables have been defined. This is one of the Configuration Macros, and must
be used within a CONFIGURATION() block:
 2/27/09 Pg-568

Pin Scramble Functions & Macros
The INCLUDE_PIN_SCRAMBLE() macro is used to insert an existing [partial] Pin Scramble
Table into a new table being defined. This is an optional method, allowing reuse of a [partial]
Pin Scramble Table defined separately.

The EXTERN_PIN_SCRAMBLE() macro is used to make a forward or external declaration.

The remaining macros described in Usage below are used to actually specify the mapping of
pattern data source to tester pins.

Within the body of the SCRAMBLE_MAP macro, the SCRAMBLE or SCRAMBLE2 macro is used,
once for each DUT pin, to specify the source of pattern data, in that map. The SCRAMBLE2
macro is used in Double Data Rate (DDR) Mode applications (see DDR Pin Scramble).

The TesterFunc enunerated type defines the legal values used to specify the data source
arguments to all versions of the SCRAMBLE macros. All of the APG data sources (t_cs1 ,
t_x0, t_y1, etc.) are always valid because the APG is not an option. The t_scan and
t_lvm data sources are only valid if the tester has the optional Logic Vector Memory (LVM)/
Scan Vector Memory (SVM) option installed.

Note: the TesterFunc enumerated type includes values for both Maverick-I/-II and
Magnum 1/2/2x applications. Using Maverick-I/-II, only t_scan1..t_scan4 are
valid. Using Magnum 1/2/2x, only t_scan is valid. Do not use
t_scan1..t_scan4 in Magnum 1/2/2x programs. Do not use t_scan in
Maverick-I/-II programs.

Using Magnum 1/2/2x Scan Test Patterns, pin(s) which appear in a SCANDEF Compiler
Directive will be scrambled to t_scan even though the user’s pin scramble definition
explicitly maps the pin(s) to t_lvm. Conversely, if these same pin(s) are scrambled to APG
resources (t_x0, t_y1, etc.) they operate as expected (although this is not good practice).
In general, pins which are to be controlled by the scan pattern should be explicitly scrambled
to t_scan; to ensure the test pattern and the pin scramble map agree and don’t confuse the
less knowledgeable user.

Using Magnum 1/2/2x, a number of pattern independent options are available:

• t_drive_low

• t_drive_high

• t_strobe_low

• t_strobe_high

• t_strobe_valid

• t_strobe_mid
 2/27/09 Pg-569

Pin Scramble Functions & Macros
• t_tri_state

These operate much like any APG/LVM/Scan pattern source except that they are fixed i.e.
independent of APG/LVM/Scan data. These options only determine what operation will be
performed on the pin(s), the programmed edge timing operates normally.

Using Magnum 1/2/2x, if the test program is a non-Multi-DUT Test Program, only the
SCRAMBLE or SCRAMBLE2 MACROs can be used. In Magnum 1/2/2x Multi-DUT Test
Programs, only the SCRAMBLEn_xxx MACROs can be used, as described below.

Within the body of the SCRAMBLE_MAP macro, one of the SCRAMBLEn_xDUT macros is
used, once for each DutPin, to specify the source of pattern data for that DutPin, for each
DUT, in that map. Which macro is used (SCRAMBLE_1DUT vs. SCRAMBLE_2DUT, and
SCRAMBLE2_1DUT vs. SCRAMBLE2_2DUT, etc.) is determined by two considerations:

• How many DUT(s) the test program is designed to test (xxx_1DUT, xxx_2DUT,
etc.). See Pin Assignment Table. This is required because it is possible to assign a
different pattern data source to a given DutPin for each DUT, in a given map, thus
the number of parameters passed to the macro is dependent on how many DUT(s)
are being tested. Note that the set of macros does not support testing an odd
number of DUTs (except for testing one DUT).

• Whether a single data rate or Double Data Rate (DDR) Mode Pin Scramble Map is
being defined (SCRAMBLE_xxx vs. SCRAMBLE2_xxx, etc.).

For example, when defining a single data rate Pin Scramble Map used to test 4 DUTs, the
SCRAMBLE_4DUT macro is used:

// DutPin t_dut1 t_dut2 t_dut3 t_dut4
SCRAMBLE_4DUT(D0, t_d0, t_d0, t_d0, t_d0)
SCRAMBLE_4DUT(A9, t_a9, t_a9, t_a9, t_a9)
// Etc.

Note the following:

• This macro takes 1 DutPin argument (as do all of the SCRAMBLEn_xDUT
MACROs), and 4 pattern data source arguments, listed in the order of t_dut1,
t_dut2, t_dut3, and t_dut4. The name of the MACRO determines the number
of DUTs being tested thus the number of arguments.
 2/27/09 Pg-570

Pin Scramble Functions & Macros
In Multi-DUT Test Programs, the TesterFunc value specified for DUTs which share
Functional Pin-pairs must be identical. For example:

Note: prior to software release h1.1.23 this rule was not enforced by the system
software and no warnings were issued. Beginning in software release h1.1.23 it
is a fatal error to violate this rule.

Again, for any DUTs which share Functional Pin-pairs, the TesterFunc values must be
identical for all pins of the pair. See next item.

It may sometimes be necessary, in a Multi-DUT Test Program, that a specific device type
which, for the most part, can be tested using Functional Pin-pairs, requires independent
timing and/or pattern stimulus for a few pin(s).

To do this requires changes to the Pin Assignment Table because two DutPins must be
defined for each of these pins, and two ASSIGN_xxxDUT statements must be used to
specify connections (note the use of a_na, b_na, etc. in the examples below). Then, in the
Pin Scramble Table, two statements are used to assign the pattern data source to each
DutPin. For example:

In this example, the DUT actually has only one Cs pin but because all 4 DUTs need
independent timing and/or test pattern control for this pin two DutPins are defined in the Pin
Assignment Table, with tester channels only assigned to 1 DUT in each statement. Then,
when defining the Pin Sramble Map, the 4 DutPins will be specified separately and the

// DutPin t_dut1 t_dut2 t_dut3 t_dut4
SCRAMBLE_4DUT(Cs, t_cs1, t_cs1, t_cs1, t_cs1)
... or ...
SCRAMBLE_4DUT(Cs, t_cs3, t_cs3, t_cs2, t_cs2)

DUT_PIN(Cs_a)
DUT_PIN(Cs_b)
//....
// DutPin t_dut1 t_dut2 t_dut3 t_dut4
ASSIGN_4DUT(Cs_a, a_11, b_na, a_23, b_na)
ASSIGN_4DUT(Cs_b, a_na, a_3, a_na, a_32)
//....
SCRAMBLE_4DUT(Cs_a, t_cs1, t_cs2, t_cs3, t_cs4)
SCRAMBLE_4DUT(Cs_b, t_cs1, t_cs2, t_cs3, t_cs4)

Pin Assignment Table code

Pin Scramble Map code
 2/27/09 Pg-571

Pin Scramble Functions & Macros
values specified for the other DUTs are not actually used (on pins which had . a_na, b_na,
etc. in the Pin Assignment Table). Above, in each SCRAMBLE_4DUT statement, only the pins
circled in magenta actually use the values assigned.

Other rules:

• In each Pin Scramble Table, any Pin Scramble Map(s) which are not explicitly
initialized in the user’s test program are set to the Default Pin Scramble Map.

• When user-code partially defines a given Pin Scramble Map, DutPins which are
not explicitly defined are implicitly set = t_y15 (Maverick-I/-II) or t_tri_state
(Magnum 1/2/2x).

Usage
The following macro is used to create a new Pin Scramble Table, with the specified name:

PIN_SCRAMBLE(name)

The following macro is used to select one Pin Scramble Table (by name) to be used when
multiple tables have been defined. This is one of the Configuration Macros, and must be
used within a CONFIGURATION() block:

USE_PIN_SCRAMBLE(name)

The following macro is used to insert an existing [partial] Pin Scramble Table, by name, into
the table being defined. This is an optional method, allowing reuse of a [partial] Pin
Scramble Table defined separately.

INCLUDE_PIN_SCRAMBLE(name)

The following macro is used to declare as external a specified Pin Scramble Table, by name:

EXTERN_PIN_SCRAMBLE(name)

The following macro is used to identify which of the 64 Pin Scramble Maps is being defined.
This macro must be used within the body of the PIN_SCRAMBLE() macro. Legal values for
map_num are of the PSNumber enumerated type (PS1 through PS64). Any Pin Scramble
Map(s) which are not explicitly defined are set to the Default Pin Scramble Map:

SCRAMBLE_MAP(map_num)

The following macro is used to insert an existing [partial] Pin Scramble Map into the map
being defined. Legal values for map_num are of the PSNumber enumerated type (PS1, PS2,
etc.). This is an optional method, allowing reuse of a [partial] Pin Scramble Map defined
elsewhere:

INCLUDE_SCRAMBLE_MAP(map_num)
 2/27/09 Pg-572

Pin Scramble Functions & Macros
The following macro is used to assign a pattern data source to one DutPin in a single data
rate Pin Scramble Map(s). Using Magnum 1/2/2x, this assigns the same pattern source to
the specified DutPin all for all DUTs defined in the Pin Assignment Table:

SCRAMBLE(pin, TesterFunc data_source)

The following macro is used to assign two pattern data sources to one DutPin in a Double
Data Rate (DDR) Mode Pin Scramble Map. Using Magnum 1/2/2x, this assigns the same
pattern sources to the specified DutPin all for all DUTs defined in the Pin Assignment Table.
See DDR Pin Scramble:

SCRAMBLE2(pin,
TesterFunc data_source_A_cycle,
TesterFunc data_source_B_cycle)

The following macros are used in Magnum 1/2/2x Multi-DUT Test Programs to assign a
pattern data source to one DutPin for each DUT in a single data rate Pin Scramble Map. The
name of the specific macro used must match the number of DUT(s) the program is testing,
as defined in the Pin Assignment Table. Additional rules apply, see Description:

SCRAMBLE_1DUT(pin, f1)

SCRAMBLE_2DUT(pin, f1, f2)

SCRAMBLE_4DUT(pin, f1, f2, f3, f4)

SCRAMBLE_6DUT(pin, f1, f2, f3, f4, f5, f6)

... snip ...

SCRAMBLE_32DUT(pin,
f1, f2, f3, f4, f5, f6, f7, f8,
f9, f10, f11, f12, f13, f14, f15, f16,
f17, f18, f19, f20, f21, f22, f23, f24,
f25, f26, f27, f28, f29, f30, f31, f32)

Note: after Double Data Rate (DDR) Mode support was added, which modified the
SCRAMBLE_32DUT and SCRAMBLE2_32DUT macros, it was discovered that
Developer Studio limits the number of arguments to a given macro. Violating
this rule is fatal, making these two macros unusable. See SCRAMBLE_32DUT
Work-around.

The following macros are used in Magnum 1/2/2x Multi-DUT Test Programs to assign two
pattern data sources to one DutPin for each DUT in a Double Data Rate (DDR) Mode Pin
Scramble Map. Additional rules apply, see Description:

Do not use SCRAMBLE_32DUT, see Note: and
SCRAMBLE_32DUT Work-around.
 2/27/09 Pg-573

Pin Scramble Functions & Macros
SCRAMBLE2_1DUT(pin, f1a, f1b)

SCRAMBLE2_2DUT(pin, f1a, f1b, f2a, f2b)

SCRAMBLE2_4DUT(pin,
f1a, f1b, f2a, f2b, f3a, f3b, f4a, f4b)

SCRAMBLE2_6DUT(pin,
f1a, f1b, f2a, f2b, f3a, f3b, f4a, f4b,
f5a, f5b, f6a, f6b)

... snip ...

SCRAMBLE2_32DUT(pin,
f1a, f1b, f2a, f2b, f3a, f3b, f4a, f4b,
f5a, f5b, f6a, f6b, f7a, f7b, f8a, f8b,
f9a, f9b, f10a, f10b, f11a, f11b, f12a, f12b,
f13a, f13b, f14a, f14b, f15a, f15b, f16a, f16b,
f17a, f17b, f18a, f18b, f19a, f19b, f20a, f20b,
f21a, f21b, f22a, f22b, f23a, f23b, f24a, f24b,
f25a, f25b, f26a, f26b, f27a, f27b, f28a, f28b,
f29a, f29b, f30a, f30b, f31a, f31b, f32a, f32b)

where:

pin identifies one DUT DutPin for which the Pin Scramble is being defined.

data_source specifies the desired pattern data source. Legal values are of the
TesterFunc enunerated type, however some values are only valid if the tester being used
has the corresponding hardware option installed. See Description and Note:..

data_source_A_cycle and data_source_B_cycle specify two data sources for the
specified pin. This option applies to Double Data Rate (DDR) Mode applications. Legal
values are of the TesterFunc enunerated type, however some values are only valid if the
tester being used has the corresponding hardware option installed. See Description.

f1, f2, etc. specify a pattern data source for the specified pin for each DUT in a Multi-DUT
Test Program. f1 = data source for DUT1, f7 = data source for DUT7, etc. Legal values are
of the TesterFunc enunerated type, however some values are only valid if the tester being
used has the corresponding hardware option installed. See Description. Additional rules
apply, see Description.

f1a, f1b, etc. represent two data sources to be selected for the DUT corresponding to the
parameter number. f1a = A-cycle data source for DUT1, f7b = B-cyle data source for
DUT7, etc. This form is used in Double Data Rate (DDR) Mode applications. Legal values
are of the TesterFunc enunerated type, however some values are only valid if the tester

Do not use SCRAMBLE2_32DUT, see Note: and
SCRAMBLE_32DUT Work-around.
 2/27/09 Pg-574

Pin Scramble Functions & Macros
being used has the corresponding hardware option installed. See Description. Additional
rules apply, see Description.

Example

Example 1:
The following example shows a Pin Scramble Map for a small memory device: Using
Magnum 1/2/2x, this is only valid in a non-Multi-DUT Test Program:

PIN_SCRAMBLE(soic_20_pin) {
SCRAMBLE_MAP(PS1) {

SCRAMBLE(A0, t_x0)
SCRAMBLE(A1, t_x1)
SCRAMBLE(A2, t_x2)
SCRAMBLE(A3, t_y0)
SCRAMBLE(A4, t_y1)
SCRAMBLE(D0, t_d0)
SCRAMBLE(D1, t_d1)
SCRAMBLE(D2, t_d2)
SCRAMBLE(D3, t_d3)
SCRAMBLE(WE, t_cs1)
SCRAMBLE(OE, t_cs2)
SCRAMBLE(CS, t_cs3)

}
}

In this example, there is only one user-defined Pin Scramble Map (PS1) in this Pin Scramble
Table (soic_20_pin).This has the following significance:

• The other 63 Pin Scramble Maps are initialized to the Default Pin Scramble Map.
• Any test pattern instructions which do not include an explicit Pin Scramble Map

selections will use the default = PS1.
• This example DUT has six address pins, four data pins, and three chip selects.

The user names previously assigned to these pins in the Pin Assignment Table are
A0 through A5, D0 through D3, and WE, OE, and CS.

• All of the pattern data sources are from the APG, thus no optional hardware is
used.
 2/27/09 Pg-575

Pin Scramble Functions & Macros
Example 2:
The following example configures two different Pin Scramble Maps (PS1, PS2) to multiplex
address and data on the same set of DUT pins of a fictitious memory device. Using Magnum
1/2/2x, this is only valid in a non-Multi-DUT Test Program:

PIN_SCRAMBLE(sort_scramble) {
SCRAMBLE_MAP(PS1) { // Map for address input cycle

SCRAMBLE(AD0, t_x0)
SCRAMBLE(AD1, t_x1)
SCRAMBLE(AD2, t_x2)
SCRAMBLE(AD3, t_x3)
SCRAMBLE(AD4, t_x4)
SCRAMBLE(AD5, t_y0)
SCRAMBLE(AD6, t_y1)
SCRAMBLE(AD7, t_y2)
SCRAMBLE(CLK, t_cs1)
SCRAMBLE(Control, t_cs2)
SCRAMBLE(CS, t_cs3)

}

SCRAMBLE_MAP(PS2) {// Map for data read or write cycle
SCRAMBLE(AD0, t_d0)
SCRAMBLE(AD1, t_d1)
SCRAMBLE(AD2, t_d2)
SCRAMBLE(AD3, t_d3)
SCRAMBLE(AD4, t_d4)
SCRAMBLE(AD5, t_d5)
SCRAMBLE(AD6, t_d6)
SCRAMBLE(AD7, t_d7)
SCRAMBLE(CLK, t_cs1)
SCRAMBLE(Control, t_cs2)
SCRAMBLE(CS, t_cs3)

}
}

Note the following:

• The user-defined names for the multiplexed address/data pins are AD0 through
AD7.

• The first Pin Scramble Map (PS1) is used to send an address to the DUT. In the
test pattern, when PS1 is selected, the X/Y APG Address Generator outputs
indicated are the pattern data source for the AD0 through AD7 pins.
 2/27/09 Pg-576

Pin Scramble Functions & Macros
• The second Pin Scramble Map (PS2) is used to read (strobe) data from the DUT
or to write data to the DUT. When PS2 is selected, X/Y APG Data Generator
outputs indicated are the pattern data source for the AD0 through AD7 pins. A
data read cycle versus a data write cycle is determined by the chip select, I/O, and
strobe states as specified in the test pattern.

• The pattern data source for the three chip selects are the same in both Pin
Scramble Maps, indicating that their DUT functions are always the same.

Example 3:
The following example demonstrates the definition of one Pin Scramble Table, named
PS_table_1, which includes two local Pin Scramble Map definitions (PS1 and PS64), and
includes the contents of a separately defined Pin Scramble Table. Because the
SCRAMBLE_1DUT macro is used, this program is a Multi-DUT Test Program, even though
only 1 DUT is being tested:

PIN_SCRAMBLE(PS_table_1) {
SCRAMBLE_MAP(PS1) {

SCRAMBLE_1DUT(D0, t_d0)
SCRAMBLE_1DUT(A9, t_x1)
...
SCRAMBLE_1DUT(WriteEnable, t_cs1)

}
// ... other maps as desired ...
INCLUDE_PIN_SCRAMBLE(other_PS_table_name) // Optional
// ... other maps as desired ...
SCRAMBLE_MAP(PS64) {

SCRAMBLE_1DUT(D0, t_d0)
SCRAMBLE_1DUT(A9, t_x1)
...
SCRAMBLE_1DUT(WriteEnable, t_cs1)

}
}

3.16.2.1 SCRAMBLE_32DUT Work-around
See Pin Scramble Macros, Pin Scramble Functions & Macros.
 2/27/09 Pg-577

Pin Scramble Functions & Macros
After the DDR versions of SCRAMBLE_32DUT and SCRAMBLE2_32DUT were implemented it
was discovered that Developer Studio limits the number of arguments to a given macro and
that violating this rule is fatal i.e. these macros cannot be used.

The work-around to this limitation expands the underlying code represented by the macro.
Rather than use the most complex version for all applications several scenarios are
presented below. In each example, the macro being replaced is shown commented-out:

Example 1:
The following example assigns the same data source to pinX for all 32 DUTs. This actually
works correctly for any number of DUTs, to scramble the same data source to a given pin of
all DUTs in the program; i.e. the work-around is not needed:

PIN_SCRAMBLE(PS_table_1) {
 SCRAMBLE_MAP(PS10) {

// SCRAMBLE_32DUT(pinX, t_d0, t_d0, ... snip..., t_d0)
// SCRAMBLE_32DUT(pinY, t_cs1, t_cs1, ... snip..., t_cs1)
// Replace the previous with...
SCRAMBLE(pinX, t_d0);
SCRAMBLE(pinY, t_cs1);

 }
}

Example 2:
The following example maps a different APG data bit to the data_pin of each Functional
Pin-pair of 32 DUTs:

// SCRAMBLE_32DUT(data_pin,t_d0,t_d0,t_d1,t_d1, ...snip...,t_d15)

static void Fill(TesterFuncArray &ary, TesterFunc *func, int cnt){
for (int i = 0; i < cnt; ++i)

ary.Add(func[i]);
}

#define NUM_DUTS 32
PIN_SCRAMBLE(PS_table_1) {
 SCRAMBLE_MAP(PS10) {

TesterFunc funcs[NUM_DUTS] = {
t_d0, t_d0, t_d1, t_d1, t_d2, t_d2, t_d3, t_d3,
t_d4, t_d4, t_d5, t_d5, t_d6, t_d6, t_d7, t_d7,
t_d8, t_d8, t_d9, t_d9, t_d10, t_d10, t_d11, t_d11,
t_d12, t_d12, t_d13, t_d13, t_d14, t_d14, t_d15, t_d15

};
 2/27/09 Pg-578

Pin Scramble Functions & Macros
TesterFuncArray array;
Fill(array, funcs, sizeof funcs / sizeof *funcs);
EXTERN_DUT_PIN(data_pin);
_scramble(obj, data_pin, array, array);
}

 }
}

Example 3:
The following DDR example assigns a different data source for DDR-A cycles vs. DDR-B
cycles to the DutPin named data_pin. The same 2 data sources (t_d0 ,t_d32) are
mapped identically to the data_pin of all DUTs (which guarantees that the same data
source is mapped to both pins of each Functional Pin-pair in data_pin). Note that the obj
argument to _scramble() is automatically defined and initialized by the SCRAMBLE_MAP
macro (in this example it represents PS10):

#define NUM_DUTS 32
PIN_SCRAMBLE(PS_table_1) {
 SCRAMBLE_MAP(PS10) {

TesterFuncArray ps_A, ps_B;

// The following code is duplicated/modified for each DUT pin
// using this method
for (int i = 0; i < NUM_DUTS; ++i){

ps_A.Add(t_d0);
ps_B.Add(t_d32);

}
EXTERN_DUT_PIN(data_pin)
_scramble(obj, data_pin, ps_A, ps_B);
ps_A.RemoveAll(); // To re-use ps_A for next pin
ps_B.RemoveAll(); // To re-use ps_B for next pin

 }
}

3.16.3 Default Pin Scramble Map
See Pin Scramble Macros.

During the initial test program load, all 64 locations (all 64 Pin Scramble Maps) in the Pin
Scramble RAM are set to the default Pin Scramble Map shown below. This means that any
 2/27/09 Pg-579

Pin Scramble Functions & Macros
Pin Scramble Map which is not subsequenly re-configured by user code (using Pin
Scramble Macros) will retain these default Pin Scramble Map values.

Note that when user-code partially defines a given Pin Scramble Map that pins which are not
explicitly defined are implicitly set = t_y15 (Maverick-I/-II) or t_tri_state (Magnum 1/2/
2x).

In the default Pin Scramble Map, only APG resources are selected; e.g. to use Logic Test
Patterns or Scan Test Patterns requires that one or more user-defined Pin Scramble Map(s)
be defined.

Table 3.16.3.0-1 Default Pin Scramble Pin Selections

Pin# Function Pin# Function Pin# Function Pin# Function

a_1
b_1 t_x0 a_17

b_17 t_y0 a_33
b_33 t_d0 a_49

b_49 t_d16

a_2
b_2 t_x1 a_18

b_18 t_y1 a_34
b_34 t_d1 a_50

b_50 t_d17

a_3
b_3 t_x2 a_19

b_19 t_y2 a_35
b_35 t_d2 a_51

b_51 t_d18

a_4
b_4 t_x3 a_20

b_20 t_y3 a_36
b_36 t_d3 a_52

b_52 t_d19

a_5
b_5 t_x4 a_21

b_21 t_y4 a_37
b_37 t_d4 a_53

b_53 t_d20

a_6
b_6 t_x5 a_22

b_22 t_y5 a_38
b_38 t_d5 a_54

b_54 t_d21

a_7
b_7 t_x6 a_23

b_23 t_y6 a_39
b_39 t_d6 a_55

b_55 t_d22

a_8
b_8 t_x7 a_24

b_24 t_y7 a_40
b_40 t_d7 a_56

b_56 t_d23

a_9
b_9 t_x8 a_25

b_25 t_y8 a_41
b_41 t_d8 a_57

b_57 t_d24

a_10
b_10 t_x9 a_26

b_26 t_y9 a_42
b_42 t_d9 a_58

b_58 t_d25

a_11
b_11 t_x10 a_27

b_27 t_y10 a_43
b_43 t_d10 a_59

b_59 t_d26
 2/27/09 Pg-580

Pin Scramble Functions & Macros
As indicated, using Magnum 1/2, the corresponding pin of each pin-pair (see Functional Pin-
pairs) shares the same pattern data source.

a_12
b_12 t_x11 a_28

b_28 t_cs3 a_44
b_44 t_d11 a_60

b_60 t_d27

a_13
b_13 t_x12 a_29

b_29 t_cs4 a_45
b_45 t_d12 a_61

b_61 t_d28

a_14
b_14 t_x13 a_30

b_30 t_cs5 a_46
b_46 t_d13 a_62

b_62 t_d29

a_15
b_15 t_cs1 a_31

b_31 t_cs6 a_47
b_47 t_d14 a_63

b_63 t_d30

a_16
b_16 t_cs2 a_32

b_32 t_cs7 a_48
b_48 t_d15 a_64

b_64 t_d31

Table 3.16.3.0-1 Default Pin Scramble Pin Selections (Continued)

Pin# Function Pin# Function Pin# Function Pin# Function
 2/27/09 Pg-581

VIHH Maps
3.17 VIHH Maps
See PE Driver, Vihh ModePin Electronics Voltages/Currents, VIHH Voltage.

Overview
During functional test execution, the PE Driver circuit has the following drive states:

• Drive-0 = VIL voltage, set using the vil() function
• Drive-1 = VIH voltage, set using the vih() function
• Drive-VIHH = VIHH voltage, set using the vihh() function
• Drive-VZ = VZ voltage, set using the vz() function
• Drive-VTT = VTT voltage, set using the vtt() function.
• Tri-state (un-terminated)

Using Magnum 1, only one of VIHH or VZ or VTT is usable at any given time, see Magnum
PE Driver Modes. The information below applies only to pin(s) which are in Vihh Mode at the
time a test pattern is executed.

In this section the term VIHH refers to the voltage level and Vihh to the logic signal used to
select this level during test pattern execution (more below).

VIHH is typically a high voltage level (higher than VIH) although this is not required. VIHH is
typically used to force the DUT into a special test mode or as special programming stimulus
for some memory devices.

To use VIHH requires the following:

• Program the desired VIHH level(s), using the vihh() function. Since VIHH is
supplied by a pin’s Per-pin Parametric Test Unit (PTU) this also sets the operating
range and output termination, see vihh().

• Define one or more VIHH map(s). Each map identifies which pin(s) will react to the
Vihh enable signal from the test pattern when that map is selected. VIHH maps
are defined in sets, using the VIHH Map Macros. Up to 63 VIHH Maps may be
defined (more below). By default, all maps are set to disable the Vihh signal on all
pins.

• Select a non-default VIHH Map in the test pattern, per-cycle. This enables or
disables the Vihh signal to each pin, per-cycle. The default disables Vihh to all
pins. In each test pattern, every pattern instruction selects one of the 64 VIHH
Maps (VIHH1 to VIHH64, default = VIHH1, which disables VIHH on all pins and
 2/27/09 Pg-582

VIHH Maps
can’t be modified by user code). In the pattern, a VIHH map is selected using the
PINFUNC VIHH# instruction (Memory Test Patterns) or VEC/RPT VIHH# and
VPINFUNC VIHH# instructions (Logic Test Patterns).

• The user must design the test pattern to enable the desired VIHH Map(s) for
enough time (cycles) to ensure the VIHH level has time to slew to the desired
voltage level (more below).

• During pattern execution, the VIHH level may be dynamically disabled using Over-
programming Controls and Parallel Test, a specialized hardware facility used
typically when programming multiple programmable DUTs in parallel. This topic is
not covered further in this section, see Over-programming Controls and Parallel
Test.

Using Magnum 1/2/2x, the VIHH voltage level can be programmed independently per-pin.

The following diagram is used to explain how VIHH operates:

Note the following:

AA

B B

A

B

A

B

A

B

Pa

Pb

VIHH1 VIHH2 VIHH3 VIHH4 VIHH1

D
U
T

PATTERN(myPAT)

% MAR INC

% PINFUNC VIHH1
MAR INC

% PINFUNC VIHH2
MAR INC

% PINFUNC VIHH3
MAR INC

% PINFUNC VIHH4
MAR INC

% MAR DONE

PATTERN(myLpat)

% VEC HL10X

% VEC HL10X, VIHH1

% VEC HL10X, VIHH2

% VEC HL10X, VIHH3

% VEC HL10X, VIHH4

% VEC HL10X
VAR DONE

Default VIHH1 = AB

Explicit VIHH1 = AB

Explicit VIHH2 = AB

Explicit VIHH3 = AB

Explicit VIHH4 = AB

Default VIHH1 = AB

Memory Test Patterns Logic Test Patterns

VIHH Level
VIL/VIH or

Tri-state Level
 2/27/09 Pg-583

VIHH Maps
• The example needs 3 pin lists:
- pl_Pa_only : contains one pin = Pa
- pl_Pb_only : contains one pin = Pb
- pl_Pab : contains two pins = Pa and Pb

• The example needs 3 user-defined VIHH Maps:
VIHH_MAP(myVIHHmaps){ // See VIHH_MAP()

VIHH_ACTIVE(VIHH2, pl_Pa_only) \\ See VIHH_ACTIVE()
VIHH_ACTIVE(VIHH3, pl_Pab)
VIHH_ACTIVE(VIHH4, pl_Pb_only)

}

• Two test pattern examples are shown in the diagram. They only include those
instructions needed to control VIHH Map selection and increment to the next
pattern instruction.

• The test pattern examples do NOT account for any VIHH voltage slew time,
typically seen as repeated (or looped) instructions with a given VIHH map
selected.

• In the first pattern instruction, VIHH1 is selected by default. VIHH1 does not
enable the Vihh signal to any pins.

• In the 2nd pattern instruction, VIHH1 is selected explicitly (for example). VIHH1
does not enable the Vihh signal to any pins.

• In the 3rd pattern instruction, VIHH2 is explicitly selected. This sends the Vihh
signal to pins in the pin list names pl_Pa_only; i.e. one pin = Pa.

• In the 4th pattern instruction, VIHH3 is explicitly selected. This sends the Vihh
signal to pins in the pin list names pl_Pab; i.e. two pins = Pa and Pb.

• In the 5th pattern instruction, VIHH4 is explicitly selected. This sends the Vihh
signal to pins in the pin list names pl_Pb_only; i.e. one pin = Pb.

• In the last pattern instruction VIHH1 is selected again, by default. VIHH1 does not
enable the Vihh signal to any pins.

• In the waveforms, the VIHH level is represented in green. The pin level when
VIHH is not enabled is determined by the normal PE Driver operation; i.e. drive-0
(VIL), drive-1 (VIH) or tri-state.

• The Vihh signal changes state at 0nS (T0) in a given cycle. This is not
programmable.

• Logic Test Patterns may also use the VPINFUNC VIHH# instructions to control VIHH
Map selection (not shown in the example).
 2/27/09 Pg-584

VIHH Maps
Note: any PE Driver on which Vihh is enabled will drive to the VIHH level, regardless
of the state of normal drive or I/O control signal from the Pattern and Timing
System (provided the pin is in Vihh Mode, see Magnum PE Driver Modes).
When Vihh is not activated via a VIHH map, the PE Driver drives or tri-states
under normal test pattern control.

3.17.1 Types, Enums, etc.
See Software, VIHH Maps, VIHH Map Macros.

Description
The following enumerated types are used by the VIHH Map Macros to define VIHH Maps,
and in test pattern VIHH Map selection:

Usage
The VihhNumber enumerated type is used to identify VIHH Maps:

enum VihhNumber { VIHH1, VIHH2, VIHH3, VIHH4,
... snip ...
VIHH61, VIHH62, VIHH63, VIHH64, VIHH_na

};

3.17.2 VIHH Map Macros
See PE Driver, VIHH Maps.

Description
The Test System Macros documented in this section are used to create one or more named
sets of VIHH Maps. Note the following:

• A set of VIHH Maps is created using the VIHH_MAP() macro.
 2/27/09 Pg-585

VIHH Maps
• Within the body-code of the VIHH_MAP() macro, up to 63 VIHH Map(s) may be
defined using the VIHH_ACTIVE() macro. VIHH maps are identified as VIHH2
through VIHH64 (VIHH1 cannot be modified and thus can’t be used in the
VIHH_ACTIVE() macro).

• Within the body-code of the VIHH_MAP() macro, the INCLUDE_VIHH_MAP()
macro may be used to include an existing [partial] set of VIHH Maps to define the
set currently being defined.

• Multiple sets of VIHH Maps can be defined in the test program, however only one
can be loaded (see Single Resource Types). If only one set is defined the system
software will automatically select it during test program initialization. When multiple
sets are defined two options are available: User codemay explicitly select one set
of VIHH maps using the USE_VIHH_MAP macro. This is one of the Configuration
Macros and must be used within a CONFIGURATION() block. When user-code
does not select a set of VIHH Maps the system software automatically presents a
selection dialog. Note, however, that this dialog is presented for each Site, which is
not very user friendly.

• The EXTERN_VIHH_MAP() macro can be used to make a forward or external
declaration.

Usage
The following macro creates a named set of VIHH Map(s):

VIHH_MAP(name)

The following macro is used to add one VIHH map to the set being defined:

VIHH_ACTIVE(VihhNumber VihhNum, PinList* pPinList)

The following macro allows the inclusion of an existing [partial] set of VIHH map(s) in the
definition of the set being defined. This is an optional method, allowing reuse of a [partial] set
of VIHH maps defined separately:

INCLUDE_VIHH_MAP(name)

The following macro is used to explicitly select one set of VIHH maps, by name. This must
be used within a CONFIGURATION() block (see Configuration Macros):

USE_VIHH_MAP(name)

where:

name identifies a set of VIHH Maps. Must be a valid C identifier.
 2/27/09 Pg-586

VIHH Maps
VihhNum identifies the VIHH map being defined. Legal values are of the VihhNumber
enumerated type, but VIHH1 cannot be used.

pinlist identifies the pin(s) which will receive the Vihh enable signal when the VIHH map
being defined is selected in the test pattern. pinlist must only contain signal pins.

Examples
The following example defines one VIHH Map in a set named simple_vihh_set. All pins
in the pin list named special_pins will be set to the VIHH level in any pattern cycles
which select the VIHH2 VIHH map:

VIHH_MAP(simple_vihh_set) {
VIHH_ACTIVE(VIHH2, special_pins)

}

The following example supports a DUT with three special test modes, each activated by
VIHH on a different set of pins. The set of VIHH maps is named vihh_modes. The three pin
lists were named after the special test modes they activate and are called
block_prog_mode, erase_mode, and id_prog_mode. To block-program this DUT the
test pattern will select VIHH2, causing the block_prog_mode pins to receive the VIHH
level. Likewise, a VIHH3 enables VIHH on the erase_mode pins, etc.:

VIHH_MAP(vihh_modes) {
VIHH_ACTIVE(VIHH2, block_prog_mode);
VIHH_ACTIVE(VIHH3, erase_mode);
VIHH_ACTIVE(VIHH4, id_prog_mode);

}

 2/27/09 Pg-587

Timing and Formatting Functions
3.18 Timing and Formatting Functions
See Timing & Formatting.

This section includes the following main topics:

• Overview
• Magnum Timing Rules
• Time-sets (TSET)
• Types, Enums, etc.
• Timing Generator Modes
• Cycle Time Functions
• Timing Formats

- Supported Timing Formats
- Window Strobe, Edge Strobe Modes
- Drive Format vs. Strobe Format Selection
- APG Chip Select Drive Format Selection
- I/O Timing and Control
- Double Clock Mode

• Programming Timing & Formats
- settime()
- setedge(), getedge()
- Per-edge Functions: Drive/Strobe
- Per-edge Functions: I/O Edges
- getformat()

• Timing Examples
Also see MUX, Super-MUX and DDR.

3.18.1 Overview
See Timing & Formatting, Timing and Formatting Functions.

The following topics cover basic information about Magnum timing operation:

• Magnum Timing Rules
• Time-sets (TSET)
 2/27/09 Pg-588

Timing and Formatting Functions
The software commonly used to access the Magnum timing system consists of only a few
functions:

• cycle() - set or get the cycle period for one time-set. Executed multiple times for
multiple time-sets.

• edge_strobe() - set the per-pin strobe mode (window vs. edge) for specified
pin(s).

• settime() - program the drive, strobe and I/O edge times for one or more timing
channels for one time-set. Each timing channel serves a pin-pair, see Functional
Pin-pairs. Typically executed multiple times, for different pins, multiple time-sets, to
program drive vs. strobe vs. I/O edge times.

• tgmode() - set or get the global timing generator mode. See Timing Generator
Modes.

Additional timing related functions are available for specialized applications. These are used
much less commonly:

• setedge(), getedge() - set or get the edge time value for one timing edge, for
one time-set. A more generic solution, used instead of the Per-edge Functions:
Drive/Strobe and Per-edge Functions: I/O Edges (below).

• Per-edge Functions: Drive/Strobe - set or get an edge time value for one drive or
strobe edge number, for one time-set:
- setedge1() getedge1()
- setedge2() getedge2()
- setedge3() getedge3()
- setedge4() getedge4()

• Per-edge Functions: I/O Edges - set or get an I/O edge time value, for one time-
set:
- setioedge1() getioedge1()
- setioedge2() getioedge2()

• getformat() - used to read-back the drive format of one specified pin in a
specified time-set.
 2/27/09 Pg-589

Timing and Formatting Functions
Each tester channel has 4 timing generators, each with a specific purpose:

Table 3.18.1.0-1 Magnum Timing Generators

Timing
Generator Purpose Format Edges

TG-A

NRZ Edge-12

RTO/RTZ Edge-12

RTC Edge-1

DCLK Edge-1
(DCLKPOS shown)

STROBE Start

TG-B

RTO/RTZ Edge-22

RTC Edge-2

DCLK Edge-2
(DCLKPOS shown)

STROBE Stop*

* The Strobe Stop edge is not used in edge strobe
mode, see Window Strobe, Edge Strobe Modes.

Notes
1) Double Clock is a special static pin mode in which TGs are used in a configuration
 which is quite different than all other formats. See Double Clock Mode.
2) NRZ timing applies to chip selects set to CSnT and CSnF. RTO/RTZ timing applies to
 CSnPT and CSnPF.

RTC Edge-1

NRZ Edge-1

RTZ

RTO

Edge-1

Edge-1

DCLK Edge-1

Strobe
Strobe
Start Edge-1

RTC

RTZ

RTO

DCLK

Strobe Edge-2

Edge-2

Edge-2

Edge-2

Edge-2

Strobe
Stop
 2/27/09 Pg-590

Timing and Formatting Functions
3.18.2 Magnum Timing Rules
See Timing and Formatting Functions, Overview.

As in all ATE systems, trade-offs exist between cost, features and performance. The
Magnum timing capabilities are best described as follows:

• When using a single time-set, actual timing matches programmed timing.
• When using multiple time-sets, timing for one time-set is as-programmed, with

timing in the other time-set(s) less accurate, but predictable.

TG-C

I/O Drive*

I/O Tri-state*

DCLK Edge-3
(DCLKPOS shown) * Both I/O Drive and I/O Tri-state can both be

generated by TG-C and TG-D. See Timing
Generator Modes and I/O Timing and Control

TG-D

I/O Drive*

I/O Tri-state*

DCLK Edge-4
(DCLKPOS shown) * Both I/O Drive and I/O Tri-state can both be

generated by TG-C and TG-D. See Timing
Generator Modes and I/O Timing and Control

Table 3.18.1.0-1 Magnum Timing Generators

Timing
Generator Purpose Format Edges

Notes
1) Double Clock is a special static pin mode in which TGs are used in a configuration
 which is quite different than all other formats. See Double Clock Mode.
2) NRZ timing applies to chip selects set to CSnT and CSnF. RTO/RTZ timing applies to
 CSnPT and CSnPF.

I/O Drive

I/O Tri-state

DCLK Edge-3

Edge-1

Edge-1

I/O Drive

DCLK

I/O Tri-state

Edge-4

Edge-2

Edge-2
 2/27/09 Pg-591

Timing and Formatting Functions
• Each of the 64 timing channels on a Site Assembly Board drives two PE channels
(A/B, see Functional Pin-pairs). This means that (at least) two DUTs can be tested
concurrently (in parallel) receiving the same functional AC test stimulus on each
pin of both DUTs.

The Magnum timing rules are defined below.

1. The System Clock has a 100MHz Oscillator reference, which is the basis for all
functional timing: cycle period(s), edge times, etc. This is called the .
However, as noted next, and except as referenced in rule-6., the master clock is further
multiplied 10x before being used.

2. In use, when calculating cycle period values and edge timing values, the Master Clock is
effectively multiplied by 10, to provide a 1nS clock reference. Subsequent cycle period
values and (digital) edge timing values are derived by counting this 1nS clock (more
below). For documentation purposes, this effective system source is called the

(10x clock source).

3. Cycle periods are generated by counting from 20 to 10230 X-clocks. This provides a
cycle period range of 20nS to 10.23uS, in 1nS increments.

4. Any time a cycle period is programmed (see cycle()) all cycle period count values (all
time-sets) are re-calculated. For performance reasons, this is not done until just before a
functional pattern is executed (funtest()) or a timing getter function is executed (i.e.
getedge(), etc.).

5. For all cycle period(s) programmed in increments of 1nS the actual cycle period value
will match the programmed value. For other values the actual value will be the next
lower 1nS increment from the programmed value.

6. If the cycle period which sets the Master Clock is short enough to use only 2 master
clock cycles then no other cycle periods (in other time sets) may be shorter.

7. Each Magnum timing channel has 4 independent timing generators used to generate the
drive, strobe, and I/O edge timing used during functional tests. See Timing Generator
Block Diagram.

8. The settime() function is used to program edge timing and formats. Each settime()
execution programs the edge time(s) of one format (drive, strobe, or I/O) for one or more
pin(s), in one time-set. For example, the following statements program all of the possible
formats for a given set of pins (myPins) for time-set 2 (TSET2):

Master Clock

X-clock
 2/27/09 Pg-592

Timing and Formatting Functions
settime(TSET2, myPins, RTZ, 0 NS, 10 NS);
settime(TSET2, myPins, STROBE, 13 NS, 20 NS);
settime(TSET2, myPins, IODRIVE, 0 NS, 0 NS);
settime(TSET2, myPins, IOSTROBE, 0 NS, 0 NS);

Note: each timing channel drives two PE channels (one pin-pair, see Functional Pin-
pairs and Magnum Pattern & Timing System). When settime() is executed,
the pin list argument is used to identify which timing channel(s) are to be
programmed, as follows:

A given timing channel is identified if any pins (or both pins) of a pin-pair are
included in the pin list.

This timing channel is then programmed only once, even if both pins in the pin
pair are included in the pin list.

9. Edge placement range is from 0nS (T0) to the earlier of:

• The (cycle period X 2) - 100pS
• 10.2uS - 100pS = 10.999pS

10. In hardware, edge timing generation has two components:

• Digital value: controlled by the individual timing generators, in increments of
X-clock (1nS clock). Each timing generator generates a timed edge by counting 0 to
10199 X-clocks. These values are programmable per-format (drive, strobe and I/O)
and per-time-set.

• Analog value: controlled by the timing verniers, which provide a 1nS range with
100pS resolution. Each timing channel has one set of verniers each for drive vs.
strobe vs. I/O formats i.e. vernier values do not change per-time-set.

Thus, on a given pin, for a given format, the last time-set programmed will be set with
100pS resolution. Edges in the other time-sets will use the same vernier value (per-
format) thus a difference may exist between the programmed value and the actual value.
 2/27/09 Pg-593

Timing and Formatting Functions
11. The digital value and vernier value for the timing edge which sets the vernier is
calculated as:

Count = (int) (Programmed_Time / X-clock)
DigitalVal = (Count * X-clock)
Vernier = (Programmed_Time - DigitalVal)

For example, a programmed edge time of 35.5nS results in:

Count = (int) (35.5nS / 1nS) = 35
DigitalVal = (35 * 1nS) = 35nS
Vernier = (35.5nS - 35.0nS) = 0.5nS (500pS)

12.The most recent settime() execution which sets a given format (for a given pin) also
sets the vernier for that format. Since only one vernier value exists for a given format
edge (per pin) it affects all edges of the same format on the pin, in all time-sets.
The digital value and actual value for the timing edge which does not set the vernier is
calculated as:

Count = (int) (Programmed_Time / X-clock)
DigitalVal = (Count * X-clock)
ActualVal = (DigitalVal + Vernier)
Error = (Programmed_Time - ActualVal)

The following table shows this using several edge time values and the vernier value
(500pS) calculated above. In this example, the edge which set the vernier was
programmed in time-set 2 (TSET2):

When multiple time sets are used (timing on-the-fly), the difference between
programmed and actual edge times is zero only when the edge times are specified in
((multiples of the X-clock) + vernier) or ((programmed edge - vernier) % X-clock) == 0.

Sets
Vernier?

Time
Set

Prog.
Time Count

Count*
X-clock

Add
Vernier

Actual
Time Error

1 11.3nS 11 11.0nS 500pS 11.5nS 200pS

Yes 2 35.5nS 35 35.0nS 500pS 35.500nS 0nS

3 22.0nS 22 22.0nS 500pS 22.5nS 500pS

4 34.4nS 34 34.0nS 500pS 34.5nS 100pS

5 0.0nS 0 0nS 500pS 500pS 500pS

...
 2/27/09 Pg-594

Timing and Formatting Functions
When this rule is violated the difference between the programmed edge time and actual
edge time is dependent on the vernier value. The worse case difference is 1nS.

13.The return-to-complement (RTC) format sets the drive verniers differently than for other
drive formats. The following diagram describes how the drive verniers are set for each of
the different drive formats. Remember, for a given pin, the last drive format programmed
sets both the drive-high and drive-low vernier for that pin:

14.The minimum drive pulse-width is 4nS.
The minimum window strobe width is 5nS.

15.The minimum time from the end of one strobe to the start of the next strobe is 5nS.

16.The minimum time from the start of one strobe to the start of the next strobe depends
upon the strobe type:

• Edge Strobe = 5nS
• Window Strobe = 12nS (2 * 5nS)

17.The Strobe Stop edge is not used in edge strobe mode, see Window Strobe, Edge
Strobe Modes.

18.Using Magnum, the timing generator mode is set to 3, ignoring any Timing Generator
Modes set using tgmode(). In effect (and for those who have Maverick-I/-II experience)

NRZ

Edge-2Edge1

RTO

RTZ

RTC

NRZ: both the drive-high and the
drive-low verniers are set by the
edge-1 timing value.

RTO: the drive-low vernier is set by
the edge-1 timing value, the drive-
high vernier is set by the edge-2
timing value.

RTZ: the drive-high vernier is set by
the edge-1 timing value, the drive-
low vernier is set by the edge-2
timing value.

RTC: both the drive-high and the
drive-low verniers are set by the
edge-1 timing value i.e. edge-2’s
timing inherits the vernier value
(100pS resolution) set by edge-1’s
timing value.
 2/27/09 Pg-595

Timing and Formatting Functions
this means that Double Data Rate (DDR) Mode and Double Clock Mode are always
usable.

19.Drive and I/O timing edges can be intentionally disabled (i.e., prevent a given edge
generator from firing) by programming an edge time to -1. Edge time getter functions will
return -1 for any disabled edge. Note that -1 is an indicator (flag) not a usable timing
value, thus any user code computations performed using values returned from timing
getter functions (getedge(), getedge1(), etc.) must explicitly handle -1 uniquely from
all other returned timing values. When setting edge times the system software will treat
any negative edge time value as -1.

Note: it is critical that -1 NOT be used to disable strobe edges. Doing so causes
improper strobe operation and invalid test results.

Note: early Maverick-I/-II test programs may have disabled timing edges using a time
value of 10220, 10230, or 10240 (nS). This is not supported using Magnum.

3.18.3 Time-sets (TSET)
See Timing and Formatting Functions, Magnum Timing Rules.

The Magnum architecture supports 32 time-sets (TSETs). This means the user can define
32 complete sets of timing, each consisting of:

• A cycle period value. See cycle().
• A drive format and associated edge times for each pin-pair. See settime().
• Strobe timing for each pin-pair. See settime().
• I/O timing for each pin-pair. I/O timing is independently programmable for drive

cycles vs. tri-state cycles. See settime().
During functional test execution, the test pattern selects, on a cycle-by-cycle basis
(on-the-fly), one time-set per pattern instruction. This allows the parameters noted above to
change, on a cycle-by-cycle basis, as the pattern executes.
 2/27/09 Pg-596

Timing and Formatting Functions
Note: waveform timing and formats are closely linked, so they are programmed
together using the settime() function. When the documentation discusses
time-sets, format sets are also implied.

As noted above, during pattern execution, a time-set is selected in each tester cycle, based
on explicit pattern statements or, if not explicitly specified, the default time-set (TSET1) is
used. Timing sets are formally named TSET1 through TSET32.

In the test pattern a time-set is selected using the PINFUNC TSET# instruction (Memory Test
Patterns) or VEC TS# and VPINFUNC TSET# instructions (Logic Test Patterns,). In Mixed
Memory/Logic Patterns, default operation uses the time-set selection from the memory
instruction (MAR Engine), but the logic instruction selection (VAR Engine) can be enabled,
per cycle, using the PINFUNC VTSET instruction.

In Scan Test Patterns the time-set is selected using the same syntax as logic patterns.

3.18.4 Types, Enums, etc.
See Timing and Formatting Functions.

Description
The following enumerated types are used in support of various timing related software
functions:

Usage
The TSETNumber enumerated type is used to specify a time-set when programming edge
times, cycle periods, and to select a time-set in the test patterns:

enum TSETNumber { TSET1, TSET2, TSET3, TSET4,
TSET5, TSET6, TSET7, TSET8,
TSET9, TSET10, TSET11, TSET12,
SET13, TSET14, TSET15, TSET16,
TSET17, TSET18, TSET19, TSET20,
TSET21, TSET22, TSET23, TSET24,
TSET25, TSET26, TSET27, TSET28,
TSET29, TSET30, TSET31, TSET32,
TSET_na };
 2/27/09 Pg-597

Timing and Formatting Functions
The EdgeTypes enumerated type is used to identify one edge type when setting or getting
individual timing values:

enum EdgeTypes { t_drive_edges,
t_strobe_edges,
t_IO_drive_edges,
t_IO_strobe_edges };

The TimeOption enumerated type is used when getting a currently programmed time
value, to specify whether a programmed value or the actual value is returned. See
cycle(), setedge(), getedge():

enum TimeOption{ t_actual, t_programmed };

The TGFormat enumerated type is used to specify a timing format when programming edge
times. See Timing Formats, Programming Timing & Formats, settime(), DDR Timing.
Note that SBC is not usable on Magnum:

enum TGFormat {NRZ, RTO, RTZ, SBC, RTC, STROBE, IODRIVE, IOSTROBE,
DCLKPOS, DCLKNEG, DDR_DRIVE, DDR_STROBE,
DDR_IODRIVE, DDR_IOSTROBE };

3.18.5 Timing Generator Modes
See Timing and Formatting Functions, Magnum Timing Rules.

Description

The tgmode() function is used to set or get the global timing generator mode.

Note: using Magnum, the system software sets the timing generator mode (TG mode)
to 3 and ignores other mode values set using tgmode(). This function remains
documented to aid migration of Maverick-I/-II test programs to Magnum.

Usage
The following function sets the global TG mode (see Note:):

BOOL tgmode(int mode);
 2/27/09 Pg-598

Timing and Formatting Functions
The following function returns the currently set TG mode:

int tgmode();

where:

mode specifies the desired TG mode. See Note:.

The getter version of tgmode() returns the currently programmed TG mode.

The setter version of tgmode() returns TRUE if the TG mode sets correctly, or FALSE if an
error occurs (incorrect hardware revision level, etc.). However, this is a fatal error, unloading
the test program.

Examples
BOOL ok = tgmode(3);

if(!ok) output("ERROR setting TG mode");
output("The current TG mode => %d", tgmode());

3.18.6 Cycle Time Functions
See Timing and Formatting Functions.

Description

The cycle() function is used to set or get the cycle period for one time-set.

Note: this section describes the most basic timing rules related to cycle period
operation. For additional details, see Magnum Timing Rules.

A unique cycle period value can be programmed for each of the 32 available Time-sets
(TSET). Note the following:

• During the initial program load, the cycle period in all time-sets are set to 100nS.
The system software does not otherwise change any cycle period values.

• The cycle time can be programmed between 20nS to 10.2uS, in 1nS increments
(see X-clock).

• Attempting to program a cycle period less than the minimum legal value or greater
than the maximum legal value will generate a warning message and leave the
cycle period unchanged.
 2/27/09 Pg-599

Timing and Formatting Functions
• As in all test systems, inherent hardware capabilities make it possible to program
waveform edge times and cycle period values which cannot be exactly generated
by the hardware. Hardware resolution and related timing rules are common
reasons that programmed values are not exactly the same as actual hardware
values. Detailed operation is described in Magnum Timing Rules.

• The system software stores both the programmed and actual timing values. By
default, all of the timing getter functions return the actual value generated by the
hardware. The TimeValueType argument may be used to cause the cycle()
getter function to return the programmed cycle period value.

Note: executing the cycle() function while a test pattern is actively looping (see
Patterns That Loop Forever and start_pattern()) can cause unpredictable
side effects. Do NOT do it.

Usage
The following function sets the cycle time for the specified TSET:

void cycle(TSETNumber TSET, double Value);

The following function gets the current actual cycle time for the specified TSET:

double cycle(TSETNumber TSET);

The following function gets the current cycle time for the specified TSET. The
TimeValueType argument determines whether the programmed or actual cycle time is
returned (see Description):

double cycle(TSETNumber TSET, TimeOption TimeValueType);

where:

TSET identifies the time-set being programmed. Legal values are of the TSETNumber
enumerated type.

Value specifies the desired cycle period. Units may be used (see Specifying Units).

TimeValueType specifies whether the programmed value (t_programmed) or the actual
value (t_actual) is returned. Legal values must be one of the TimeOption enumerated
type. The default = t_actual.

The cycle() getter functions return the currently programmed cycle period for the
specified time-set.
 2/27/09 Pg-600

Timing and Formatting Functions
Examples
The following example sets the cycle period for TSET1 to 500nS:

cycle(TSET1, 500 NS);

The following example sets the cycle period for TSET2 to 66.6nS:

cycle(TSET2, 66.66 NS);

The following example gets both the programmed and actual cycle period value for TSET2.
Both values are output plus the difference:

double progval = cycle(TSET2, t_programmed);
double actval = cycle(TSET2, t_actual);
output(" Programmed TSET2 cycle period => %0.0f pS", progval);
output(" Actual TSET2 cycle period => %0.0f pS", actval);
output(" Difference => %0.0f pS", progval - actval);

3.18.7 Timing Formats
See Timing and Formatting Functions.

• Supported Timing Formats
• Drive Format vs. Strobe Format Selection
• APG Chip Select Drive Format Selection
• Window Strobe, Edge Strobe Modes
• I/O Timing and Control
• Double Clock Mode

3.18.7.1 Supported Timing Formats
See Timing and Formatting Functions, Timing Formats.
 2/27/09 Pg-601

Timing and Formatting Functions
The following timing formats are available independently on each pin-pair (see Functional
Pin-pairs), on-the-fly. A drive format AND a strobe, AND I/O timing are each independently
programmable, on every pin-pair, in each time-set:

Table 3.18.7.1-1 Timing Formats

Format Format & Timing Edges

NRZ
Non-return-to-zero

Drive format
NRZ timing applies to chip selects set to CSnT and CSnF.

RTZ
Return-to-zero
Drive format

RTZ timing applies to chip selects set to CSnPT and CSnPF.

RTO
Return-to-one
Drive format

RTO timing applies to chip selects set to CSnPT and CSnPF.

RTC
Return-to-complement

Drive format

DCLKPOS
Double Clock Positive

Drive format
See Double Clock Mode

DCLKNEG
Double Clock Negative

Drive format
See Double Clock Mode

NRZ Prior state Pattern Data
Edge-1

Prior state
Edge-1 Edge-2

Pattern Data Drive LowRTZ

Prior state
Edge-1 Edge-2

Pattern Data Drive HighRTO

Edge-1 Edge-2
DataPrior state DataRTC

Drive 0Pattern Data Pattern DataDCLKPOS Drive 0

Edge-1

Drive 1Pattern Data Pattern DataDCLKNEG Drive 1

Edge-2 Edge-3 Edge-4
 2/27/09 Pg-602

Timing and Formatting Functions
The operation of the drive formats are further illustrated below. Two tester cycles, called
Cycle B and Cycle C, are shown. Cycle A is intentionally not shown. For each format
type, each potential transition is shown. Each transition is labeled with the corresponding
pattern data used to control that transition. The labels are based on the pattern cycle from
which the data originated (A, B, or C) or, when not controlled from the pattern, an explicit
logical one or logical zero is shown.

STROBE
Strobe format

Note: the Strobe Stop edge is not used with edge strobes,
see edge_strobe() and Window Strobe, Edge Strobe
Modes.

IODRIVE
I/O format

IOSTROBE
I/O format

Table 3.18.7.1-1 Timing Formats

Format Format & Timing Edges

Strobe Start Strobe Stop
Edge-1 Edge-2

IODRIVE Drive-on Tri-state
Edge-1 Edge-2

IOSTROBE
Drive-on

Edge-1 Edge-2

Tri-state

NRZ
T0 Edge-2Edge1 Edge1

Cycle B Cycle C
T0

Data B

RTC Data A Data B Data B Data B Data C Data C

RTO Data A Data B Logic 1 Data C Logic 1

RTZ Data A Data B Logic 0 Data C Logic 0

Edge-2

Data A Data C
 2/27/09 Pg-603

Timing and Formatting Functions
In these diagrams, the conventional RTO and RTZ waveform shapes are not readily visible.
This is because it is the pattern data which determines whether a RTO or RTZ pulse actually
occurs and the pin’s prior logic state also affects whether a pulse is actually seen. For both
RTO and RTZ, the second edge is not controlled by pattern data; i.e. they are explicitly logic
1 (RTO = return to logic 1) or logic 0 (RTZ = return to logic 0).

3.18.7.2 Window Strobe, Edge Strobe Modes
See Timing and Formatting Functions, Timing Formats.

Description

The edge_strobe() function is used to set or get the strobe mode for one or more pin-
pairs (see Functional Pin-pairs). Note the following:

• The hardware design supports both window and edge strobes, on a per-pin-pair
basis.

• A window strobe has a non-zero width; i.e. the strobe is active for a window of
time. An edge strobe is effectively a zero-width strobe.

• The strobe mode for all pins is set to window mode during initial program load.
The system software does not otherwise change the mode.

• The mode cannot be changed during pattern execution but can be changed
between pattern executions.

Usage
The following function sets the strobe mode for one or more pins:

void edge_strobe(PinList* pPinList, BOOL State);

void edge_strobe(DutPin *pDutPin, BOOL State);

The following function gets the current strobe mode for one pin:

BOOL edge_strobe(DutPin *pDutPin);

where:

pPinList identifies one or more pin(s) to be programmed. In Multi-DUT Test Programs
only the pin(s) of DUT(s) in the Active DUTs Set (ADS) are affected.

State specifies whether the strobe mode is edge strobe (TRUE) or window strobe (FALSE).
 2/27/09 Pg-604

Timing and Formatting Functions
pDutPin is used in two contexts:

• In the setter function, identifies one pin to be programmed. In Multi-DUT Test
Programs the same pin of all DUT(s) in the Active DUTs Set (ADS) are
programmed.

• In the getter function, specifies one pin to be read. In Multi-DUT Test Programs the
value is read from the first DUT in the Active DUTs Set (ADS).

The getter version of edge_strobe() returns TRUE if the currently programmed strobe
mode is edge strobe for the specified pDutPin, otherwise FALSE is returned.

Example
edge_strobe(data_bus, TRUE);
BOOL mode = edge_strobe(D1);

3.18.7.3 Drive Format vs. Strobe Format Selection
See Timing and Formatting Functions, Timing Formats.

During pattern execution, on a cycle-by-cycle and per-timing channel basis, the selection of
drive format vs. strobe format is controlled from the test pattern. This is independent of
time-set switching, and the pattern syntax used is different for Memory Test Patterns vs.
Logic Test Patterns.

Note: each timing channel serves two pins i.e. a pin-pair. See Functional Pin-pairs.
The software is programmed per-pin, but both pins of a pin-pair are affected
when either pin is programmed.

In Logic Test Patterns, the Logic Vector Bit Codes specified for each timing channel controls
drive vs. strobe format selection. The H, L, or X tokens select the strobe format (and tri-state
the pin), and 1 or 0 tokens select the drive format and cause the pin to drive. As indicated,
these tokens also determine I/O Timing and Control.

In Memory Test Patterns, the use of the MAR READ, READV, READZ or READUDATA
instructions cause a strobe format to be selected, but only on those timing channels which
are scrambled to the APG Data Generator outputs (t_d35..t_d0) in the Pin Scramble
Map selected in a given pattern instruction. On these same timing channels the PINFUNC
ADHIZ instruction separately controls I/O switching, but has no effect on drive vs. strobe
format selection.
 2/27/09 Pg-605

Timing and Formatting Functions
Also in Memory Test Patterns, two of the Chip Select data sources (t_cs1 and t_cs2) have
tri-state and strobe capability (t_cs3 through t_cs8 are permanently set to drive). For
timing channels which are scrambled to t_cs1 and t_cs2, the drive vs. strobe format
selection is controlled using the CHIPS CSmRDT or CSmRDF instructions. Any pattern
instructions which use these instructions cause the strobe format to be selected (and the
pin-pairs to tri-state), otherwise the drive format is selected. See below for tri-state control
information.

3.18.7.4 APG Chip Select Drive Format Selection
See Timing and Formatting Functions, Timing Formats.

In Memory Test Patterns, both the drive format (NRZ vs. RTO/RTZ, etc.) and format polarity
(RTO vs. RTZ) of the 8 chip selects signals (t_cs1 through t_cs2) are actually controlled
from the test pattern, overriding the format using settime(). For example, the following
code specifies that a return-to-one (RTO) format is to be applied to the WE_pin in pattern
cycles selecting time-set TSET1:

settime (TSET1, WE_pin, RTO, 5 NS, 20 NS);

In reality, the test pattern CHIPS instruction(s) determines whether a given chip select
(WE_pin in this example) drives statically TRUE (CSnT) or FALSE (CSnF), or pulses TRUE
(CSnPT) or pulses FALSE (CSnPF).

The polarity of TRUE and FALSE is specified in the test program using
cs_active_high(), which must be executed BEFORE test patterns are loaded.

The edge times specified using settime() do control when the drive edge transitions
occur. And, it is good programming practice to set the drive format (RTO vs. RTZ) to match
the active polarity of the pin being set up; i.e. if the WE_pin is active low it is good practice to
specify RTO as the timing format in the settime() statement.

3.18.7.5 I/O Timing and Control
See Timing and Formatting Functions, Timing Formats.

This section describes how functional test I/O switching is controlled.
 2/27/09 Pg-606

Timing and Formatting Functions
Note: the information below applies to non-DDR I/O timing. For Double Data Rate
(DDR) Mode operation, see DDR I/O Timing.

Each time-set can program drive and strobe and I/O timing for each timing channel

Note: each timing channel serves two pins i.e. a pin-pair. See Functional Pin-pairs. The
software is programmed per-pin, but both pins of a pin-pair are affected when
either pin is programmed.

• Two I/O timing formats are available: IODRIVE and IOSTROBE. These are
programmable per- timing channel, just like drive formats and strobe formats. All
other information below applies independently per-timing channel.

• IODRIVE timing edges occur only in drive cycles. IOSTROBE timing edges occur
only in tri-state cycles.

• Pins which are scrambled to the APG Data Generator (see Pin Scramble Maps) will
tri-state in pattern cycles which include the PINFUNC ADHIZ instruction (Memory
Test Patterns). These pins will drive in pattern cycles which don’t explicitly include
this instruction. Note that the adhiz() function is not supported using Magnum..

• Pins which are scrambled to APG Chip Selects 1 or 2 (t_cs1 & t_cs2) will
tri-state in pattern cycles which include the CHIPS CSmHIZ, CSmRDT or CSmRDF
instructions (Memory Test Patterns). These pins will drive in pattern cycles which
explicitly include these instructions.

• Pins which are scrambled to the APG Chip Selects 3 through 8 (t_cs3 .. t_cs8)
will always drive.

• Pins which are scrambled to the APG Address Generator will always drive.
• Pins which are scrambled to Logic Vector Memory (LVM) or Scan Vector Memory

(SVM) will tri-state in pattern cycles which use L/H/Z/V/X on those pins (Logic Test
Patterns and Scan Test Patterns). These pins will drive in pattern cycles which use
0/1 (see Logic Vector Bit Codes).

• The following functions can over-ride test pattern tri-state/drive control:
tri_state(), drive_only(), and io_enable().

• An IODRIVE edge causes the pin to drive the previous driven logic state. Any
intervening strobe or tri-state cycles have no effect on the previous logic state
driven.
 2/27/09 Pg-607

Timing and Formatting Functions
• The default I/O timing is the same for all TG modes:
- In drive cycles, drive-on at T0 (0nS), disable the tri-state edge
- In tri-state cycles, tri-state at T0 (0nS), disable the drive-on edge
This is important when IOSTROBE is explicitly programmed and IODRIVE is not, or
vice versa.

• In hardware, I/O timing is controlled by TG-C and TG-D (see Overview). TG-C and
TG-D each effectively have an independent vernier. This means that IOSTROBE
timing values have no effect on IODRIVE timing values, and vice versa. And,
IODRIVE vs. IOSTROBE are calibrated independently.

• IODRIVE and IOSTROBE timing edges can be disabled by programming the time
value to -1. For example:

settime (TSET1, pins, IODRIVE, 10 NS, -1);

Note that disabling both edges of IODRIVE or IOSTROBE will disable all drive-on
edges and all tri-state edges until timing is reprogrammed. This will likely not be
useful (i.e. bad).

Several I/O timing examples are included below, with annotations of important features.

Example 1:
edge_strobe(pins, FALSE); // See edge_strobe()
cycle(TSET1, 100 NS);
settime(TSET1, pins, NRZ , 20 NS);
settime(TSET1, pins, IODRIVE, 10 NS, 60 NS);
settime(TSET1, pins, STROBE, 30 NS, 50 NS);
settime(TSET1, pins, IOSTROBE, 20 NS, 70 NS);

This timing diagram shows 3 tester cycles, each containing the drive, strobe, and I/O control
edges programmed in the code example above. Referring to the letter annotations, note the
following:

A

T0 100nS
T0

T0
100nS

100nS
T0

B C

10nS
20nS

60nS

D

Drive Cycle

30nS 50nS

E F G

70nS

H

Strobe Cycle Drive Cycle

J K L

10nS
20nS

60nS
20nS

Cycle 1 Cycle 2 Cycle 3
 2/27/09 Pg-608

Timing and Formatting Functions
• In cycle-1, region A has indeterminate I/O state until the first IODRIVE edge
occurs at 10nS.

• In cycle-1, during region B the pin is driving, but since this is the first cycle of the
pattern the logic state is indeterminate until the programmed NRZ edge occurs at
20nS.

• Region C represents the valid drive data set by the NRZ edge which occurred at
20nS. This region ends when the pin is tri-stated by the second IODRIVE edge
programmed at 60nS.

• The region described by D-H represents the time the pin remains tri-stated. The
pin drives again when the second IOSTROBE edge programmed at 70nS in the
strobe cycle occurs (edge H).

• In the strobe cycle the first IOSTROBE edge is programmed to tri-state the pin at
20nS. This is shown in gray (edge E) because the pin is already tri-stated from
cycle-1.

• In the strobe cycle a window strobe is generated, starting at 30nS (edge F) and
ending at 50nS (edge G).

• In the strobe cycle, the second IOSTROBE edge causes the pin to drive at 70nS
(edge H). The logic state driven is the previous drive logic state from an earlier
tester cycle (cycle-1 in this example). The region described by H-K represents the
time this prior logic state is driven.

• In the cycle-3, the first IODRIVE edge is programmed to cause the pin to drive at
10nS. This is shown in gray (edge J) because the pin is already driving due to the
second IOSTROBE edge programmed at 70nS in cycle-2 (edge H).

• In the cycle-3, edge K represents the new drive data set by the NRZ edge
programmed at 20nS. This region ends when the pin is tri-stated by the second
IODRIVE edge programmed at 60nS (edge L).

Example 2:
This example is identical to the previous example except that the second edge of both the
IODRIVE and the IOSTROBE edges is disabled (programmed to -1). Note the effect on the
resulting I/O waveforms.

tgmode(1); // See tgmode()
edge_strobe(pins, FALSE); // See edge_strobe()
cycle(TSET1, 100 NS);
settime(TSET1, pins, NRZ, 20 NS);
 2/27/09 Pg-609

Timing and Formatting Functions
settime(TSET1, pins, IODRIVE, 10 NS, -1);
settime(TSET1, pins, STROBE, 30 NS, 50 NS);
settime(TSET1, pins, IOSTROBE, 20 NS, -1);

This timing diagram shows the same 3 tester cycles, each containing the drive, strobe, and
I/O control edges as programmed in the code example above. The key differences from the
previous example are noted below:

• In cycle-1, the pin does not tri-state because the second IODRIVE edge is
disabled. The previous location of the disabled edge (60nS) is shown in gray
(edge D) for comparison with the previous example.

• The region defined by C-E represents the time the pin continues to drive the logic
state from the NRZ edge which occurred at 20nS in cycle-1. The pin tri-states at
20nS in cycle-2 as programmed by the first IOSTROBE edge (edge E).

• In cycle-2, the pin does not drive because the second IOSTROBE edge is disabled.
The previous location of the disabled edge (70nS) is shown in gray (edge H) for
comparison with the previous example.

• The region described by E-J represents the time the pin remains in tri-state.
• The pin drives at 10nS in cycle-3 as programmed by the first IODRIVE edge (edge

J). The logic state driven is the previous drive logic state from an earlier tester
cycle (cycle-1 in this example). The region described by J-K represents the time
this prior logic state is driven

• As in cycle-1, the pin does not tri-state at 60nS in cycle-3 because the second
IODRIVE edge is disabled.

A

T0 100nS
T0

T0
100nS

100nS
T0

B C

10nS
20nS

disabled

D

Drive Cycle

30nS 50nS

E F G H

Strobe Cycle Drive Cycle

J K L

10nS
20nS

disabled
20nS

Cycle 1 Cycle 2 Cycle 3

disabledwas 60nS
was 70nS

was 60nS
 2/27/09 Pg-610

Timing and Formatting Functions
3.18.7.6 Double Clock Mode
See Timing and Formatting Functions, Timing Formats.

Double clock timing formats provide a means of generating positive (DCLKPOS) or negative
(DCLKNEG) double clocks, where four edge times are specified.

Double Clock is a special hardware mode. Note the following:

• Double clock mode is a static mode, which means that it is not possible to switch
to other formats while using double clock. More specifically, on a given pin, double
clock mode is enabled when the DCLKPOS or DCLKNEG format is programmed on
that pin, and is disabled when any other format (including strobe or I/O formats) is
programmed on that pin.

• To use double clock mode also requires using pe_driver_mode_set(), to set
the PE driver mode to Dclk Mode. See Magnum PE Driver Modes.

• If a given pin is programmed to the DCLKPOS or DCLKNEG format the last one wins;
i.e. it is not possible to generate both formats in a given pattern execution.

• Pin(s) set to Dclk Mode can only drive i.e. test pattern signals to tri-state the pin
are ignored.

• Both pulses of a double clock format are controlled by the same pattern data bit;
i.e. either both pulses are enabled or disabled, per-timing-channel, per-cycle.

• As noted in Magnum Timing Generators, double clock formats are generated using
TG-A, TG-B, TG-C and TG-D, which are configured quite differently than when
generating all other formats. This is only significant for one reason: after a pin has
been configured to generate a double clock, if/when that pin is set up to generate
any other format(s) the IODRIVE and IOSTROBE timing for that must also be
[re]programmed. This must be done to restore I/O timing controlled by
TG-C/TG-D. To restore default I/O timing use the following:

settime(TSETn, your_pins, IODRIVE, 0 NS, -1);
settime(TSETn, your_pins, IOSTROBE, 0 NS, -1);

TG-A TG-B TG-C TG-D

Double Clock
TG Usage
 2/27/09 Pg-611

Timing and Formatting Functions
3.18.8 Programming Timing & Formats
See Timing and Formatting Functions, Timing Formats, Magnum Timing Rules.

The settime() function is used to program per-pin edge timing and formats.

The following functions are used less commonly. They allow individual timing edges to be
set or read-back (get).

setedge1() getedge1()

setedge2() getedge2()

setedge3() getedge3()

setedge4() getedge4()

setioedge1() getioedge1()

setioedge2() getioedge2()

getformat()

3.18.8.1 settime()
See Timing and Formatting Functions, Programming Timing & Formats, Magnum Timing
Rules.

Description
The settime() function is used to program edge timing and formats per-pin, per time-set.

Read Magnum Timing Rules.

A drive format and edge time(s) AND strobe edge times, AND I/O edge times are each
programmable per-timing channel, in each time-set.

Note: each timing channel serves two pins i.e. a pin-pair. See Functional Pin-pairs. The
software is programmed per-pin, but both pins of a pin-pair are affected when
either pin is programmed.

To program all three formats for one or more pin(s) requires executing settime() four
times for each time-set used:
 2/27/09 Pg-612

Timing and Formatting Functions
• Once to specify a drive format and corresponding edge times
• Once to specify strobe edge times
• Once to specify drive cycle I/O timing
• Once to specify tri-state cycle I/O timing (see below).

Programming a given edge time to -1 disables that edge.

Note: do NOT use -1 to disable strobe edges in some time-sets while enabling strobe
edges in other time-sets. Operation will NOT be as desired, with symptoms
which are extremely difficult to diagnose.

Usage
The various versions of settime() below each have a different number of edge time
arguments. The comments identify which version is used to program a given timing format.

Note: Double Data Rate (DDR) Mode uses additional versions of settime() which
are documented in DDR Timing.

The following functions program timing for a single pin:

void settime(TSETNumber TSET,
DutPin *pDutPin,
TGFormat Format,
double Edge1); // NRZ, STROBE*

void settime(TSETNumber TSET,
DutPin *pDutPin,
TGFormat Format,
double Edge1,
double Edge2); // RTZ, RTO, RTC, STROBE*

// IODRIVE, IOSTROBE

void settime(TSETNumber TSET,
DutPin *pDutPin,
TGFormat Format,
double Edge1,
double Edge2,
double Edge3,
double Edge4); // DCLKPOS, DCLKNEG

The following functions program timing for one or more pin(s):
 2/27/09 Pg-613

Timing and Formatting Functions
void settime(TSETNumber TSET,
PinList* pPinList,
TGFormat Format,
double Edge1); // NRZ, STROBE*

void settime(TSETNumber TSET,
PinList* pPinList,
TGFormat Format,
double Edge1,
double Edge2); // RTZ, RTO, RTC, STROBE*

// IODRIVE, IOSTROBE

void settime(TSETNumber TSET,
PinList* pPinList,
TGFormat Format,
double Edge1,
double Edge2,
double Edge3,
double Edge4); // DCLKPOS, DCLKNEG

Note: * there is only one STROBE format, which is specified when programming both
window and edge strobes. The strobe mode (window vs. edge) is
programmable per-pin-pair using the edge_strobe() function. Programming a
STROBE format can be done using one edge time value or two edge time
values. When the second edge time value is omitted the system software
automatically programs Edge2 to obtain the minimum strobe pulse width.

where:

TSET is the time-set being programmed. Legal values are of the TSETNumber enumerated
type.

pDutPin identifies a single pin to program. In Multi-DUT Test Programs, the same pin of all
DUT(s) in the Active DUTs Set (ADS) are affected. Only signal pins are legal.

pPinList identifies one or more pin(s) to be programmed. In Multi-DUT Test Programs the
pin(s) of all DUT(s) in the Active DUTs Set (ADS) are affected. Only signal pins are legal.

Format identifies the timing format being programmed. Legal values are of the TGFormat
enumerated type, as follows:

• Drive formats: NRZ, RTZ, RTO, RTC, DCLKPOS, DCLKNEG
• Strobe format: STROBE
 2/27/09 Pg-614

Timing and Formatting Functions
• Drive I/O format: IODRIVE
• Tri-state I/O format: IOSTROBE
• Note: DDR_DRIVE, DDR_STROBE, DDR_IODRIVE, DDR_IOSTROBE are documented

in DDR Timing.
• Note: using Magnum the SBC format is not available.

Edge1, Edge2, Edge3, and Edge4 are used to specify the desired edge time for each edge
of the specified Format. Units may be used (see Specifying Units). Edge2 is not used with
edge strobes; any value programmed is ignored.

Examples

Example 1:
The following example programs an return-to-one (RTO) drive format on all pins in the
pl_chip_selects pin list. The pin-pair of each pin in pl_chip_selects is also affected
(see Functional Pin-pairs):

cycle (TSET1, 500 NS);
settime(TSET1, pl_chip_selects, RTO, 100 NS, 200 NS);

This waveform drives high or low based on the test pattern at 100nS, and drives high at
200nS. If the pins in the pl_chip_selects pin list also need a strobe format and/or I/O
timing the settime() function must be called again to set up these additional formats.

Example 2:
The following example programs a NRZ drive format on all pins in the control_pins pin
list, in time-set TSET2. Note that only one edge time parameter is used to program the NRZ
format. The pin-pair of each pin in control_pins is also affected (see Functional Pin-
pairs)

Edge-2Edge-1

pl_chip_selects Prior State Data

500nS100nS 200nS
 2/27/09 Pg-615

Timing and Formatting Functions
cycle (TSET2, 100 NS);
settime(TSET2, control_pins, NRZ, 25 NS);.

Example 3:
The following example demonstrates setting two different NRZ timings on two different sets
of pins. One pin list is called address_bus and the other pin list is called data_bus:

cycle(TSET5, 100 NS);
settime(TSET5, address_bus, NRZ, 25 NS);
settime(TSET5, data_bus, NRZ, 35 NS);

Example 4:
The following example programs both a drive format and strobe timing for all pins (and their
pairs) in the pin list named io_bus, for TSET3. The waveforms for this example are shown
below. The left waveform is the drive format, the right waveform represents the strobe
timing. Since no I/O timing is programmed it will occur at 0nS:

cycle (TSET3, 100 NS);
settime(TSET3, io_bus, RTZ, 25 NS, 50 NS);
settime(TSET3, io_bus, STROBE, 37.5 NS, 70 NS);

Edge1

control_pins Prior state Data

100nST0 25nS

address_bus Prior State Data

100nS25nS

data_bus Prior State Data

35nS

io_bus

100nS25nS 50nS

37.5nS 70nS
RTZ

STROBE

100nS

Prior State Data
 2/27/09 Pg-616

Timing and Formatting Functions
3.18.8.2 setedge(), getedge()
See Timing and Formatting Functions, Magnum Timing Rules.

Description

The setedge() function is used to set a single edge timing value.

The getedge() function are used to get a single edge timing value.

getedge() can get either actual timing values or programmed timing values. This supports
user-written code to display the effect of system clock and vernier on programmed cycle
periods and edge times. The enumerated type TimeOption (see Usage) is used to specify
whether actual or programmed timing values are to be returned by getedge().

Note: remember that drive, strobe, and I/O timing formats are always set up for every
pin in every time-set. Default formats and edge times are set by system
software when not explicitly programmed by user code.

Note: each timing channel serves two pins i.e. a pin-pair. See Functional Pin-pairs. The
software is programmed per-pin, but both pins of a pin-pair are affected when
either pin is programmed.

Usage
The following functions set the edge time for the specified edge of a specified format in a
specified time-set for one pin:

BOOL setedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
int EdgeNumber,
double EdgeTime);

BOOL setedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
 2/27/09 Pg-617

Timing and Formatting Functions
int EdgeNumber,
double EdgeTime,
BOOL DualData);

The following functions set the edge time for the specified edge of a specified format in a
specified time-set for all pins in the specified pin list:

BOOL setedge(TSETNumber TSET,
PinList* pPinList,
EdgeTypes EdgeType,
int EdgeNumber,
double EdgeTime);

BOOL setedge(TSETNumber TSET,
PinList* pPinList,
EdgeTypes EdgeType,
int EdgeNumber,
double EdgeTime,
BOOL DualData);

The following functions get the actual edge time for the specified edge in a specified time-set
for one specified pin:

double getedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
int EdgeNumber);

double getedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
int EdgeNumber,
BOOL DualData);

The following functions get the programmed or actual edge time for the specified edge in a
specified time-set for one specified pin:

double getedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
int EdgeNumber,
TimeOption TimeValueType);

double getedge(TSETNumber TSET,
DutPin *pDutPin,
EdgeTypes EdgeType,
 2/27/09 Pg-618

Timing and Formatting Functions
int EdgeNumber,
TimeOption TimeValueType,
BOOL DualData);

where:

TSET is the time-set being accessed. Legal values are of the TSETNumber enumerated
type.

pDutPin is used in 2 contexts:

• In the setter functions, pDutPin identifies one pin to be programmed. In Multi-DUT
Test Programs, the pin of all DUT(s) in the Active DUTs Set (ADS) are affected.

• In the getter functions, pDutPin identifies one pin to be read. In Multi-DUT Test
Programs, the value is read from the first DUT in the Active DUTs Set (ADS):

EdgeType specifies whether drive edges, strobe edges, or I/O edges are being accessed.
Legal values are of the EdgeTypes enumerated type:

EdgeNumber identifies which edge is being accessed. Note that getedge() returns default
timing values when user programmed values have not been set for a given edge. The table
below shows valid edge numbers for each format type:

Table 3.18.8.2-1 Used Edge Numbers vs. Timing Formats

Edge Number

Format EdgeTypes DualData 1 2 3 4 Comments

NRZ t_drive_edges FALSE X n/a n/a n/a

RTO t_drive_edges FALSE X X n/a n/a

RTZ t_drive_edges FALSE X X n/a n/a

DCLKPOS t_drive_edges
TRUE or
FALSE2 X X X X DDR and

non-DDR2

DCLKNEG t_drive_edges
TRUE or
FALSE2 X X X X DDR and

non-DDR2

STROBE t_strobe_edges FALSE X X n/a n/a Window
Strobe

STROBE t_strobe_edges FALSE X X1 n/a n/a Edge
Strobe1

IODRIVE t_IO_drive_edges FALSE X X n/a n/a
 2/27/09 Pg-619

Timing and Formatting Functions
EdgeTime specifies the desired edge timing. Units may be used (see Specifying Units). The
value -1 can be used to disable an edge (but not Strobe edges).

DualData is optional, and must be TRUE when accessing a timing format which is
configured for Double Data Rate (DDR) Mode operation. Default = FALSE = non-DDR.

pPinList identifies the pin(s) to be programmed. Only signal pins are valid. In Multi-DUT
Test Programs, only pin(s) of DUT(s) in the Active DUTs Set (ADS) are affected.

TimeValueType specifies whether the programmed value or actual value is returned by
getedge(). Legal values are of the TimeOption enumerated type. If not specified the
actual value is returned.

setedge() returns FALSE if an invalid EdgeNumber is specified for the format currently set
for any pins in the specified pPinList.

getedge() returns the requested timing value, or -1 for edges which are intentionally
disabled. The value -1 is also returned when an invalid EdgeNumber is specified for the
format currently set for the Pin. In Multi-DUT Test Programs, the value is read from the first
DUT in the Active DUTs Set (ADS):

IOSTROBE t_IO_strobe_edges FALSE X X n/a n/a

DDR_DRIVE t_drive_edges TRUE X X n/a n/a

DDR_STROBE t_strobe_edges TRUE X X1 X X1 Edge
Strobe1

DDR_IODRIVE t_IO_drive_edges TRUE X X n/a n/a

DDR_IOSTROBE t_IO_strobe_edges TRUE X X n/a n/a

Notes
1) When using setedge() to modify an edge strobe, Edge2 is not usedand any value
 programmed is ignored.
2) DCLKPOS and DCLKNEG are usable in both DDR and non-DDR mode.

Table 3.18.8.2-1 Used Edge Numbers vs. Timing Formats

Edge Number

Format EdgeTypes DualData 1 2 3 4 Comments
 2/27/09 Pg-620

Timing and Formatting Functions
Example

Example 1:
The following example adds 1nS to the edge time of the 2nd edge (the drive data edge) of
an expected RTO drive format on all pins in the pin list pl_databus. Several error checks
are made to ensure the RTO format is already set and that legal edge_number values are
used.

// Get the TesterPin for the first pin in pl_databus
DutPin pin;
if (pin_info(pl_databus, 0, &pin) == FALSE)

output("ERROR: invalid pin list) passed to pin_info()");

// Get drive format currently set for the first pin in pl_databus
TGFormat format = getformat (TSET1, pin); // getformat()
if (! (format == RTO))

output("ERROR: expected getformat() to return RTO format");

// Get time programmed for the drive-true-data RTO timing edge
double val;
if (val = getedge(TSET1, pin, t_drive_edges, 1) == -1)

output("Edge is disabled, or invalid edge number specified");

// Set this same edge to the value read in previous code + 1nS
if(setedge(TSET1,

pl_databus,
t_drive_edges,
1,
(val + 1 NS)) == -1)

output("ERROR: invalid edge_number passed to setedge()");

Note the following:

• The drive-data edge of the RTO format is the first edge (Edge-1).
• Edge-1, as used above, is valid for all formats, however the error messages are

included to show usage.
• The code above assumes that the drive format for all pins in pl_databus is the

same as that of the first pin; i.e. the error checks are simplistic.
The code above assumes that if getedge() returns -1 an error exists. Remember that -1
can also be returned when an edge is intentionally disabled, and in that situation -1 is not an
error.
 2/27/09 Pg-621

Timing and Formatting Functions
3.18.8.3 Per-edge Functions: Drive/Strobe
See Timing and Formatting Functions, Programming Timing & Formats.

Description

Note: in addition to the functions documented below, the setedge(), getedge()
functions may also used to set and get a single edge timing value. They were
added instead of adding new arguments to the functions below, which would
make them irregular and cumbersome. Use setedge(), getedge() instead.

The functions below are used to set or get the timing value for one edge of a drive format or
strobe format. See Per-edge Functions: I/O Edges for similar functions which operate on I/O
formats.

Several set functions and several get function are provided, supporting various argument
options. Each function accesses a specific edge number. The user must understand which
edges are appropriate to each drive or strobe format. See Supported Timing Formats.

Note: when programming edge strobes Edge2 is not used, any values programmed
are ignored.

Note: each timing channel serves two pins i.e. a pin-pair. See Functional Pin-pairs. The
software is programmed per-pin, but both pins of a pin-pair are affected when
either pin is programmed.

Usage
The following functions are used to set the timing value of one edge, on one specified pin:

void setedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge1);
 2/27/09 Pg-622

Timing and Formatting Functions
void setedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge2);

void setedge3(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge3);

void setedge4(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge4);

void setedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge1,
BOOL DualData);

void setedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge2,
BOOL DualData);

void setedge3(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge3,
BOOL DualData);

void setedge4(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge4,
BOOL DualData);

The following functions are used to set the timing value of one edge, on all pins in the
specified pin list:
 2/27/09 Pg-623

Timing and Formatting Functions
void setedge1(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge1);

void setedge2(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge2);

void setedge3(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge3);

void setedge4(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge4);

void setedge1(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge1,
BOOL DualData);

void setedge2(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge2,
BOOL DualData);

void setedge3(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge3,
BOOL DualData);

void setedge4(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge4,
BOOL DualData);

The following functions are used to get the currently programmed timing value of a specific
edge, from a specific pin:
 2/27/09 Pg-624

Timing and Formatting Functions
double getedge1(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getedge2(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getedge3(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getedge4(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

double getedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

double getedge3(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

double getedge4(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

where:

TSET is the time-set being accessed. Legal values are of the TSETNumber enumerated
type.

pDutPin is used in 2 contexts:

• In the setter functions, pDutPin identifies one pin to be programmed. In Multi-DUT
Test Programs, the pin of all DUT(s) in the Active DUTs Set (ADS) are affected.

• In the getter functions, pDutPin identifies one pin to be read. In Multi-DUT Test
Programs, the value is read from the first DUT in the Active DUTs Set (ADS):

Drive is used to specify whether the drive format (TRUE) or the strobe format (FALSE) is to
be accessed. Remember, drive, strobe and I/O formats are always programmed in every
time-set.

Edge1, Edge2, Edge3, and Edge4 are used to specify the desired edge time for a specific
edge. Units may be used (see Specifying Units). The user must understand which edges are
appropriate to each drive or strobe format. See Supported Timing Formats
 2/27/09 Pg-625

Timing and Formatting Functions
DualData is optional, and must be TRUE when accessing a timing format which is
configured for Double Data Rate (DDR) Mode operation. Default = FALSE = non-DDR.

pPinList identifies the pin(s) to be programmed. Only signal pins are valid. In Multi-DUT
Test Programs, only pin(s) of DUT(s) in the Active DUTs Set (ADS) are affected.

getedge1(), getedge2(), getedge3(), and getedge4() return the specified edge
time. In Multi-DUT Test Programs, the value is read from the first DUT in the Active DUTs
Set (ADS).

Example
The example below uses settime() to program an RTZ drive format, in TSET3, on all pins
in the pin list named Abus. Then, the timing value of Edge2 of this drive format is read-back,
printed, modified and used to reprogram Edge2, read-back again, and printed again to see
the effect. For this example to operate as desired requires that the single pin value (A9),
passed to getedge2(), must be one of the pins in the pin list named Abus.

settime (TSET3, Abus, RTZ, 10 NS, 30 NS);
double e2 = getedge2(TSET3, A9, TRUE); // Read-back one pin
output (" Original value = %5f pS", e2);
setedge2(TSET3, Abus, TRUE, (e2 + 5 NS)); // Modify edge2
e2 = getedge2(TSET3, A9, TRUE); // Read-back again
output (" New value = %5f pS", e2);

3.18.8.4 Per-edge Functions: I/O Edges
See Timing and Formatting Functions, I/O Timing and Control.

Description

Note: in addition to the functions documented below, the setedge(), getedge()
functions may also used to set and get a single edge timing value. They were
added instead of adding new arguments to the functions below, which would
make them irregular and cumbersome. Use setedge(), getedge() instead.

The functions below are used to set or get a timing value for a specific I/O timing edge; i.e.
IODRIVE and IOSTROBE edge timing. See Per-edge Functions: Drive/Strobe for similar
functions which operate on drive and strobe formats.
 2/27/09 Pg-626

Timing and Formatting Functions
Two set functions and two get function are provided. Each function accesses a specific edge
number. The user must understand which edges are appropriate to each I/O. See Supported
Timing Formats.

Usage
The following functions are used to set the timing value of a specific I/O timing edge, on a
specified pin. See IODRIVE and IOSTROBE.

void setioedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge1);

void setioedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge2);

void setioedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge1,
BOOL DualData);

void setioedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
double Edge2,
BOOL DualData);

The following functions are used to set the timing value of a specific I/O timing edge, on all
pins in the specified pin list. See IODRIVE and IOSTROBE.

void setioedge1(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge1);

void setioedge2(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge2);
 2/27/09 Pg-627

Timing and Formatting Functions
void setioedge1(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge1,
BOOL DualData);

void setioedge2(TSETNumber TSET,
PinList* pPinList,
BOOL Drive,
double Edge2,
BOOL DualData);

The following functions are used to get the current timing value of a specific I/O timing edge,
from a specific pin:

double getioedge1(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getioedge2(TSETNumber TSET, DutPin *pDutPin, BOOL Drive);

double getioedge1(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

double getioedge2(TSETNumber TSET,
DutPin *pDutPin,
BOOL Drive,
BOOL DualData);

where:

TSET is the time-set being accessed. Legal values are of the TSETNumber enumerated
type.

pDutPin is used in 2 contexts:

• In the setter functions, pDutPin identifies one pin to be programmed. In Multi-DUT
Test Programs, the pin of all DUT(s) in the Active DUTs Set (ADS) are affected.

• In the getter functions, pDutPin identifies one pin to be read. In Multi-DUT Test
Programs, the value is read from the first DUT in the Active DUTs Set (ADS):

Drive is used to specify whether the drive I/O format (TRUE = IODRIVE) or the tri-state I/O
format (FALSE = IOSTROBE) is to be accessed. Remember, drive, strobe and I/O formats
are always programmed in all time-sets.
 2/27/09 Pg-628

Timing and Formatting Functions
Edge1 and Edge2are used to specify the desired edge time for a specific edge. Units may
be used (see Specifying Units). The user must understand which edges are appropriate to
each I/O format. See Supported Timing Formats.

DualData is optional, and must be TRUE when accessing a timing format which is
configured for Double Data Rate (DDR) Mode operation. Default = FALSE = non-DDR.

pPinList identifies the pin(s) to be programmed. Only signal pins are valid. In Multi-DUT
Test Programs, only pin(s) of DUT(s) in the Active DUTs Set (ADS) are affected.

getioedge1() and getioedge2() return the specified edge time. In Multi-DUT Test
Programs, the value is read from the first DUT in the Active DUTs Set (ADS):

Example
The example below uses settime() to program an IOSTROBE I/O format, in TSET8, on all
pins in the list named IOpins. Then, the timing value of Edge1 of this drive format is read-
back, printed, modified and used to reprogram Edge1, read-back again, and printed again to
see the effect. For this example to operate as desired requires that the single DUT pin (D4),
passed to getedge1(), must be one of the pins in the pin list named IOpins.

settime (TSET8, IOpins, IOSTROBE, 10 NS, 30 NS);
double e1 = getioedge1(TSET8, D4, FALSE); // Read-back pin D4
output (" Original value = %5f pS", e1);
setioedge1(TSET8, IOpins, FALSE, (e1 + 2 NS)); // Modify edge1
e1 = getioedge1(TSET8, D4, FALSE); // Read-back again
output (" New value = %5f pS", e1);

3.18.8.5 getformat()
See Timing and Formatting Functions.

Description
The getformat() function is used to get the currently programmed drive format of one
specified pin in a specified time-set.

Default drive, strobe, and I/O timing formats are automatically set up for every pin in every
time-set. And, the strobe and I/O edges have fixed formats; the test program can program
timing values for the strobe and I/O format edges but has no choice in format selection.
 2/27/09 Pg-629

Timing and Formatting Functions
However, there are several drive formats, which can be specified on a per-pin and per-time-
set basis: NRZ, RTZ, RTO, RTC, DCLKPOS, DCLKNEG. The getformat() function can be
used to determine the drive format programmed for a given pin in a given time-set.

Note: using Memory Test Patterns the format applied to Chip Selects is controlled
from the APG using the CHIPS pattern instruction options. See APG Chip Select
Drive Format Selection.

Usage
TGFormat getformat(TSETNumber TSET, DutPin *pDutPin);

TGFormat getformat(TSETNumber TSET,
DutPin *pDutPin,
BOOL DualData);

where:

TSET is the time-set being accessed. Legal values are of the TSETNumber enumerated
type.

pDutPin identifies one pin to be read. In Multi-DUT Test Programs, the value is read from
the first DUT in the Active DUTs Set (ADS).

DualData is optional, and must be TRUE when accessing a timing format which is
configured for Double Data Rate (DDR) Mode operation. Default = FALSE = non-DDR.

getformat() returns the drive format for the specified Pin. The returned value will be of
the TGFormat enumerated type. In Multi-DUT Test Programs, the value is read from the first
DUT in the Active DUTs Set (ADS).

Example
The following example uses settime() to program an RTO drive format, in TSET4, on all
pins in the list named IOpins. Then, the drive format of one pin is read back, and printed. For
this example to operate as desired requires that the single DUT pin value (A19), passed to
getformat(), be one of the pins in the pin list named IOpins.

settime (TSET4, IOpins, RTO, 10 NS, 30 NS);
TGFormat df = getformat(TSET4, A19);
output (" Drive format on pin A19 =>\\");
switch (df) {

case NRZ : output (" NRZ"); break;
case RTZ : output (" RTZ"); break;
 2/27/09 Pg-630

Timing and Formatting Functions
case RTO : output (" RTO"); break;
case RTC : output (" RTZ"); break;
case DCLKPOS : output (" DCLKPOS "); break;
case DCLKNEG : output (" DCLKNEG"); break;
default : output (" UNKNOWN = error");

}

3.18.9 Timing Examples
See Timing and Formatting Functions, Magnum Timing Rules.

Note that the resolution of the following calculations below often exceeds that which is
available using Magnum hardware; the extra digits were included here to reduce confusion
caused by rounding.

Example 1:
cycle (TSET1, 30 NS);
settime (TSET1, pins, RTZ, 2 NS, 29 NS);
cycle (TSET2, 30 NS);
settime (TSET2, pins, RTZ, 12 NS, 19 NS);

Note the following:

• Both cycle periods will be as-programmed since both are specified in multiples of
1nS.

• Both drive format verniers are set by edge times programmed in TSET2. However,
since all edge types are specified in increments of 1nS all of the edges noted will
will be as-programmed.
 2/27/09 Pg-631

MUX, Super-MUX and DDR
3.19 MUX, Super-MUX and DDR
See Software.

This chapter documents methods which can be used to increase the maximum effective
data rate and/or reduce the effective minimum cycle period of the test system. Some of this
information is identical for Maverick-I/-II and Magnum 1/2/2x. However, key differences
exist, pay attention.

Terminology:

The following topics are covered in this section:

• Overview
• Single Data Rate Mode (SDR)
• Double Data Rate (DDR) Mode

• DDR Hardware Details
• DDR Pin Scramble
• DDR Test Patterns

- DDR Logic Vectors
- DDR Scan Vectors
- DDR Memory Patterns

• DDR Timing
• DDR I/O Timing
• DDR Fail Signal MUX

- DDR Fail Signal MUX: Logic Error Catch
- DDR Fail Signal MUX: Memory Error Catch

Term Description

DDR Double Data Rate (DDR) Mode. Read Overview. Not usable
on Maverick-I.

MUX Two pins multiplexed (MUX), one can’t be used at the DUT.
See MUX Mode. Read Overview first.

Super-MUX Magnum 2/2x only. Two pins multiplexed (MUX), all can be
used at the DUT. See Super-MUX Mode. Read Overview
first.
 2/27/09 Pg-632

MUX, Super-MUX and DDR
• MUX Mode
• Super-MUX Mode
• ECR in DDR, MUX and Super-MUX Modes
• MUX, Super-MUX & DDR Software

• Types, Enums, etc.
• mux_mode_set(), mux_mode_get()
•mux_mode(), mux_mode_disable()

• fail_signal_mux()

3.19.1 Overview
See MUX, Super-MUX and DDR.

The maximum data rate of a digital test system type is a key system specification. The
maximum data rate for the Magnum 1I is:

In this document, the term data rate refers to how fast the Algorithmic Pattern Generator
(APG) and/or Logic Vector Memory (LVM) and/or Scan Vector Memory (SVM) can deliver
new drive/expect data and I/O control signals to the Timing & Formatting system. This is the
truth-table data used to functionally test the part.

It is possible to increase the effective maximum data rate and/or reduce the effective
minimum cycle period using several methods, described below. Each method has
corresponding capabilities and limitations. These are described as:

• Single Data Rate Mode (SDR), the default system operation, for reference.
• Double Data Rate (DDR) Mode
• MUX Mode, also commonly used to double the maximum clock frequency on

selected pins.
• Super-MUX Mode, also commonly used to double the maximum clock frequency

on selected pins.

System Type

Max.
Data
Rate

Min.
Cycle
Period

Magnum 1 50MHz 20nS
 2/27/09 Pg-633

MUX, Super-MUX and DDR
The following table indicates which modes are supported on each Nextest system type.
Single Data Rate Mode (SDR) is not mentioned because it is the default system operating
mode:

The following table provides an overview of features which are different using the various
combinations of Single Data Rate Mode (SDR), Double Data Rate (DDR) Mode, MUX Mode
and Super-MUX Modes. Each mode is then described in detail after the table:

Table 3.19.1.0-1 Supported Modes vs. System Types

System Type Supported Options

Maverick-I MUX Mode

Maverick-II Double Data Rate (DDR) Mode
MUX Mode

Magnum 1 Double Data Rate (DDR) Mode
MUX Mode

Magnum 2
Magnum 2x

Double Data Rate (DDR) Mode
MUX Mode
Super-MUX Mode

Using Magnum 2/2x it is also possible to mix
Double Data Rate (DDR) Mode with pins in MUX
Mode or Super-MUX Mode (but not both).

Table 3.19.1.0-2 Single/DDR/MUX/Super-MUX Mode Trade-offs

Feature Usable? Comment

Single Data Rate Mode (SDR)
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)?
ECR: all pins can be logged?

No
No
No
No
No
Yes
Yes

SDR is in effect only during the
execution of an SDR (i.e. non-DDR)
test pattern and affects all pins
identically. Executing an SDR test
pattern, one set of pattern data is
supplied to each timing channel in
each tester cycle. Select pins can also
be in MUX Mode or Super-MUX Mode
during SDR pattern execution.
 2/27/09 Pg-634

MUX, Super-MUX and DDR
Double Data Rate (DDR) Mode
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)?
ECR: all pins can be logged?

Yes
No
Yes
No
No
Yes
No

DDR mode is in effect only during the
execution of DDR Test Patterns and
affects all pins identically. When
executing DDR Test Patterns, two sets
of pattern data are supplied to each
timing channel in each tester cycle.
Select pins can also be in MUX Mode
or Super-MUX Mode during DDR
pattern execution. When executing
DDR Test Patterns, not all pins can be
logged to the ECR, see ECR in DDR,
MUX and Super-MUX Modes.

MUX Mode
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)?
ECR: all pins can be logged?

Yes
No
No
Yes
Yes
No1

Yes

Pins in MUX Mode receive two sets of
pattern data in each tester cycle,
supplied via two timing channels. MUX
Mode is independently set per-pin. For
each odd pin in MUX Mode the next
higher even pin is not usable at the
DUT. Both pins of a given pin-pair
(a_1/b_1) will always be in the same
MUX mode. Pins can be in MUX Mode
when executing DDR Test Patterns. All
MUX pins can be logged to the ECR
but DDR mode rules can change this,
see ECR in DDR, MUX and Super-
MUX Modes.

Super-MUX Mode
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)?
ECR: all pins can be logged?

Yes
No
No
No
Yes
No1

No

Magnum 2/2x only.24

Table 3.19.1.0-2 Single/DDR/MUX/Super-MUX Mode Trade-offs (Continued)

Feature Usable? Comment
 2/27/09 Pg-635

MUX, Super-MUX and DDR
3.19.2 Single Data Rate Mode (SDR)
See MUX, Super-MUX and DDR.

Single Data Rate (SDR) mode is the default system operating mode.

DDR + MUX Mode
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)?
ECR: all pins can be logged?

No
Yes
Yes
Yes
Yes

Yes1,2

No

Pins can be in MUX Mode when
executing DDR Test Patterns. These
pins will receive 4 sets of pattern data
in each tester cycle, supplied via two
timing channels. DDR is in effect only
during the execution of DDR Test
Patterns and affects all pins identically.
MUX Mode is independently set
per-pin. For each odd pin in MUX Mode
the next higher even pin is not usable at
the DUT. Both pins of a given pin-pair
(a_1/b_1) will always be in the same
MUX mode. When executing DDR Test
Patterns, not all pins can be logged to
the ECR, see ECR in DDR, MUX and
Super-MUX Modes.

DDR + Super-MUX Mode
2X data rate?
4X data rate?
NRZ and Edge Strobe Only?
Lose use of adjacent pin?
VOL must = VOH (MUX pins)?
Global mode (all pins)
ECR: all pins can be logged?

No
Yes
Yes
No
Yes

Yes1,2

No

Magnum 2/2x only.24

Table 3.19.1.0-2 Single/DDR/MUX/Super-MUX Mode Trade-offs (Continued)

Feature Usable? Comment
 2/27/09 Pg-636

MUX, Super-MUX and DDR
The maximum SDR data rate for the Magnum 1is:

Single Data Rate (SDR) mode is in effect only during the execution of an SDR (i.e. non-
DDR) test pattern and affects all pins identically. When executing an SDR test pattern one
set of pattern data is supplied to each timing channel in each tester cycle.

Pins can be in MUX Mode or Super-MUX Mode during SDR pattern execution but
additional rules apply, see MUX Mode and Super-MUX Mode.

During SDR test pattern execution, each of the 64 timing channels on a site assembly has
independent timing, format selection and test pattern data, in each tester cycle, with each
timing channel driving one pin-pair. All timing formats and strobe types are usable. Using the
Error Catch RAM (ECR), each pin is captured to its corresponding bit in the ECR and any
pins may be captured.

The following diagram shows 2 pin-pairs in SDR configuration. Each pin-pair is
independently driven by 1 timing channel:

Figure-42: Single Data Rate Block Diagram

System Type

Max.
Data
Rate

Min.
Cycle
Period

Magnum 1 50MHz 20nS

Pin a_1
DUT

Pin b_1
DUT

Pin a_2
DUT

Pin b_2
DUT

Chan-1
Timing &

Formatting

Chan-2
Timing &

Formatting

Pattern
Data via

Pin
Scramble

MUX

 2/27/09 Pg-637

MUX, Super-MUX and DDR
3.19.3 Double Data Rate (DDR) Mode

See MUX, Super-MUX and DDR.

Read Overview first.

Note: Double Data Rate (DDR) is not available using Maverick-I.

This section includes the following:

• DDR Overview
• DDR Hardware Details
• DDR Pin Scramble
• DDR Test Patterns

- DDR Logic Vectors
- DDR Scan Vectors
- DDR Memory Patterns

• DDR Timing
- DDR I/O Timing

• DDR Fail Signal MUX
- DDR Fail Signal MUX: Logic Error Catch
- DDR Fail Signal MUX: Memory Error Catch

3.19.3.1 DDR Overview
See Double Data Rate (DDR) Mode, MUX, Super-MUX and DDR.

Note: DDR-related information does not apply to Maverick-I.
 2/27/09 Pg-638

MUX, Super-MUX and DDR
Double Data Rate (DDR) Mode, as the name suggests, effectively doubles the maximum
data rate of the test system:

DDR mode is targeted primarily at functional testing using Logic Test Patterns and Scan Test
Patterns. DDR mode can also be used, with constraints, using Memory Test Patterns.

DDR mode is in effect only during the execution of DDR Test Patterns and affects all pins
identically. DDR Test Patterns are explicitly identified using Pattern Rate Attributes in the
test pattern source file. See DDR Test Patterns, DDR Logic Vectors, DDR Scan Vectors and
DDR Memory Patterns for additional details.

DDR mode does not increase the maximum operating frequency of the test system. Instead,
during DDR test pattern execution, two sets of pattern data are supplied, via the DDR Pin
Scramble, to each timing channel in each tester cycle. In effect, the DUT sees two DDR
cycles in each tester cycle.

Note: for documentation purposes, in DDR mode each tester cycle is often discussed
as having two halves, called the DDR A-cycle and the DDR B-cycle.

The following diagram shows 2 pin-pairs in DDR configuration. Each pin-pair is
independently driven by 1 timing channel. More details are included in DDR Hardware

System Type

Max
SDR
Data
Rate

Min
SDR

Cycle
Period

Max
DDR
Data
Rate

Min
DDR

Cycle
Period

Magnum 1 50MHz 20nS 100MHz 10nS
 2/27/09 Pg-639

MUX, Super-MUX and DDR
Details:

Figure-43: DDR Block Diagram
In preparation for executing DDR Test Patterns, when defining Pin Scramble Tables, two
sources of pattern data are specified for each DUT pin in each Pin Scramble Map to be
used. See DDR Pin Scramble. Then, during a DDR pattern execution, the Pin Scramble
MUX delivers two sets of pattern data to each timing channel, one to control the DDR A-
cycle, the other the DDR B-cycle. In effect, two DDR cycles execute within one tester cycle,
resulting in DDR operation.

Like Single Data Rate Mode (SDR), DDR mode provides independent timing, format
selection and test pattern data for each timing channel on a site assembly, with each
channel driving one pin-pair. However, to obtain DDR operation, some of the hardware
signals normally used to control timing format selections are instead used to supply pattern
data at DDR rates. This means that, in DDR mode, only the NRZ, DCLKPOS and DCLKNEG
drive formats can be used and only edge strobes may be used (see
edge_strobe()edge_strobe()). Additional information and important rules are
documented in DDR Timing and DDR I/O Timing.

Pins can be in MUX Mode or Super-MUX Mode (not both) during DDR pattern execution,
but additional rules apply, see MUX Mode and Super-MUX Mode.

In DDR mode, the Error Catch RAM (ECR) may be used to capture errors at DDR rates, but
this requires additional ECR configuration steps. See ECR in DDR, MUX and Super-MUX
Modes.

Pin a_1
DUT

Pin b_1
DUT

Pin a_2
DUT

Pin b_2
DUT

Chan-1
Timing &

Formatting

Chan-2
Timing &

Formatting

Pattern
Data via
DDR Pin
Scramble

A-cycle
B-cycle

A-cycle
B-cycle

 2/27/09 Pg-640

MUX, Super-MUX and DDR
3.19.3.2 DDR Hardware Details
See Double Data Rate (DDR) Mode, MUX, Super-MUX and DDR.

Note: DDR-related information does not apply to Maverick-I.

The Magnum 1 test system contains two sources of test pattern data:

• Algorithmic Pattern Generator (APG)when executing Memory Test Patterns.
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored

Logic Test Patterns and Scan Test Patterns.
 2/27/09 Pg-641

MUX, Super-MUX and DDR
The diagram below shows key Magnum 1 architecture features when using DDR mode:

Figure-44: DDR Hardware Architecture
Note the following:

• When executing a Double Data Rate (DDR) Mode test pattern, the combined Logic
Vector Memory (LVM) / Scan Vector Memory (SVM) delivers two sets of pattern
data to each timing channel (each of which drives a Functional Pin-pair) in each
tester cycle (see DDR Logic Vectors and DDR Scan Vectors). Using Memory Test

76

4 Timing
Generators

128

To
 2

 P
E

 D
riv

er
s

To
 E

rro
r L

og
ic

 (2
 p

in
s)

APG Data
Sources

* Combined
Logic Vector

Memory (LVM) /
Scan Vector

Memory (SVM)

TS
E

T
S

el
ec

t M
U

X
P

S
 S

el
ec

t M
U

X
VAR

Engine

MAR
Engine

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

To Other
63 Timing
Channels

to all TGs

TG-C

TG-D

TG-B

TG-A

*Optional

(per-pin pair)

S
el

ec
t L

og
ic

To
 2

 P
E

 D
riv

er
s

TSET#

PS#

Format
RAM

TG State
Decode

Logic & TSET
RAM

PEL

System
Clock

P
in

 S
cr

am
bl

e
M

U
X

A-cycle

B-cycle

PES
PEE

A-cycle

B-cycle

A-Cycle
Drive

B-Cycle
Drive

A-Cycle
Strobe

B-Cycle
Strobe

Not used
in DDR

A-Cycle
I/O

B-Cycle
I/O

A-cycle B-cycle

 2/27/09 Pg-642

MUX, Super-MUX and DDR
Patterns patterns, the Algorithmic Pattern Generator (APG) continues to operate at
non-DDR rates, delivering one APG Address Generator output, one APG Data
Generator output and one APG Chip Selects output in each tester cycle. However,
effective DDR operation is often possible, see DDR Memory Patterns. And, the
Error Catch RAM (ECR) can be used effectively, see ECR in DDR, MUX and
Super-MUX Modes.

• In DDR mode, a second Pin Scramble MUX is used (shown in green in
Figure-44:). Only one MUX is used in non-DDR mode, both Pin Scramble MUXes
are used in DDR mode. The test pattern inputs to both Pin Scramble MUXes are
identical, however, the two MUX control signals, output by the Pin Scramble RAM,
may be different.

• When executing both SDR and DDR test patterns, the Pin Scramble MUX selects
a source of pattern data (and strobe control and I/O control) for each timing
channel, in each tester cycle. In SDR (non-DDR) mode, one source of pattern data
will be selected for a given timing channel, at up to maximum data rate of the
system, from 81 data sources: any APG address bit, APG data bit , or APG chip
select bit, one LVM data bit, and/or Scan Vector Memory data bit. In DDR mode,
two sources of pattern data will be selected for a given timing channel in each
tester cycle; one selected by the first Pin Scramble MUX (DDR A-cycle data) and
one by the second (DDR B-cycle data). In addition, two LVM data bits are
available for each timing channel. This means that DDR mode has 82 data
sources available, via the Pin Scramble MUX, per-timing channel/per-cycle.

• In DDR mode, the 4 timing generators in each Magnum 1 timing channel are used
differently than in non-DDR mode. Timing formats are limited to NRZ and double
clock (DCLKPOS, DCLKNEG) drive formats and edge-strobe strobe format. And, I/O
edges have specific rules related to DDR operations. See DDR Timing.

• And, I/O edges have specific rules related to DDR operations.

3.19.3.3 DDR Pin Scramble
See Double Data Rate (DDR) Mode, DDR Hardware Details.

Note: DDR-related information does not apply to Maverick-I.

See Pin Scramble Functions & Macros for an overview of non-DDR pin scramble software.

When executing DDR Test Patterns (i.e. in DDR mode), two Pin Scramble MUXes are used,
allowing two different test pattern data sources to be selected for each timing channel, in
 2/27/09 Pg-643

MUX, Super-MUX and DDR
each tester cycle. This corresponds to the DDR A-cycle data and DDR B-cycle data. For
example, a given timing channel might select t_lvm in the A-cycle and t_d9 in the
B-cycle of given Pin Scramble Map.

Only the combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) actually
supplies pattern data at DDR rates. The APG outputs continue to operate at non-DDR data
rate, however, as noted below, it is possible to obtain useful DDR operation from memory
patterns. See DDR Memory Patterns.

Usage
When programming Pin Scramble Maps for DDR use, two data sources are specified, for
each pin of each DUT using one of the SCRAMBLE2_xxxDUT macros (where xxx identifies
the number of DUTs being tested in a Multi-DUT Test Program). For example, the following
might be used in a program testing 2 DUTs in parallel:

PIN_SCRAMBLE(table_name) {
 SCRAMBLE_MAP(PS1) { // DUT1-A DUT1-B DUT2-A DUT2-B
 SCRAMBLE2_2DUT(A1, t_x0, t_x18, t_x0, t_x18)
 SCRAMBLE2_2DUT(D0, t_d0, t_d0, t_d0, t_d8)

In Multi-DUT Test Programs, the data source selected for DUT-1A must be identical to that
specified for DUT-2A. DUT-1B must match DUT-2B, etc. Violating this rule causes a fatal
runtime error.

Note: Pin Scramble Maps are not inherently constrained to or identified with DDR vs.
non-DDR applications. Except as noted here, no compile-time or run-time
checks are made to determine whether a given Pin Scramble Map is configured
for SDR vs. non-DDR use. As with many Magnum 1/2/2x software constructs,
default values are used when user values are not specified.

In situations where a Pin Scramble Map is defined using SCRAMBLE2_xxxDUT and
subsequently used in non-DDR tests, only the A-cycle data source is used.

3.19.3.4 DDR Test Patterns
See Double Data Rate (DDR) Mode, DDR Hardware Details.

Note: DDR-related information does not apply to Maverick-I.
 2/27/09 Pg-644

MUX, Super-MUX and DDR
Note: this section provides an overview of DDR-related test pattern information.
Additional details are available in DDR Logic Vectors, DDR Scan Vectors, and
DDR Memory Patterns.

Double Data Rate (DDR) Mode is in effect only during the execution of a DDR test pattern
and affects all pins identically. A test pattern is identified as a DDR pattern using one of the
following methods:

• Using Pattern Rate Attributes in the PATTERN instruction in the test pattern source
file. This takes precedence over the following method.

• Setting Attribute Defaults as command line options when compiling the test pattern.
DDR test patterns will only execute on Maverick-II and Magnum 1/2/2x (not Maverick-I).

During each funtest() execution, the system runtime software detects DDR test patterns
and configures the hardware appropriately.

DDR Pattern Rules
The following rules are founded in the fact that the hardware which controls execution of all
test patterns always executes at the tester cycle rate, not at DDR rates:

1. Test pattern execution sequence control operations can only occur on tester cycle
boundaries. This includes done, conditional jumps, repeats, subroutine calls, returns,
interrupts, etc.

2. Each DDR logic vector and scan vector defines two sets of pattern data (and strobe and
I/O control) per-timing channel. See DDR Logic Vectors and DDR Logic Vectors.

3. Only one Pin Scramble Map can be selected in each tester cycle. However, for useful
DDR test pattern operations the DDR Pin Scramble methods will be used, which allows
the Pin Scramble Map selected in each pattern instruction to actually select two pattern
data sources for each timing channel. See DDR Pin Scramble.

4. Only one time-set (TSET) and one VIHH Map can be specified in each pattern instruction
(each tester cycle).

3.19.3.5 DDR Logic Vectors
See Double Data Rate (DDR) Mode, DDR Hardware Details, DDR Test Patterns.
 2/27/09 Pg-645

MUX, Super-MUX and DDR
Note: DDR-related information does not apply to Maverick-I.

In logic DDR Test Patterns, the Logic Vector Memory (LVM) outputs two sets of pattern data
to each timing channel, in each tester cycle; i.e. each cycle outputs a DDR A-cycle and DDR
B-cycle logic vector to each timing channel. Since the LVM must store twice the amount of
pattern data in DDR logic patterns, for each instruction executed the vector address (VAR) is
incremented by two (this detail is mostly transparent to the user).

Note: as noted in the DDR Drive Timing & Formats, the Pin Scramble hardware
delivers both A-cycle and B-cycle pattern data at the beginning (T0) of each
tester cycle. It is the user’s programmed edge times which determine at what
time, in a given tester cycle, the two pattern data sources are actually used at
the DUT.

DDR logic vectors must conform to specific DDR Pattern Rules. However, the syntax of a
DDR vector ensures that these rules are difficult to violate. An example DDR Logic Vector is
shown below:

PATTERN (ddr_pat_name, double)
% VEC 00001 0101 HHLL ... etc ... \

00010 1010 XXXX ... etc ...,PS#, TSET#, VIHH#

Note the following:

• A DDR pattern is identified to the pattern compiler (Patcom) using the double
Pattern Rate Attributes in the PATTERN declaration.

• A single vector delimiter token (%) is used for each DDR pattern instruction.
• A single label can used in each DDR pattern instruction. See Pattern Labels.
• Two sets of logic pattern tokens are specified in each instruction. The first set (the

first line above) represents the A-cycle data, the second set (line) represents the
B-cycle data. The Test Pattern Line Continuation Character (‘\’) can be used to
display A-cycle data and B-cycle data on two (or more) source lines.

• A single Pin Scramble Map selection can be specified in each DDR vector. See
DDR Pin Scramble.

• A single Time-set selection can be specified in each DDR vector. See DDR Timing
• A single VIHH Map selection can be specified in each DDR vector.
• Each DDR logic instruction may only contain one instance of the following:

• VEC Pattern Instruction or RPT Pattern Instruction
 2/27/09 Pg-646

MUX, Super-MUX and DDR
• Optional VEC/RPT Instruction Parameters
• VAR Instruction
• VCOUNT Instruction
• VPINFUNC Instruction
• VUDATA Instruction

• See Logic Error Catch (LEC).

Note: DDR I/O switching (i.e. drive-on vs. drive-off) can only be obtained using DDR
Logic Vectors or DDR Scan Vectors. It is not possible to independently control
A-cycle vs. B-cycle I/O using memory pattern instructions (ADHIZ, etc.).

3.19.3.6 DDR Scan Vectors
See Double Data Rate (DDR) Mode, DDR Hardware Details, DDR Test Patterns.

Note: DDR-related information does not apply to Maverick-I.

Using Magnum 1/2/2x, the Logic Vector Memory (LVM) and Scan Vector Memory (SVM) are
the same physical memory. The memory is accessed differently for scan vectors vs. logic
vectors, however this does not affect DDR test pattern operation, except as noted in DDR
Pattern Rules.

3.19.3.7 DDR Memory Patterns
See Double Data Rate (DDR) Mode, DDR Hardware Details, DDR Test Patterns.

Note: DDR-related information does not apply to Maverick-I.

The Algorithmic Pattern Generator (APG), used to generate Memory Test Patterns, always
operates at the tester cycle rate, even when executing DDR Test Patterns. However, as
noted below, it is possible, with constraints, to obtain useful DDR memory pattern operations
from DDR Test Patterns.
 2/27/09 Pg-647

MUX, Super-MUX and DDR
Fundamentally, all APG outputs and control functions change once per tester cycle,
including:

• APG APG Address Generator, APG Data Generator and APG Chip Selects.
• Execution control operations, including done, conditional or unconditional

branches, jumps, GOSUB, RETURN, etc.
• APG counter increment/decrement, reloading, etc.
• Any use of UDATA.
• Time-set, Pin Scramble Map, VIHH Map, selection
• READ, READUDATA, NOREAD, ADHIZ.
• APG Interrupt Timer operations.
• RESET, NOLATCH, VCOMP, OVER.
• VPULSE, LBDATA.

However, using the DDR Pin Scramble facilities it is possible to obtain useful memory
pattern operations at DDR rates, as noted below:

• Use DDR Pin Scramble maps to select between two different APG data sources on
a given pin in each tester cycle. For example, on a DUT data pin, the DDR
A-cycle selects t_d0 and B-cycle selects t_d18. The APG Data Generator Data
Register, JAM Register/RAM, UDATA and DBM data sources can be creatively
programmed to support DDR needs.

• Use two different chip selects per timing channel and DDR Pin Scramble maps to
switch between them at DDR rates.

• To obtain an incrementing address at DDR rates the APG address generator is
incremented by-2 in each instruction (using XALU/YALU ADD). Then, on the DUT’s
LSB address pin the DDR Pin Scramble maps a data source set to a fixed logic-0
in the A-cycle and a fixed logic-1 in the B-cycle; these fixed logic states can come
from any unused pattern resource (t_lvm, t_cs1, etc.). More creative solutions
may be necessary to generate more complex address sequences.

Note: DDR I/O can only be obtained using DDR Logic Vectors or DDR Scan Vectors.
It is not possible to independently program A-cycle vs. B-cycle I/O using
memory pattern instructions (ADHIZ, etc.).
 2/27/09 Pg-648

MUX, Super-MUX and DDR
Note: it is also possible to capture errors to the Error Catch RAM (ECR) from DDR
Memory Test Patterns, however specific rules apply. See ECR in DDR, MUX and
Super-MUX Modes.

3.19.3.8 DDR Timing
See Double Data Rate (DDR) Mode, DDR Hardware Details.

Note: DDR-related information does not apply to Maverick-I.

Special versions (overloads) of settime() are used to program DDR timing formats and
edge times. In general, the DDR versions of settime() support programming, in a single
function call, two timing values for each timing event, one for the DDR A-cycle events and
one for B-cycle events.

In DDR mode, all timing events are programmed relative to the start of the tester hardware
cycle (T0), not from the DDR A-cycle/B-cycle viewpoint. Both the DDR A-cycle and B-cycle
pattern data is available at the output of the DDR Pin Scramble hardware at the beginning
(T0) of each tester cycle, regardless of which data sources are selected and independent of
how that data is subsequently used by the timing channel. Using the DDR versions of
settime() (more below), the first time value argument(s) are rigidly bound to the DDR A-
cycle pattern data, and the second value argument(s) to with the B-cycle pattern data (this
association cannot be changed). However, neither the hardware nor the software check
whether a timing event controlled by A-cycle pattern data actually occurs before or after an
event controlled by the B-cycle data, thus, it is possible to have A-cycle timing events occur
after B-cycle events if the event timing is so programmed. In some situations this may be
useful, however...

Note: proper strobe operation requires that all A-cycle strobe events occur before any
B-cycle strobe events.
 2/27/09 Pg-649

MUX, Super-MUX and DDR
Note: after executing DDR Test Patterns and before executing any non-DDR test
patterns (i.e. when switching from DDR to non-DDR) it is always necessary to
reprogram the I/O timing edges in all time-sets used in the non-DDR test
patterns. Failure to do so may result in improper operation which is very difficult
to diagnose.

The following format selection options are used as arguments to settime() to program
DDR timing:

DDR_DRIVE

DCLKPOS

DCLKNEG

DDR_STROBE

DDR_IODRIVE

DDR_IOSTROBE

As in non-DDR timing, it is possible to program a drive format, strobe format, and I/O control
for each pin in each time-set (TSET). This will require executing funtest() once for each
format.

Note: there are no special DDR mode controls used to identify timing intended for use
with DDR test patterns. By design, it is possible to program some time-sets for
DDR use and others for non-DDR use. No error checks are made to validate
DDR timing vs. non-DDR timing. It is the user’s responsibility to properly
manage these details to obtain the desired functionality.

DDR Cycle Periods
From the DUT’s viewpoint, when executing DDR Test Patterns (i.e. in Double Data Rate
(DDR) Mode) each tester cycle represents two cycle periods (A/B). However, internally,
there is no change in how the hardware generates tester cycles. The following diagrams
show this. The two right diagrams show that control of the effective cycle time of a DDR
 2/27/09 Pg-650

MUX, Super-MUX and DDR
A-cycle vs. B-cycle can be obtained by changing the location of drive, strobe and I/O edges
within a given tester cycle:.

All cycle period values are programmed, using the cycle() function, in the context of tester
cycles i.e. it is not possible to separately program A-cycle vs. B-cycle cycle periods. And, in
hardware, both the A and B cycles start at the same time; it is up to the user to program the
drive, strobe and I/O timing edges to obtain the effective DDR timing desired.

DDR Drive Timing & Formats
When executing DDR Test Patterns (i.e. in Double Data Rate (DDR) Mode) , drive formats
are limited to DDR_DRIVE (NRZ) and double clock formats (DCLKPOS, DCLKNEG).

In DDR mode, NRZ is programmed using the DDR_DRIVE format. The settime() function
supports programming two time value arguments for the DDR_DRIVE format; i.e.:

settime (TSET1,
pins,
DDR_DRIVE,
Acycle-NRZ-time,
Bcycle-NRZ-time);

For example:

settime (TSET1, ddr_pins, DDR_DRIVE, 5 NS, 55 NS);

Tester Cycle

DDR B-cycle

Programmed Cycle Period

DDR A-cycle

Tester Cycle

DDR B-cycle

Programmed Cycle Period

DDR A-cycle

Tester Cycle
Programmed Cycle Period

DDR B-cycle

DDR A-cycle
 2/27/09 Pg-651

MUX, Super-MUX and DDR
In this example, the first time value (5nS) sets the DDR A-cycle DDR_DRIVE edge and the
second time value (55nS) controls the B-cycle DDR_DRIVE edge. More correctly, the first
time value argument is associated with the A-cycle pattern data, and the second time value
argument is associated with the B-cycle pattern data.

As shown in the diagram on page 642, the A-cycle DDR_DRIVE events are generated by
TG-A, and B-cycle DDR_DRIVE events are generated by TG-B.

As indicated, double clock waveforms are available in DDR mode, with the same constraints
as in non-DDR mode:

• Double clock is a static pin mode.
• No other waveform formats (drive, strobe or I/O) can be used on that pin.

Double clock is enabled when a DCLKPOS or DCLKNEG format is programmed on a given pin
(in any time set), and disabled when any other format is programmed on the pin (in any time
set). Using Magnum 1/2/2x, the Dclk Mode must also be set to enable DDR mode (see
Magnum PE Driver Modes).

In DDR mode, using the double clock format has the following additional considerations:

• The double clock format is programmed using the same settime() function and
arguments as are used in non-DDR mode.

• In DDR mode, the number of timing edges generated (4) using double clock
format is the same as in non-DDR mode; i.e. there is not a double clock in the
DDR A-cycle and another double clock in the B-cycle.

• In the test pattern, the DDR A-cycle pattern data controls the first phase of the
double clock and the DDR B-cycle pattern data controls the second phase of the
double clock. This is different than the Maverick-I/-II.

• It is legal to use a -1 edge time value to disable selected double clock edges.
Using multiple time-sets, it is possible during test pattern execution, on a per-cycle
basis, to effectively convert double clock format to a single clock or no-clock
format by switching to the appropriate time-set in the test pattern. For example,
using the following 4 time-sets, it is possible to generate the 4 permutations of
double clock pulses:

// Both A-cycle and B-cycle clock pulses
settime(TSET1, some_pin, DCLKPOS, 0 NS, 10 NS, 20 NS, 30 NS);

// Disable B-cycle clock pulse
settime(TSET2, some_pin, DCLKPOS, 0 NS, 10 NS, -1, -1);

// Disable A-cycle clock pulse
settime(TSET3, some_pin, DCLKPOS, -1, -1, 20 NS, 30 NS);
 2/27/09 Pg-652

MUX, Super-MUX and DDR
// Disable both A-cycle and B-cycle clock pulses
settime(TSET4, some_pin, DCLKPOS, -1, -1, -1, -1);

Two of the four double clock edges are generated by the timing generators normally used to
generate I/O edges. These timing generators must be configured somewhat differently when
generating double clock edges. This is only significant for one reason: after a given pin has
been configured to generate a double clock, if/when that pin is set up to generate any other
format(s) the IODRIVE and IOSTROBE timing for that pin must also be [re]programmed in all
time-sets which use I/O edges, including when default I/O timing is used. To restore default
I/O timing use the following:

settime(TSETn, IODRIVE, your_pins, 0 NS, -1);
settime(TSETn, IOSTROBE, your_pins, 0 NS, -1);

DDR Strobe Timing & Formats

Note: proper DDR strobe operation requires that all A-cycle strobe events occur
before any B-cycle strobe events.

Only edge strobes can be used in DDR mode, programmable on a per-pin basis, using the
edge_strobe() function.

As shown in the diagram on page 642, the A-cycle edge strobe is generated by TG-A and
the B-cycle edge strobe by TG-B.

A DDR version of the settime() function supports programming two time value arguments
for the DDR_STROBE format; i.e.:

settime (TSET1, data_pins, DDR_STROBE,
Acycle_strobe_time,
Bcycle_strobe_time);

For example:

settime (TSET1, data_pins, DDR_STROBE,
15 NS,
65 NS);

Note: it is critical that -1 NOT be used to disable strobe edges. Doing so causes
improper strobe operation and invalid test results and is very difficult to
diagnose.
 2/27/09 Pg-653

MUX, Super-MUX and DDR
Note: it is important to note that the first strobe edge is bound to the A-cycle pattern
data, and the 2nd edge to B-cycle pattern data, and that this relationship cannot
be changed. Proper operation requires that the A-cycle strobe be programmed
(and occur) before the B-cycle strobe.

The minimum time between the end of one DDR strobe and the start of the next DDR strobe
(on the same pin) is 6nS. This is true within a given tester cycle and also between tester
cycles i.e. 6nS must occur between a strobe from a given B-cycle and a strobe in the next A-
cycle, etc.

Using Magnum 1/2/2x, the following diagram shows 100MHz DDR strobe timing. This
example uses edge strobes spaced at 10nS (the minimum spacing is 6nS):

T0
Tester Cycle = 20nS

Out

Tester Cycle = 20nS
DDR A-cycle DDR B-cycle DDR B-cycleDDR A-cycleT0

Clk
Tprop
2nS

Tprop
2nS

3nS 13nS 3nS 13nS

10nS 10nS 10nS 10nS

Edge
Strobe
 2/27/09 Pg-654

MUX, Super-MUX and DDR
3.19.3.9 DDR I/O Timing
See DDR Timing, Double Data Rate (DDR) Mode, DDR Hardware Details.

Note: DDR-related information does not apply to Maverick-I.

To fully understand DDR I/O timing it helps to understand non-DDR I/O timing, see Timing
Generator Modes, Magnum Timing Rules.

In DDR mode the following I/O state combinations are possible within a single tester cycle:

A-cycle B-Cycle
Drive-off Drive-off
Drive-on Drive-off
Drive-off Drive-on
Drive-on Drive-on

I/O edge timing is programmed using the settime() function and specifying the
DDR_IOSTROBE or DDR_IODRIVE formats documented in below. It is legal to use -1 to
disable DDR I/O timing edges.

Note: DDR I/O operations can only be controlled using DDR Logic Vectors or DDR
Scan Vectors. The hardware does not allow independent DDR A-cycle vs.
B-cycle I/O control using memory pattern instructions (ADHIZ, etc.).

Note: after executing DDR Test Patterns and before executing any non-DDR test
patterns (i.e. when switching from DDR to non-DDR) it is always necessary to
reprogram the I/O timing edges in all time-sets used in the non-DDR test
patterns. Failure to do so may result in improper operation which is very difficult
to diagnose.

For drive-off timing use:

settime (TSET#, pinlist,
DDR_IOSTROBE,
A_cycle_driveoff_time,
B_cycle_driveoff_time);

For example:
 2/27/09 Pg-655

MUX, Super-MUX and DDR
settime (TSET1, data_pins, DDR_IOSTROBE, 10 NS, 60 NS);

The first time value (10nS) sets the DDR A-cycle drive-off time, and the second time value
(60nS) sets the B-cycle drive-off time. Don’t forget that it is the combination of test pattern
and Pin Scramble data source selection that actually determines whether a given pin
actually tri-states or drives in A-cycle or B-cycle.

For drive-on timing use:

settime (TSET#, pinlist,
DDR_IODRIVE,
A_cycle_driveon_time,
B_cycle_driveon_time);

For example:

settime (TSET1, data_pins, DDR_IODRIVE, 5 NS, 55 NS);

The first time value (5nS) sets theDDR A-cycle drive-on time, and the second time value
(55nS) sets the B-cycle drive-on time. Again, it is the combination of test pattern data and
Pin Scramble data source selection that actually determines whether a given pin actually
drives or tri-states in either A-cycle or B-cycle.

The examples below demonstrate DDR I/O timing. The timing diagrams intentionally show
1.5 tester cycles, to show variations of drive/strobe sequences. In DDR mode, all timing
events are programmed relative to the tester hardware cycle, not from the DDR
A-cycle/B-cycle viewpoint.

edge_strobe(pins, TRUE);
cycle(TSET1, 100 NS);
settime(TSET1, pins, DDR_DRIVE, 20 NS, 70 NS);
settime(TSET1, pins, DDR_IODRIVE, 10 NS, 60 NS);
settime(TSET1, pins, DDR_STROBE, 30 NS, 80 NS);
settime(TSET1, pins, DDR_IOSTROBE, 25 NS, 75 NS);
 2/27/09 Pg-656

MUX, Super-MUX and DDR
Drive, Strobe, Drive Sequence

In the previous diagram the lettered transitions represent:

• A = prior state, unknown.
• B = the DDR_IODRIVE drive-on transition at 10nS.
• C = the DDR_DRIVE transition at 20nS.
• D = the DDR_IOSTROBE tristate transition at 75nS.
• E = the DDR_STROBE at 80nS.
• F = the DDR_IODRIVE drive-on transition at 10nS.
• G = the DDR_DRIVE drive transition at 20nS.

Drive, Strobe, Strobe Sequence

In the previous diagram the lettered transitions represent:

• A = prior state, unknown.
• B = the DDR_IODRIVE drive-on transition at 10nS.

A

T0 50nS 50nS

B C

10nS
20nS

Drive

80nS

D E

Strobe Drive

F G

10nS
20nS75nS

Cycle 1A Cycle 1B Cycle 2A

100nS
T0

Tester Cycle = 100nS

A

T0 50nS 50nS

B C

10nS
20nS

Drive

80nS

D E

Strobe Strobe

25nS75nS

Cycle 1A Cycle 1B Cycle 2A

100nS
T0

30nS

GF

Tester Cycle = 100nS
 2/27/09 Pg-657

MUX, Super-MUX and DDR
• C = the DDR_DRIVE transition at 20nS.
• D = the DDR_IOSTROBE tristate transition at 75nS.
• E = the DDR_STROBE at 80nS.
• F = the DDR_IOSTROBE tristate transition at 25nS.
• G = the DDR_STROBE drive transition at 30nS.

Strobe, Drive, Drive Sequence

In the previous diagram the lettered transitions represent:

• A = prior state, unknown.
• B = the DDR_IOSTROBE tristate transition at 25nS.
• C = the DDR_STROBE at 30nS.
• D = the DDR_IODRIVE transition at 60nS.
• E = the DDR_DRIVE transition at 70nS.
• F = the DDR_IODRIVE transition at 10nS.
• G = the DDR_DRIVE transition at 20nS.

D

T0 50nS 50nS

E

60nS
70nS

Strobe Drive Drive
Cycle 1A Cycle 1B Cycle 2A

100nS
T0

25nS
30nS

CA F G

10nS
20nS

Tester Cycle = 100nS

B

 2/27/09 Pg-658

MUX, Super-MUX and DDR
Strobe, Drive, Strobe Sequence

In the previous diagram the lettered transitions represent:

• A = prior state, unknown.
• B = the DDR_IOSTROBE tristate transition at 25nS.
• C = the DDR_STROBE at 30nS.
• D = the DDR_IODRIVE transition at 60nS.
• E = the DDR_DRIVE transition at 70nS.
• F = the DDR_IOSTROBE tristate transition at 20nS.
• G = the DDR_STROBE at 30nS.

3.19.3.10 DDR Fail Signal MUX

See Double Data Rate (DDR) Mode, DDR Hardware Details, fail_signal_mux().

Note: DDR-related information does not apply to Maverick-I.

The DDR Fail Signal MUX is used to support capturing failure information in the Error Catch
RAM (ECR) at DDR rates.

D

T0 50nS 50nS

E

60nS
70nS

Strobe Drive Strobe
Cycle 1A Cycle 1B Cycle 2A

100nS
T0

C

20nS
30nS

BB D

T0 50nS 50nS

E

60nS
70nS

Strobe Drive Strobe
Cycle 1A Cycle 1B Cycle 2A

100nS
T0

25nS

CA H

20nS
30nS

GF

Tester Cycle = 100nS
 2/27/09 Pg-659

MUX, Super-MUX and DDR
Note: this section provides an overview of the Fail Signal MUX hardware. In use,
some details are different when capturing memory test failures (for redundancy
and bitmapping) vs. logic test failures (for datalogging). These topics are
covered separately in DDR Fail Signal MUX: Memory Error Catch and DDR Fail
Signal MUX: Logic Error Catch.

The following hardware facilities exist in the Magnum 1 for capturing failure information
during test pattern execution:

• Non-ECR use always captures the pins failing in the first failing cycle, all failing
pins, and the first failing X/Y address, MAR, VAR, or SAR.

• Using the optional ECR with Memory Test Patterns, failing X/Y addresses and
failing pins can be captured.

• Using the optional ECR with Logic Test Patterns, failing logic vector address (VAR)
and failing pins can be captured.

• Using the optional ECR with scan test patterns, failing scan vector address (SAR)
and failing pins can be captured.

In hardware, each pin of every pin-pair has an error signal path to the ECR, used when that
pin’s errors are captured to the ECR. When using a single data rate (SDR) test patterns
(non-DDR test patterns) one error signal path per-pin is enough to capture each pin’s
results to the ECR in each tester cycle. However, when executing DDR Test Patterns, each
pin may receive 2 strobes in each tester cycle. In these situations, to properly use the ECR
requires logging 2 errors per-pin in each tester cycle. This, in turn, requires the use of 2 error
signal paths to the ECR for the pins being logged. These extra signal paths are obtained
using the Fail Signal MUX to commandeer the signal path from a near-by pin, called a
partner pin below. Pins which have their signal path commandeered cannot be logged to the
ECR. Thus, using the ECR, it is possible to capture both A-cycle & B-cycle failures i.e. DDR
failures, in each tester cycle, for up to 1/2 of the tester’s signal pins.
 2/27/09 Pg-660

MUX, Super-MUX and DDR
The following diagram is used to describe the Fail Signal MUX hardware and operation. Two
partner pins are shown:

Figure-45: Fail Signal MUX Block Diagram
As shown in the model above, for each pair of partner pins, the Fail Signal MUX always
outputs two error signals to the ECR. By default, these represent the error signal from each
pin. The inputs to the Fail Signal MUX consist of 2 error signals from each pin, above called
A-cycle Fail and B-cycle Fail. Only the A-cycle fail signal is used when logging SDR errors to
the ECR. When logging errors from DDR Test Patterns, the selection of which error signals
are used is dependent on how the Fail Signal MUX is configured, more below.

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

VOL

VOH

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

B-cycle Fail
A-cycle Fail

VOL

VOH

Fail

B-cycle Fail
A-cycle Fail

pin-n

Signal
MUX

Fail
Logic

Fail
Logic

From other pins

(Pin 1)

The grey portion of this model is identical for both memory testing
and Logic Error Catch use. However, the ECR configuration changes
between these modes. See DDR Fail Signal MUX: Logic Error Catch
and DDR Fail Signal MUX: Memory Error Catch

MUX
X/Y Address
VAR
SAR

MUX set up using ecr_config_set() From APG

MUX set up using
fail_signal_mux()

(1 per 2 pins)

ECR

pin-n+4
(Pin 5)

Pin-1 and Pin-5
used as examples

only

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path

PE Comparators
One pair shown

(pin-n & pin-n+4)
 2/27/09 Pg-661

MUX, Super-MUX and DDR
In the context of Fail Signal MUX use, pin partners are offset by 4; i.e. pin a_1 with a_5,
b_2 with b_6, etc. In this document, this is also annotated as pin-n and pin-n+4.

By default, when executing any test pattern, only the A-cycle signal from each pin is used, to
capture one error, per-pin, per-cycle to the ECR. In order to capture DDR errors (i.e. 2 errors
per-pin, per-cycle) requires:

• Use ecr_ddr_mode_set() to prepare for DDR ECR use. Must execute before
ecr_config_set(), lec_config_set().

• Use fail_signal_mux() to configure the Fail Signal MUX to select which pin of
each pair will be logged to the ECR. Must execute before ecr_config_set(),
lec_config_set().

• Configure the ECR:
• Use ecr_config_set() to configure for memory pattern ECR use.
• Use lec_config_set() to configure for logic pattern ECR use.

• Execute one or more DDR Test Patterns to capture errors to the ECR. DDR test
patterns can generate 2 strobe signals per-pin (DDR A-cycle strobe and B-cycle
strobe) with independent A-cycle vs. B-cycle expect data from the pattern.

As shown above, for DDR acquisition, the Fail Signal MUX hardware allows the error signal
paths from one pin to be used by a partner pin, during which time errors from partner pin
can’t be captured to the ECR. This allows one pin of each partner-pair to log both DDR
A-cycle and B-cycle errors to the ECR, with up to 1/2 of all tester pins captured at DDR data
rates. The partner pins may be used as input pins, or strobes can still be applied, which will
affect the overall PASS/FAIL results and test pattern branch-on-error operations.

Each Fail Signal MUX contains internal logic, to determine how the four inputs (from 2 pins)
are mapped to the 2 outputs. Three options are supported and the selection is made using
the fail_signal_mux() function:

• The A-cycle Fail signals are output from each pin (non-DDR mode)
• The A-cycle Fail and B-cycle Fail signals from one pin are output (DDR mode).
• The logical OR of the A-cycle Fail and B-cycle Fail signals of pin-n are output on

the corresponding pin and the logical OR of the A-cycle Fail and B-cycle Fail
signals of pin n+4 are output on the other pin.

As indicated above, prior to executing a test pattern which logs errors to the ECR, it must
also be configured. The functions used are different for memory pattern vs. logic pattern vs.
scan pattern error capture:
 2/27/09 Pg-662

MUX, Super-MUX and DDR
• Memory pattern capture uses ecr_config_set() to specify the number of X/Y
addresses, number of data bits, and which pins are to be captured (the other
parameters don’t matter to this discussion). These functions were not modified for
DDR use. See DDR Fail Signal MUX: Memory Error Catch.

• Logic and scan fail capture uses lec_config_set() to specify the pins to be
captured. See DDR Fail Signal MUX: Logic Error Catch.

The lec_config_set() function is used to control the MUX which determines whether
APG X/Y address, VAR, or SAR is captured in the ECR. lec_config_set() must be
executed before executing the test pattern which logs errors to the ECR.

Miscellaneous Comments
• The test_pin() and test_pin_first_error() functions read failing pin

information on the output of each pin’s fail logic, before the signals enter the Fail
Signal MUX. Thus, the configuration of the MUX has no effect on these functions.

• As noted in DDR Scan Vectors, to obtain scan data at DDR data rates requires
configuring one or more Pin Scramble Map(s) to map Scan outputs to A-cycle vs.
B-cycle use. A failing SAR represents all Scan memory outputs in one tester cycle
i.e. not DDR. However, failing pins can be resolved to A-cycle vs. B-cycle failures.
User-written code must determine how failing scan data is displayed.

3.19.3.11 DDR Fail Signal MUX: Logic Error Catch
See Double Data Rate (DDR) Mode, DDR Fail Signal MUX, fail_signal_mux().

Note: DDR-related information does not apply to Maverick-I.

Note: read DDR Fail Signal MUX first.

As noted in DDR Fail Signal MUX, the upper portion of the diagram below applies to using
the ECR for both memory error catch and logic error catch modes. However, the ECR
 2/27/09 Pg-663

MUX, Super-MUX and DDR
configuration changes between memory and logic modes. Scan patterns are treated the
same as logic patterns. The model below shows the logic testing ECR configuration:

Figure-46: Fail Signal MUX Block Diagram: Logic Error Catch
To perform logic error capture the following functions are used as noted:

• fail_signal_mux() is used to configure the Fail Signal MUX.
• lec_config_set() is used to specify which [failing] pins are to be captured and

to configure the ECR to capture DDR failures.
To switch from [a previously set up] memory error catch mode to logic error catch mode
requires that lec_config_set() be used.

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

VOL

VOH

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

B-cycle Fail
A-cycle Fail

VOL

VOH

Fail

B-cycle Fail
A-cycle Fail

pin-n

Signal
MUX

Fail
Logic

Fail
Logic

(Pin 1)

MUX set up using
fail_signal_mux()

(1 per 2 pins)

pin-n+4
(Pin 5)

Pin-1 and Pin-5
used as examples

only

PE Comparators
One pair shown

(pin-n & pin-n+4)ECR
Configured as LEC

MUX
X/Y Address
VAR
SAR

MUX set up using lec_config_set()

From APG

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path

Pin 64
 Pin 5
 Pin 4
 Pin 3
 Pin 2
 Pin 1
 2/27/09 Pg-664

MUX, Super-MUX and DDR
3.19.3.12 DDR Fail Signal MUX: Memory Error Catch
See Double Data Rate (DDR) Mode, DDR Fail Signal MUX, fail_signal_mux().

Note: DDR-related information does not apply to Maverick-I.

Note: read DDR Fail Signal MUX first.

The following failure information is captured without using the ECR, in both DDR and
non-DDR modes:

• The first failing MAR and failing X/Y address are captured on the APG.
• The pins failing the first instruction are captured in the PE error latches.

These values can be read using standard functions for use as datalog, etc.

When using the ECR, the main difference between logic error catch and memory error catch
is the type of information logged in addition to failing pins.
 2/27/09 Pg-665

MUX, Super-MUX and DDR
As noted in DDR Fail Signal MUX, the upper board portion of the model below applies to
using the ECR for both memory testing and Logic Error Catch Mode. However, the ECR
configuration changes between memory and logic modes:

Figure-47: Fail Signal MUX Block Diagram: Memory Error Catch
In non-DDR memory testing, the ECR is typically configured to match the DUT in size, in
both the X/Y address domain and in the number of data bits captured at each address.
During testing, the X/Y addresses generated by the APG to test the DUT are also used to
address the ECR. X/Y addresses are generated in an arbitrary sequence, as determined by
the user-written test pattern. At each failing address the ECR records which pins fail.

During memory test, failures accumulate in the ECR i.e. a given DUT address may be read
more than once, and thus fail more than once, with the same or different pins failing each
time the address is read. Using the ECR in memory testing, the ECR does not record which
address or pin(s) fail first, or how many times a given address and/or pin failed. After test
execution has completed, the ECR is read to see which pins failed at each failing X/Y

ECR
Configured as Memory Error Catch
Address Differentiator = X0

A-cycle
Failures
X0 = 0

B-cycle
Failures
X0 = 1

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

VOL

VOH

B-cycle Strobe Data

A-cycle Strobe
B-cycle Strobe

A-cycle Strobe Data

B-cycle Fail
A-cycle Fail

VOL

VOH

Fail

B-cycle Fail
A-cycle Fail

pin-n

Signal
MUX

Fail
Logic

Fail
Logic

(Pin 1)

MUX set up using
fail_signal_mux()

(1 per 2 pins)

pin-n+4
(Pin 5)

Pin-1 and Pin-5
used as examples

only

PE Comparators
One pair shown

(pin-n & pin-n+4)

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path
 2/27/09 Pg-666

MUX, Super-MUX and DDR
address. This is done during Redundancy Analysis (RA), for failure display in BitmapTool, or
for other purposes.

In DDR mode, the APG’s X/Y address and data outputs can only change once in each tester
cycle. To perform DDR memory testing, the DDR Pin Scramble facilities are used to map
two different APG outputs to a given DUT pin, in each tester cycle. For example, on a given
DUT data pin, the DDR A-cycle data can READ D0, with B-cycle data can READ D8, etc.
Since two READs are performed per tester cycle two failures can occur in each tester cycle,
per-pin. These are the A-cycle and B-cycle failures discussed below.

In DDR mode, the APG generates, and the ECR receives, only one X/Y address in each
tester cycle. Thus, to capture two failures in each tester cycle the ECR must be configured to
log two discrete failures, per pin, at each X/Y address. As noted later, the
ecr_ddr_mode_set() function is used to set up the ECR in this configuration and the
fail_signal_mux() function is used to refine which pins are captured. To capture 18-
wide data in DDR mode the entire 36-bit width of the ECR be used. Half of the ECR
captures A-cycle failures, and the other half B-cycle failures. In other words, the ECR can
capture up to 36-wide data in non-DDR mode, or up to 18-wide data in DDR mode.

For DDR testing to be useful also requires that two unique addresses be applied to the DUT
in each tester cycle. This is also done using the DDR Pin Scramble. But only one of these
addresses (the APG X/Y address outputs) is actually used by the ECR, to log both A-cycle
and B-cycle failures in each tester cycle. One address is adequate when logging failures, but
not when reading the ECR to report failures. In order for the system software to report
A-cycle failures at an address which is unique from B-cycle failures, the address difference
between A-cycle and B-cycle must be known when the ECR is read. This is the other
purpose of ecr_ddr_mode_set(), to specify an address differentiator used when reading
the ECR. In most applications the address differentiator will be either X0 or Y0.

The diagram above shows the ECR configured for memory testing. In this example, both
A-cycle and B-cycle failures are captured from pin-n. The address differentiator is specified
to be X0:

Given this configuration, note the following about the example above:

• Half of the ECR will contain A-cycle failures i.e. when the address differentiator
(X0) is logic-0, and the other half will contain B-cycle failures i.e. when X0 = 1.

• The system software which reads the ECR depends upon this relationship. Thus,
for proper results, both the test pattern AND the pin scrambling used to define and
control the DDR address differentiator MUST ensure this operation. This is the
user’s responsibility.

To configure the Fail Signal MUX and ECR to perform DDR memory error capture the
following functions are used:
 2/27/09 Pg-667

MUX, Super-MUX and DDR
• fail_signal_mux() is used to configure the DDR Fail Signal MUX.
• ecr_ddr_mode_set() is used to switch the ECR configuration between DDR

and non-DDR modes. In non-DDR mode the ECR is configured as specified using
ecr_config_set(). In DDR mode, the system software configures the ECR
data width to be 2-times that specified using ecr_config_set(). One argument
to ecr_ddr_mode_set() also specifies the address differentiator.

• ecr_ddr_mode_set() MUST be executed before ecr_config_set(), which is
used to configure the ECR, in the form of X/Y address count, and the number of
pins to be logged. In DDR mode, this configuration is modified by
ecr_ddr_mode_set(), which MUST be executed before ecr_config_set().
The other arguments to ecr_config_set() don’t affect this configuration and
are ignored here. The ecr_config_set() function was not modified for DDR
use.

• ecr_config_set() is used to configure the MUX which controls which failing
address type is logged, which in memory test mode will be X/Y address (VAR or
SAR is possible but likely not useful in memory test operations).

To switch from [a previously set up] logic error catch mode to memory error catch mode
requires:

• ecr_ddr_mode_set() when DDR is to be used.
• ecr_config_set()

To switch between memory DDR and non-DDR memory configuration only requires using
ecr_ddr_mode_set(). However, if the ECR configuration needs to change it is required
that ecr_ddr_mode_set() be executed also, before ecr_config_set().

3.19.4 MUX Mode
See MUX, Super-MUX and DDR, mux_mode_set(), mux_mode_get().

MUX mode is used to double the effective maximum data rate of selected pins and/or
reduce the minimum effective cycle period of those pins. This is accomplished by routing the
outputs of two adjacent timing channels, normally used to drive two separate pin-pairs, to
drive just one pin-pair, as shown in the following diagram. This means that in each tester
cycle, pins in MUX mode will receive two sets of pattern data via two timing channels, thus
 2/27/09 Pg-668

MUX, Super-MUX and DDR
doubling the maximum data rate:

Figure-48: MUX Mode Block Diagram
MUX mode pins are configured using mux_mode_set().

MUX mode pins are configured in pairs, called MUX-pin pairs. MUX-pin pairs consist of a
used pin (an odd-numbered pin) and an adjacent pin (the next higher even-numbered pin) .
The used pin is the pin electrically connected to the DUT and, as shown above, the adjacent
pin is not usable at the DUT. Both pins of a given pin-pair (for example, a_1 and b_1, see
Functional Pin-pairs) are always configured identically and all MUX-related rules apply to
both pins.

When specifying MUX mode, even though the even-numbered pin(s) can’t be used at the
DUT, they must be included in the test program, to allow test pattern, pin scramble and
timing parameters to be programmed on those pins, more below.

All drive formats are usable on pins in MUX mode, as are both window and edge strobes.
However, all I/O control signals come from the odd pin’s timing channel, which affects how
I/O timing is programmed, more below.

When programming strobe timing, two strobes may occur in one tester cycle, one from each
MUX timing channel.

Like all signal pins, pins used in MUX mode must be controlled from the test pattern. In
general, the pattern data (and strobe and I/O control) for the odd-numbered MUX pin will
control timing events in the first part of a tester cycle and the pattern data for the even-
numbered MUX pin will control control timing events in the second part of a tester cycle. The
actual timing of all timing events is determined by the user.

Pin a_1

Chan-1
Timing &

Formatting
DUT

Pin b_1
DUT

Pin a_2

Chan-2
Timing &

Formatting
Not Usable

Pin b_2
Not Usable

Pattern
Data via

Pin
Scramble

MUX

X

Functional
Pin-pairs

 2/27/09 Pg-669

MUX, Super-MUX and DDR
In the MUX Mode Block Diagram above, pins a_1 and b_1 (the used pins) are in MUX
mode, and pins a_2 and b_2 (the adjacent pins) are not usable at the DUT. However, both
the used and adjacent pins must appear in the Pin Assignment Table because, as noted
earlier, from the test pattern, pin scramble and timing system viewpoint, both sets of pins are
being used, and must be programmed. This means that, for MUX pins, the Pin Assignment
Table, Pin Scramble Table and drive, strobe and I/O timing will typically have entries for pins
which do not exist on the DUT. In the following example, note the D0_mux pin. For example:

DUT_PIN(D0){} // The used pin
DUT_PIN(D0_mux){} // Not used at the DUT, but required for MUX
// Etc...

PIN_ASSIGNMENTS(example) {
SITES_PER_CONTROLLER(1)

// DUT DUT-1 DUT-2
// Pin Tester Tester
// Name Pin # Pin #
// ------ ------ ------

ASSIGN_2DUT (D0, a_1, b_1)
ASSIGN_2DUT (D0_mux, a_2, b_2)
// Etc...

}

// MUX pins use both D0 and D8 in a PS2 tester cycle
SCRAMBLE_MAP(PS2){

SCRAMBLE_2DUT(D0, t_d0, t_d0)
SCRAMBLE_2DUT(D0_mux, t_d8, t_d8)

}

// And, elsewhere...
mux_mode_set(D0, t_mux_mode); // See mux_mode_set()

settime(TSET1, D0, STROBE, 0 NS, 6 NS); // See settime()
settime(TSET1, D0_mux, STROBE, 10 NS, 16 NS);

// Only the odd pin can control I/O timing
settime(TSET1, D0, IODRIVE, 0 NS, -1); // See settime()
settime(TSET1, D0, IOSTROBE, 10 NS, -1);

The Error Catch RAM (ECR) can be used to capture errors from pins in MUX mode but,
since two errors must be captured for each pin, in each tester cycle, 2 error signal paths are
required for each pin being captured. Thus, the error signal paths from both the used pin and
adjacent pin are used.
 2/27/09 Pg-670

MUX, Super-MUX and DDR
It is possible to use MUX pins when executing DDR test patterns (see Double Data Rate
(DDR) Mode). When mixing MUX pins with DDR mode, both sets of rules apply, including
those for ECR use, see ECR in DDR, MUX and Super-MUX Modes.

3.19.5 Super-MUX Mode
See MUX, Super-MUX and DDR, mux_mode_set(), mux_mode_get().

Note: the information in this section applies only to Magnum 2/2x and is not displayed
in the documentation for other system types.

3.19.6 ECR in DDR, MUX and Super-MUX Modes
See MUX, Super-MUX and DDR.

Note: the information in this section applies only to Magnum 2/2x and is not displayed
in the documentation for other system types.

3.19.7 MUX, Super-MUX & DDR Software
See MUX, Super-MUX and DDR.

This section includes the following:

• Types, Enums, etc.
• mux_mode_set(), mux_mode_get()
• mux_mode(), mux_mode_disable()
• fail_signal_mux()
 2/27/09 Pg-671

MUX, Super-MUX and DDR
3.19.7.1 Types, Enums, etc.
See MUX, Super-MUX & DDR Software.

Description
The following enumerated types are used in support of the various MUX, Super-MUX and
DDR functions:

Usage
The MuxModes enumerated type is used to set/get the MUX or Super-MUX mode state of
one or more pins. See mux_mode_set(), mux_mode_get():

enum MuxModes{ t_nomux_mode, t_mux_mode, t_super_mux_mode };

3.19.7.2 mux_mode_set(), mux_mode_get()
See MUX, Super-MUX & DDR Software.

Note: Maverick-I/-II and Magnum 1 do not support Super-MUX Mode. All references to
Super-MUX Mode apply to Magnum 2/2x only.

Description

The mux_mode_set() function is used to put one or more pins into MUX Mode or Super-
MUX Mode or to return one or more pins to non-MUX mode. See MUX, Super-MUX and
DDR.

The mux_mode_get() function may be used to determine the current MUX mode, if any,
for one pin.

Note the following:

• Read MUX, Super-MUX and DDR first. Then read Functional Pin-pairs.
• During the initial program load all pins are set to non-MUX mode. The system

software does not otherwise change the MUX-mode of any pins.
 2/27/09 Pg-672

MUX, Super-MUX and DDR
• The test system’s hardware architecture determines how pins are configured in
MUX Mode and Super-MUX Mode. This imposes certain rules on which pins may be
used in either mode which, in turn, affects which pins may be referenced in the
arguments to mux_mode_set():
• See MUX Mode for related rules.
• See Super-MUX Mode for related rules.
Note that these rules all refer to low-level pin identifiers (a_1, b_4, etc.). In
software, these are HDTesterPin data types, which are normally only used when
defining the Pin Assignment Table, to map HDTesterPins to DutPins. Elsewhere
in the Nextest software, single pins are identified using a DutPin and multiple
pins are identified using a PinList, which is defined to contain one or more
DutPins. Thus...

Note: using mux_mode_set(), the pins to be programmed are identified using a
DutPin and/or PinList. It is the user’s responsibility to ensure that the rules
noted in MUX Mode and Super-MUX Mode are considered when selecting the
DutPin and/or PinList arguments to mux_mode_set(). Ultimately, this will
affect how the HDTesterPin used in the Pin Assignment Table are mapped to
DutPins.

• If pins are to remain in the same MUX mode for the duration of the test program
load session, programming the MUX configuration in the Site Begin Block will save
test program execution time.

Usage
void mux_mode_set(DutPin *pDutPin, MuxModes mode);

void mux_mode_set(PinList* pPinList, MuxModes mode);

MuxModes mux_mode_get(DutPin *pDutPin);

where:

pDutPin is used in two contexts:

• Using mux_mode_set(), pDutPin identifies one pin to be programmed.
Important rules are described above and in MUX Mode and Super-MUX Mode.
See Note:. In Multi-DUT Test Programs the same pin of all DUT(s) in the Active
DUTs Set (ADS) are programmed.
 2/27/09 Pg-673

MUX, Super-MUX and DDR
• Using mux_mode_get(), pDutPin identifies one pin for which the current mode
is to be retrieved. In Multi-DUT Test Programs the value is read from the first DUT
in the Active DUTs Set (ADS).

mode identified the desired MUX mode. Legal values are of the MuxModes enumerated
type. See MUX, Super-MUX and DDR.

pPinList identifies one or more pin(s) to be programmed. Important rules are described
above and in MUX Mode and Super-MUX Mode. See Note:. In Multi-DUT Test Programs
the same pin(s) of all DUT(s) in the Active DUTs Set (ADS) are programmed.

mux_mode_get() returns the current MUX mode for one specified pin.

Example
mux_mode_set(ClockPin, t_mux_mode);
mux_mode_set(ClockPins, t_super_mux_mode);
MuxModes mode = mux_mode_get(ClockPin);

3.19.7.3 mux_mode(), mux_mode_disable()
See MUX, Super-MUX and DDR, Overview, MUX Mode.

Description

The mux_mode() and mux_mode_disable() functions are used to enable and disable
MUX mode on specified pin.

See Overview and MUX Mode for operational details.

Note the following:

• All pins are set to non-MUX mode during the initial program load. The system
software does not otherwise modify the MUX mode configuration of any pins.

• Each odd tester pin (t_1, t_3, etc.), also called the used pin, can only be MUX’ed
to the next higher even pin, called the adjacent pin. This is selectable on a per-pin
basis.

• When a given pin is in MUX mode, the adjacent pin is not usable at the DUT.
• From the test pattern, timing and Pin Scramble standpoint, both pins of a

MUX-pair must be programmed. See MUX Mode.
 2/27/09 Pg-674

MUX, Super-MUX and DDR
• On pins in MUX mode, the drive timing generator outputs from both channels are
combined such that all three drive timing edges (edges 0, 1 and 2) on the odd pin
and edges 1 and 2 on the even pin are available for use.

• Since two timing channels are used, two pattern data (and strobe and I/O control
bits) are available in each tester cycle; use the odd pin’s pattern data to control the
timing of the first part of the tester cycle and the even pin’s data for the second
part of the tester cycle.

• When strobing, the output of the comparator on the odd pin is routed to the
compare logic on both the odd and even pins. To program two strobes in one
cycle, use the odd pin’s strobe timing and expect data in the first part of the tester
cycle and the even pin’s for the second part of the tester cycle.

• In MUX mode, all I/O timing edges must come from the odd pin; i.e. any I/O
formats programmed for the even pin have no effect.

• If pins are to be placed in MUX mode for the entire test program, consider doing
so in the Site Begin Block, to save test program execution time.

Usage
The following function is used to enable MUX mode on one or more pins:

void mux_mode(PinList* pPinList);

The following function is used to disable MUX mode on all pins:

void mux_mode_disable();

The following function is used to disable MUX mode on one or more pins:

void mux_mode_disable(PinList* pPinList);

where:

pPinList identifies the pin(s) to be enabled or disabled. The pin list must only inlclude odd
numbered tester pins (t_1, t_3, etc.) on which MUX mode is to be enabled or disabled.

Examples

Example 1:
This following example demonstrates 66 MHz NRZ drive data:

mux_mode(fast_data_pins);
cycle (30 NS);
settime(TSET1, fast_data_pins, NRZ, 0 NS);
settime(TSET1, fast_data_pins_even, NRZ, 15 NS);
 2/27/09 Pg-675

MUX, Super-MUX and DDR
mux_mode() enables MUX mode on the pins in the pin list called fast_data_pins. This
pin list can only include odd numbered tester pins. The first settime() programs an NRZ
drive format on these same pins (the MUX pins). The second settime() programs an NRZ
drive format on the even pins which are MUX’ed with the odd pins. The user is responsible
for ensuring the two pin lists are correct. The resulting waveform appears at the DUT only on
the odd MUX tester pins. The format associated with the odd and even pins is shown below
the waveform and the edge placements are shown above the waveform:

Example 2:
Th following example shows a symmetric 66 MHz clock:

mux_mode(fast_clock);
cycle(30 NS);
settime(TSET1, fast_clock, RTO, 5 NS, 12 NS);
settime(TSET1, fast_clock_even, RTO, 20 NS, 27 NS);

mux_mode() enables MUX mode on the pins in the pin list called fast_clock. This pin list
can only include odd numbered tester pins. The first settime() programs an RTO drive
format on these same pins (the MUX pins). The second settime() programs an RTO drive
format on the even pins which are MUX’ed with the odd pins. The user is responsible for
ensuring the two pin lists are correct. The resulting MUX mode waveform appears at the
DUT only on the odd pins:

0nS

Odd-pin NRZ @ DUT Even-pin NRZ @ DUT

15nS

66MHz NRZ
Drive Waveform

Edge1 Edge2
Odd-pin NRZ Even-pin NRZ

30nS

Pattern Data Changes in even-pin’s TG

Pattern Data Changes in odd-pin’s TG

0nS

Data from Odd-pin Data from Even-pin

15nS

66MHz Symmetric

30nS

Clock Waveform

Edge1 Edge2 Edge1 Edge2

Odd-pin RTO Format Even-pin RTO Format

5nS 12nS 20nS 27nS
 2/27/09 Pg-676

MUX, Super-MUX and DDR
The clock is turned on (active low) when the pattern data = 0 and off when the pattern data -
= 1. If the data supplied on both tester pins is always zero then a continuous 66 MHz
waveform will be delivered. This type of waveform can be created using two logic vector
memory data bits on a MUX mode pin pair or it can be created by using the pin scrambler to
map different APG data sources to each channel of the MUX pin-pair. If logic vector memory
is used, the data bits are independent and the two pulses in a tester cycle can be controlled
independently. If one APG data source is used for both MUX pins, then two pulses will
always occur in a tester cycle because the data supplied will always be the same for odd
and even channels. Or, two different APG data sources can be mapped to the MUX mode
pin pair to provide independent data bits for the two pulses in a tester cycle.

Example 3:
The following example shows 66 MHz data strobes.

mux_mode(fast_data_pins);
settime(TSET1, fast_data_pins, STROBE, 7.5 NS, 15 NS);
settime(TSET1, fast_data_pins_even, STROBE, 22.5 NS, 29.9 NS);

mux_mode() enables MUX mode on the pins in the pin list called fast_data_pins. This
pin list can only include odd numbered tester pins. The first settime() programs a
STROBE format on these same pins (the MUX pins). The second settime() programs a
STROBE format on the even-pins which are MUX’ed with the odd pins. The user is
responsible for ensuring the two pin lists are correct. The resulting MUX mode waveform is
shown below for a 30nS cycle period:

3.19.7.4 fail_signal_mux()
See DDR Fail Signal MUX, See MUX, Super-MUX & DDR Software.

Description

0nS

Data from Odd-pin Data from Even-pin

15nS
66MHz Strobe

30nS

Odd-pin STROBE Even-pin STROBE

7.5nS 22.5nS 29.9nS15nS
Edge1 Edge2 Edge2Edge1
 2/27/09 Pg-677

MUX, Super-MUX and DDR
The fail_signal_mux() function is used to configure the DDR Fail Signal MUX, for use
in capturing errors to the ECR when executing DDR test patterns.

For proper operation, the DDR Fail Signal MUX must be configured before a test pattern
executes.

The default DDR Fail Signal MUX configuration matches non-DDR operation. The default
configuration is set when the test program is first loaded but not otherwise changed by the
system software.

Note: there is an execution order dependency between fail_signal_mux() and
ecr_config_set(). fail_signal_mux() sets a mode which is detected by
ecr_config_set(), thus fail_signal_mux() MUST be executed before
ecr_config_set().

Note: proper operation requires that the Fail Signal MUX be configured identically for
all pins being logged to the ECR. It is the responsibility of the user’s test
program code to correctly configure both the ECR and the Fail Signal MUX i.e.
no error checking is performed to ensure these rules are followed. Proper
operation is unlikely when the rules are violated.

The FailMuxSelectOpt enumerated type is used by fail_signal_mux() to specify
the configuration of MUX hardware, as shown in the diagrams below:

• t_single is the non-DDR configuration
• t_double is the DDR configuration

Note that FailMuxSelectOpt is also used by lec_config_set().
 2/27/09 Pg-678

MUX, Super-MUX and DDR
t_single is the non-DDR configuration. Pin-n fail information is routed to the ECR using
pin-n’s signal path, and pin-n+4’s fail information is routed to the ECR using pin-n+4’s signal
path. If a DDR pattern is executed, only A-cycle failures are logged.

t_double represents DDR operation. In this mode, using the Fail Signal MUX,
B-cycle failures from one pin are routed to the ECR using the signal path of another pin, at
the expense of the other pin. And, these B-cycle fails are stored in the ECR instead of the
other pin’s fail data. In this mode, half of the tester pins can be logged at DDR rates. The
other pins can be used as input pins, or they can be strobed to affect PASS/FAIL and
branch-on-error operations.

The hardware design dictates how the Fail Signal MUX links pins: pin-n and pin-n+4 i.e. pins
1/5, pins 2/6, etc.

Fail Signal MUX

B-cycle Fail
A-cycle Fail

B-cycle Fail
A-cycle Fail

pin-n
Both pins = t_single

To ECR

pin-n+4

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path
 2/27/09 Pg-679

MUX, Super-MUX and DDR
Using t_double, the Fail signal MUX can be configured in two ways, based on which pin of
the pin-pair is included in the pin list argument passed to the fail_signal_mux()
function:

In the first configuration (pin-n = t_double) no fail information from pin-n+4 is logged.
Instead, B-cycle fails from pin-n are routed to the ECR using pin-n+4’s signal path. Pin-n’s B-
cycle fail information is stored in the ECR in place of pin-n+4’s fail information. In this
configuration, the fail_signal_mux() getter function for pin-n+4 returns
t_mux_opt_na.

In the second configuration (pin-n-4 = t_double) no fail information from pin-n is logged.
Instead, B-cycle fails from pin-n-4 are routed to the ECR using pin-n’s signal path. Pin-n-4’s
B-cycle fail information is stored in the ECR in place of pin-n’s fail information. In this
configuration, the fail_signal_mux() getter function for pin-n returns t_mux_opt_na.

When using t_double it is an error when pin-pair conflicts are programmed. This occurs
when, in a single call of fail_signal_mux(), the pin list argument contains both pin-n
and pin-n+4. When this occurs, two things happen:

• A warning message is displayed in the appropriate UI site output window.
• Desired operation will not occur.

Fail Signal MUX

B-cycle Fail
A-cycle Fail

B-cycle Fail
A-cycle Fail

pin-n

Pin-n = t_double Pin-n+4 = t_double
Fail Signal MUX

B-cycle Fail
A-cycle Fail

B-cycle Fail
A-cycle Fail

pin-n

pin-n+4 pin-n-4

To ECR

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path

To ECR

Pin-n+4
Fail

Signal
Path

Pin-n
Fail

Signal
Path
 2/27/09 Pg-680

MUX, Super-MUX and DDR
The fail_signal_mux() function can be executed multiple times, and the effects are
cumulative. The table below documents how the Fail Signal MUX of both pins of a pin-pair
(pin-n+4) are affected when the MUX on one of the pins is reprogrammed:

Miscellaneous:

• The Fail Signal MUX always routes 2 signals to the ECR. The user is responsible
for configuring the Fail Signal MUX appropriately.

• Which pins are actually captured in the ECR depends on the pin(s) specified to
lec_config_set(); i.e. the output of the Fail Signal MUX may or may not be
captured in the ECR.

Usage
void fail_signal_mux (PinList* plist,

FailMuxSelectOpt opt);

where:

plist identifies the pins for which the Fail Signal MUX is being configured. The following
rules apply:

• All pin members must be signal pins i.e. no DPS or HV pins in the pin list.
• The runtime software checks to see if any DDR pin-pair conflicts exist between the

pins in the specified pin list. How this is handled is noted above.
opt identifies the desired Fail Signal MUX configuration for the specified plist. Legal
options of the FailMuxSelectOpt enumerated. It is not legal to use the t_mux_opt_na
value.

Examples
The following example configures the Fail Signal MUX as indicated:

Table 3.19.7.4-1 Fail Signal MUX States

Change...

Paired-pin
Previous
Mode

Paired-pin
New
Mode

Pin to t_double n/a t_mux_opt_na

Pin to t_single t_double
t_mux_opt_na

t_single
 2/27/09 Pg-681

MUX, Super-MUX and DDR
• For each pin in the data_pins pin list, the Fail Signal MUX is configured to route
both A-cycle and B-cycle failure information to the ECR. No failures will be logged
for the corresponding DDR pin-pair of each pin in data_pins.

fail_signal_mux (data_pins, t_double);
 2/27/09 Pg-682

Pin Frequency Measurement (PFM)
3.20 Pin Frequency Measurement (PFM)

Note: first available in software release h2.2.7/h1.2.7.

This section contains the following topics:

• Overview
• Pin Frequency Measurement Operation
• Pin Frequency Measure Software

- Types, Enums, etc.
- pin_frequency_meas()
- pin_frequency_meas_get()

3.20.1 Overview
See Pin Frequency Measurement (PFM).

The Pin Frequency Measurement (PFM) facility documented here was originally designed to
support system timing calibration. However, the features and functionality may also be
useful in a customer applications.

The pin frequency measurement facility is targeted at measuring a clock waveform
generated by the DUT, within the following range:

• Low limit = 49KHz.
• High limit = 113MHz

Also note:

• The waveform being measured must have a nominal 50% duty cycle.
Measurement accuracy is reduced or lost as the duty cycle deviates from 50%.

• The waveform being measured must have a minimum 4.4nS high and 4.4nS low
pulse width.

Three measurement modes are available which affect the measurement resolution and
accuracy (more below).
 2/27/09 Pg-683

Pin Frequency Measurement (PFM)
3.20.2 Pin Frequency Measurement Operation
See Pin Frequency Measurement (PFM).

The Magnum 1 hardware architecture includes one frequency measurement unit for each
eight timing generators. Each frequency measurement unit can measure one pin from its
associated sub-sites, as shown in the following diagram. This means that one frequency
measurement unit is shared by pins a_1 through a_8 AND b_1 through b_8 AND c_1
through c_8 AND d_1 through d_8.
 2/27/09 Pg-684

Pin Frequency Measurement (PFM)
The following diagram shows the key PFM hardware components:

Figure-49: Frequency Measure Simplified Block Diagram

DUT

PE Comparators

VOLTG

8 Sub-site
A Pins

From 8
Sub-site

Pin Select MUX

Pin
Frequency
Measure

Logic

VOH

VOL

VOH

VOL

VOH

VOL

VOH

VOL

VOH

VOL

VOH

VOL

VOH

VOL

VOH

TG

TG

TG

TG

TG

TG

TG

B Pins

Raw
Comparator

Outputs
(only VOL output is used)
 2/27/09 Pg-685

Pin Frequency Measurement (PFM)
As shown below, each frequency measurement circuit consists of two counters:

• A 16-bit Reference Clock Counter which counts rising edges of the measure clock.
• A 13-bit DUT Clock Counter which enables the Reference Clock Counter and

determines when a measurement is complete: more below.

Figure-50: Frequency Measure Logic Detailed Block Diagram
Note the following:

• Executing pin_frequency_meas() performs the pin frequency measurement.
Prior to this, the test program will typically have started the execution of a
functional test pattern using start_pattern(). This pattern must be designed to
execute continuously and generate any input waveforms required by the DUT.
After the frequency measurement is complete pattern execution is terminated
using stop_pattern().

• Executing pin_frequency_meas() first clears the Reference Clock Counter and
configures the DUT Clock Counter to count either 32, 80 or 5000 rising clock
edges, based on the mode argument to pin_frequency_meas().

• pin_frequency_meas()also routes the clock signal from the DUT to the Pin
Frequency Measure Logic via the pin’s VOL comparator and the Pin Select MUX
(see Frequency Measure Simplified Block Diagram). The DUT waveform is then
sampled at the DUT Clock Latch by the rising edge of the Sample Clock, which is

START
(from CPU)

Measure Clock

Result
(to CPU)

DONE
(to CPU)

16-bits

Enable

16

DUT
Clock

Counter
Reference

Clock
Counter

DUT clock to be measured.
From VOL comparator via

Pin Select MUX

13-bits

X2
Reference

Clock
Enable

Enabled for
32, 80 or

 5000 DUT
 clock counts

D Q
DUT
Clock
Latch

Sample
Clock
 2/27/09 Pg-686

Pin Frequency Measurement (PFM)
the reference clock multiplied 2X. The output of the DUT Clock Latch clocks the
DUT Clock Counter, which is idle until a START signal is received from the
computer.

• pin_frequency_meas() next sends the START signal to the DUT Clock Counter.
Then, the first rising edge of the sampled DUT clock from the DUT Clock Latch
increments the DUT Clock Counter and its output goes TRUE, enabling the
Reference Clock Counter to begin counting rising edges of reference clocks.

• Once enabled, the Reference Clock Counter counts until either it is stopped by the
DUT Clock Counter or until it reaches its maximum count (65535). The Reference
Clock Counter does not roll-over after reaching the maximum count.

• During this time, each rising edge output from the DUT Clock Latch, increments
the DUT Clock Counter. This repeats until 32, 80 or 5000 rising DUT clock edges
have been received. At the 33/81/5001 clock edge the DUT Clock Counter output
goes FALSE, which both stops the Reference Clock Counter and sends the DONE
signal to the computer.

• If the DUT Clock Counter does not signal DONE before approximately 655.35uS the
computer will stop both counters and the measurement result is invalid. When this
occurs pin_frequency_meas() returns FALSE and the measured value for the
related pin(s) is set = -1.

• The count value from the Reference Clock Counter is read to calculate the
frequency measurement result based on the number of reference clocks counted
during the time the DUT Clock Counter counted the 32, 80 or 5000 DUT clock
edges. These examples presume a 100MHz reference clock (Magnum 1,
Magnum 2/2x use a 110MHz reference clock):

• If the value read from the Reference Clock Counter is 65535 the measurement is
considered invalid because it is not known if more than 65535 reference clocks
were counted. When this occurs pin_frequency_meas() returns FALSE.
Similarly, if the value read from the Reference Clock Counter is 0
pin_frequency_meas() returns FALSE. This is done separately for each pin
involved in the measurement.

DUT Clock Frequency (MHz) 100MHz 80
 Reference Clock Count
---×=

Or...
DUT Clock Frequency (MHz) 100MHz 5000

Reference Clock Count
--×=

DUT Clock Frequency (MHz) 100MHz 32
 Reference Clock Count
---×=

Or...
 2/27/09 Pg-687

Pin Frequency Measurement (PFM)
• For any pin which has an error, the measured value returned by
pin_frequency_meas_get() is set = -1.

• The measured values can then be retrieved using the
pin_frequency_meas_get() function.

The following diagram shows this operation:

Figure-51: Operational Timing Diagram
Because the Reference Clock Counter and DUT Clock Counter operate asynchronously,
there are two errors in any measurement. In the diagram above, these are labeled Leading
Error and Trailing Error: The worse-case error is ±1 reference clock. However, as shown
below, this can become quite insignificant depending on the frequency of the DUT clock
being measured and the measurement mode used.

A valid measurement requires that the output of the DUT Clock Latch change state for every
state change of the DUT clock being measured. In effect this means that the DUT clock
must be sampled at least once for every logic high-time and every logic low-time. If either
the high or low pulse-width of the DUT clock is below the minimums noted below, the
resulting measurement will not be valid. The hardware cannot detect this; i.e. it is the user’s

CPU
Start

Ref Clock
Enable

Counted
Reference Clocks

Trailing
Error

Leading
Error

This example set the DUT Clock Counter = 80

DUT
Clock

Latched
DUT

Clock

1 2 80

1 2 80

81

81

Reference
Clock 1 2 n

Sample
Clock
 2/27/09 Pg-688

Pin Frequency Measurement (PFM)
responsibility. The following two diagrams show a good example and a bad example. Note
the output of the DUT Clock Latch:

The maximum frequency which can be measured is limited by one hardware feature and two
issues which fall into the user’s domain.

• To properly sample the DUT clock waveform requires that the minimum pulse
width for both the DUT clock high-time and low-time be 4.4nS or greater. This
ensures that each phase of the DUT clock being measured is sampled at least
once by each reference clock.

DUT Clock

DUT Clock
Latch Output

Proper
Operation

Sample
Clock

DUT Clock

DUT Clock
Latch Output

Improper
Operation

????????????? = BAD

Sample
Clock
 2/27/09 Pg-689

Pin Frequency Measurement (PFM)
• The user’s specified VOL value also affects the pulse-widths of the DUT clock
high-time and low-time at the output of the VOL comparator. The following
diagram shows an exaggerated view of this effect:

In general, optimum frequency measurements are obtained when the DUT clock
waveform has 50% duty cycle and VOL is set to 50% of the actual DUT output
waveform amplitude.

The minimum frequency which can be measured is limited by two factors:

• The Reference Clock Counter has a usable range of 216-2 counts (65534); i.e. up
to 655.34uS count time.

• The DUT Clock Counter must count 32, 80 or 5000 DUT clocks within this
655.34uS.

Thus, using Magnum 1 (100MHz reference clock), the minimum frequency which can be
measured is different for each count (below, values are rounded):

VOL2

VOL1

Comparator
Output

Comparator
Input

65534
32

---------------⎝ ⎠
⎛ ⎞ 10nS× 20479.4nS 49KHz= =

65534
80

---------------⎝ ⎠
⎛ ⎞ 10nS× 8191.75nS 123KHz= =

65534
5000
---------------⎝ ⎠

⎛ ⎞ 10nS× 131nS 7.63MHz= =
 2/27/09 Pg-690

Pin Frequency Measurement (PFM)
As indicated above, the leading and trailing error sources can affect the overall accuracy of
the measurement by up to ±1 reference clock. However, the percentage of error is
dependent on both the frequency of the DUT clock being measured AND whether 32, 80 or
5000 DUT clock edges are being counted. Several examples follow. These all presume the
reference clock = 100MHz (i.e. Magnum 1; Magnum 2/2x use 110MHz reference clock):

Given: 83.3MHz DUT clock, 32 clocks counted:

32 counts of 12nS DUT clock = 384nS count time

In 384nS the Reference Clock Counter will count 38 10nS reference
clocks

The error sources make this count = 37 to 39, thus:

Given: 83.3MHz DUT clock, 80 clocks counted:

80 counts of 12nS DUT clock = 960nS count time

In 960nS the Reference Clock Counter will count 96 10nS reference
clocks

The error sources make this count = 95 to 97, thus:

Given: 83.3MHz DUT clock, 5000 clocks counted:

5000 counts of 12nS DUT clock = 60000nS count time

In 60000nS the Reference Clock Counter will count 6000 10nS reference
clocks

The error sources make this count = 5999 to 6001, thus:

DUT Clock Frequency (MHz) 100MHz 32
37
------× 86.486MHz 3.82% error= = =

DUT Clock Frequency (MHz) 100MHz 32
39
------× 82.47MHz 1.49% error= = =

DUT Clock Frequency (MHz) 100MHz 80
95
------× 84.21MHz 1.09% error= = =

DUT Clock Frequency (MHz) 100MHz 80
97
------× 82.47MHz 0.96% error= = =

DUT Clock Frequency (MHz) 100MHz 5000
5999
------------× 83.347MHz 0.05% error= = =

DUT Clock Frequency (MHz) 100MHz 5000
6001
------------× 83.319MHz 0.02% error= = =
 2/27/09 Pg-691

Pin Frequency Measurement (PFM)
Given: 200KHz DUT clock, 32 clocks counted:

32 counts of 5uS DUT clock = 160uS count time

In 160uS the Reference Clock Counter will count 16000 10nS reference
clocks

The error sources make this count = 15999 to 16001, thus:

Given: 200KHz DUT clock, 80 clocks counted:

80 counts of 5uS DUT clock = 400uS count time

In 400uS the Reference Clock Counter will count 40000 10nS reference
clocks

The error sources make this count = 39999 to 40001, thus:

Given: 200KHz DUT clock, 5000 clocks counted:

5000 counts of 5uS DUT clock = 25mS count time

This exceeds the maximum Reference Clock Counter count time
(655.34uS).

pin_frequency_meas() will return FAIL and the measured value
retrieve using pin_frequency_meas_get() will = -1.

3.20.3 Pin Frequency Measure Software
See Pin Frequency Measurement (PFM).

This section includes:

• Types, Enums, etc.
• pin_frequency_meas()

DUT Clock Frequency (MHz) 100MHz 32
15999
---------------× 200.012KHz 0.006% error= = =

DUT Clock Frequency (MHz) 100MHz 32
16001
---------------× 199.987KHz 0.006% error= = =

DUT Clock Frequency (MHz) 100MHz 80
39999
---------------× 200.005KHz 0.0025% error= = =

DUT Clock Frequency (MHz) 100MHz 80
40001
---------------× 199.995KHz 0.0025% error= = =
 2/27/09 Pg-692

Pin Frequency Measurement (PFM)
• pin_frequency_meas_get()

3.20.3.1 Types, Enums, etc.
See Pin Frequency Measurement Operation, Pin Frequency Measure Software.

The following declarations are used to support Pin Frequency Measurement (PFM)s:

The PinFreqMeasMode enumerated type is used to select the number of DUT clocks
counted in subsequent frequency measurements. See pin_frequency_meas():

enum PinFreqMeasMode{ t_pin_freq_meas_80,
t_pin_freq_meas_5000,
t_pin_freq_meas_32 }

3.20.3.2 pin_frequency_meas()
See Pin Frequency Measurement Operation, Pin Frequency Measure Software.

Note: first available in software release h2.2.7/h1.2.7.

Description
The pin_frequency_meas() function is used to initiate a frequency measurement using
the Pin Frequency Measure Logic.

Note the following:

• One or more pins can be measured using a single execution of
pin_frequency_meas(). Pins to be measured are specified using the pPinList
or pDutPin arguments.

• When the pin(s) to be measured share Pin Frequency Measure Logic the pins will
be measured sequentially (one at a time).

• Only the VOL comparator output is used; i.e. the VOL setting is important to
proper operation.

• It is not necessary to execute a functional test or strobe the DUT clock pin(s)
being measured to make a measurement using pin_frequency_meas().
 2/27/09 Pg-693

Pin Frequency Measurement (PFM)
• If test pattern execution is required to stimulate the DUT during the frequency
measurement:
• The test pattern must be designed to execute continuously (endless loop).
• The test pattern must be executing using the start_pattern() function.
• After all measurements are completed the pattern execution must be terminated

using the stop_pattern() function.
• In Multi-DUT Test Programs, only the pins of DUTs currently in the Active DUTs

Set (ADS) are actually measured.
• Measurement results can be retrieved using pin_frequency_meas_get().

Usage
BOOL pin_frequency_meas(DutPin* pDutPin, PinFreqMeasMode mode);

BOOL pin_frequency_meas(PinList* pPinList,
PinFreqMeasMode mode);

where:

pDutPin identifies one pin to be measured. The specified pin must be mapped to a signal
pin in the Pin Assignment Table. In Multi-DUT Test Programs, the pin(s) of all DUTs in the
Active DUTs Set (ADS) are measured.

pPinList identifies one or more pin(s) to be measured. The specified pin(s) must be
mapped to a signal pin in the Pin Assignment Table. In Multi-DUT Test Programs, the pin(s)
of all DUTs in the Active DUTs Set (ADS) are measured.

mode specifies the number of DUT clocks counted during the frequency measurement. See
Pin Frequency Measurement Operation for details. Legal values are of the
PinFreqMeasMode enumerated type.

pin_frequency_meas() returns TRUE if ALL values read from ALL Reference Clock
Counter(s) are valid (i.e. 1 to 65534) otherwise FALSE is returned. If FALSE is returned the
measured value for each pin should be examined to determine which pins failed, see
pin_frequency_meas_get().

Example
vol(1 V, meas_pins); // Critical to measurement quality
voh(2 V, meas_pins);

BOOL ok = pin_frequency_meas(meas_pins, t_pin_freq_meas_5000);

CArray<double,double> meas_results;
 2/27/09 Pg-694

Pin Frequency Measurement (PFM)
SoftwareOnlyActiveDutIterator duts;
while (duts.More()) {

pin_frequency_meas_get(meas_results); //pin_frequency_meas_get()

DutNum dut = active_dut_get();
int size = meas_results.GetSize(); // Get num measurements
// Loop through measured pins and output results
DutPin* measpin;
CString cstr;
for (int pin = 0; pin < size; pin++) {

pin_info(meas_pins, pin, &measpin);

if(meas_results[pin] == -1)
output("WARNING: Invalid Measurement for DUT-%d pin %s",

dut +1, resource_name(measpin));

else{
if (meas_results[pin] < (1 MHZ))

cstr.Format("%3.3f KHz", meas_results[pin]/(1 KHZ));
else

cstr.Format("%3.3f MHz", meas_results[pin]/(1 MHZ));
output(" DUT-%d pin %s => %s",

dut +1,
resource_name(measpin),
cstr);

}
}

} // while

3.20.3.3 pin_frequency_meas_get()
See Pin Frequency Measurement Operation, Pin Frequency Measure Software.

Note: first available in software release h2.2.7/h1.2.7.

Description
The pin_frequency_meas_get() function is used to retrieve frequency measurements
made using pin_frequency_meas(). Note the following:
 2/27/09 Pg-695

Pin Frequency Measurement (PFM)
• Since a single execution of pin_frequency_meas() can potentially measure
multiple pins, for multiple DUTs, pin_frequency_meas_get() returns an array
of measure results. Values in the array are ordered based on the pin list
measured.

• In Multi-DUT Test Programs, values are returned for the first DUT in the Active
DUTs Set (ADS).

• Measurements should be retrieved immediately after executing
pin_frequency_meas(), to ensure subsequent measurements do not over-write
and cause a loss of information.

• If pin_frequency_meas() returns FALSE, the measured value for each pin
should be examined to determine which pin(s) failed. The value -1 is returned for
pins which failed.

• Measure results are stored in base units (see Specifying Units).

Usage
void pin_frequency_meas_get(CArray<double, double>& data);

where data is a previously declared CArray, used to return measurement results. The
array is automatically cleared and resized as necessary to store the appropriate test results.
The value -1 is returned for pin(s) which failed to measure properly, see Overview and Pin
Frequency Measurement Operation.

Example
See Example.
 2/27/09 Pg-696

Test Patterns
3.21 Test Patterns
See Software.

Test patterns are executed when performing the following types of tests:

The test pattern supplies the logic state information (the 1’s and 0’s) needed to functionally
exercise the DUT.

The Magnum 1 test system contains two sources of test pattern data:

• APG

Table 3.21.0.0-1 Test Pattern Applications

Test Type Test Pattern Purpose

funtest()

Validate the logic functionality of the DUT.
Validate the AC performance of the DUT under specified DC
conditions.
Functionally program programmable DUTs.
Set up the DUT’s logic state prior to executing other tests
(PMU tests, DPS current, mixed signal, etc.).

ac_partest()

Perform a PMU test while concurrently executing a
functional test pattern. Optionally, trigger the DC
Comparators and Error Logic or DC A/D Converter from the
pattern, possibly multiple times.

ac_test_supply()

Perform a DPS current test while concurrently executing a
functional test pattern. Optionally, trigger the DC
Comparators and Error Logic or DC A/D Converter from the
pattern, possibly multiple times.

hv_ac_test_supply()

Perform a HV current test while concurrently executing a
functional test pattern. Optionally, trigger the DC
Comparators and Error Logic or DC A/D Converter from the
pattern, possibly multiple times.

start_pattern()
stop_pattern()

restart()

Supports pattern looping while user code continues to
execute, for example, to use Pin Frequency Measurement
(PFM)..
 2/27/09 Pg-697

Test Patterns
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored
Logic Test Patterns and Scan Test Patterns.

These are described in the following table:

During test pattern execution, each pin-pair’s (see Functional Pin-pairs) data source can be
selected cycle-by-cycle using Pin Scramble Maps.

Note that within a given test pattern these data sources can be used individually (see
Memory Test Patterns, Logic Test Patterns, Scan Test Patterns), or combined to generate
Mixed Memory/Logic Patterns, to test devices containing both memory and/or random logic
and/or Scan logic (i.e. SOC: System on a Chip, etc.).

Table 3.21.0.0-2 Test Pattern Data Sources

Source Comments

APG For testing memory devices. Memory Test Patterns are used
to algorithmically generate logic state information in the form
of X/Y Addresses, read/write data, and chip selects. The
APG also has a Data Buffer Memory (DBM) for storing
random read/write data while generating algorithmic
addresses and chip selects.

The combined Logic
Vector Memory (LVM) /
Scan Vector Memory

(SVM)

Magnum 1/2/2x use the same memory to store both Logic
Test Patterns and Scan Test Patterns.

 2/27/09 Pg-698

Test Patterns
In addition to supplying logic state information, the test pattern also provides the following
controls:

Table 3.21.0.0-3 Test Pattern Control Applications

Control Comment

Test Pattern Sequence
Control Instructions

Controls the test pattern execution engine. Logic
patterns, scan patterns, and memory patterns
each use different pattern instructions.Using
Magnum 1/2/2x, the APG has two control engines
(MAR Engine and VAR Engine) used to separately
control logic vs. memory pattern execution.

Time-sets (TSET) Selection Per-cycle selection of cycle period, and per-pin
drive format/timing, strobe timing and I/O timing.

VIHH Maps Selection Per-cycle selection of which pins are driven to the
VIHH level.

Pin Scramble Map Selection Per-cycle selection of the pattern data source for
each pin-pair.

Strobe Control Per-pin/per-cycle strobe enable/disable using
READ or READUDATA instructions (Memory Test
Patterns) or Logic Vector Bit Codes (Logic Test
Patterns and Scan Test Patterns).

I/O Control Per-pin/per-cycle drive/tri-state control
using the ADHIZ instruction (Memory Test
Patterns) or Logic Vector Bit Codes (Logic Test
Patterns and Scan Test Patterns).

Trigger DC Comparators and Error
Logic or DC A/D Converter

Per-cycle. Using the MAR VCOMP instruction
(Memory Test Patterns) or VEC/RPT VCOMP, VAR
VCOMP, and VPINFUNC VCOMP instructions (Logic
Test Patterns). The test pattern can trigger the DC
Comparators and Error Logic or DC A/D Converter
to make one or more Go/NoGo comparisons or
measurements.
 2/27/09 Pg-699

Functional Tests
Test pattern source files are created using the same methods used to create C-code source
files; i.e. a text editor.

Test patterns are written using a unique pattern language (source code statements), which is
documented in Test Pattern Programming, which is divided into three sections:

• Memory Test Patterns
• Logic Test Patterns
• Scan Test Patterns

3.22 Functional Tests
This section includes the following topics:

• Executing Functional Tests
- Per Pin Error Status
- Pattern Execution Start Vector, Stop Vector

• Patterns That Loop Forever
• Checking Pattern Execution State
• Stopping Pattern Execution
• Restarting Paused Patterns
• Testing for Stopped/Paused Patterns

Set or tweak PE levels
(VIL, VIH, VOL, VOH, VIHH, VTT,

VZ, etc.)

 See Controlling PE Levels from the Test Pattern.

Set or tweak DPS, PMU, HV levels See Controlling PE Levels from the Test Pattern.

Change DPS output voltage
selection

The test pattern can cause the DPS to switch
between 2 previously programmed voltages, using
the PINFUNC VPULSE instruction (Memory Test
Patterns) or VEC/RPT VPULSE, VAR VPULSE, and
VPINFUNC VPULSE instructions (Logic Test
Patterns).

Table 3.21.0.0-3 Test Pattern Control Applications (Continued)

Control Comment
 2/27/09 Pg-700

Functional Tests
• Holding State Between Patterns

3.22.1 Executing Functional Tests
See Functional Tests.

Description

The funtest() function is used to execute a test pattern to exercise and test the DUT
under AC conditions.

Test patterns are automatically loaded to hardware during test program initialization. For
special cases (rarely needed) the methods documented in the Resources section can be
used.

A test pattern is identified as a Pattern* argument to the funtest() function, to specify
which test pattern to execute. Or, given the name of a pattern, the Pattern_find()
function can be used to get a Pattern*.

Various Pattern Execution Stop Condition Options exist which are used to control pattern
execution. The most common options either cause the entire pattern to execute (finish) or
halt execution when the first failure is detected (error).

Using Magnum 1/2/2x, it is possible to execute a subset of logic vectors. See Pattern
Execution Start Vector, Stop Vector.

The start_pattern() function is used to execute Patterns That Loop Forever; i.e.
indefinitely. The stop_pattern() function is used to halt these test patterns. Note that
funtest() also uses stop_pattern(), in a mode which executes the specified test
pattern one time.

The following outline documents the basic operation of funtest():

• Execute start_pattern(pPattern, Condition). See start_pattern().
• Wait for pattern execution to stop.
• Evaluate PE error latches (or Logic Error Catch (LEC), if used) to determine overall

PASS/FAIL.
• Return the PASS/FAIL result.
 2/27/09 Pg-701

Functional Tests
Usage
PFState funtest(Pattern *pPattern, PatStopCond Condition);

Also see Pattern Execution Start Vector, Stop Vector.

where:

funtest() returns TRUE (PASS) or FALSE (FAIL). All pin(s) tested must PASS otherwise
FAIL is returned. In Multi-DUT Test Programs, only DUT(s) in the Active DUTs Set (ADS)
can affect test results.

pPattern identifies the test pattern to be executed.

Condition specifies pattern execution stop option. Legal values are of the PatStopCond
enumerated type and described in the following table:

Table 3.22.1.0-1 Pattern Execution Stop Condition Options

Stop Condition Summary Description

finish

Execute pattern to completion, regardless of errors.
When execution finishes, the PE error latches and DC Error
Flags are examined. If an error was latched, the result of
funtest() is FAIL, otherwise the result is PASS

error

Stop pattern execution on first functional or DC Error Flag error
and set the result of funtest() to FAIL. Note that the pattern
generator may continue for one or more cycles past where the
error occurred, depending on the cycle time and where in the
cycle the error was detected.

fullec

Execute pattern to completion. Enable full ECR, row error catch,
and column error catch to capture errors during pattern
execution. This argument should be used when performing
Redundancy Analysis (RA) or using BitmapTool.

LEC_only_errors
Enable full ECR, row error catch, and column error catch.
Capture the first 2Meg (221-6) failing vectors. Intended for use
when the ECR is used as an Logic Error Catch (LEC).

LEC_first_vectors

Enable full ECR, row error catch, and column error catch. Cap-
ture the first 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).
 2/27/09 Pg-702

Functional Tests
Examples
The following example executes the myPat pattern to completion:

PFState r = funtest(myPat, finish);

The following example executes the minmax pattern, stopping the pattern if any errors are
detected:

PFState r = funtest(minmax, error);

LEC_last_vectors

Enable full ECR, row error catch, and column error catch. Cap-
ture the last 2Meg (221-6) vectors executed.
Ignores PASS/FAIL. Intended for use when the ECR is used as
an Logic Error Catch (LEC).

LEC_before_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus the previous 2Meg (221-6) vec-
tors executed. Intended for use when the ECR is used as an
Logic Error Catch (LEC).

LEC_after_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus the next 2Meg (221-6) vectors
executed. Intended for use when the ECR is used as an Logic
Error Catch (LEC).

LEC_center_error

Enable full ECR, row error catch, and column error catch. Cap-
ture the first failing vector plus up to 512K vectors executed
before the failure and up to 512K vectors executed after the fail-
ure. Intended for use when the ECR is used as an Logic Error
Catch (LEC).

Note: in parallel test applications, the test pattern must be executed to completion, to
ensure that DUT(s) which don’t fail are completely tested. In other words, halting the
pattern early (error) because one or more DUT(s) failed prevents DUT(s) which PASS
from being completely tested. This is BAD.

Table 3.22.1.0-1 Pattern Execution Stop Condition Options (Continued)

Stop Condition Summary Description
 2/27/09 Pg-703

Functional Tests
3.22.1.1 Per Pin Error Status
See Functional Tests.

Description

The test_pin() function is used determine whether any pins in a specified pin list failed
the most recent funtest() execution.

The test_pin_first_error() function is used determine whether any pins in a
specified pin list failed in the first failing cycle of the most recent funtest() execution.
Proper test_pin_first_error() operation requires funtest() be executed using the
error option.

Both functions should be executed immediately after funtest(); i.e. before any other test
functions are executed.

Usage
PFState test_pin(PinList* pPinList);

PFState test_pin_first_error(PinList* pPinList);

PFState test_pin(DutPin *pDutPin);

PFState test_pin_first_error(DutPin *pDutPin);

PFState test_pin_first_errorA(DutPin *pDutPin);

PFState test_pin_first_errorB(DutPin *pDutPin);

where:

pPinList identifies the pins to be checked for failures. In Multi-DUT Test Programs, this
represents the same pins of ALL DUT(s) in the Active DUTs Set (ADS); i.e. the specified
pins of all DUT(s) in the ADS are polled to determine the value returned by test_pin().

pDutPin identifies one pin to be checked for failures. In Multi-DUT Test Programs, this
represents the same pins of ALL DUT(s) in the Active DUTs Set (ADS); i.e. the specified
DutPin(s) of all DUT(s) in the ADS are polled to determine the value returned by
test_pin().

test_pin() returns PASS if all pins represented by pPinList or all pins represented by
pDutPin passed, otherwise FAIL is returned.
 2/27/09 Pg-704

Functional Tests
test_pin_first_error() returns PASS if none of the pins represented by pPinList or
the none of the pins represented by pDutPin failed in the first failing cycle of the most
recently executed funtest().

Example
In the following example, after the funtest() execution completes, test_pin() is called
to see if any pins in the pin list named pl_all_data failed. Remember, this represents the
same pins for all DUTs in the Active DUTs Set (ADS). If there were failures, then the user-
written function named my_routine() is called:

PFState test_result = funtest (patname, finish);

if (test_pin(pl_all_data) == FAIL)
my_routine();

In the following example, after the funtest() execution completes,
test_pin_first_error() is called to see if any pins in the pin list named
pl_all_data failed in the first failing cycle of myPat. If it did, an output message is
printed:

PFState test_result = funtest (myPat, error);

if (test_pin_first_error (pl_all_data) == FAIL)
output (" One or more pins in pl_all_data failed in the first

failing cycle of myPat");//Delete prev EOL to compile

3.22.1.2 Pattern Execution Start Vector, Stop Vector
See Functional Tests.

Description
Using the funtest() and start_pattern() functions, it is possible to execute a subset
of a Logic Test Patterns, by specifying a start vector and stop vector.

The following rules apply:

• The start and stop vector values are zero based, and relative to the start of the
specified test pattern; i.e. the first vector of a given pattern is always 0.

• In DDR Test Patterns, the start vector must be an even number and the stop
vector must be an odd number.
 2/27/09 Pg-705

Functional Tests
• Any attempt to execute past the last vector of a test pattern is treated as a fatal
error; i.e. the test program is unloaded. To identify the number of vectors in a
pattern the addrs() function can be used. See example.

• When a stop vector is specified, the system software temporarily modifies the
pattern instruction for the stop vector to include VAR DONE. At the end of pattern
execution, the VAR Engine loops on the VAR DONE instruction to flush the
hardware pipelines. This is identical to all logic pattern execution operation, where
the last vector is repeated while the hardware pipelines are flushed. The system
software then restores the modified pattern instruction back to the original
compiled-in instruction.

• Using start/stop vector, it is possible to execute one vector:
- For non-DDR Test Patterns, set StopVector = StartVector
- For DDR Test Patterns set StopVector = (StartVector +1)
Note that this vector will be executed multiple times. See previous bullet regarding
flushing the hardware pipeline.

The functions shown below are the only functions which support using the start/stop vector
mechanism.

Usage

Note: funtest() is documented in detail in Executing Functional Tests.
start_pattern() is documented in Patterns That Loop Forever.
The functions below are specialized to support the start/stop vector facility.

PFState funtest(Pattern *pPattern,
PatStopCond Condition,
int StartVector,
int StopVector);

void start_pattern(Pattern *pPattern,
int StartVector,
int StopVector);

void start_pattern(Pattern *pPattern,
PatStopCond Condition,
int StartVector,
int StopVector);

where:

pPattern identifies the pattern to be executed.
 2/27/09 Pg-706

Functional Tests
Condition specifies the pattern stop option. Details are documented for funtest().

StartVector is the first vector to be executed. The first vector = 0. See Description for
additional rules.

StopVector is the last vector to be executed. See Description.

Example
The following example executes the entire test pattern using the new mechanism. This
example is used to show usage of the addrs() function:

DWORD mar, var, mLen, vLen;
BOOL ok = addrs(myLogicPat, &mar, &var, &mLen, &vLen);
if(!ok) output("ERROR: addrs() returned FALSE, check Pattern*");

PFState r = funtest(myLogicPat, finish, 0, (vLen -1));

Note that the logic pattern length returned by addrs() (vLen) is the true length of the
pattern whereas a stop vector value is zero-based, thus the use of (vLen -1) in the example.

3.22.2 Patterns That Loop Forever
See Functional Tests.

Description

The start_pattern() function can be used to execute a test pattern which is designed to
loop indefinitely. Once execution is started the test program C-code continues to execute
immediately.

Test patterns are normally executed using funtest(), and execution is controlled by
instructions in the pattern; i.e. the pattern MAR DONE instruction halts execution. Or,
depending on a specified Pattern Execution Stop Condition Options, execution may halt
earlier, for example if an failure is detected.

If a test pattern containing an infinite loop (by design or by accident) is executed using
funtest() the execution will never end. The test program will hang because the test site
controller waits for the APG to signal when execution has halted, which never happens.

To intentionally execute a pattern containing an infinite loop the start_pattern()
function can be used. Once execution begins, user-written C-code then proceeds to execute
 2/27/09 Pg-707

Functional Tests
without waiting for the test pattern to complete. The stop_pattern() function is used to
terminate pattern execution.

Note that funtest() also executes start_pattern() in a mode which executes the
specified test pattern one time.

start_pattern() also supports executing a subset of a logic pattern, see Pattern
Execution Start Vector, Stop Vector.

The following outline documents the basic operation of start_pattern():

• Stop the APG MAR Engine and VAR Engine if running; i.e. halt any test pattern
currently looping.

• Set up hardware modes based on pattern attributes.
• Update timing in the hardware (if it has changed).
• If hold_pattern_state() is TRUE, modify the builtin_pipe_clear

and builtin_pipe_clear2 patterns to use the last pattern instruction executed.
• If the combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) is

installed point to the builtin_zero_scan pattern.
• Clear the Stop-on-Abort and Stop-on-Error flags.
• If the test pattern sets or modifies PE voltages (see Controlling PE Levels from the

Test Pattern) the voltage values specified are stored in APG hardware.
• Modify the last instruction of the pipe_clear pattern to point to the 1st instruction

of the user's test pattern.
• Execute the pipe_clear pattern. Stop before user's pattern executes.
• Execute pattern initial conditions C-code.
• Single-step the APG seven more times to stage the user's pattern at the DUT.
• Reset PE/APG error latches.
• Clear the APG error pipeline.
• For ac_partest(), and hv_test_supply() if measure() = FALSE and

vcomp is not specified enable the DC Comparators and Error Logic.
• Set pattern execution stop condition in hardware.
• Start the pattern generator (execute the user's test pattern).

Usage
void start_pattern(Pattern *pPattern);

void start_pattern(Pattern *pPattern, PatStopCond Condition);
 2/27/09 Pg-708

Functional Tests
Also see Pattern Execution Start Vector, Stop Vector.
where:

pPattern identifies the test pattern to execute.

PatStopCond is an optional argument that specifies stop conditions. See Pattern
Execution Stop Condition Options.

Example
In the following example, the pattern named endless_pat is set running and execution
continues with the next statement following start_pattern().

start_pattern(endless_pat);
execute_this_without_waiting_for_the_pattern_to_complete();
stop_pattern();

3.22.3 Checking Pattern Execution State
See Functional Tests.

Description

The pattern_state() function returns one of the values noted below based on the
execution state of the last test pattern executed using funtest() or
start_pattern().

Pattern State Description

PATTERN_RUNNING A pattern is currently executing

PATTERN_PAUSED
The pattern has stopped after executing the MAR PAUSE
instruction (Memory Test Patterns) or VAR PAUSE instruction
(Logic Test Patterns)

PATTERN_DONE Pattern execution has completed

PATTERN_STOPPED
Pattern execution was stopped by calling the stop_pattern()
function.
 2/27/09 Pg-709

Functional Tests
Usage
PatternState pattern_state();

where

pattern_state() returns a value of the enumerated type. See Description.

Example
if(pattern_state() == PATTERN_PAUSED) restart();

3.22.4 Stopping Pattern Execution
See Functional Tests.

Description

The stop_pattern() function is used to stop a test pattern which is started with
start_pattern().

Test patterns are sometimes intentionally designed to execute endlessly (see Patterns That
Loop Forever), so that user-written C-code can execute while the pattern is looping. To
properly control these patterns the start_pattern() function is used to begin executing
the pattern and stop_pattern() is used to stop pattern excecution.

Usage
void stop_pattern();

Example
start_pattern(endless_pat); // See start_pattern()
execute_this_without_waiting_for_the_pattern_to_complete();
stop_pattern();

3.22.5 Restarting Paused Patterns
See Functional Tests.
 2/27/09 Pg-710

Functional Tests
Description

Within a test pattern, execution can be paused using the MAR PAUSE instruction (Memory
Test Patterns) or VAR PAUSE (Logic Test Patterns) instruction. This allows user C-code to
execute before restarting the pattern from where it was paused. See Testing for Stopped/
Paused Patterns and Checking Pattern Execution State.

The restart() function can be used to resume pattern execution from where it was
previously paused. restart() returns control to the test program immediately, while the
pattern is executing, allowing C-code to immediately continue to execute.

The restart_and_wait() function will restart a paused pattern but NOT return control to
the test program until the pattern ends or execution reaches another MAR PAUSE instruction
(Memory Test Patterns) or VAR PAUSE (Logic Test Patterns) instruction.

Both functions support an optional argument which allows the original Pattern Execution
Stop Condition Options to be changed when pattern execution is restarted.

Beginning in software release h1.1.23, the restart_and_wait() function updates fail
data as displayed via UI’s FrontPanelTool and as retrieved using results_get().

A special rule applies when the test pattern being restarted uses the Data Buffer Memory
(DBM) as an APG data source. See page 1444.

Usage
void restart();

void restart_and_wait();

void restart(PatStopCond Condition);

void restart_and_wait(PatStopCond Condition);

where Condition specifies the desired pattern execution stop option. See Pattern
Execution Stop Condition Options.

Example
In the following example, the pattern pausing_pattern, containing a single MAR PAUSE
instruction, is executed using funtest(). When the pattern pauses, the test program
execution continues by executing the user-written C-function called my_special_code().
After this function returns, the pattern is restarted using restart(), and the test program
immediately continues to execute the user-written more_my_special_code() function.

result = funtest(pausing_pattern, error);
 2/27/09 Pg-711

Functional Tests
if(pattern_paused()) {
my_special_code();
restart();
more_my_special_code();

}

3.22.6 Testing for Stopped/Paused Patterns
See Functional Tests.

Description

The pattern_paused() function will report if a test pattern is currently executing.

Note: pattern_paused() does not distinguish between a pattern which is paused
using the MAR PAUSE instruction (Memory Test Patterns) or VAR PAUSE (Logic
Test Patterns) instruction vs. a pattern which has stopped for other reasons
(completed execution, stopped on error, etc.). Use the pattern_state()
function to evaluate whether a pattern is running, PAUSE’ed, DONE, or stopped.

Usage
BOOL pattern_paused();

where the pattern_paused() returns FALSE if the pattern generator is currently
executing a pattern, otherwise TRUE is returned.

Example
This example checks to see if a pattern is executing, and if so, stops the pattern.

if(! pattern_paused()) stop_pattern();

3.22.7 Holding State Between Patterns
See Functional Tests.
 2/27/09 Pg-712

Functional Tests
Description

The hold_pattern_state() function is used to ...

Note: starting with software release h2.3.xx, the hold_pattern_state() function
has no effect on Magnum 1, Magnum 2 and Magnum 2x. Starting with this
release, hardware in these systems is used to always inhibit PE state changes
between the execution of the last user-instruction in one test pattern and the
first user-instruction executed in the next pattern; i.e. executing
hold_pattern_state() is silently ignored. Earlier documentation for this
function described how using hold_pattern_state() would cause changes
to some built-in test patterns and described how to restore those patterns.
These patterns are no longer modified.
 2/27/09 Pg-713

Manipulating Tester Hardware
3.23 Manipulating Tester Hardware
This section contains the following:

• Types, Enums, etc.
• Setting DUT Pin State
• Setting DUT Address Pins State
• Setting DUT Data Pins States
• Setting DUT Chip Select Pin States
• Memory-pattern Related Functions
• Logic Pattern Related Functions
• Scan Pattern Related Functions
• Board Functions
• DUT Board I/O Port Functions
• Loadboard Board Data Bits
• DUT Board ID and DUT Board User Data Area
• PWA/PWB Number and Revision Get Functions

3.23.1 Types, Enums, etc.
See Manipulating Tester Hardware.

Description
The following enumerated types are used in support of various functions documented in this
section.

Usage
The PEDriverState enumerated type is used to set a static driver state. See
pin_dc_state_set():

enum PEDriverState { t_vil, t_vih, t_vihh, t_tristate }

The ApgReloadRegMode enumerated type is used to select an alternate mode of operation
for the APG counter RELOAD operand. See APG Reload Register Mode Functions:
 2/27/09 Pg-714

Manipulating Tester Hardware
enum ApgReloadRegMode{ t_reload_mode1, t_reload_mode2 };

The ChipSelectMode enumerated is used to modify the CHIPS instruction of a pattern .
See set_chip_select():

enum ChipSelectMode { t_cs_false,
t_cs_pulse_true,
t_cs_pulse_false,
t_cs_true,
t_cs_na };

The VectorState enumerated is used as a read or write values when accessing logic test
vectors in Logic Vector Memory (LVM), using vecdata():

enum VectorState {drive_lo = 0,
drive_hi = 1,
strobe_valid = 2,
strobe_mid = 3,
tristate = 4,
strobe_lo = 6,
strobe_hi = 7,
VectorState_na };

3.23.2 Setting DUT Pin State

Description

The setpin() function can be used to set one or more signal pins to a static logic state,
without executing a test pattern. The Pin DC Static State Functions are available to perform
similar but more versatile operations. Note the following:

• The static state of the specified pin(s) can be set to drive-0 (VIL), drive-1 (VIH),
drive VIHH, or tri-state.

• The effect of setting VIHH or tri-state is affected by the currently set PE driver
mode (see Magnum PE Driver Modes).

• Using setpin(), both pins of a Functional Pin-pair are set to the same state; the
most recently programmed pin of each pin-pair sets the state for both pins. The
pin_dc_state_set() function allows each pin of a pin-pair to be set to a
different state.
 2/27/09 Pg-715

Manipulating Tester Hardware
• The pin state set using setpin() remains in effect until:
• setpin() is executed again to change the state.
• A functional test pattern executes and changes the state.
• pin_dc_state_set() is executed to change the state.

• If a given pin is permanently configured in drive-only or receive-only mode (using
the drive_only() or tri_state() functions) the setpin() function has no
affect on the I/O state of that pin.

Usage
void setpin(PinList* pPinList, VRailLevel Level);

void setpin(PinList* pPinList, PinLevel Level);

where:

pPinList identifies the pin(s) to be programmed.

Level is one of VIH, VIL, VIHH, or VZ, as noted in the table below:.

Example
In the following example, the pins identified in the pin list named input_pins are set to
drive the VIH level.

setpin(input_pins, VIH);

Table 3.23.2.0-1 PE Static Drive States

State Description

VIL Set the pin(s) to drive VIL

VIH Set the pin(s) to drive VIH

VIHH Set the pin(s) to drive VIHH*

VZ Set the pin(s) to tri-state*

* The tri-state voltage is determined by the currently set PE driver mode (see
Magnum PE Driver Modes).
 2/27/09 Pg-716

Manipulating Tester Hardware
3.23.3 Pin DC Static State Functions

Description

The pin_dc_state_set() function is used to set one or more pins to a static DC state.

The pin_dc_state_get() function is used to get the current static DC state for one
specified pin.

Note the following:

• pin_dc_state_set() controls the PE driver on the specified pin(s), setting it to
either drive low (VIL), drive high (VIH), drive super-voltage (VIHH) or to tri-state.

• Using pin_dc_state_set(), when a given pin is set to VIL or VIH the resulting
PE driver output voltage will be that programmed last using vil() or vih().
When set to drive super-voltage (VIHH) the resulting PE driver output voltage will
be that programmed last using vihh().

• Using pin_dc_state_set(), when a given pin is set to tri-state, the resulting PE
driver output voltage will be determined by the current PE driver mode setting (see
Magnum PE Driver Modes and pe_driver_mode_set()) and one of vihh(),
vz() or vtt(). And, if the current PE driver mode is Vz Mode , the termination
resistance last selected using rl_set() will be used.

• The hold_state argument determines whether the specified pin(s) will
subsequently receive drive edges from the timing system.
• TRUE means that the pin will NOT receive drive edges from the timing system

during subsequent functional test executions i.e. the PE driver’s DC state
selected will remain in effect independent of any functional test executions.

• FALSE allows the pin to receive drive edges from the timing system i.e. The PE
driver will respond normally to subsequent functional test executions. The pin will
remain in the programmed state until reprogrammed or until a test pattern
executes and changes the state. Note that the when FALSE is ineffect that the
state value returned by pin_dc_state_get() is invalid (the returned state
variable is not modified).

• During initial program load, the hold_state state of all pins is set to FALSE. The
system software does not otherwise change this state (including when Sequence &
Binning Table execution ends).
 2/27/09 Pg-717

Manipulating Tester Hardware
• Using pin_dc_state_set(), once a given pin has been set to
hold_state = TRUE, the primary method to restore normal operation is to
execute pin_dc_state_set() again, with hold_state = FALSE. However, a
test pattern can also use the same underlying hardware to dynamically change the
static drive state of selected pins. See Setting a Static Pin-state using Level Sets.

• In Multi-DUT Test Programs, the Active DUTs Set (ADS) manipulations use the
same hardware mechanism to disable drive edges to a given DUT as is used by
hold_state.

• The currently selected output voltage may be manipulated from an executing test
pattern, see Controlling PE Levels from the Test Pattern. In Multi-DUT Test
Programs, this will be inhibited if the pin is associated with a DUT not currently in
the Active DUTs Set (ADS).

Usage
void pin_dc_state_set(DutPin *dutpin,

PEDriverState dc_state,
BOOL hold_state DEFAULT_VALUE(FALSE));

void pin_dc_state_set(PinList* pinlist,
PEDriverState dc_state,
BOOL hold_state DEFAULT_VALUE(FALSE));

BOOL pin_dc_state_get(DutPin *dutpin, PEDriverState *state);

where:

dutpin is used in two contexts:

• In the setter function, identifies one pin to be programmed. In Multi-DUT Test
Programs, the pin(s) of each DUT currently in the Active DUTs Set (ADS) are
affected. The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

• In the getter function, identifies one pin to be read.
pinlist specifies which pin(s) are to be programmed. In Multi-DUT Test Programs, only
pin(s) of DUT(s) in the Active DUTs Set (ADS) are affected. The specified pinlist must
only contains pins mapped to a signal pins in the Pin Assignment Table.

dc_state specifies the desired PE driver state. Legal values are of the PEDriverState
enumerated type.

hold_state is optional, and if specified, determines whether the pin(s) will subsequently
receive waveform edges from the timing system. See Description. Default = FALSE.
 2/27/09 Pg-718

Manipulating Tester Hardware
state is a pointer to an existing PEDriverState variable used to return the current PE
driver state, but state is only modified when pin_dc_state_set() was executed with
hold_state = TRUE.

pin_dc_state_get() returns TRUE if the specified pin’s hold_state is TRUE
otherwise FALSE is returned. In Multi-DUT Test Programs, the value is retrieved from the
first DUT in the Active DUTs Set (ADS).

Example
pin_dc_state_set(D0, t_vil, FALSE);

pin_dc_state_set(myPins, t_tristate, TRUE);

PEDriverState curstate;
BOOL holding = pin_dc_state_get(D0, &curstate);

3.23.4 Setting DUT Address Pins State

Description

The set_address() function may be used to statically set an X/Y address at the output of
selected pins.

When testing memory devices, a particular address is sometimes desired at the DUT in a
static state. This can be accomplished by writing and executing an appropriate test pattern
or, more simply, using set_address() in the test program.

Using set_address(), the specific pins affected are determined by several things:

• The values set using numx() and numy(), to determine the size of the DUT
address.

• The x_fast_axis(), to determine whether X or Y address bits are the least
significant address axis.

• Pin Scramble Map PS1 is used to determine which pins are scrambled to APG
address generator outputs.

The address written to the DUT pins is the topologically scrambled version of the address
specified. See Logical vs. Physical, vs. Electrical Addresses.

This operation sets a bit in a PE driver register; i.e. it does not affect APG pipelines or APG
registers.
 2/27/09 Pg-719

Manipulating Tester Hardware
The voltage appearing at the DUT pins is set by vil(), vih() or vihh().

Usage
void set_address(UINT Value);

where:

Value specifies the address to be written. value specifies a logical address value; the
TOPO scrambled address is read from the hardware Address Topological Scramble RAMs
and written to the DUT.

Example
In the following example, pins scrambled to APG Address Generator outputs in Pin
Scramble Map PS1 are set. Which pins are set to logic-1 vs. logic-0 depends on numx(),
numy() and x_fast_axis():

set_address(0xffff);

3.23.5 Setting DUT Data Pins States

Description

The set_data() function may be used to statically set a data value at the output of
selected pins.

When testing memory devices, a particular data value is sometimes desired at the DUT in a
static state. This can be accomplished by writing and executing an appropriate test pattern
or, more simply, using set_data().

Pin Scramble Map PS1 is used to determine which pins will be affected; i.e. only pins which
are scrambled to APG Data Generator outputs in PS1 will be affected.

This operation sets a bit in a PE driver register; i.e. it does not affect APG pipelines or APG
registers.

The voltage appearing at the DUT pins is set by vih(), vil(), and vihh().

Usage
void set_data(__int64 Value);
 2/27/09 Pg-720

Manipulating Tester Hardware
where:

Value specifies the data to be written. Only the low 36 bits are used (consistent with the
size of the APG Data Generator.

Example
In the following example, pins scrambled to APG Data Generator outputs in Pin Scramble
Map PS1 are set. The low 16 bits (t_d0 to t_d15) are set to logic-1 (0xFFFF), the rest to
logic-0.

set_data(0xFFFF);

3.23.6 Setting DUT Chip Select Pin States

Description

The set_chips_on() function may be used to statically set the state of DUT chip-select
pins at the output of selected pins.

When testing memory devices, a particular static state is sometimes desired at DUT chip
select pins. This can be accomplished by writing and executing an appropriate test pattern
or, more simply, using set_chips_on().

Pin Scramble Map PS1 is used to determine which pins will be affected; i.e. only pins which
are scrambled to APG Chip Select outputs t_cs1 to t_cs8 in PS1 will be affected.

This operation sets a bit in a PE driver register; i.e. it does not affect APG pipelines or APG
registers.

The voltage appearing at the DUT pins is set by vih(), vil(), and vihh().

Usage
void set_chips_on(TesterFunc Func1 = t_tf_na,

TesterFunc Func2 = t_tf_na,
TesterFunc Func3 = t_tf_na,
TesterFunc Func4 = t_tf_na,
TesterFunc Func5 = t_tf_na,
TesterFunc Func6 = t_tf_na,
TesterFunc Func7 = t_tf_na,
TesterFunc Func8 = t_tf_na);
 2/27/09 Pg-721

Manipulating Tester Hardware
where:

Func1 through Func8 identify which Chip Selects are used; only pins which are scrambled
to these Chip Selects in Pin Scramble Map PS1 will be affected. Legal values are t_cs1,
t_cs2, t_cs3, t_cs4, t_cs5, t_cs6, t_cs7, and t_cs8. Only the DUT pins scrambled
to the chip selects that appear as arguments in this function are set to their logical TRUE
state. Pins which are scrambled to other chip selects are set to their logical FALSE state.

Example
The following example sets the pins scrambled to t_cs1, t_cs4 and t_cs5 in Pin
Scramble Map PS1 to logical TRUE. Pins which are scrambled to t_cs2, t_cs3, t_cs6,
t_cs7and t_cs8 are set to logical FALSE:

set_chips_on(t_cs1, t_cs4, t_cs5);

3.23.7 Memory-pattern Related Functions
See Manipulating Tester Hardware.

See Algorithmic Pattern Generator (APG), Memory Test Patterns.

Except as noted, the functions documented in this section are used to configure the
Algorithmic Pattern Generator (APG) in preparation for executing Memory Test Patterns.

• APG Counter Functions
• APG Reload Register Functions
• dmain(), dbase()
• APG Data Register Functions
• APG Jam Register Functions
• APG XMAIN & YMAIN Register Functions
• APG XBASE & YBASE Register Functions
• APG XFIELD & YFIELD Register Functions
• APG AMAIN, ABASE, AFIELD Set/Get Functions
• Address Cross-over Bit Functions
• APG Timer Interrupt Address Functions
• find_label()
• APG Y-Index Register Functions
 2/27/09 Pg-722

Manipulating Tester Hardware
• set_chip_select(), get_chip_select()

• set_adhiz(), get_adhiz()

• set_invsns(), get_invsns()

• get_jca(), set_jca()

• set_ps(), get_ps()

• set_tset(), get_tset()

• set_udata(), get_udata()

• Get APG Fail Information
actualdata()
expectdata()
lvm_error_mode()
errmar()
Note that other functions are listed here but not

 yet documented.

• find_mar()

• find_by_mar(), find_by_var()

• addrs()

• label_offset()

• Clearing APG Pipelines
• Single-stepping APG Patterns

3.23.7.1 APG Counter Functions
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The count() function is used to set or get a value to/from an Algorithmic Pattern Generator
(APG) counter.

Using count() to set a given counter also causes its corresponding reload register to be
loaded with the same value. To load only the reload register use the reload() function.

Usage
void count(int Loop, UINT Value);
 2/27/09 Pg-723

Manipulating Tester Hardware
UINT count(int Loop);

where:

Loop identifies the target APG counter. When setting a counter value, legal values are 1
through 60 (counters 61, 62, 63, and 64, are reserved for system use).

Value specifies the desired count value. Legal values are 1 to 4,294,967,295 (232-1).

The getter version of count() returns the current value read from the specified counter.

Example
The following example loads the value 100 into APG counter 5:

count(5, 100);

The following example reads the current value from APG counter 10:

UINT val = count(10);

3.23.7.2 APG Reload Register Functions
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The reload() function is used to set or get a value to/from an Algorithmic Pattern
Generator (APG) reload register. Each APG counter has a corresponding reload register.

When the count() function is used to initialize an APG counter, that counter’s
corresponding reload register is automatically loaded to the same value. The reload()
function can be used to set or get a value to/from only the reload register, without modifying
the corresponding APG counter.

Usage
void reload(int Loop, UINT Value);

UINT reload(int Loop);

where:

Loop identifies the target APG reload register. Legal values are 1 through 60 (counters 61,
62, 63, and 64, are reserved for system use).
 2/27/09 Pg-724

Manipulating Tester Hardware
Value specifies the desired count value. Legal values are 1 to 4,294,967,295 (232-1).

The getter version of reload() returns the current value read from the specified reload
register.

Examples
The following example loads the value 100 into reload register 5:

reload(5, 100);

The following example gets the current value from reload register 10:

UNIT val = reload(10);

3.23.7.3 APG Reload Register Mode Functions
See Memory-pattern Related Functions.

Note: this feature is only available using Maverick-II and Magnum 1.

Description

The apg_reload_register_mode_set() function is used to modify the behavior of the
Memory Test Pattern RELOAD# operand (see COUNT Counter Operands). Pattern operation
details are documented in COUNT Counter Operands.

The apg_reload_register_mode_get() function is used to get the currently set mode.

Note the following:

• By default, the original RELOAD operation is enabled. The system does not
otherwise modify the mode. Default operation is equivalent to executing
apg_reload_register_mode_set(t_reload_mode1).

• The mode is global; i.e. not per reload/counter register number.
• Executing apg_reload_register_mode_set(t_reload_mode2) changes the

mode as described in COUNT Counter Operands. Executing
apg_reload_register_mode_set(t_reload_mode1) restores operation to
the default mode.
 2/27/09 Pg-725

Manipulating Tester Hardware
Usage
void apg_reload_register_mode_set(ApgReloadRegMode mode);

ApgReloadRegMode apg_reload_register_mode_get();

where:

mode specifies the desired mode of operation. Default = t_reload_mode1.

apg_reload_register_mode_get() returns the currently set mode.

Example
apg_reload_register_mode_set(t_reload_mode2);

ApgReloadRegMode mode = apg_reload_register_mode_set();

3.23.7.4 dmain(), dbase()
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The dmain() function is used to set or get a value to/from the APG Data Generator’s
DMAIN register and Data Register Fill-bit for that register.

The dbase() function is used to set or get a value to/from the APG Data Generator’s
DBASE register and Data Register Fill-bit for that register.

Both functions set or get the value to/from the APG on the site which executes the function.
When Sites-per-Controller > 1 all APGs under the control of a given master-site are
executing the same pattern in sync, thus the value returned from the master-site represents
all sites.

Usage
void dmain(__int64 value);

__int64 dmain();

void dbase(__int64 value);

__int64 dbase();

where:
 2/27/09 Pg-726

Manipulating Tester Hardware
value specifies the value to be written to the DMAIN or DBASE register. Only the low 37
bits are used, as follows:

• The low 36 bits load the data register bits D0 through D35.
• Bit 37 loads the Data Register Fill-bit.

The getter versions of dmain() and dbase() returns the current value read from the
register. Only the low 37 bits are valid, as noted for value above (bits above bit 37 are set to
0).

Examples
The following example loads the hex value 0x20 into the APG Data Generator’s DBASE
register and the Data Register Fill-bit is set = 0:

dbase(0x20);

The following example gets the current value from the APG Data Generator’s DMAIN
register:

__int64 val = dmain();

3.23.7.5 APG Data Strobe Control

Note:

Description

The data_strobe() function is used to statically enable or disable the strobe signals
which originate from the APG Data Generator. This is a somewhat complex topic, keep
reading.

Overview
The Magnum 1 test system contains two sources of test pattern data:

• Algorithmic Pattern Generator (APG) when executing Memory Test Patterns.
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored

Logic Test Patterns and Scan Test Patterns.
 2/27/09 Pg-727

Manipulating Tester Hardware
The diagram below shows key Magnum 1 architecture features:

Figure-52: Test Pattern Data Source Hardware Architecture
Using the Pin Scramble MUX, the source of pattern data for each timing channel can be
selected on a per-channel/per-cycle basis, at full tester speed. In other words, for any given
pin-pair, the source of pattern data can be selected on a per-cycle basis from any APG
address, data, or clock data bit, or any LVM data bit, or any Scan Vector Memory data bits.
Using Magnum 1/2/2x (but not Maverick-I/-II) any LVM data bit to be mapped to any pin.

During pattern execution, in each tester cycle each data source is actually supplying three
bits: pattern data, I/O control, and strobe control. When using LVM or SVM three distinct bits
are stored in memory at each address. When using the APG, the I/O control bits and Strobe
control bits are managed using special mnemonics in the test pattern. For example, ADHIZ
controls I/O state for the APG Data Generator outputs, Address outputs are always driving
and never strobe, etc.

This section documents how APG Data Generator strobes are controlled, and the related
data_strobe() function.

Pin b_64

Pin a_64

Pin b_1

Pin a_1
Chan-1

Timing &
Formatting

Chan-64
Timing &

Formatting

*LVM &
SVM

Sub-site B

Sub-site B

Sub-site A

Sub-site A

*Optional

Pattern Data
Strobe & I/O
Control (6 bits
per pin)

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

36 Data
8 Chip Selects

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

Drive
Strobe

I/O

VAR
 2/27/09 Pg-728

Manipulating Tester Hardware
Note: the data_strobe() function only affects APG Data Generator strobe control;
i.e. it has no effect on strobes controlled from Logic Test Patterns or Scan Test
Patterns.

The APG Data Generator supplies 36 data outputs which can be used for drive data and/or
expect (strobe) data. Each of these 36 outputs (t_d0..t_d35) consists of 3 bits: one for
pattern data, one for I/O Control, one for strobe enable.

APG Data Generator strobes have several enables:

• During initial program load, strobes are disabled for all APG Data Generator. The
system software does not otherwise change these strobe enables.

• The data_strobe() function, called from user C-code prior to executing the test
pattern. This sets up static strobe enables before a pattern is executed.

• The MAR READ mnemonic, provides dynamic (per pattern instruction) strobe control.
Strobes will be generated on APG Data Generator outputs in any pattern
instructions containing the READ mnemonic, but only on those outputs previously
enabled by data_strobe().

• The MAR READUDATA mnemonic, provides dynamic (per pattern instruction) control.
Strobes will be generated on APG Data Generator outputs in any pattern
instructions containing the READUDATA mnemonic, but only on those outputs
enabled by data_strobe(), and only those outputs which have a logic-1 in the
corresponding bit position of the UDATA value in the current pattern instruction.
Using MAR READUDATA mnemonic the UDATA value is used as a bit-wise strobe
mask.

It is important to emphasize that the data_strobe() function programs APG Data
Generator hardware, not the pin electronics or timing system. Which PE channels actually
use Data Generator outputs, and thus might be strobed, is determined by the Pin Scramble
Map selected in each pattern instruction.

data_strobe(): Mask Method

Note: read the Note: and Overview in APG Data Strobe Control.

The data_strobe() function is used to statically enable APG Data Generator strobes.

As compared to the data_strobe(): Pin Scramble Method, the mask method is much simpler
to understand and set up (no Pin Lists or Pin Scramble arguments are used with the mask
method, which is consistent with how the related APG hardware works).
 2/27/09 Pg-729

Manipulating Tester Hardware
Using the mask method a simple bit-wise mask argument is specified, with each bit position
corresponding to an APG Data Generator output (t_d35..t_d0). A given data strobe is
enabled by a logic-1 mask bit value, and disabled by a logic-0 mask bit value, with the LSB
controlling t_d0, etc. For example, a mask value of 0x3FFFF would enable data strobes for
t_d17..t_d0.

At any given time, to determine which APG Data Generator outputs have strobes statically
enabled it is only necessary to identify the most recently executed data_strobe()
function. Then, if using the mask method documented in this section, strobes will be
statically enabled on all APG Data Generator outputs which have a logic-1 in the
corresponding mask bit position.

Note: the data_strobe() function must be called from a test block. It must not be
called in the Site Begin Block, because its effect will be overwritten by the
system software.

During initial program load, strobes are disabled for all APG Data Generator. The system
software does not otherwise change these strobe enables.

Usage
void data_strobe(__int64 Mask);

void data_strobe();

where:

Mask is a 64-bit _int64 value. Only the low 36-bits are used, to control strobes on
t_d35..t_d0. See Description.

Calling data_strobe() with no argument disables strobes on all APG Data Generator
outputs.

Example
The following example enables data strobes on all 36 APG Data Generator outputs:

data_strobe(0xFFFFFFFFF);

data_strobe(): Pin Scramble Method

Note: read the Note: and Overview in APG Data Strobe Control

The data_strobe() function is used to statically enable APG Data Generator strobes.
 2/27/09 Pg-730

Manipulating Tester Hardware
The Pin Scramble method is the original (early) methodology used by a large number of test
programs. However, as compared to the data_strobe(): Mask Method, this original
methodology is more complex to set up, and somewhat confusing due to the arguments
passed to data_strobe().

Using the Pin Scramble method, two versions of data_strobe() are available:

data_strobe(pin_list);

data_strobe(pin_list, pin_scramble);

The first version defaults to using Pin Scramble PS1, so the rest of the description below
assumes a Pin Scramble argument is used.

Remember that the purpose of data_strobe() is to set up static APG Data Generator
strobe enables from C-code, prior to pattern execution. The arguments to the
data_strobe() function were established based on Megatest Q2 compatibility, and are a
source of confusion. The key to this method, is to view the combined Pin Lists and Pin
Scramble Map arguments as a map used to identify which specific APG Data Generator
outputs will have strobes statically enabled (t_d0 through t_d35).

• The specific pins in the pin list used by these versions of data_strobe() are not
important (!), they are only used as a programming tool. However, the pin list must
only contain signal pins, and duplicate pins cannot be used. It is sometimes
necessary for pin lists used by data_strobe() to contain a mix of DUT pins
which might otherwise seem very strange. See Example 2:.

• The PPin Scramble Map used by these versions of data_strobe(), including the
default PS1 when used, identifies which APG Data Generator outputs have
strobes enabled: t_d0 through t_d35. It is not necessary that this Pin Scramble
Map actually be used in a test pattern. In fact, as shown in Example 2:, it may be
necessary to create a special Pin Scramble Map solely for use by
data_strobe(). It is also legal (and common) for Pin Scramble Maps used only
by data_strobe() to be incomplete; i.e. only contain references to APG Data
Generator outputs, with other DUT pins not defined.

At any given time, to determine which APG Data Generator outputs have strobes statically
enabled it is only necessary to identify the most recently executed data_strobe()
function. Then, if using the Pin Scramble method documented in this section, strobes will be
statically enabled on all APG Data Generator outputs listed in the Pin Scramble Map
argument to data_strobe(). The default Pin Scramble Map (PS1) is used when the
data_strobe() function call doesn’t contain an explicit Pin Scramble argument.
 2/27/09 Pg-731

Manipulating Tester Hardware
Note: the data_strobe() function must be called from a test block. It must not be
called in the Site Begin Block, because its effect will be overwritten by the
system software.

During initial program load, strobes are disabled for all APG Data Generator. The system
software does not otherwise change these strobe enables.

Usage
void data_strobe(PinList* pPinList);

void data_strobe(PinList* pPinList, PSNumber PSnum);

void data_strobe(DWORD Mask);

void data_strobe(__int64 Mask);

void data_strobe();

where:

pPinList is a previously defined pin list. See Description above for details.

PSnum is an optional argument explicitly specifying which Pin Scramble Map to use. If this
argument is omitted, then PS1 is assumed. See Description above for details.

Examples

Example 1:
The following example enables strobes on those APG Data Generator outputs which are
mapped to the pins in data_bus using Pin Scramble Map PS1:

data_strobe(data_bus);

Example 2:
The following example is typical of a serial device, where one DUT pin is being strobed, in
sequential pattern cycles, for D7..D0.

Strobes must be enabled for eight APG Data Generator outputs: D7..D0. However, since
the DUT only has one serial “data pin” some creativiity is needed when defining both the Pin
Lists and Pin Scramble Map to be used by data_strobe().

The basic requirement is, using a single data_strobe() function call, to enable strobes on
t_d0.. t_d7. To do this requires a pin list containing eight unique DUT signal pins (any 8
 2/27/09 Pg-732

Manipulating Tester Hardware
signal pins will do), and a Pin Scramble Map which maps those eight pins to t_d0..t_d7.
Note that the example code below will typically be found in different source files.

PIN_SCRAMBLE(some_name) {

// ... other SCRAMBLE_MAP definitions ...

// PS37 is used only for data_strobe() use.
// Using PS37 (vs. PS2, or PS19) is arbitrary.
SCRAMBLE_MAP(PS37) {

SCRAMBLE(a_Dinout, t_d0) // Actual signal pins used don’t
SCRAMBLE(a_Reset, t_d1) // matter !!!
SCRAMBLE(a_Clk, t_d2)
SCRAMBLE(a_Ale, t_d3)
SCRAMBLE(a_Red, t_d4)
SCRAMBLE(a_Blu, t_d5)
SCRAMBLE(a_Grn, t_d6)
SCRAMBLE(a_Tom, t_d7)

}
// ... other SCRAMBLE_MAP definitions ...

}

// This PL used only with data_strobe()
PINLIST(special_data_strobe_pinlist) {

PINS4(a_Dinout, a_Reset, a_Clk, a_Ale)
PINS4(a_Red, a_Blu, a_Grn, a_Tom)

}

TEST_BLOCK(some_tb_name) {
// ... other C code
data_strobe (special_data_strobe_pinlist, PS37);
// ... other C code

}

This example statically enables strobes on APG Data Generator outputs t_d0..t_d7.
Then, during pattern execution, any DUT pin(s) which are scrambled to any of these data
sources via the per-instruction Pin Scramble Map selection will be strobed if/when the READ
or READUDATA is used. Note the following:

• The pins in the pin list don’t matter, any 8 unique signal pins will do.
• The pin list is very unlikely to be used for any other purpose. A comment to this

effect is appropriate.
 2/27/09 Pg-733

Manipulating Tester Hardware
• In applications where there are not enough signal pins to complete the needed Pin
Scramble Map it may be necessary to add pins to the Pin Assignment Table purely
for this purpose. However, in applications where multiple parallel DUTs are being
tested use any signal pins available - which pins are used doesn’t matter!

• The order the APG Data Generator outputs are listed in the Pin Scramble Map is
not important.

• It is very unlikely that this Pin Scramble Map will be used for any other purpose
other than data_strobe() use. A comment to this effect is appropriate.

3.23.7.6 APG Data Register Functions
See Memory-pattern Related Functions, APG Data Generator.

Description

The datreg() function is used to set or get a value to/from the APG Data Generator,
including the Data Register Fill-bit. Also see dmain(), dbase().

Usage
void datreg(__int64 Value);

__int64 datreg();

where:

Value specifies the value to be written to the data register. Only the low 37 bits are used, as
follows:

• The low 36 bits load the data register bits D0 through D35
• Bit 37 loads the Data Register Fill-bit.

The getter version of datreg() returns the current value from the data register. Only the
low 37 bits are valid, as noted for Value above (bits above bit 37 are set to 0).

Examples
The following example loads the hex value 0x20 into the APG Data Generator and the Data
Register Fill-bit is set = 0:

datreg(0x20);

The following example gets the current value from the data register:
 2/27/09 Pg-734

Manipulating Tester Hardware
__int64 val = datreg();

3.23.7.7 APG Jam Register Functions
See Memory-pattern Related Functions, APG Data Generator, JAM Logic.

Description

The jamreg() function is used to set or get a value in the APG Data Generator JAM
Register.

Also see JAM Logic and apg_jam_ram_set(), apg_jam_ram_get().

Usage
void jamreg(__int64 Value);

__int64 jamreg();

where:

Value specifies the value to be written to the JAM Register. Only the low 37 bits are used.
The low 36 bits load the JAM register bits D0 through D35. The bit 37 loads the JAM register
shift/fill bit.

The getter version of jamreg() returns the current value from the JAM register. Only the
low 36 bits are valid; bits above bit 36 are set to 0.

Examples
The following example loads the value 0x20 into the JAM register:

jamreg(0x20);

The following example gets the current value from the JAM register:

__int64 val = jamreg();

3.23.7.8 APG XMAIN & YMAIN Register Functions
See Memory-pattern Related Functions, APG Address Generator.
 2/27/09 Pg-735

Manipulating Tester Hardware
Description

The xmain() function is used to set or get a value to/from the APG Address Generator’s
XMAIN register.

The ymain() function is used to set or get a value to/from the APG Address Generator’s
YMAIN register.

Usage
void xmain(int Value);

void ymain(int Value);

int xmain();

int ymain();

where:

Value specifies the value to be written to the XMAIN or YMAIN register. Only the low 16 bits
are used.

The getter version of xmain() and ymain() return the current value from the XMAIN or
YMAIN register. Only the low 16 bits are valid.

Examples
The following example loads the value -1 into the APG Address Generator’s XMAIN register:

xmain(-1);

The following example gets the current value from the YMAIN register:

int val = ymain();

3.23.7.9 APG XBASE & YBASE Register Functions
See Memory-pattern Related Functions, APG Address Generator.

Description

The xbase() function can be used to set or get a value to/from the APG Address
Generator’s XBASE register.
 2/27/09 Pg-736

Manipulating Tester Hardware
The ybase() function can be used to set or get a value in the APG Address Generator’s
YBASE register.

Usage
void xbase(int Value);

void ybase(int Value);

int xbase();

int ybase();

where:

Value specifies the value to be written to the XBASE or YBASE register. Only the low 16
bits are used.

The getter versions of xbase()and ybase() return the current value from the XBASE or
YBASE register. Only the low 16 bits are valid.

Examples
The following example loads the value -1 into the APG Address Generator’s XBASE
register:

xbase(-1);

The following example gets the current value from the YBASE register:

int val = ybase();

3.23.7.10 APG XFIELD & YFIELD Register Functions
See Memory-pattern Related Functions, APG Address Generator.

Description

The xfield() function can be used to set or get a value to/from the APG Address
Generator’s XFIELD register.

The yfield() function can be used to set or get a value in the APG Address Generator’s
YFIELD register.
 2/27/09 Pg-737

Manipulating Tester Hardware
Usage
void xfield(int Value);

void yfield(int Value);

int xfield();

int yfield();

where:

Value specifies the value to be written to the XFIELD or YFIELD register. Only the low 16
bits are used.

The getter versions of xfield() and yfield() return the current value in the XFIELD or
YFIELD register. Only the low 16 bits are valid.

Examples
The following example loads the value -1 into the APG Address Generator’s XFIELD
register:

xfield(-1);

The following example gets the current value from the YFIELD register:

int val = yfield();

3.23.7.11 APG AMAIN, ABASE, AFIELD Set/Get Functions
See Memory-pattern Related Functions, APG Address Generator.

Description

The amain() function is used to set or get a value to/from the APG Address Generator’s
combined XMAIN and YMAIN registers.

The abase() function can be used to set or get a value to/from the APG Address
Generator’s combined XBASE and YBASE registers.

The afield() function can be used to set or get a value to/from the APG Address
Generator’s combined XFIELD and YFIELD registers:

Note the following:
 2/27/09 Pg-738

Manipulating Tester Hardware
Note: amain(), abase() and afield() should NOT be used on Magnum 2 or
Magnum 2x . These systems have 24 X and 24 Y address bits (40 bits total can
be used) which means that a UINT value cannot be used to set/get an
appropriate value. Instead, use xmain()/ymain(), xbase()/ybase() and
xfield()/yfield() to set/get X vs. Y address values individually.

• When using amain(), abase() or afield() the high order address bits, i.e.
whether the X address or Y address is most significant, is determined by the
x_fast_axis() function.

• The values set for numx() and numy() affect how many bits of the value passed
to amain(), abase() and afield() setter functions are written to XMAIN vs.
YMAIN (or XBASE vs. YBASE, or XFIELD vs. YFIELD). See Example.

• Similarly, the values set for numx() and numy() affect how many bits of the value
returned by the amain(), abase() and afield() getter functions are X address
bits vs. Y address bits.

Usage
void amain(UINT Value);

void abase(UINT Value);

void afield(UINT Value);

UINT amain();

UINT abase();

UINT afield();

where:

Value specifies the value to be written to the combined XMAIN/YMAIN, XBASE/YBASE or
XFIELD/YFIELD registers. See Description.

amain(), abase() and afield() getter functions returns the current value of the
combined XMAIN/YMAIN, XBASE/YBASE or XFIELD/YFIELD registers. See Description.

Examples
Both examples below show the effect of numx() and numy() on the use of amain():

numx(3); // See numx()
numy(5); // See numy()
x_fast_axis(TRUE); // See x_fast_axis()
 2/27/09 Pg-739

Manipulating Tester Hardware
xmain(0x0); // See xmain()
ymain(0x1F); // See ymain()

output(" Amain => 0x%x", amain());

This results in the following output:

Amain => 0xf8

// i.e. binary 1111 1000 where:
// xmain = 1F ---- -
// ymain = 0 ---

The following example uses amain() to set both XMAIN and YMAIN as follows:

amain(0xAD);
// ymain xmain
// 0x15 0x3 Hex
// 10101 101 Binary
// 1010 1101 = 0xAD Value passed to amain()

output(" Xmain => 0x%x : Ymain => 0x%x", xmain(), ymain());

This results in the following output:

Xmain => 0x15 : Ymain => 0x3

3.23.7.12 Address Cross-over Bit Functions
See Memory-pattern Related Functions, APG Address Generator.

Note: first available in software release h2.2.7/h1.2.7.

Description

The atopo_xvr() function is used to select the Address Cross-over Bits used to replace
the upper 3 X address and/or upper 3 Y bits at the input to the Address TOPO RAM.

Note the following:

• atopo_xvr() only affects the upper 3 address bits at the input to the Address
TOPO RAMs.
 2/27/09 Pg-740

Manipulating Tester Hardware
• Executing atopo_xvr() identifies 3 X and 3 Y address bits used as Address
Cross-over Bits. The most recently executed function completely defines all 6
Address Cross-over Bits.

• The argument names identify which bit is being specified. All 6 arguments are
required. Legal values for each arguments are slightly different:

Usage
void atopo_xvr(TesterFunc X15, TesterFunc X16, TesterFunc X17,

 TesterFunc Y13, TesterFunc Y14, TesterFunc Y15);

where:

X15, X16 and X17 identify the desired cross-over address bit used to replace these bits of
the X APG Address Generator.

Y13, Y14 and Y15 identify the desired cross-over address bit used to replace these bits of
the Y APG Address Generator.

Example
The following example uses atopo_xvr() to map address Y0 to the X15 address bit. The
other high-order X and Y address bits use their default mapping:

atopo_xvr(t_y0, 0, 0, 0, 0, 0, 0);

Argument
Name Default Value Cross-over Values

X15 t_x15

t_y0 through t_y15X16 t_x16

X17 t_x17

Y13 t_y13

t_x0 through t_x17Y14 t_y14

Y15 t_y15

Note: specifying an invalid value causes the default value
to be selected in hardware. To intentionally select the
default value 0 may be specified for a given argument
value.
 2/27/09 Pg-741

Manipulating Tester Hardware
3.23.7.13 APG Timer Interrupt Address Functions
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The intadr() function can be used to set or get a value to/from the APG Interrupt Timer’s
interrupt address register.

Usage
void intadr(int Value);

int intadr();

where:

Value specifies the value to be written to the interrupt address register. Only the low 15 bits
are used.

The getter version of intadr() returns the current value from the interrupt address
register. Only the low 15 bits are valid; the system software sets the bits above bit 15 to 0.

Example
The following example loads the value 20 into the APG Interrupt Timer’s interrupt address
register.

intadr(20);

The following example gets the current value from the interrupt address register:

int val = intadr();

3.23.7.14 find_label()
See Memory-pattern Related Functions, Pattern Labels.

Description
The find_label() function can be used to return the Pattern Label, if any, of a specified
pattern instruction in a specified Memory Test Pattern.
 2/27/09 Pg-742

Manipulating Tester Hardware
This function does report valid information in simulation mode.

Usage
CString find_label(Pattern *obj, DWORD mar);

where:

obj identifies the target pattern.

mar identifies the target pattern instruction. This is a pattern-relative value; i.e. the first mar
of the specified pattern is 0.

find_label() returns the label of the specified instruction. If the instruction has no label
the label of the closest prior instruction which does have a label is returned. If the pattern
containing the specified mar has no appropriate label to return an empty string is returned
("").

Example
The example consists of three parts:

• Test Block Code
• Example Test Pattern
• Example Output

Test Block Code
CString lbl = find_label(myPat, 1);
output(" lbl => %s", lbl);

Example Test Pattern
PATTERN(memPat)
% lab1:

mar inc

% lab2:
mar inc

% lab3:
mar done

Example Output
lbl => lab2
 2/27/09 Pg-743

Manipulating Tester Hardware
3.23.7.15 APG Y-Index Register Functions
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The yindex() function can be used to set and get a value from the APG Data Generator’s
Y-index register (see Yindex).

The Y-index register is used in Memory Test Patterns to generate one or more diagonal data
patterns, as a function of X/Y address.

The yindexmask() function can be used to set a value in the APG Y-index mask register.
Only locations in the Y-index mask register which contain a logic-1 are used to satisfy the
diagonal generator equation X = Y + Index. If the low 16 bits of the register are all set to
logic-1 (0xFFFF), then all 16 Y-address bits are used in the comparison to generate a
diagonal. Shrinking the mask below the maximum number of addresses used to test the
DUT will generate multiple diagonals in the memory array.

Before yindexmask() is first executed, the Y-index mask is recalculated each time
xmax() or ymax() is executed. In this scenario, the Y-index mask register is set to the
smaller of xmax() or ymax(), which are the maximum X and Y addresses used to test the
DUT.

Once yindexmask() is executed, the Y-index mask will only be modified by executing
yindexmask(); i.e. it will no longer change when xmax() or ymax() are executed.

Usage
void yindex(int Value);

int yindex();

void yindexmask(int Value);

where:

Value specifies the value to be written to the Y-index register or Y-index mask register. Only
the low 16 bits are used.

The yindex() getter function returns the current value in the Y-index register. All bits above
bit-15 set = 0 by the system software.
 2/27/09 Pg-744

Manipulating Tester Hardware
Examples
The following example loads the Y-index register with value 20:

yindex(20);

The following example gets the current value in the Y-index register:

int val = yindex();

The following example loads the Y-index mask register with current value of ymax(). This
enables all Y address bits for comparison in the diagonal data generator.

yindexmask(ymax());

The following example causes diagonal comparisons to consider only Y0, Y1, and Y2. Using
the diagonal generator equation X = Y + Index, the comparison (equation) will be considered
TRUE when this equation is satisfied on the three low order address bits only. Higher order
address bits are ignored in the comparison. In this example, a DUT with more than 3 Y
address inputs (ymax() > 3) will have multiple diagonal data patterns automatically
generated (if the function is enabled in the pattern) with each diagonal being offset by eight
rows or columns from the previous diagonal:

yindexmask(7);

3.23.7.16 set_chip_select(), get_chip_select()
See Memory-pattern Related Functions, Algorithmic Pattern Generator (APG).

Description

The set_chip_select function can be used to modify the CHIPS instruction of a specified
pattern instruction of a specified Memory Test Pattern.

The get_chip_select() function allows user-written C-code to read information from the
CHIPS instruction of a specified pattern instruction of a specified Memory Test Pattern.

Usage
BOOL set_chip_select(Pattern *obj,

LPCTSTR label,
TesterFunc cs,
ChipSelectMode mode);
 2/27/09 Pg-745

Manipulating Tester Hardware
BOOL set_chip_select(Pattern *obj,
LPCTSTR label,
int delta,
TesterFunc cs,
ChipSelectMode mode);

ChipSelectMode get_chip_select(Pattern *obj,
LPCTSTR label,
TesterFunc cs);

ChipSelectMode get_chip_select(Pattern *obj,
LPCTSTR label,
int delta,
TesterFunc cs);

where:

obj is the pattern of interest.

label is the label of the pattern instruction to be read or modified. See Pattern Labels. If the
target instruction does not have a label, the label of a prior instruction can be used and an
offset value (instruction count) from that instruction specified using delta.

cs is one of t_cs1 through t_cs8 and used to specify which chip select is to be read or
modified.

mode is the desired modification, and must be one of the ChipSelectMode enumerated
type values:

delta specifies an offset from label, for use when the target pattern instruction does not
have a label.

set_chip_select() returns FALSE if the specified pattern or label is invalid, otherwise
TRUE is returned.

get_chip_select() returns -1 if the specified pattern or label is invalid. Otherwise it
returns the current state of the specified chip select, which will be one of the
ChipSelectMode enumerated type values noted above.

Example
BOOL ok = set_chip_select(myPat, "L1", t_cs1, t_cs_pulse_true);
ok = set_chip_select(myPat, "L1", 1, t_cs1, t_cs_false);

ChipSelectMode m = get_chip_select(myPat, "L1", t_cs1);
ChipSelectMode m = get_chip_select(myPat, "L1", 1, t_cs1);
 2/27/09 Pg-746

Manipulating Tester Hardware
3.23.7.17 set_adhiz(), get_adhiz()
See Memory-pattern Related Functions, PINFUNC Instruction, Pattern Labels.

Description

The set_adhiz() function may be used to change the value of the PINFUNC ADHIZ state
associated with one specified memory pattern instruction. This is the ADHIZ state value
specified using the test pattern PINFUNC instruction.

The get_adhiz() function may be used to get the current ADHIZ state of one specified
memory pattern instruction.

Note: using Magnum 1/2/2x, these instructions do not apply to Logic Test Patterns; i.e.
patterns with logic Pattern System Attributes.

Usage
The following 2 functions are used to change the ADHIZ state of one pattern instruction:

BOOL set_adhiz(Pattern *obj, LPCTSTR label, BOOL value);

BOOL set_adhiz(Pattern *obj,
LPCTSTR label,
int delta,
BOOL value);

The following 2 functions are used to get the ADHIZ state of one pattern instruction:

int get_adhiz(Pattern *obj, LPCTSTR label);

int get_adhiz(Pattern *obj, LPCTSTR label, int delta);

where:

obj specifies the pattern of interest.

label specifies the Pattern Label of the instruction of interest. See Pattern Labels. If the
target instruction does not have a label, the label for an earlier instruction must be
specified and delta used to specify an offset from that earlier instruction. See Example.

value specifies the desired ADHIZ state to be set in the specified pattern instruction,
replacing the previous value. Legal values are TRUE to set the ADHIZ state and FALSE to
clear the ADHIZ state:
 2/27/09 Pg-747

Manipulating Tester Hardware
set_adhiz() returns TRUE if the operation succeeded, otherwise FALSE is returned.

The get_adhiz() get functions return:

• 1 = ADHIZ TRUE
• 0 = ADHIZ FALSE
• -1 = ERROR

Example
The following example has two parts:

• Example Test Pattern
• Program Code

Example Test Pattern
In this simple memory pattern, the second instruction does not have a Pattern Label. This
was done intentionally to show how the delta argument is used.

PATTERN (myPat)
% Label_1:

MAR INC // No ADHIZ this instruction

% PINFUNC ADHIZ // This is the target instruction = Label_1 + 1
MAR INC

% Label_2:
MAR INC

% MAR DONE

Program Code
See comments in code below.

// Get current ADHIZ state for instruction at Label_1 + 1
int az = get_adhiz(myPat, "Label_1", 1);

// Check it
if (az == -1)

output(" ERROR: specified pattern or label is invalid");

// Output info
output(" ADHIZ state in 2nd pattern instruction =>\\");
output(" %s", az ? "TRUE" : "FALSE");
 2/27/09 Pg-748

Manipulating Tester Hardware
// Clear ADHIZ state in same instruction
BOOL ok = set_adhiz(myPat, "Label_1", 1, FALSE);

// Check it
if (! ok) output(" ERROR: specified pattern or label is invalid");

// Get it again and output info.
az = get_adhiz(myPat, "Label_1", 1);

if (az == FALSE)
output(" ADHIZ state change OK");

else
output(" ERROR: ADHIZ state change Failed");

3.23.7.18 set_invsns(), get_invsns()
See Memory-pattern Related Functions, DATGEN Invert Sense Operand, Pattern Labels.

Description

The set_invsns() function may be used to change the value of the APG Data
Generator’s inversion state associated with one specified pattern instruction. This is the
value set using the DATGEN Invert Sense Operand of the test pattern DATGEN instruction.

The get_invsns() function may be used to get the current DATGEN Invert Sense
Operand value of one specified pattern instruction.

Note: using Magnum 1/2/2x, these instructions do not apply to Logic Test Patterns; i.e.
patterns with logic Pattern System Attributes.

Usage
The following 2 functions are used to set the invsns value of one pattern instruction:

BOOL set_invsns(Pattern *obj, LPCTSTR label, int value);

BOOL set_invsns(Pattern *obj,
LPCTSTR label,
int delta,
int value);

The following 2 functions are used to get the invsns value of one pattern instruction:
 2/27/09 Pg-749

Manipulating Tester Hardware
int get_invsns(Pattern *obj, LPCTSTR label);

int get_invsns(Pattern *obj, LPCTSTR label, int delta);

where:

obj specifies the pattern of interest.

label specifies the Pattern Label of the instruction of interest. See Pattern Labels. If the
target instruction does not have a label, the label for an earlier instruction must be
specified and delta used to specify an offset from that earlier instruction. See Example.

value specifies the desired invsns value to be set in the specified pattern instruction,
replacing the previous value. Legal values are:

• 0 to set the invsns state to NOTINV
• 1 to set the invsns state to INVSNS
• 2 to set the invsns state to XORINV

set_invsns() returns TRUE if the operation succeeded, otherwise FALSE is returned.

The get_invsns() get functions return:

• 2 = XORINV
• 1 = INVSNS
• 0 = NOTINV
• -1 = ERROR (bad Pattern*, bad label, etc.)

Example
The following example has two parts:

• Example Test Pattern
• Program Code

Example Test Pattern
In this simple Memory Test Pattern, the second instruction does not have a Pattern Label.
This was done intentionally to show how the delta argument is used.

PATTERN (myPat)

% Label_1:
DATGEN DATDAT // No inversion @ this instruction

% DATGEN DATDAT, XORINV // Target instruction = Label_1 + 1
 2/27/09 Pg-750

Manipulating Tester Hardware
% Label_2:
DATGEN DATDAT // No inversion @ this instruction

% MAR DONE

Program Code
See comments in code below.

// Get invert sense value for instruction at Label_1 + 1
int iv = get_invsns(myPat, "Label_1", 1);

// Check it
if (iv == -1)

output(" ERROR: specified pattern or label is invalid");

// Output info
output(" Invert value for 2nd pattern instruction => \\");
switch (iv) {

case 2 : output("XORINV"); break;
case 1 : output("INVSNS"); break;
case 0 : output("NOTINV");

}

// Change value in same instruction
BOOL ok = set_invsns(myPat, "Label_1", 1, 0);

// Check it
if (! ok) output(" ERROR: specified pattern or label is invalid");

// Get it again and output info.
iv = get_invsns(myPat, "Label_1", 1);

if (iv == 0)
output(" Inversion value change OK");

else
output(" ERROR: Inversion value change Failed");

3.23.7.19 get_jca(), set_jca()
See Memory-pattern Related Functions.
 2/27/09 Pg-751

Manipulating Tester Hardware
Description

The get_jca() function may be used to retrieve the jump-call address (JCA) from a
specified pattern instruction.

The set_jca() function may be used to modify the JCA in a specified pattern instruction.

JCA stands for jump/call address. This is the absolute (not pattern relative) address of the
target subroutine (instruction) referenced by one of the jump/call pattern instructions (JUMP,
GOSUB, CJMPZ, CJMPNZ, etc.).

In the test pattern source file, a jump/call address is identified using a Pattern Label. Then,
as the test program loads, the system software resolves the actual APG MAR address of
each label to determine each JCA value. In the following example, jump_label_1 sets the
JCA for the pattern instruction below to the address of the instruction containing the label
jump_label_1:

% COUNT COUNT1, DECR, AON
MAR CJMPNZ, jump_label_1

The set_jca() function can be used, from user C code, to modify the JCA of a specified
pattern instruction in a specified pattern. The target subroutine address must be specified as
a DWORD value; i.e. not as a label. The JCA of a target pattern instruction can be determined
using addrs() and label_offset(). The addrs() function is used to look-up the
absolute address of the first instruction of the pattern containing the target subroutine
(instruction). The label_offset() function is used to locate a specific label in the pattern
containing the target subroutine, as an offset from the first instruction of the pattern. Using
label_offset() is only required when the target subroutine (instruction) is not the first
instruction in the subroutine pattern. See test block TB3 in the example below.

The get_jca() function can be used to read the JCA of a pattern instruction which uses
one of the jump/call instructions. This can be useful to save an original (compiled) pattern
subroutine address in anticipation of restoring it later.

Usage
BOOL set_jca(Pattern *obj, LPCTSTR label, WORD value);

BOOL set_jca(Pattern *obj, LPCTSTR label, int delta, WORD value);

WORD get_jca(Pattern *obj, LPCTSTR label);

WORD get_jca(Pattern *obj, LPCTSTR label, int delta);

set_mar() // Deprecated, identical to set_jca()

get_mar() // Deprecated, identical to get_jca()
 2/27/09 Pg-752

Manipulating Tester Hardware
where:

obj is the pattern to be accessed.

label is the Pattern Label of the instruction to be accessed. When the target instruction
does not have a label the delta argument can be used.

delta is an offset from the pattern instruction containing the specified label. delta = 0
for the instruction containing the label.

value is the absolute pattern address (MAR) of the target subroutine instruction.

set_jca() returns FALSE if the specified label is not found in the specified pattern,
otherwise TRUE is returned.

get_jca() returns -1 if the specified label is not found in the specified pattern, otherwise
the returned value is the absolute address (MAR) of the instruction in the specified pattern at
the specified label + delta.

Example
The following example is rather large and includes the following parts. Each part has
separate comments:

• Test Pattern Code
• Test Block Code
• Sequence/Binning Table Code
• Runtime Output Messages

The Test Block Code uses label_offset(), addrs(), and set_jca() to modify the
JCA in a simple test pattern to call a different pattern subroutine each time.

Test Pattern Code
The three test blocks in Test Block Code each execute my_pattern. As compiled,
my_pattern calls the pattern subroutine my_subr1.

The pattern compiler uses my_subr1 to determine the jump/call address (JCA) of the target
subroutine. Test Block Code modifies this jump/call address two times, to call different
pattern subroutines in different test blocks.
 2/27/09 Pg-753

Manipulating Tester Hardware
PATTERN(my_pattern)
% label_1:

COUNT COUNT1, INCR
MAR GOSUB, my_subr1 // Original subroutine target

% MAR DONE

PATTERN (my_subr1) // TB1 calls here
% subr1_label_1:

COUNT COUNT2, INCR
MAR RETURN

// Other potential subroutines
PATTERN (my_subr2) // Test block TB2 calls here

% subr2_label_1:
COUNT COUNT3, INCR

% subr2_label_2: // Test block TB3 calls here
COUNT COUNT4, INCR

% subr2_label_3:
COUNT COUNT5, INCR
MAR RETURN

Test Block Code
Each test block sets 5 APG counters = 0. Then, depending on which pattern instructions
actually execute, some APG counters are incremented, while others are not. In each test
block, after pattern execution completes, the counter values are printed, and can be
reviewed to see which pattern instructions actually executed.

The first test block, TB1, executes my_pattern as compiled. This calls one pattern
subroutine, my_subr1. Only COUNT1 and COUNT2 will be incremented when TB1 executes.
This can be seen in the Runtime Output Messages.

Test block TB2 modifies the pattern subroutine address, the JCA (jump/call address) in
my_pattern. Instead of calling my_subr1 it is modified to call my_subr2. When this
occurs, COUNT1, COUNT3, COUNT4, and COUNT5 are incremented, which can be seen in the
Runtime Output Messages.

Test block TB3 also modifies the JCA in my_pattern. In this case, the first instruction
executed in the subroutine is in my_subr2 at label subr2_label_1. When this occurs,
COUNT1, COUNT4, and COUNT5 are incremented, which can be seen in the Runtime Output
Messages.

int test_result;
 2/27/09 Pg-754

Manipulating Tester Hardware
TEST_BLOCK(TB1) {
output("\n======================================");
output(" Executing %s", current_test_block());

pipe_clear();

count(1, 0); count(2, 0); count(3, 0);
count(4, 0); count(5, 0);

test_result = funtest (my_pattern, error);

output(" count 1 => %d (SB=1)", count(1)); // Should be = 1
output(" count 2 => %d (SB=1)", count(2)); // Should be = 1
output(" count 3 => %d (SB=0)", count(3)); // Should be = 0
output(" count 4 => %d (SB=0)", count(4)); // Should be = 0
output(" count 5 => %d (SB=0)", count(5)); // Should be = 0
return TRUE;

}

TEST_BLOCK(TB2) {
output("\n======================================");
output(" Executing %s", current_test_block());

pipe_clear();

count(1, 0); count(2, 0); count(3, 0);
count(4, 0); count(5, 0);

// Get MAR of first instruction in target pattern
DWORD mar, var;

addrs(my_subr2, &mar, &var); // addrs(), var not used

output(" Target pattern MAR => %d", mar);

// Modify the calling pattern to change the original target
// subroutine address from "my_subr1" to the MAR of
// my_subr2: subr2_label_2.

 if (set_jca (my_pattern, "label_1", mar) == FALSE) {
 output(" ERROR: bad label passed to set_jca()");
 return FALSE;
}

test_result = funtest (my_pattern, error);

output(" count 1 => %d (SB=1)", count(1)); // Should be = 1
output(" count 2 => %d (SB=0)", count(2)); // Should be = 0
output(" count 3 => %d (SB=1)", count(3)); // Should be = 1
 2/27/09 Pg-755

Manipulating Tester Hardware
output(" count 4 => %d (SB=1)", count(4)); // Should be = 1
output(" count 5 => %d (SB=1)", count(5)); // Should be = 1
return TRUE;

}

TEST_BLOCK(TB3) {
output("\n======================================");
output(" Executing %s", current_test_block());

pipe_clear();

count(1, 0); count(2, 0); count(3, 0);
count(4, 0); count(5, 0);

// Get MAR of first instruction in target pattern
DWORD mar, var;

addrs(my_subr2, &mar, &var); // addrs(), var not used

output(" Target pattern MAR => %d", mar);

// If target instruction is not the first instruction of
// the target pattern, locate the label instruction relative
// to the start of the target pattern, as an offset
int offset = label_offset (my_subr2, "subr2_label_2");

output(" Target label offset => %d", offset);

// Add label offset to pattern start MAR
mar += offset;

output(" Target instructon MAR => %d", mar);

// Modify the calling pattern to change the original target
// subroutine address from "my_subr1" to the MAR of
// my_subr2: subr2_label_2.

 if (set_jca (my_pattern, "label_1", mar) == FALSE) {
 output(" ERROR: bad label passed to set_jca()");
 return FALSE;
}

test_result = funtest (my_pattern, error);

output(" count 1 => %d (SB=1)", count(1)); // Should be = 1
output(" count 2 => %d (SB=0)", count(2)); // Should be = 0
output(" count 3 => %d (SB=0)", count(3)); // Should be = 0
output(" count 4 => %d (SB=1)", count(4)); // Should be = 1
 2/27/09 Pg-756

Manipulating Tester Hardware
output(" count 5 => %d (SB=1)", count(5)); // Should be = 1
return TRUE;

}

Sequence/Binning Table Code
This is included to help comprehend the order of Runtime Output Messages.

SEQUENCE_TABLE(SBB) {
SEQUENCE_TABLE_INIT
TEST(TB1, NEXT, STOP)
TEST(TB2, NEXT, STOP)
TEST(TB3, STOP, STOP)

}

Runtime Output Messages
TestStarted(1)...
======================================
Executing TB1
count 1 => 1 (SB=1)
count 2 => 1 (SB=1)
count 3 => 0 (SB=0)
count 4 => 0 (SB=0)
count 5 => 0 (SB=0)
======================================
Executing TB2
Target pattern MAR => 77
count 1 => 1 (SB=1)
count 2 => 0 (SB=0)
count 3 => 1 (SB=1)
count 4 => 1 (SB=1)
count 5 => 1 (SB=1)
======================================
Executing TB3
Target pattern MAR => 77
Target label offset => 1
Target instructon MAR => 78
count 1 => 1 (SB=1)
count 2 => 0 (SB=0)
count 3 => 0 (SB=0)
 2/27/09 Pg-757

Manipulating Tester Hardware
count 4 => 1 (SB=1)
count 5 => 1 (SB=1)
TestDone...bin = builtin_Pass

3.23.7.20 set_ps(), get_ps()
See Memory-pattern Related Functions.

Description

The set_ps() function may be used to change the Pin Scramble Map selection in one
specified pattern instruction. This is the pin scramble value specified using the test pattern
PINFUNC instruction.

The get_ps() function may be used to get the Pin Scramble Map selection from one
specified pattern instruction.

Note: using Magnum 1/2/2x, these instructions do not apply to Logic Test Patterns; i.e.
patterns with logic Pattern System Attributes.

Usage
The following 2 functions are used to change the Pin Scramble Map selection in one pattern
instruction:

BOOL set_ps(Pattern *obj, LPCTSTR label, PSNumber ps);

BOOL set_ps(Pattern *obj, LPCTSTR label, int delta, PSNumber ps);

The following 2 functions are used to get the Pin Scramble Map selection from one pattern
instruction:

PSNumber get_ps(Pattern *obj, LPCTSTR label);

PSNumber get_ps(Pattern *obj, LPCTSTR label, int delta);

where:

obj specifies the pattern of interest.

label specifies the Pattern Label of the instruction of interest. If the target instruction does
not have a label, the label for an earlier instruction must be specified and delta used to
specify an offset from that earlier instruction. See Example.
 2/27/09 Pg-758

Manipulating Tester Hardware
ps specifies the desired pin scramble to be inserted into the specified pattern instruction,
replacing the previous value. Legal values are from the PSNumber enumerated type (PS_na
is not legal in this context):

set_ps() returns TRUE if the operation succeeds, otherwise FALSE is returned.

The get_ps() get functions return the pin scramble currently associated with the specified
pattern instruction. If the specified pattern or label is invalid get_ps() returns
PS_na.

Example
The following example has two parts:

• Example Test Pattern
• Program Code

Example Test Pattern
In this simple Memory Test Pattern, the second instruction does not have a Pattern Label.
This was done intentionally to show how the delta argument is used.

PATTERN(myPat)

% Label_1:
PINFUNC PS1

% PINFUNC PS3 // This is the target instruction = Label_1 + 1

% Label_2:
PINFUNC PS2

% MAR DONE

Program Code
See comments in code below.

// Get current pin scramble for instruction at Label_1 + 1
PSNumber ps = get_ps(myPat, "Label_1", 1);

// Check it
if (ps == PS_na)

output(" ERROR: specified pattern or label is invalid");

// Output info. Note that by default enumerated types begin at 0,
// thus it is necessary to add +1 to the value
output(" PS for 2nd pattern instruction => PS%d", ps + 1);
 2/27/09 Pg-759

Manipulating Tester Hardware
// Change pin scramble from PS3 to PS4
BOOL ok = set_ps(myPat, "Label_1", 1, PS4);

// Check it
if (! ok) output(" ERROR: specified pattern or label is invalid");

// Get it again and output info.
ps = get_ps(myPat, "Label_1", 1);

if (ps == PS4)
output(" PS change OK, now => PS%d", ps + 1);

else
output(" ERROR: PS change Failed");

3.23.7.21 set_tset(), get_tset()
See Memory-pattern Related Functions, Time-sets (TSET).

Description

The set_tset() function may be used to change the Time-set(TSET) selection of one
specified pattern instruction.

The get_tset() function may be used to get the current TSET from one specified pattern
instruction.

Note: using Magnum 1/2/2x, these instructions do not apply to Logic Test Patterns; i.e.
patterns with logic Pattern System Attributes.

Usage
The following 2 functions are used to change the TSET of one pattern instruction:

BOOL set_tset(Pattern *obj, LPCTSTR label, TSETNumber tset);

BOOL set_tset(Pattern *obj,
LPCTSTR label,
int delta,
TSETNumber tset);

The following 2 functions are used to get the TSET of one pattern instruction:
 2/27/09 Pg-760

Manipulating Tester Hardware
TSETNumber get_tset(Pattern *obj, LPCTSTR label);

TSETNumber get_tset(Pattern *obj, LPCTSTR label, int delta);

where:

obj specifies the pattern of interest.

label specifies the Pattern Label of the instruction of interest. If the target instruction does
not have a label, the label for an earlier instruction must be specified and delta is used to
specify an offset from that earlier instruction. See Example.

tset specifies the desired Time-set(TSET) to be inserted into the specified pattern
instruction, replacing the previous value. Legal values are from the TSETNumber
enumerated type (TSET_na is not legal in this context).

set_tset() returns FALSE if an error occurs (invalid Pattern Label, etc.).

The get_tset() get functions return the current TSETNumber from the specified pattern
instruction. If the specified pattern or label is invalid get_tset() returns
TSET_na.

Example
The following example has two parts:

• Example Test Pattern
• Program Code

Example Test Pattern
In this simple Memory Test Pattern, the second instruction does not have a Pattern Label.
This was done intentionally to show how the delta argument is used.

PATTERN(myPat)

% Label_1:
PINFUNC TSET1

% PINFUNC TSET3 // This is the target instruction = Label_1 + 1

% Label_2:
PINFUNC TSET1

% MAR DONE

Program Code
See comments in code below.
 2/27/09 Pg-761

Manipulating Tester Hardware
// Get current TSET for instruction at Label_1 + 1
TSETNumber ts = get_tset(myPat, "Label_1", 1);

// Check for error
if (ts == TSET_na)

output(" ERROR: specified pattern or label is invalid");

// Output info. Note that by default enumerated types begin at 0,
// thus it is necessary to add +1 to the value
output(" TSET => TSET_%d", ts + 1);

// Change TSET from TSET3 to TSET4
BOOL ok = set_tset(myPat, "Label_1", 1, TSET4);

// Check it
if (! ok) output(" ERROR: specified pattern or label is invalid");

// Get it again and output info.
ts = get_tset(myPat, "Label_1", 1);

if (ts == TSET4)
output(" TSET change OK, now => TSET_%d", ts + 1);

else
output(" ERROR: TSET change Failed, TSET = TSET_%d", ts + 1);

3.23.7.22 set_udata(), get_udata()
See Memory-pattern Related Functions.

Description

The set_udata() function is used to modify the UDATA value of one specified pattern
instruction. This is the value set in a given pattern instruction using the UDATA Instruction.

The get_udata() function may be used to retrieve the UDATA value from a specified
pattern instruction.

Note: caution must be exercised when using set_udata(). In some pattern
instructions the UDATA value is used implicitly; i.e. without an explicit
user-specified UDATA pattern instruction. Thus, carelessly modifying a UDATA
value may cause incorrect, and difficult to diagnose, pattern operation. Do read
the introduction to the UDATA Instruction section which discusses these issues.
 2/27/09 Pg-762

Manipulating Tester Hardware
Note: the set_udata() and get_udata() functions must NOT be used to access
UDATA values in pattern instruction(s) which are Controlling PE Levels from the
Test Pattern.

Usage
BOOL set_udata(Pattern *obj, LPCTSTR label, __int64 value);

BOOL set_udata(Pattern *obj,
LPCTSTR label,
int delta,
__int64 value);

__int64 get_udata(Pattern *obj, LPCTSTR label);

__int64 get_udata(Pattern *obj, LPCTSTR label, int delta);

where:

obj is a pointer to a test pattern. This equates to the pattern name specified in the PATTERN
statement. See example.

label specifies the Pattern Label of the instruction of interest. If the target instruction does
not have a label, the label for an earlier instruction must be specified and delta is used to
specify an offset from that earlier instruction.

value specifies the value to be written to the UDATA field.

The get_udata() functions return the current UDATA value from the specified pattern
instruction.

The set_udata() functions return FALSE if the specified pattern or label cannot be
resolved, otherwise TRUE is returned.

Example
The example below assumes the following target pattern. In this pattern, using UDATA to
load COUNT1 is arbitrary.

PATTERN(myPat)

% label_1:
COUNT COUNT1, COUNTUDATA // Load COUNT1 from UDATA
UDATA 0xFF // UDATA value
MAR DONE
 2/27/09 Pg-763

Manipulating Tester Hardware
The code below reads and prints the value of UDATA from the pattern above, then modifies
it:

__int64 val = get_udata(myPat, "label_1");
output(" Initial UDATA value => 0x%I64x", val); // Outputs "0XFF"

if (! set_udata(myPat, "label_1", 0xA5)) // Set UDATA to 0xA5
output (" ERROR: set_udata() reported an error");

3.23.7.23 set_vihh(), get_vihh()
See Memory-pattern Related Functions.

Description

The set_vihh() function may be used to change the VIHH Map selection in one specified
pattern instruction. This is the VIHH Map value specified using the test pattern PINFUNC
instruction (or the default value).

The get_vihh() function may be used to get the current VIHH Map of one specified
pattern instruction.

Note: using Magnum 1/2/2x, these instructions do not apply to Logic Test Patterns; i.e.
patterns with logic Pattern System Attributes.

Usage
The following 2 functions are used to change the VIHH Map of one pattern instruction:

BOOL set_vihh(Pattern *obj, LPCTSTR label, VihhNumbervihh);

BOOL set_vihh(Pattern *obj,
LPCTSTR label,
int delta,
VihhNumber vihh);

The following 2 functions are used to get the VIHH Map of one pattern instruction:

VihhNumber get_vihh(Pattern *obj, LPCTSTR label);

VihhNumber get_vihh(Pattern *obj, LPCTSTR label, int delta);

where:
 2/27/09 Pg-764

Manipulating Tester Hardware
obj specifies the pattern of interest.

label specifies the Pattern Label of the instruction of interest. If the target instruction does
not have a label, the label for an earlier instruction must be specified and delta used to
specify an offset from that earlier instruction. See Example.

vihh specifies the desired VIHH map to be inserted into the specified pattern instruction,
replacing the previous value. Legal values are from the VihhNumber enumerated type
(VIHH_na is not legal in this context).

set_vihh() returns TRUE if the operation succeeded, otherwise FALSE is returned.

The get_vihh() get functions return the VIHH map currently associated with the specified
pattern instruction. If the specified pattern or label is invalid get_vihh() returns
VIHH_na.

Example
The following example has two parts:

• Example Test Pattern
• Program Code

Example Test Pattern
In this simple memory pattern, the second instruction does not have a Pattern Label. This
was done intentionally to show how the delta argument is used.

PATTERN(myPat)

% Label_1:
PINFUNC VIHH1

% PINFUNC VIHH3 // This is the target instruction = Label_1 + 1

% Label_2:
PINFUNC VIHH2

% MAR DONE

Program Code
See comments in code below.

// Get current VIHH map for instruction at Label_1 + 1
VihhNumber vm = get_vihh(myPat, "Label_1", 1);
 2/27/09 Pg-765

Manipulating Tester Hardware
// Check it
if (vm == VIHH_na)

output(" ERROR: specified pattern or label is invalid");

// Output info. Note that by default enumerated types begin at 0,
// thus it is necessary to add +1 to the value
output(" VIHH for 2nd pattern instruction => VIHH%d", vm + 1);

// Change VIHH map from VIHH3 to VIHH4
BOOL ok = set_vihh(myPat, "Label_1", 1, VIHH4);

// Check it
if (! ok) output(" ERROR: specified pattern or label is invalid");

// Get it again and output info.
vm = get_vihh(myPat, "Label_1", 1);

if (vm == VIHH4)
output(" VIHH change OK, now => VIHH%d", vm + 1);

else
output(" ERROR: VIHH map change Failed");

3.23.7.24 Get APG Fail Information
See Memory-pattern Related Functions.

Description
After Memory Test Pattern execution ends the Algorithmic Pattern Generator (APG) retains
a short pipeline history of generated X/Y address, data, and MAR values. When pattern
execution stops using stop-on-error (more below), various values from this pipeline can be
read to determine where pattern execution actually stopped and what data bits failed. Proper
operation requires that the test pattern be executed using the stop-on-error mode; i.e.

funtest(patname, error);

See Executing Functional Tests, and Pattern Execution Stop Condition Options.

These registers are read-only and can not be modified from user software.

Usage
These functions get information from the cycle prior to the first failing cycle:
 2/27/09 Pg-766

Manipulating Tester Hardware
prevmar(); // Read mar previous to error cycle

prevadr(); // Read unscrambled address previous to error cycle

sprevadr(); // Read scrambled address previous to error cycle

prevxadr(); // Read unscrambled X address previous to error cycle

prevyadr(); // Read unscrambled Y address previous to error cycle

sprevxadr(); // Read scrambled X address previous to error cycle

sprevyadr(); // Read scrambled Y address previous to error cycle

prevdata(); // Read drive/expected data previous to error cycle

These functions get information from the failing cycle:

actualdata();// Read actual data from DUT at error cycle.

expectdata();// Read APG expected data at error cycle.

errmar(); // Read MAR at error cycle

erradr(); // Read unscrambled address at error cycle

serradr(); // Read scrambled address at error cycle

errxadr(); // Read unscrambled X address at error cycle

erryadr(); // Read unscrambled Y address at error cycle

serrxadr(); // Read scrambled X address at error cycle

serryadr(); // Read scrambled Y address at error cycle

These functions get information from the cycle at the DUT when pattern execution actually
stops. Several cycles occur after the failing cycle before the pattern generator actually stops:

dutmar(); // Read mar currently at the DUT

dutadr(); // Read unscrambled address currently at the DUT

sdutadr(); // Read scrambled address currently at the DUT

dutxadr(); // Read unscrambled X address currently at the DUT

dutyadr(); // Read unscrambled Y address currently at the DUT

sdutxadr(); // Read scrambled X address currently at the DUT

sdutyadr(); // Read scrambled Y address currently at the DUT

dutdata(); // Read data currently driven to the DUT

The values retrieved are of the following types:
 2/27/09 Pg-767

Manipulating Tester Hardware
field integer size in bits bits used type

MAR 32 15 int

full address 32 32 DWORD

X or Y address 16 16 int

data 64 36 __int64

The system software sets the high order bits above those specified in the bits-used column
to zero.

Example
In this example, the APG pipeline is interrogated to find the actual data from the DUT in the
first failing cycle and outputs that value.

int result = funtest(mypat, error);

if(result == FAIL) {
_int64 val = actualdata();
output("Actual data => %I64d", val);

}

3.23.7.25 actualdata()
See Memory-pattern Related Functions.

Description
After Memory Test Pattern execution ends the Algorithmic Pattern Generator (APG) retains
a short pipeline history of generated X/Y addresses, data, and MAR values. When pattern
execution stops using stop-on-error (more below), key values can be read from this pipeline
to determine where the pattern halted and what data bits failed. Proper operation requires
that the test pattern be executed using the stop-on-fail mode; i.e.

funtest(patname, error);

See Executing Functional Tests, and Pattern Execution Stop Condition Options.

The actualdata() function returns a value derived from expect data (see
expectdata()). In simple terms, failing data bits returned by actualdata() will be the
inverse of the corresponding bits in expect data. Detailed operation is more complex, as
noted below.
 2/27/09 Pg-768

Manipulating Tester Hardware
• If the pattern execution passes, the value returned by actualdata() is invalid.
• When pattern execution stops (on error) the expect data value from the failing

pattern instruction is copied into the actual data value, and modified as noted
below.

• If the failing pattern instruction did not contain a MAR READ, READV or READZ, or
READUDATA instruction, the value returned by actualdata() matches the
original expect data value.

• Assuming the failing pattern instruction did contain a MAR READ, READV or READZ,
or READUDATA, the system software references the Pin Scramble Map of the failing
instruction, to identify which APG Data Generator outputs (t_d0..t_d35) were
mapped to DUT pin(s). Then, for each of these APG data outputs, if the first pin
mapped to that output failed the corresponding bit in actual data is inverted.

• When complete, the (modified) actual data value is returned by the
actualdata() function.

Note the following:

• The actual data bit for APG Data Generator output(s) which are not pin scrambled
to a (failing) pin are not changed; i.e. they remain the same as expect data.

• actualdata() does not consider whether the APG is configured as 18-wide data
or 36-wide data. The user must know how the 36 APG Data Generator outputs are
actually used in their test program.

• actualdata() does not know the reason a given pin fails. It is up to the user to
understand that the value reported by actualdata() may not actually reflect a
failure caused by a defective DUT.

Usage
_int64 actualdata();

where:

actualdata() returns the information noted in Description above.

Example
int result = funtest(mypat, error);

if(result == FAIL) {
_int64 val = actualdata();
output("Actual data => %I64d", val);

}

 2/27/09 Pg-769

Manipulating Tester Hardware
3.23.7.26 expectdata()
See Memory-pattern Related Functions.

Description
After Memory Test Pattern execution ends the Algorithmic Pattern Generator (APG) retains
a short pipeline history of generated X/Y addresses, data, and MAR values. When pattern
execution stops using stop-on-error (more below), key values can be read from this pipeline
to determine where the pattern halted and what data bits failed. Proper operation requires
that the test pattern be executed using the stop-on-fail mode; i.e.

funtest(patname, error);

See Executing Functional Tests, and Pattern Execution Stop Condition Options.

The expectdata() function returns the output of the APG Data Generator from the first
failing pattern cycle. Note the following:

• If the pattern execution passes, the value returned by expectdata() is invalid.
• The value returned by expectdata() does not depend on whether any of the

APG Data Generator outputs were actually used (i.e. pin scrambled to pin(s)) in
the failing cycle. The return value is also not affected by whether the failing cycle
contained a MAR READ, READV or READZ, or READUDATA instruction. For example,
if the first failure is controlled by expect data from a logic pattern instruction (see
Mixed Memory/Logic Patterns) the value returned by expectdata() will not be
affected. Similarly, the value returned is not affected by how many pins were
scrambled to a given data generator output.

Usage
_int64 expectdata();

where:

expectdata() returns the information noted in Description above.

Example
int result = funtest(mypat, error);
 2/27/09 Pg-770

Manipulating Tester Hardware
if(result == FAIL) {
_int64 val = expectdata();
output("Expect data => %I64d", val);

}

3.23.7.27 lvm_error_mode()
See Memory-pattern Related Functions, Logic Test Patterns.

Description
The lvm_error_mode() function is not required nor supported on Magnum 1/2/2x.

3.23.7.28 errmar()
See Memory-pattern Related Functions, Memory Test Patterns.

Description
The errmar() function returns an integer value representing the microRAM address (MAR)
of the first failing Algorithmic Pattern Generator (APG) pattern instruction.

After Memory Test Pattern execution ends the Algorithmic Pattern Generator (APG) retains
a short pipeline history of generated X/Y addresses, data, and MAR values. When pattern
execution stops using stop-on-error (more below), key values can be read from this pipeline
to determine where the pattern halted and what data bits failed. Proper operation requires
that the test pattern be executed using the stop-on-fail mode; i.e.

funtest(patname, error);

See Executing Functional Tests, and Pattern Execution Stop Condition Options.

The returned MAR value is an absolute address that can be converted to a pattern relative
address using find_mar() as described below.

Usage
int errmar();

where errmar() returns the absolute MAR of the first failing memory pattern instruction.
 2/27/09 Pg-771

Manipulating Tester Hardware
Example
int result = funtest(myPat, error);

if(result == FAIL) {
int first_fail = errmar();
output (" First Fail MAR (absolute) => %n", first_fail);

}

3.23.7.29 find_mar()
See Memory-pattern Related Functions, Memory Test Patterns.

Description
Given an absolute memory pattern instruction address (absolute MAR) the find_mar()
function can be used to return the following:

• A pointer to the memory pattern containing the specified MAR
• The Pattern Label at or prior to the specified instruction. See Usage.

The term absolute means relative to the start of Algorithmic Pattern Generator (APG) uRAM.

Usage
BOOL find_mar(DWORD mar,

Pattern **obj,
CString *label,
DWORD *offset);

BOOL find_mar(DWORD mar, Pattern **obj, DWORD *offset);

where:

mar specifies the absolute APG uRAM address (MAR) of the target memory pattern
instruction.

obj is a pointer to an existing Pattern* variable used to return a pointer to the pattern
containing the specified mar value. find_mar() will return FALSE if the specified mar does
not correspond to a valid memory pattern instruction.

label is a pointer to an existing CString variable used to return the Pattern Label
associated with the specified mar. The following rules apply:
 2/27/09 Pg-772

Manipulating Tester Hardware
• If find_mar() returns FALSE the value in label is invalid.
• If the specified mar doesn’t have a label, the label of the closest prior instruction

which does have a label is returned. When this occurs, offset indicates how
many instructions earlier than mar the label was found.

• If the memory pattern containing the specified mar has no appropriate label to
return an empty string is returned ("").

offset is a pointer to an existing DWORD variable used to return a value. offset is used
in two contexts:

• When the label parameter is used, offset returns information about label
when the target mar has no label. See label.

• When label is not used, offset returns the offset of the specified mar from the
start of the test pattern.

In either application, if find_mar() returns FALSE the value in offset is invalid.

find_mar() returns TRUE if the specified mar is within a user-defined Memory Test
Pattern, otherwise FALSE is returned.

Example
The example consists of three parts:

• Test Block Code
• Example Test Pattern
• Example Output

Test Block Code
The following example uses the addrs() function to obtain the first MAR of the myMemPat
test pattern. That value is subsequently used by find_mar() to get information for the 3rd
instruction in the pattern (+2). Note that this instruction has no label, but the prior instruction
does; thus the first offset value returned = 1. See Example Output. The second offset value
reflects the MAR offset from the start of the pattern; i.e. 2.

DWORD mar;
BOOL ok = addrs(myMemPat, &mar);
if(! ok) output(" ERROR: addrs() returned an error");
else output(" First MAR for myMemPat => %d", mar);

Pattern* pat;
CString label;
DWORD offset;
 2/27/09 Pg-773

Manipulating Tester Hardware
ok = find_mar((mar +2), &pat, &label, &offset);
if(! ok) output(" ERROR: find_mar() returned an error");
else

output(" pat => %s, label => %s, offset => %d",
resource_name(pat),
label,
offset);

ok = find_mar((mar +2), &pat, &offset);
if(! ok) output(" ERROR: find_mar() returned an error");
else output(" pat => %s, offset => %d",

resource_name(pat),
offset);

Example Test Pattern
PATTERN(myMemPat)

% lab1:
MAR INC

% lab2:
MAR INC

% MAR INC // Target instruction

% MAR DONE

Example Output
pat => myMemPat, label => lab2, offset => 1

pat => M1memPat, offset => 2

3.23.7.30 find_by_mar(), find_by_var()
See Memory-pattern Related Functions, Memory Test Patterns.

Description

The find_by_mar() function can be used to identify the Memory Test Pattern which
contains a specified uRAM instruction address (MAR).
 2/27/09 Pg-774

Manipulating Tester Hardware
The find_by_var() function can be used to identify the Logic Test Pattern which contains
a specified vector address (VAR).

These functions do report useful information in simulation mode.

Usage
Pattern *find_by_mar(DWORD mar);

Pattern *find_by_var(DWORD var);

where:

mar specifies the target Memory Test Pattern instruction absolute address (MAR). Absolute
means relative to the start of APG uRAM memory.

var specifies the target Logic Test Pattern instruction absolute address (VAR). Absolute
means relative to the start of logic vector memory (LVM).

Both find_by_mar() and find_by_var() return a pointer to the pattern which contains
the specified mar or var value.

Example
The following examples use the addrs() function to obtain the first MAR or VAR of a test
pattern. That value is subsequently used by find_by_mar() and find_by_var().

DWORD mar;
BOOL ok = addrs(myMemoryPat, &mar); // addrs()
if(! ok) output(" ERROR: addrs() returned an error");
else {

output(" First MAR for myMemoryPat => %d", mar);
Pattern* mpat = find_by_mar(mar);
if(mpat)

output(" mpat name => %s", resource_name(mpat));
else

output(" WARNING: no memory pattern at MAR(%d)", mar);
}

DWORD var;
ok = addrs(myLogicPat, &mar, &var); // addrs()
if(! ok) output(" ERROR: addrs() returned an error");
else {

output(" First VAR for myLogicPat => %d", var);
Pattern* vpat = find_by_var(var);
 2/27/09 Pg-775

Manipulating Tester Hardware
if(vpat)
output(" vpat name => %s", resource_name(vpat));

else
output(" WARNING: no logic pattern at VAR(%d)", var);

}

3.23.7.31 addrs()
See Memory-pattern Related Functions.

Description
The addrs() function is used to determine the following information about individual
Memory Test Patterns, individual Logic Test Patterns, or individual Scan Test Patterns:

• The first Algorithmic Pattern Generator (APG) microRAM address (MAR) used.
• The first Logic Vector Memory (LVM) address (VAR) used.
• The first Scan Vector Memory (SVM) address (SAR) used
• The number of APG microRAM addresses used
• The number of LVM addresses used
• The number of SVM addresses used

See addrs() for details.

3.23.7.32 label_offset()
See Memory-pattern Related Functions, Memory Test Patterns, Logic Test Patterns.

Description
The label_offset() function is used to locate the pattern instruction containing a
specified Pattern Label, as an offset relative to the first instruction of a specified pattern. The
offset of the first instruction in a pattern is 0. See Pattern Labels.

The second version of label_offset() was added in software release h1.1.23, to
support Logic Test Patterns. By default, it operates the same as the original (first) version,
returning the offset for the specified label from a pattern stored in the APG’s uRAM (MAR
engine). Optionally, if the uram argument is set = FALSE, it returns the offset for the
 2/27/09 Pg-776

Manipulating Tester Hardware
specified label from a specified Logic Test Pattern stored in the APG’s vRAM (VAR engine).
This version is not usable on Maverick-I.

Usage
The following function returns the offset for the specified label from a pattern stored in the
APG’s uRAM (MAR engine):

int label_offset(Pattern *obj, LPCTSTR label);

The following function is first available in software release h1.1.23 (see above):

int label_offset(Pattern *obj,
LPCTSTR label,
BOOL uram DEFAULT_VALUE(TRUE));

where:

obj is the pattern of interest.

label is the Pattern Label of the pattern instruction of interest.

uram is optional and, if specified, selects whether the target label is to be located in the
APG’s uRAM (MAR engine) or vRAM (VAR engine). Default = TRUE = MAR engine
(uRAM).

label_offset() returns -1 if the specified label is not found in the specified pattern,
otherwise it returns the offset from the first instruction in the pattern.

Example
Given the following pattern:

PATTERN (my_pat)
% label_1: // Offset = 0

MAR INC
% label_2: // Offset = 1

MAR INC
% label_3: // Offset = 2

MAR DONE

The value of offset = 1 below.

int offset = label_offset (my_pat, "label_2");

Given the following pattern:
 2/27/09 Pg-777

Manipulating Tester Hardware
PATTERN (my_pat, mav2, logic)
% label_1: // Offset = 0

VEC HL10XVZ
% label_2: // Offset = 1

VEC HL10XVZ
% label_3: // Offset = 2

VEC HL10XVZ

The label offset value retrieved from the VAR engine (vRAM) = 1 below.

int offset = label_offset (my_pat, "label_2", FALSE);

3.23.7.33 Clearing APG Pipelines
See Memory-pattern Related Functions.

Description

The pipe_clear() function clears the APG pipelines of prior pattern instructions by filling
them with the Default Memory Pattern Instruction.

Note: the pipe_clear() function is rarely needed because the system software
clears the pipelines before a pattern is executed.

This function may be useful if the step() function is being used to single-step the pattern
generator or when user-code is initializing selected APG registers (see lbdata()).

Usage
void pipe_clear();

Example
pipe_clear();

3.23.7.34 Single-stepping APG Patterns
See Memory-pattern Related Functions.
 2/27/09 Pg-778

Manipulating Tester Hardware
Description

The step() function is used to single-step the Algorithmic Pattern Generator (APG) a
specified number of cycles.

This feature is typically used during pattern debug, but it can also be used in a test program
for special test applications. When the pattern generator is single stepped, a single pattern
instruction is executed with all timing generators firing at their programmed times for that
cycle.

Usage
void step(int Value);

where:

value is the number of pattern instructions to execute. Legal values are 1 to 0xFFFFFFFF
(232).

Note: there is computer overhead associated with every tester cycle generated by the
step() function, thus entering large numbers for value is not practical
because of the processing time required.

Example
step(5); // Step the pattern generator 5 cycles

3.23.8 Logic Pattern Related Functions
See Logic Test Patterns.

Except as noted, the functions documented in this section apply to logic pattern applications
only.

• VAR Counter Functions
• errvar()

• find_var()

• vecdata()

• addrs()
 2/27/09 Pg-779

Manipulating Tester Hardware
• var_pinfunc()

3.23.8.1 VAR Counter Functions
See Logic Pattern Related Functions, Logic Test Patterns.

Description

The vcount() function is used to set or get a value to/from a Magnum 1/2/2x VAR engine
counter. These are the counters controlled in Logic Test Patterns using the VCOUNT
Instruction.

Note: when VAR engine counters are explicitly used to control pattern loops the count
value assigned is the number of desired loop iterations (n), which is different
than when using MAR engine counters, which use n-1.

Note: on Maverick-II and Magnum 1 the 4 VAR engine counters are implicitly used for
STARTLOOP/ENDLOOP (counter 1 and 2/3 when nesting STARTLOOP/ENDLOOPs)
and RPT (counter 4) operations. In these applications the counter used is
loaded with value(s) specified in the test pattern source file. Magnum 2/2x have
seperate counters for these applications.

Usage
void vcount(int Loop, UINT Value);

UINT vcount(int Loop);

where:

Loop identifies which counter is being accessed. Legal values are 1 to 4.

Value specifies the desired counter value. Legal values are 0 to 232.

The vcount() getter function returns the current counter value.

Example
vcount(1, 15);
 2/27/09 Pg-780

Manipulating Tester Hardware
UINT c = vcount(1);
output(" VAR Counter 1 => %d", c);

3.23.8.2 errvar()
See Logic Pattern Related Functions.

Description
The errvar() function returns an integer value representing the vector address (VAR) of
the first failing logic instructin (vector).

Note the following:

• The returned VAR value is an absolute address that can be converted to a pattern
relative address using find_var().

• Proper operation requires that the test pattern be executed using the stop-on-fail
mode; i.e. funtest(patname, error); See Executing Functional Tests.

Usage
int errvar();

errvar() returns the absolute vector address (VAR) of the first failing vector.

Example
int test_result = funtest(some_pat, error);
int first_fail = errvar();
output (" First Fail VAR (absolute) => %n", first_fail);

3.23.8.3 find_var()
See Logic Pattern Related Functions.

Description
Given an absolute logic pattern vector address (VAR) the find_var() function can be
used to return the following:
 2/27/09 Pg-781

Manipulating Tester Hardware
• A pointer to the logic pattern containing the specified VAR.
• The offset of the specified VAR from the first vector of the test pattern; i.e. the zero-

based pattern-relative address of the instruction.
The term absolute means relative to the start of logic vector memory (LVM).

Usage
BOOL find_var(DWORD var, Pattern **obj, DWORD *vOffset);

where:

var specifies the absolute logic vector memory address (VAR) of the target vector.

obj is a pointer to an existing Pattern* variable used to return a pointer to the pattern
containing the specified var. find_var() will return FALSE if the specified var does not
correspond to a valid logic pattern instruction.

vOffset is a pointer to an existing DWORD variable used to return the zero-based offset of
the specified var from the start of the test pattern. If find_var() returns FALSE the value
in vOffset is invalid.

find_var() returns TRUE if the specified var is within a user-defined Logic Test Pattern,
otherwise FALSE is returned.

Example
The example consists of three parts:

• Test Block Code
• Example Test Pattern
• Example Output

Test Block Code
The following example uses the addrs() function to obtain the first VAR of the
myLogicPat test pattern. That value is subsequently used by find_var() to get
information for the 3rd vector in the pattern (+2), thus the offset value returned = 2. See
Example Output.

DWORD var;
BOOL ok = addrs(myLogicPat, 0, &var); // addrs()
if(! ok) output(" ERROR: addrs() returned an error");
else output(" First VAR for myLogicPat => %d", var);
 2/27/09 Pg-782

Manipulating Tester Hardware
Pattern* pat;
DWORD vOffset;
ok = find_var(var, &pat, &vOffset);
if(! ok) output(" ERROR: find_var() returned an error");
else

output(" pat => %s, vOffset => %d",
resource_name(pat),
vOffset);

}

Example Test Pattern
PATTERN(myLogicPat, logic)

% vec 0000000000000000
% vec 0000000000000000
% vec 0000000000000000 // Target vector
% vec 0000000000000000

var done

Example Output
pat => myLogicPat, offset => 2

3.23.8.4 vecdata()
See Logic Pattern Related Functions.

Description
The vecdata() function is used to read or write a single logic state value to/from Logic
Vector Memory (LVM).

When reading LVM a VectorState is returned. To write, a VectorState is speciifed as
the third parameter. VectorState is an enumerated type used to specify vector data. Valid
values for VectorState are:

• drive_lo represents the pattern source character “0”
• drive_hi represents the pattern source character “1”
• tristate represents the pattern source character “X”
• strobe_lo represents the pattern source character “L”
 2/27/09 Pg-783

Manipulating Tester Hardware
• strobe_hi represents the pattern source character “H”
• strobe_valid represents the pattern source character “V”
• strobe_mid represents the pattern source character “Z”

See Logic Vector Bit Codes for more details of how these pattern source characters are
used.

Usage
The following function sets the value of the bit in Logic Vector Memory (LVM) for the
specified pin:

void vecdata(int var, DutPin *pin, VectorState state);

The following function returns the value of the bit in LVM for the specified pin:

VectorState vecdata(int var,
DutPin *pin,
DutNum dut DEFAULT_VALUE(t_dut1));

The following functions are used in DDR mode to access either the A-cycle or B-cycle data
for the bit in LVM for the specified pin. These are first available in software release h1.1.23:

void vecdata(int var, DutPin *pin, VectorState state, int bank);

VectorState vecdata(int var,
DutPin *pin,
DutNum dut,
int bank DEFAULT_VALUE(0));

where:

var is the absolute vector address to be read or written. Note that the system software does
not know whether this address is a valid location in a test pattern; i.e. the user is
responsible.

pin identifies a single DutPin, which is used to identify which bit in Logic Vector Memory
(LVM) is to be accessed. In Multi-DUT Test Program, the bit is modified for each DUT in the
Active DUTs Set (ADS). The specified DutPin must be mapped to a signal pin in the Pin
Assignment Table.

state is the desired VectorState value being written to the specified VAR, or the
VectorState value being returned when reading LVM.

dut is used in Multi-DUT Test Programs to identify the DUT for which the pin is read from
LVM. The specified DutPin must be mapped to a signal pin in the Pin Assignment Table.
 2/27/09 Pg-784

Manipulating Tester Hardware
bank in used with DDR mode test patterns to identify whether the A-cycle data (bank = 0) or
B-cycle data (bank = 1) is being accessed.

The vecdata() getter function returns the value read from LVM as a VectorState.

Example
The following example writes absolute VAR address 100 for the ClockPin = ‘0’. In a Multi-
DUT Test Program, the bit is modified for each DUT in the Active DUTs Set (ADS):

vecdata(100, ClockPin, drive_low);

3.23.8.5 addrs()
See Logic Pattern Related Functions.

Description
The addrs() function can be used to determine the following information about a Logic
Test Patterns, Memory Test Patterns, or Scan Test Patterns:

• The first APG microRAM address used
• The first logic vector memory address used. Applies to logic patterns only.
• The first scan vector memory address used. Applies to scan patterns only.
• The number of APG microRAM addresses used
• The number of logic vector addresses used
• The number of scan vector addresses used
• The number of scan bits used

Usage
BOOL addrs(Pattern *obj,

DWORD *mar,
DWORD *var DEFAULT_VALUE(0),
DWORD *mLen DEFAULT_VALUE(0),
DWORD *vLen DEFAULT_VALUE(0));

BOOL addrs(LogicVector *obj,
DWORD *var,
DWORD *len DEFAULT_VALUE(0));
 2/27/09 Pg-785

Manipulating Tester Hardware
BOOL addrs(ScanPattern *obj,
DWORD *sar,
DWORD *sLen DEFAULT_VALUE(0),
DWORD *nPins DEFAULT_VALUE(0));

where:

obj is a pointer to the pattern of interest.

mar is a pointer to an existing DWORD variable used to return the absolute APG microcode
address of the first instruction of the specified pattern.

var is a pointer to an existing DWORD variable used to return the absolute address of the first
logic vector of the specified pattern.

mLen is optional, and is a pointer to an existing DWORD variable used to return the number of
APG microRAM addresses used by the specified pattern.

vLen and len are optional, and are a pointer to an existing DWORD variable used to return
the number of logic vector memory addresses used by the specified pattern.

sar is a pointer to an existing DWORD variable used to return the absolute address of the first
vector of the specified scan pattern. This represents the location at which the scan pattern
was loaded in scan memory .

sLen is optional, and is a pointer to an existing DWORD variable used to return the length of
the specified scan pattern.

nPins is optional, and is a pointer to an existing DWORD variable used to return the number
of scan bits used in the specified scan pattern.

addrs() returns TRUE if the specified pattern is valid, otherwise FALSE is returned.

Example
This example assumes a test pattern named “my_pat” exists .

DWORD first_mar, first_var, mar_count, var_count;

CString patname = "";

addrs (my_pat, &first_mar, &first_var, &mar_count, &var_count);

output("%s First MAR => %d Count = %d : First VAR => %d Count = %d",
patname = resource_name(my_pat), // Lookup name
first_mar, mar_count,
first_var, var_count);
 2/27/09 Pg-786

Manipulating Tester Hardware
3.23.8.6 var_pinfunc()
See Logic Pattern Related Functions.

Description
The var_pinfunc() function can be used to set or get the three basic PINFUNC
parameters from a logic vector.

These functions do not report useful information in simulation mode.

Usage
The following function sets the values in the specified vector:

BOOL var_pinfunc(DWORD var,
TSETNumber tset,
VihhNumber vihh,
PSNumber ps);

The following function gets the values from the specified vector:

BOOL var_pinfunc(DWORD var,
TSETNumber *tset,
VihhNumber *vihh,
PSNumber *ps);

where:

var specifies the vector address (VAR) of the target vector. This is an absolute address; i.e.
relative to the start of vector memory. The addrs() function can be used to identify the first
VAR of a specified target test pattern.

tset is used in two ways: in the set function it identifies the Time-set value to be set; in the
get function it is used to return the time-set value from the specified vector. In the latter case,
tset must be a pointer to an existing TSETNumber variable.

vihh is used in two ways: in the set function it identifies the VIHH Map value to be set; in the
get function it is used to return the VIHH Map value from the specified vector. In the latter
case, vihh must be a pointer to an existing VihhNumber variable.

ps is used in two ways: in the set function it identifies the Pin Scramble Map value to be set;
in the get function it is used to return the Pin Scramble Map value from the specified vector.
In the latter case, ps must be a pointer to an existing PSNumber variable.
 2/27/09 Pg-787

Manipulating Tester Hardware
The BOOL value returned by var_pinfunc() is not meaningful.

Example
The example consists of three parts:

• Test Block Code
• Example Test Pattern
• Example Output

Test Block Code
The following code gets the address of the first vector (absolute VAR) for the test pattern
myPat, then gets the pinfunc values for the 3rd instruction in this pattern (VAR +2):

DWORD mar, var;
BOOL ok = addrs(myPat, &mar, &var); // addrs()
if(! ok) output(" ERROR: invalid pattern passed to addrs()");

TSETNumber ts;
VihhNumber vihh;
PSNumber ps;

ok = var_pinfunc((var +2), &ts, &vihh, &ps);

if(! ok) output(" ERROR: var_pinfunc() returned an error");
else

output("ts => TSET%d, vihh => VIHH%d, ps => PS%d", ts, vihh, ps);

Example Test Pattern
PATTERN(myPat, logic)

% VEC 0000000000000000, TSET1, PS3
% VEC LL00000000000000, TSET2, PS1
% VEC 0L00000000000000, TSET3, VIHH2, PS2
% VEC 0000000000000000, TSET4, PS1
% MAR DONE

Example Output
ts => TSET3, vihh => VIHH2, ps => PS2
 2/27/09 Pg-788

Manipulating Tester Hardware
3.23.9 Scan Pattern Related Functions
See Scan Test Patterns.

• errsar(), prevsar(), dutsar()

• find_sar()

• scandata()

• get_scanpatterns()

• load_scan_from_file()

3.23.9.1 errsar(), prevsar(), dutsar()
See Scan Pattern Related Functions.

Description
The Maverick-II APG contains hardware which can capture the failing scan pattern address
(SAR).

The failing SAR can be accessed from C-code using the errsar(), prevsar() and
dutsar() functions. These operate much the same as errmar(), errvar(), etc.

To be useful, these functions require the test pattern be executed using the stop-on-fail
option; i.e. funtest(patname, error). In this mode, it takes 7 pattern cycles for the first
failure to be pipelined from the DUT to the APG, causing the pattern to stop. These three
functions allow access to 3 different SAR values, at different locations in the error pipline:

• errsar() returns the first failing SAR.
• prevsar() returns the SAR prior to the first failing SAR.
• dutsar() returns the SAR at the DUT when the pattern actually stops.

Note: as of 6/12/2008, the information above which specifies “...7 pattern cycles...”
has not been updated for Magnum 1/2/2x and the number of cycles is likely
different using these systems. This note will be removed when the
documetation is corrected.
 2/27/09 Pg-789

Manipulating Tester Hardware
Usage
int prevsar();

int errsar();

int dutsar();

where the returned integer value is the SAR of the instruction as noted above.

Example
int psar = prevsar();
int esar = errsar();
int dsar = dutsar();

3.23.9.2 find_sar()
See Scan Pattern Related Functions.

Description
The find_sar() function is used to identify which scan pattern contains a specified
absolute Scan Address (SAR).

Used in conjunction with errsar(), which records the absolute SAR at which a failing
pattern stopped, the find_sar() function can be called to identify the scan pattern which
contains that SAR.

Given a scan pattern, the addrs() will identify the absolute scan address at which the
pattern is loaded.

Usage
BOOL find_sar(DWORD sar,

ScanPattern **scanPattern,
DWORD *offset);

where:

sar is the absolute scan address (SAR) of interest.

scanPattern is a pointer to an existing ScanPattern pointer variable used to return a
pointer to the scan pattern containing the specified sar.
 2/27/09 Pg-790

Manipulating Tester Hardware
offset is a pointer to an existing DWORD variable used to return the offset from scan
pattern vector-0 when the specified sar is not the first vector in the scan pattern.

find_sar() returns TRUE if the specified sar is valid. If FALSE is returned the values in
scanPattern and offset are invalid.

Example
BOOL ok = find_sar(102, myScanPat, 13);

3.23.9.3 scandata()
See Scan Pattern Related Functions.

Note: this function is not supported on Magnum 1/2/2x.

3.23.9.4 get_scanpatterns()
See Scan Pattern Related Functions.

Note: this function is not supported on Magnum 1/2/2x.

3.23.9.5 load_scan_from_file()
See Scan Pattern Related Functions.

Note: this function is not supported on Magnum 1/2/2x.
 2/27/09 Pg-791

Manipulating Tester Hardware
3.23.10 Board Functions
The following functions are used to access board-level information about the various PC
board types in the Magnum 1/2/2x:

• BoardPresent()

• board_type()

• SerialNumber()

• PWA/PWB Number and Revision Get Functions

3.23.10.1 BoardPresent()

Description
The BoardPresent() function allows user C-code to interrogate the tester hardware to
determine if a specific Site Assembly Board(HSB) is installed.

BoardPresent() only operates correctly when executed in a Site process; i.e. Site Begin
Block, PIN_ASSIGNMENTS(), PIN_SCRAMBLE(), INITIALIZATION_HOOK(), Test
Blocks or functions called from test blocks, etc.

Usage
BOOL BoardPresent(HSBBoard board);

where:

HSBBoard identifies a specific Site Assembly Board (HSB board). Legal values are of the
HSBBoard enumerated type.

Example
The following example used BoardPresent() tp determine if the 2nd Site Assembly
Board (HSB board) is installed:

if(OnSite())
BOOL b = BoardPresent (t_hab2);
 2/27/09 Pg-792

Manipulating Tester Hardware
3.23.10.2 board_type()
Documention not completed for Magnum 1/2/2x.

3.23.10.3 SerialNumber()
Documention not completed for Magnum 1/2/2x.

3.23.11 DUT Board I/O Port Functions
See DUT Board I/O Ports.

This section covers the following functions used to control the DUT Board I2C Bus, GPIO
Port & SPI Port:

• Types, Enums, etc.
• I2C Bus Functions
• gpio_mode_set()
• gpio_direction_set()
• gpio_value_set(), gpio_value_get()
• spi_cmd()

3.23.11.1 Types, Enums, etc.
See DUT Board I/O Port Functions, I2C Bus Functions.

Description
The following enumerated types are used in support of the various I2C, DUT Board I/O Port
Functions:
 2/27/09 Pg-793

Manipulating Tester Hardware
Usage
The GPIOMode enumerated type is used to set the mode for the upper 4-bits of the GPIO
Port (see DUT Board I/O Ports):

enum GPIOMode { t_spi_mode, t_parallel_io_mode };

3.23.11.2 I2C Bus Functions
See DUT Board I/O Port Functions, DUT Board I/O Ports, I2C Bus.

Description

The I2C_operation() function is used to perform an I2C transaction with one device
connected to the I2C Bus on the DUT board.

Each execution of I2C_operation() can write data to an I2C device and/or read data
from an I2C device.

The I2C_control struct defines the information I2C_operation() uses to perform a
transaction:

struct I2C_control {
int target;
bool ten_bit_target;
int address;
int address_length;
unsigned __int8 *write_data;
int write_data_length;
int target_buffer_size;
unsigned __int8 *read_data;
int read_data_length;
int actual_read_length;

};

target specifies the address of the target I2C device, which must be unique for each
device on the I2C Bus. Device address 0x0 (Device 0) is reserved for Nextest use.

ten_bit_target specifies whether the value in target is a 7-bit value (FALSE) or a
10-bit value (TRUE).
 2/27/09 Pg-794

Manipulating Tester Hardware
address identifies the device register to be accessed. address is sent to the I2C Bus in 8-
bit bytes, with the MSB sent first. User code must reverse the bytes in address if the target
requires the LSB first.

address_length specifies the number of 8-bit chunks of address to send. Two options
are available:

• address_length = 0 is used when the target device has a single register and an
address is not required

• address_length = 1 to 4 specifies the number of 8-bit chunks of address
required to access the device register. This is determined from the target device
data sheet.

write_data is a pointer to the data to be written.

write_data_length specifies the number of bytes of write_data to be sent.

target_buffer_size specifies the size of the device’s input buffer when the target
device has one (typically an I2C memory device, EEPROM, etc.). In these devices, the input
buffer temporarily stores data before it is written to the device’s main memory array. The
device’s buffer size defines the maximum amount of data which can be written to the device
in one I2C transaction. In effect, target_buffer_size divides write_data into
target_buffer_size chunks which are written to the device in a single transaction,
which is repeated until write_data_length bytes have been written.
target_buffer_size must be set to 0 when the target device does not have an input
buffer.

read_data is a pointer to an existing unsigned __int8 array used to store data read
from the target device. User code is responsible for allocating the necessary memory and, if
appropriate, freeing it when done.

read_data_length specifies the number of bytes of data to be read from the target
device.

actual_read_length will return the number of bytes actually read from the target device.
This will either match read_data_length or be 0 because once the target device has
acknowledged the read command the I2C_operation() code will continue to read
read_data_length bytes, assuming valid data is being read.

In general, I2C_operation() is not targeted at performing both a device write operation
and a read operation in the same transaction. For this reason, for a given execution of
I2C_operation(), it is normal that only the write_data array or the read_data array
be used i.e. one will be (should be) NULL. However, some I2C devices, in order to perform a
read, need to first be sent some data, typically to configure the device in preparation for the
read operation. And, this data must normally be sent in the same transaction as that which
 2/27/09 Pg-795

Manipulating Tester Hardware
performs the read. Thus, it may be necessary for both write_data and read_data to be
used to perform a read transaction, but it should not be necessary for the read_data to be
used when performing a write operation.

Usage
BOOL I2C_operation (HSBBoard Board, I2C_control& my_I2C_op);

BOOL I2C_operation (I2C_control& my_I2C_op);

where:

Board identifies one Site Assembly Board (HSB) to be accessed. This is only usable when
Sites-per-Controller is > 1, allowing the master site controller to direct the I2C transaction to
a site slaved to the master.

my_I2C_op is an instance of the I2C_control struct (see description), initialized with the
various values used during the I2C transaction.

I2C_operation() returns FALSE if an error is detected, otherwise TRUE is returned.

Example
The following example uses 2 methods for initializing the data to be used by
I2C_operation(). Both methods perform an indentical operation:

#define RSIZE 256
unsigned __int8 read_data[RSIZE];

struct I2C_control Ex1 = {
0x4A,
FALSE,
0x1700,
0x2,
0x0,
0x4,
0x0,
0x0,
RSIZE,
0 };

void myFunc(){
I2C_control Ex2;
Ex2.target = 0x4A;
Ex2.ten_bit_target = FALSE;
Ex2.address = 0x1700;
 2/27/09 Pg-796

Manipulating Tester Hardware
Ex2.address_length = 2;
Ex2.write_data = 0;
Ex2.write_data_length = 4;
Ex2.target_buffer_size = 0;
Ex2.read_data = read_data;
Ex2.read_data_length = RSIZE;
Ex2.actual_read_length = 0;

BOOL ok = I2C_operation(Ex1);
if(! ok) output(" ERROR: I2C_operation(Ex1) returned FALSE");

ok = I2C_operation(Ex2);
if(! ok) output(" ERROR: I2C_operation(C1) returned FALSE");

}

3.23.11.3 gpio_mode_set()
See DUT Board I/O Port Functions, DUT Board I/O Ports.

Description
The gpio_mode_set() function is used to configure the upper 4-bits of the 7-bit GPIO
Port:

• t_spi_mode configures these 4-bits to SPI mode, enabling the spi_cmd() to
write/read correctly.

• t_parallel_io_mode configures these 4-bits to be used as part of the 7-bit
GPIO Port. In this mode, spi_cmd() will return FALSE indicating an incorrect
configuration for SPI Port use.

Usage
void gpio_mode_set(HSBBoard Board, GPIOMode mode);

where:

Board specifies which Site Assembly Board (HSB) is being accessed. Legal values are of
the HSBBoard enumerated type.

mode specifies the desired GPIO Port operation mode. Legal values are of the GPIOMode
enumerated type. See Description.
 2/27/09 Pg-797

Manipulating Tester Hardware
Example
gpio_mode_set(t_hsb1, t_parallel_io_mode);
gpio_mode_set(t_hsb1, t_spi_mode);

3.23.11.4 gpio_direction_set()
See DUT Board I/O Port Functions, DUT Board I/O Ports.

Description
The gpio_direction_set() function is used to set the per-bit I/O direction for the GPIO
Port signals. Note the following:

• gpio_direction_set() uses a bit-wise mask to determine the I/O direction for
each bit of the GPIO Port.

• Depending on the GPIO mode, set using gpio_mode_set(), the GPIO Port will
consist of 3 or 7 bits. Thus, 3 or 7 bits must be set in the mask.

• A logic-1 mask bit sets the corresponding GPIO bit to write mode (drive).
• A logic-0 mask bit sets the corresponding GPIO bit to read mode (tri-state).
• The system software does not set a default mask i.e. using the GPIO Port without

setting the direction mask is invalid. This is not checked by the system software.

Usage
void gpio_direction_set(HSBBoard Board, int mask);

where:

Board specifies which Site Assembly Board (HSB) is being accessed. Legal values are of
the HSBBoard enumerated type.

mask is a bit-wise value where either 3 or 7 bits determines the I/O direction of the
corresponding GPIO Port bit. See Description

Example
gpio_mode_set(t_hsb1, t_parallel_io_mode);

gpio_direction_set(t_hsb1, 0x3F);
gpio_value_set(t_hsb1, 0x25);
 2/27/09 Pg-798

Manipulating Tester Hardware
gpio_direction_set(t_hsb1, 0x00)
int val = gpio_value_get(t_hsb1);

3.23.11.5 gpio_value_set(), gpio_value_get()
See DUT Board I/O Port Functions, DUT Board I/O Ports.

Description

The gpio_value_set() function is used to write to the GPIO Port.

The gpio_value_get() function is used to read to the GPIO Port.

Note the following:

• Depending on the mode set using gpio_mode_set(), the GPIO Port consists of
3 or 7 bits.

• Each GPIO bit is configured to write/drive or read/tri-state using
gpio_direction_set().

• Using gpio_value_set(), only those bits set to the write/drive direction using
gpio_mode_set() will actually drive. Using gpio_value_get(), only those bits
set to the read/tri-state direction using gpio_mode_set() will actually be read.
The system software does not check the per-bit direction i.e. user code is
responsible for ensuring proper configuration.

Usage
void gpio_value_set(HSBBoard Board, int value);

int gpio_value_get(HSBBoard Board);

where:

Board specifies which Site Assembly Board (HSB) is being accessed. Legal values are of
the HSBBoard enumerated type.

value specifies the value to write to the GPIO Port. Only the low 3 or 7 bits are used,
depending on the mode set using gpio_mode_set().

gpio_value_get() returns the value read from the specified Board. Only the low 3 or 7
bits are valid, depending on the mode set using gpio_mode_set().
 2/27/09 Pg-799

Manipulating Tester Hardware
Example
See Example

3.23.11.6 spi_cmd()
See DUT Board I/O Port Functions, DUT Board I/O Ports.

Description
The spi_cmd() function is used to write and/or read data to/from the SPI Port on a
specified Site Assembly Board. Note the following:

• As indicated, the spi_cmd() function is used to write to the SPI Port, read from the
SPI Port, or both.

• A combined write/read transaction can be completed in a single execution of
spi_cmd(). The write data is first sent then SPI Port is read.

• The four SPI Port (signals) are not usable unless the GPIO mode is set to
t_spi_mode using gpio_mode_set(). spi_cmd() returns FALSE if this
configuration is not correct.

Usage
BOOL spi_cmd(HSBBoard Board,

int wrlen,
unsigned __int8* wrdata,
int rdlen,
unsigned __int8* rddata,
int* count);

where:

Board specifies which Site Assembly Board (HSB) is being accessed. Legal values are of
the HSBBoard enumerated type.

wrlen specifies the number of values to write to the SPI Port from the wrdata array.

wrdata is an array of at least wrlen values to be written to the SPI Port.

rdlen specifies the number of values to read from the SPI Port into the rrdata array.

rddata is a pointer to an existing unsigned __int8 array of at least rrlen length used
to return the values read from the SPI Port.
 2/27/09 Pg-800

Manipulating Tester Hardware
count is a pointer to an existing int variable used to return the number of values actually
returned in rddata.

spi_cmd() returns FALSE if the current GPIO mode is not t_spi_mode, as set using
gpio_mode_set(), otherwise TRUE is returned.

Example
unsigned __int8 wr_data[] = { 0xA5, 0x5A, 0x69, 0x96 };
unsigned __int8 rd_data[1024];
int count;
gpio_mode_set(t_hsb1, t_spi_mode); // gpio_mode_set()
BOOL ok = spi_cmd(t_hsb1, 4, wr_data, 32, rd_data, &count);
if(!ok) output(" ERROR: spi_cmd() returned FALSE");

3.23.12 Loadboard Board Data Bits

Description

The lbdata() function is used to read and/or write data to/from the four loadboard data
bits.

There are four loadboard data bits that can be manipulated on-the-fly from the pattern
generator using the LBDATA operand in the CHIPS instruction of an APG instruction. Using
the lbdata() function, these four loadboard data bits can also be set from user C-code,
but only when the test pattern is not executing. When loadboard data bits are set using the
lbdata() function they remain latched until lbdata() is called again or until an LBDATA
instruction is executed in a test pattern.

The loadboard data bits are TTL level with IOH and IOL capability of 4.0mA and -8.0mA
respectively.
 2/27/09 Pg-801

Manipulating Tester Hardware
Note: When changing the loadboard data bits using the lbdata() function, only the
last APG pipeline stage is written with the new information. All earlier pipeline
stages remain unchanged. If test pattern execution stops leaving one or more
LBDATA instructions in the APG pipeline the pipe_clear() command which
automatically executes at the start of the next pattern execution will cause the
pipelined LBDATA bits to be sent to the DUT board, over-riding the bit states set
up using the lbdata() function. This can be prevented by executing a
pipe_clear() instruction before executing the lbdata() function, as shown
in the example below.

Usage
The first two versions of lbdata() below write a new value to the last stage of the APG
pipeline. The second two versions read the current state of the LBDATA bits.

void lbdata(int Value);

void lbdata(HSBBoard Board, int value);

int lbdata();

int lbdata(HSBBoard Board);

where:

Value is an integer (int) from 0 to 15 (0x0 to 0xF).

Board is used when when Sites-per-Controller > 1 to identify a specific Magnum 1/2/2x Site
Assembly Board (HSB board).

The versions of lbdata() which return an int value are returning the value read from the
hardware.

Example
The example n below writes the two low order loadboard data bits to zero and the two high
order loadboard data bits to one.

pipe_clear(); // Flush tester pipeline to clear any undesirable
// LBDATA states

lbdata(0xc);// Write a C-hex value to loadboard data bits
 2/27/09 Pg-802

Manipulating Tester Hardware
3.23.13 DUT Board ID and DUT Board User Data Area

Description
This set of functions allow test programs to read information that is stored in the EEPROM
on each DUT Board.

This information includes hardware rev numbers if they have been coded into the EEPROM.
Note that DUT Board is another name for loadboard; these terms are often used
interchangeably.

Two more functions allow you to read and write 256 WORDs in a user area of the EEPROM.

Usage
The following functions return the PWA/PWB number or revision information about the
currently mounted DUT Board.

DWORD db_pwa()

DWORD db_pwa_rev()

DWORD db_pwb()

DWORD db_pwb_rev()

The following function returns the DUT board serial number for the currently mounted DUT
Board:

DWORD db_id()

The following function reads and returns one word of Data from the DUT Board EEPROM,
at the specified Address.

WORD db_data(BYTE Address)

The following function writes one word of Data to the DUT Board EEPROM, at the specified
Address.

void db_data(BYTE Address, WORD Data)

3.23.13.1 PWA/PWB Number and Revision Get Functions
Documention not completed for Magnum 1/2/2x.
 2/27/09 Pg-803

Manipulating Tester Hardware

 2/27/09 Pg-804

Data Buffer Memory Software (DBM)
3.24 Data Buffer Memory Software (DBM)
See Data Buffer Memory (DBM) for an overview of DBM Architecture.

This section contains the following topics:

• Overview
• DBM DRAM Interleaving
• DBM Sequential Mode
• DBM Usage Rules
• DBM Data Widths
• Masked vs. Un-masked DBM Operations
• DBM & Multiple Sites-per-controller
• DBM Configuration Tables
• Types, Enums, etc.
• dbm_config_set()
• dbm_config_get()
• DBM Segment Selection
• dbm_num_segments_get()
• dbm_fill()
• dbm_write()
• dbm_read()
• dbm_file_image_write()
• dbm_file_image_read()
• DBM Data File Format
• DBM Address Masks
• dbm_pattern_use()
• datbuf()

Also see DBMTool.
 2/27/09 Pg-805

Data Buffer Memory Software (DBM)
3.24.1 Overview
See Data Buffer Memory Software (DBM), DBM Usage Rules.

The Data Buffer Memory (DBM) hardware is an optional component of the Algorithmic
Pattern Generator (APG). When installed, the DBM is a source of stored test pattern data,
which is accessed, cycle-by-cycle using the same X/Y address used to address the DUT.
The DBM can be viewed as a large memory array with software configurable addressing,
data width, address compression and data compression.

The DBM must be configured before use, using dbm_config_set(). The current DBM
configuration can be retrieved using dbm_config_get().

After being configured and prior to executing a test pattern which uses DBM contents the
data stored in the DBM is loaded, normally from disk using dbm_fill()and/or
dbm_write() and/or dbm_file_image_read().

The number of APG Address Generator bits used to test the DUT is set using the numx()
and numy() functions. These same X and Y address bits are available at the DBM to select
the DBM address which is read using test pattern instructions which select the DBM as the
APG data source (DATGEN BUFBUF, etc.) in each pattern cycle. However, arguments to
dbm_config_set() determine the number of APG Address Generator X and Y address
bits which will actually be used to access the DBM. Normally, this will be set up to match the
DUT’s X/Y address size (the values set using numx() and numy()) but not always (more
below regarding DBM address compression).

During pattern execution, in cycles which select the DBM as the data source, data is read
from DBM at the address generated by the X/Y APG Address Generators and output by the
APG Data Generator. And, in cycles which write to the DBM (DATGEN DBMWR) the output of
the APG Data Generator is written into the DBM at the address generated by the X/Y APG
Address Generators.

The DBM DRAM Interleaving configuration determines the effective size of the DBM which
can be increased by a factor of 4 when used at reduced access rates or by using sequential
addressing. DBM Sequential Mode describes the DBM mode which increases the effective
DBM size but requires the user’s test pattern be designed to ensure a sequence of
sequential DBM addresses are being read. Special rules apply, see DBM DRAM
Interleaving and DBM Sequential Mode.

To use DBM address compression, DBM Address Masks are specified (see
dbm_config_set()). When address compression is used, one or more X and/or Y
address bits at the input to the DBM are ignored. In effect, this means that multiple
addresses generated by the APG Address Generator will access the same DBM address.
 2/27/09 Pg-806

Data Buffer Memory Software (DBM)
Configuring the DBM also defines the DBM data width, which can be configured as x1, x2,
x4, x8/9, x16/18, x32/36, also using dbm_config_set(). As the data width is reduced the
effective DBM depth increases.

As indicated above, on a cycle-by-cycle basis, the DBM can be the source of pattern drive/
strobe data (i.e. a DBM read operation) or can capture the output of the APG data generator
(i.e. a DBM write operation). However, since the DBM architecture doesn't support bit-wise
(data-width) write operations, a DBM write operation (DATGEN DBMWR) requires that the
hardware actually perform a read/modify/write, to ensure that only the appropriate bits are
modified based on the current DBM configuration. This is one basis for the DBM Usage
Rules.

Note: beginning with software release h1.1.23, the following paragraph no longer
applies. It was not completely deleted to support a transition period. See Note:
for more information.

Proper operation of test patterns which use the DBM as a data source REQUIRES setting
dbm_pattern_use() = TRUE. This advises the system software that all subsequent test
patterns will use the DBM as a data source. This is required because the APG pipeline
configuration must be modified when using the DBM. See Error Pipeline Requirements.

Once configured, if the DBM size (i.e. the number of used X/Y address bits) is smaller than
the amount of installed DBM memory the system software automatically partitions the DBM
into segments. Each segment is a separate section of DBM memory equal in size to the
current DBM configuration. Multiple segments makes it possible for the DBM to store
multiple data patterns, each in its own segment. The dbm_segment_set() function is used
to select one DBM segment. The dbm_segment_get() function can be used to identify
which segment is currently selected. The dbm_num_segments_get() function can be
used to determine how many segments are available with the current DBM configuration.

The value specified using x_fast_axis() determines whether the APG Address
Generator X-addresses or Y-addresses are used as the low-order addresses into the DBM.

The DBM can be initialized (loaded) from a disk file using dbm_file_image_read(). The
file must conform to the DBM Data File Format. The current DBM contents can be saved
(written) to a disk file using dbm_file_image_write(), which will generate a file in the
DBM Data File Format.

Note: it is possible to load a DBM image file generated (dbm_file_image_write())
on Magnum 1 into a Magnum 2/2x DBM (but not vice-versa). See DBM Data
File Format.
 2/27/09 Pg-807

Data Buffer Memory Software (DBM)
User code can load or modify DBM contents using dbm_fill() and dbm_write(). User
code can read DBM contents using dbm_read().

Using Magnum 1/2/2x, the DBM can be used to capture APG generated pattern data, as
sourced from the APG Data Generator. This is done using the test pattern DATGEN DBMWR
instruction. This capability can be used to:

• Accumulate or convert complex generated data pattern(s) into a stored data
pattern.

• Analyze pattern operation by evaluating DBM contents after pattern execution
completes.

Like the APG in general, the DBM has no direct parallel testing support. The DBM is one of
the three APG data sources, selectable cycle-by-cycle in Memory Test Patterns. How the
APG Data Generator outputs are mapped to individual DUT pins, including in parallel test
applications, is controlled by the Pin Scramble Map and the PINFUNC Instruction in the test
pattern.

Do read DBM Usage Rules.

3.24.2 DBM DRAM Interleaving
See Overview, DBM Usage Rules, dbm_config_set().

The Data Buffer Memory (DBM) is implemented using DRAM. To operate at full tester speed
requires that the DBM DRAMs be configured for 4-way interleaving, which means that the
DBM data for each DUT address is actually stored in 4 different DBM DRAM addresses.
Using this interleaved configuration, the DBM may be accessed completely randomly at full
speed (50MHz), but the usable size of the DBM is 1/4 the size potentially available if
interleaving was not used. Note that the Magnum 1/2/2x product specifications describe
DBM size options for maximum spped (interleaved) use.

In some applications the effective DBM size can be increased by a factor of 4 by configuring
the DBM for non-interleave operation. This is done using the rate argument to
dbm_config_set(), which has the following options:

• t_dbm_full_speed (default): the DBM is configured for 4-way interleaving
providing random access at full speed.

• t_dbm_slow_speed: DBM interleaving is disabled. This mode provides random
access but at a reduced DBM access rate. See DBM Usage Rules.
 2/27/09 Pg-808

Data Buffer Memory Software (DBM)
• t_dbm_sequential: DBM interleaving is disabled but DBM read access speed is
improved as compared to t_dbm_slow_speed. This is possible when a series of
sequential addresses is read from the DBM. See DBM Sequential Mode and DBM
Usage Rules. This option is first available in software release h2.2.7/h1.2.7.

During pattern execution, when interleaving is enabled, a pattern instruction which reads
(outputs) a DBM value (DATGEN BUFBUF, MAINBUF, etc.) can read any 1 of the 4 addesses
which store a given value (it doesn’t matter which copy is read). However, when a pattern
instruction writes a data value to the DBM 4 different DBM addresses must be written. This
is one reason the maximum DBM write speeds are slower than the read speeds (see DBM
Usage Rules) when interleaving is used.

3.24.3 DBM Sequential Mode
See DBM DRAM Interleaving.

Note: first available in software release h2.2.7/h1.2.7.

Description
Read DBM DRAM Interleaving first.

DBM DRAM Interleaving is used to provide maximum-speed DBM access at random
addresses but has the effect of reducing the effective size of the DBM. The DBM has an
optional configuration, called DBM Sequential Mode, which allows high-speed DBM read
access without using DBM DRAM Interleaving. This maximizes the effective DBM size but
requires that the user’s test pattern generate X/Y addresses in a sequence of a specific
length, as described below.

Normally, (i.e. in non-DBM Sequential Mode) the address being read from the DBM in each
tester cycle is the address generated by X/Y APG Address Generators and sent to the
DUT. The APG Address Generators are controlled by the user’s test pattern, using the
XALU and YALU pattern instructions. In DBM Sequential Mode, the DBM uses the address
from the APG for the first DBM access in a given sequence but the remaining addresses in
the sequence are generated internal to the DBM, more below.

The DBM Sequential Mode is enabled by setting the rate arguement to
dbm_config_set() = t_dbm_sequential. Note the following:

• DBM DRAM Interleaving is disabled when DBM Sequential Mode is enabled..
 2/27/09 Pg-809

Data Buffer Memory Software (DBM)
• During pattern execution, the first DBM read instruction (DATGEN BUFBUF, etc.) in
each sequence 4 DBM reads causes the DBM to latch the address from the APG
Address Generator. Subsequently, the low-address bits in the next 3 DBM read
instructions are generated by a 2-bit counter internal to the DBM hardware. This
causes the fast axis address (see x_fast_axis()) to be incremented once for
each DBM read instruction executed, until the sequence is complete. During these
cycles the upper address bits are those latched in the first DBM read instruction in
a sequence.

• Proper DBM sequential mode operation requires that the user’s test pattern
ensure that each address sequence begins with a modulo-4 address value.

• In DBM Sequential Mode test patterns, DBM read instructions are not required to
occur in adjacent pattern instructions; i.e., non-DBM-accessing instructions may
occur between the DBM-accessing instructions.

• Normally, it is critical that the user’s test pattern also generate the exact same
X/Y address sequence as that generated internal to the DBM. This means the
address sequence must increment the LSB of the fast axis (see
x_fast_axis()). For example, given the first address in each sequence = n, the
test pattern must generate address n+1, n+2, n+3 to complete the sequence. If
not, the addresses used to read data from the DBM will not match the addresses
presented to read or write data to/from the DUT, which is normally BAD! Correct
test pattern design can be tricky near maximum X and/or Y address boundaries.
Note that the X/Y addresses can be doing other things in cycles which don’t
access the DBM.

• Magnum 1 DBM write operations (DATGEN DBMWR) are affected by DBM Sequential
Mode and DBM DRAM Interleaving, but the rules documented in this section
account for this. However...

Note: do not use a DBM write instruction (DATGEN DBMWR) within a sequence of 4
DBM reads (DATGEN BUFBUF, etc.). Do not use any DBM read instructions
within a sequence of 4 DBM writes.
 2/27/09 Pg-810

Data Buffer Memory Software (DBM)
When DBM sequential mode is used, 4 sequential DBM addresses will always be accessed
in each sequence, before a different DBM address sequence is started. The following table
shows some examples:

As indicated, the DBM address inputs come from both the X and the Y APG Address
Generators. However, the low address bits can be from the X address generator (X-fast) or
from the Y address generator (Y-fast). The default = X-fast but the selection (which also
affects other APG operations) can be modified using the x_fast_axis() function. The
2-bit counter used in DBM Sequential Mode always determines the LSBs of the DBM
address, independent of which address generator is used for the low addresses.

3.24.4 DBM Usage Rules
See Data Buffer Memory (DBM), Overview, DBM DRAM Interleaving.

Proper DBM operation depends on adherence to the following rules. Note that neither the
hardware nor the system software checks for most rule violations; i.e. the user is
responsible. Proper DBM operation will not occur if any rules are violated (and this will likely
be quite difficult to diagnose:

 APG Address
at the start

of the
Sequence

Actual
DBM

Address
Sequence Comments

0x0

0x0
0x1
0x2
0x3

DBM operation is as expected.

0x3
(error)

0x0
0x1
0x2
0x3

DBM operation is not as expected: the 2 LSB bits
from the APG Address Generator output are
replaced by the DBM’s internal 2-bit counter. This
represents a user error: the test pattern must start
each address sequence with a modulo-4 value.0xFE4F

(error)

0xFE4C
0xFE4D
0xFE4E
0xFE4F
 2/27/09 Pg-811

Data Buffer Memory Software (DBM)
1. When the DBM is used in a given test pattern, additional pattern cycles are required to
pipeline errors to the branch-on-error logic. See Error Pipeline Requirements. It is the
user’s responsibility to design the test pattern accordingly.

2. As indicated in DBM Memory Size Options , the DBM has two effective sizes, which is
determined by whether DBM DRAM Interleaving used, which is determined by the rate
argument to dbm_config_set(). When rate = t_dbm_slow_speed, the test pattern
must not use cycle periods any faster than 80nS. When rate = t_dbm_full_speed the
DBM will operate correctly with a 20nS (50MHz) minimum cycle. When rate =
t_dbm_sequential, the DBM will operate correctly with a 30nS (33MHz) minimum
cycle.

3. The following table specifies additional DBM rules:

Table 3.24.4.0-1 DBM Operation Rules

1st Operation to 2nd Operation Rule

DBM Read
(DATGEN BUFBUF, etc.)

→ DBM Read
(DATGEN BUFBUF, etc.)

The other rules apply.

DBM Read
(DATGEN BUFBUF, etc.)

→ DBM Write
(DATGEN DBMWR)

16 tester cycles.

DBM Write
(DATGEN DBMWR)

→ DBM Write
(DATGEN DBMWR)

Based on DBM DRAM Interleaving:
• t_dbm_slow_speed = 155nS
• t_dbm_sequential = 155nS
• t_dbm_full_speed = 171nS

DBM Write
(DATGEN DBMWR)

→ DBM Read
(DATGEN BUFBUF, etc.)

Minimum of 25 system clocks. Given
that the Magnum 1 minimum cycle
period (20nS) consists of 2 system
clocks it will always be legal to
perform DBM read in the 13th tester
cycle after a DBM write. This can be
reduced by increasing the cycle
time(s) of the cycles (APG
instructions) executed between the
DBM write and the DBM read.

These rules represent the minimum time between the start of a pattern cycle doing the
one DBM operation to the start of the next cycle doing a DBM operation.
 2/27/09 Pg-812

Data Buffer Memory Software (DBM)
Note: beginning with software release h1.1.23, the following paragraph no longer
applies. It was not completely deleted to support a transition period. See Note:
for more information.

4. Prior to executing a test pattern which uses the DBM, the dbm_pattern_use()
function must be executed (dbm_pattern_use(TRUE)). This is required because the
APG pipeline configuration must be modified when using the DBM. This changes the
number of pipeline cycles which must be executed when performing test pattern branch-
on-error, branch-on-abort, etc. See Error Pipeline Requirements.

3.24.5 DBM Data Widths
See Data Buffer Memory Software (DBM).

Using Maverick-I/-II, separate DBM API functions were provided to read and write specific
DBM data widths (e.g., dbm_write_18(), dbm_write_36(), etc.). The Magnum 1/2/2x
DBM supports many more data width options, thus, adding new function names for each
width option was not practical.

Instead, the dbm_write() and dbm_read() access functions were created. These write
or read the correct number of bits based on the DBM data width configuration set using
dbm_config_set(). Note that the legacy Maverick/-I/-II functions are not documented in
the Magnum 1/2/2x manuals for this reason.

Note: while the various versions of the Maverick dbm_write_xxx() and
dbm_read_xxx() functions do operate correctly on Magnum 1, the newer
dbm_write() and dbm_read()functions are recommended for performance
reasons. These functions use a newer DBM device driver, which is optimized to
more efficiently access the DBM in the direction specified by x_fast_axis().

Some DBM access functions have multiple versions (overloads) supporting different size
data arguments. For example, a given function may support both DWORD (32-bits) and
__int64 (64-bits) for the data argument. The following rules describe operation when the
current DBM data width configuration isn't the same size as the data width argument type.

Given the current DBM data width configuration = w (see dbm_config_set()):

• If a function’s data argument size is greater than w:
 2/27/09 Pg-813

Data Buffer Memory Software (DBM)
• For DBM writes, the low order w bits of the function’s data argument will be
written to the DBM; high order bits are silently discarded.

• For DBM reads, the function will return the low order w bits; all unused high order
bits are set = 0.

• If a function’s data argument size is less than w:
• For DBM writes, the function’s argument effective size is extended, with the high

order bits set = 0.
• For DBM reads, the function will return the low order bits read from the DBM;

high order bits that don't fit in the argument are silently discarded.

3.24.6 Masked vs. Un-masked DBM Operations
See Data Buffer Memory Software (DBM).

Note: do not confuse the topic discussed in this section, which discusses whether the
APG Address Generator X/Y size configuration affects how the addresses into
the DBM are treated, with the topic of DBM address masks (see DBM Address
Masks), which allows the user to enable DBM address compression.

The functions which write values to or read values from the Data Buffer Memory (DBM) from
the test program require one or more X/Y addresses to be specified, to identify which DBM
address(es) is/are to be accessed.
 2/27/09 Pg-814

Data Buffer Memory Software (DBM)
Rather than check each address for validity vs. DBM size, vs. DBM X/Y configuration, and
report errors, etc., the following methods are used. The term masked and unmasked
distinguishes between the two methods:

3.24.7 DBM & Multiple Sites-per-controller
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

When testing memory devices which have non-algorithmic data requirements (typically
read-only data from ROMs, etc.) the DBM is commonly used to store non-algorithmic
expect data (strobe data). When more than 64 pins are needed to test a DUT, Sites-per-
Controller will be set to 2 or more.

When Sites-per-Controller > 1, multiple DBMs are be utilized when testing a given DUT.
Each site (HSB board) has an APG with a corresponding DBM (if installed), thus when
Sites-per-Controller = 2, for example, there are 2 APGs and 2 DBMs used when testing the
DUTs connected to those sites. In general, much of the details are transparent to the user.
However, additional considerations exist when using the DBM.

For example, given Sites-per-Controller = 2, pins a_1/b_1 through a_64/b_64 have a
corresponding APG + DBM and pins a_65/b_65 through a_128/b_128 have a

Masked Default. DBM address argument values are masked using the APG
address masks, set using numx() or numy(). For example, if the APG
address mask configuration is 11X, 9Y the X-address mask is 0x7FF (11
bits) and only those bits of the X-address argument are used. Using
masked addresses has the effect of wrapping (rolling over, etc.) an
address value which exceeds the size of the DUT. And, if the DBM
address configuration matches the APG address mask configuration it also
wraps the corresponding DBM address. All DBM functions which write/
read the DBM default to masked operation.

Unmasked DBM address argument values are used as-is, and careless usage mostly
results in undesirable results. To use unmasked operations requires
explicitly including the t_unmasked_access argument to the functions
which support it.

Note: if dbm_write(), dbm_fill() or dbm_read() attempts to access the DBM
outside the current DBM X/Y configuration (see dbm_config_set()) a warning is
generated and the function terminates.
 2/27/09 Pg-815

Data Buffer Memory Software (DBM)
corresponding, and different, APG + DBM. By design, the 2 APGs operate in lock-step,
executing the same test pattern, generating the same X/Y address, etc.

When Sites-per-Controller > 1, if some of the DUT’s data pins are connected to the first 64
pins and other DUT data pins are connected to the second 64 pins it is typical that the data
pattern in the two DBMs will be different; i.e. the data in the DBM for the first 64 pins will
not be identical to the data for the 2nd 64 pins. This means that each DBM must be loaded
separately. The functions which write or load data into the DBM have a HSBBoard
argument, used to identify one DBM to be accessed.

The following rules apply when Sites-per-Controller > 1:

• Using dbm_config_set(), all DBMs will be configured identically.
• Using dbm_fill()and dbm_write() if the HSBBoard argument is not specified

all DBMs will be loaded identically. When the DBMs on each site require different
data, each DBM must be loaded discretely, using the HSBBoard argument with
dbm_fill()and/or dbm_write().

• When using dbm_file_image_read() and dbm_file_image_write(), the
HSBBoard argument must be used to explicitly save and load a discrete DBM data
file for each DBM in use. More below.

• Using dbm_segment_set() selects the same segment for all DBMs.
• Using dbm_config_get(), dbm_segment_get(), dbm_num_segments_get(),

dbm_read() and the getter version of datbuf() if the HSBBoard argument is not
specified the information is retrieved from the DBM on the master controller board,
otherwise it is retrieved from the DBM on the specified HSBBoard.

Other DBM-related functions also accept an HSBBoard board argument, useful only when
Sites-per-Controller > 1. The general rules are:

• When Sites-per-Controller = 1, the HSBBoard argument is not useful, but if used
only t_hsb1 is valid.

• When Sites-per-Controller > 1, any setter functions executed without specifying an
HSBBoard argument will write to the DBM on all sites identically. This does not
apply when using dbm_file_image_read() and dbm_file_image_write(),
see above.

• When Sites-per-Controller > 1, any getter functions executed without specifying an
HSBBoard argument will return information from t_hsb1.

• The HSBBoard argument may only specify boards which are accessible to the
master controller. A warning is generated if this rule is violated and the function
returns immediately.
 2/27/09 Pg-816

Data Buffer Memory Software (DBM)
3.24.8 DBM Configuration Tables
See Data Buffer Memory Software (DBM).

This section describes why the Magnum 1/2/2x DBM documentation does not include a set
of Configuration Tables similar to those provided in the Maverick-I/-II documentation.

As noted above, the Data Buffer Memory (DBM) hardware can be viewed as a large memory
array with software configurable addressing. Regarding the DBM’s X/ Y address
configuration, note the following:

1. Unlike the Maverick-I/-II, the Magnum 1/2/2x have no set minimum number of APG
Address Generator X and/or Y addresses which are used to access the DBM.

• The Magnum 1 DBM supports 1-to-18 X-address bits and 1-to-16 Y-address bits,
limited to a total of 32 combined address bits and by the amount of installed of
DBM memory.

• The Magnum 2/2x DBM supports 1-to-20 X-address bits and 1-to-20 Y-address
bits, limited to a total of 40 combined address bits and by the amount of installed
of DBM memory.

2. For reference, using Maverick-I/-II, the DBM hardware addressing scheme has both
fixed addresses and software configurable addresses and the first 10 X-addresses are
fixed and the first 8 Y-addresses are fixed. This sets the minimum X/Y configuration
possible. For more information, see the Maverick-I/-II Programmers Manual.

3. Any unused X and/or Y addresses are available for DBM segment selection, using
dbm_segment_set(). See DBM Segment Selection.

3.24.9 Types, Enums, etc.
See Data Buffer Memory Software (DBM).

Description
The following enumerated types are used in support of various Data Buffer Memory
Software (DBM) functions:
 2/27/09 Pg-817

Data Buffer Memory Software (DBM)
Usage
The DbmPatternRate enumerated type determines the DBM DRAM Interleaving
configuration, which affects the effective DBM size and how fast the DBM can be accessed.
See DBM Architecture, DBM DRAM Interleaving, DBM Sequential Mode, DBM Usage
Rules, dbm_config_set(), dbm_config_get().

enum DbmPatternRate { t_dbm_full_speed,
t_dbm_slow_speed,
t_dbm_sequential,
t_dbm_speed_na };

The DbmAccessType enumerated type is used to select whether the DBM is accessed
using masked or unmasked addresses. See Masked vs. Un-masked DBM Operations.

enum DbmAccessType { t_masked_access, t_unmasked_access };

The DbmFastDirection enumerated type is used to specify which DBM address axis will
be the fast axis (LSB). See DBM Architecture, dbm_write(), dbm_read(). Note that
t_auto_fast means use the result returned by x_fast_axis().

enum DbmFastDirection { t_dbm_x_fast,
t_dbm_y_fast,
t_dbm_auto_fast };

3.24.10 dbm_config_set()
See Data Buffer Memory (DBM).

Description
The dbm_config_set() function is used to configure the Data Buffer Memory (DBM). The
DBM must be configured before it can be used in a test pattern and before data can be
loaded (more below).

dbm_config_set() sets the DBM size in the terms of used X/Y addresses and data width,
and configures DBM DRAM Interleaving and DBM Sequential Mode (more below).

Note: the DBM Usage Rules must be followed for proper DBM operation.
 2/27/09 Pg-818

Data Buffer Memory Software (DBM)
The numx and numy arguments to dbm_config_set() configure the size of the DBM, in
the terms of the number of APG Address Generator X addresses (numx) and Y addresses
(numy) which are used to access the DBM during test pattern execution. See Overview.

Note: APG address masks, set using numx() and numy(), are NOT considered by
the system software when configuring the DBM.

The width argument to dbm_config_set() configures the DBM data width. As the data
width is reduced the effective DBM size (depth) increases. width is typically set to match
the DUT’s data width, which typically matches the APG Data Generator width, set using
data_reg_width(). The Magnum 1/2/2x DBM supports the data widths of 1, 2, 4, 8/9, 16/
18, 32, 36. The width configuration affects all DBM access functions which read or write to
the DBM. See DBM Data Widths.

The rate argument is used by the system software to configure DBM DRAM Interleaving
and to enable DBM Sequential Mode. This also affects the effective DBM size. The following
rate options are available:

• t_dbm_full_speed = DBM is configured for 4-way interleaving, providing
random access DBM operation up to 50MHz. See DBM Usage Rules.

• t_dbm_slow_speed = DBM is configured in non-interleaved mode, effectively
increasing the DBM depth by a factor of 4 and providing random access but at a
reduced DBM read rate. See DBM Usage Rules.

• t_dbm_sequential = DBM is configured in non-interleaved mode, effectively
increasing the DBM depth by a factor of 4. The DBM may be accessed at up to
33MHz (not 50MHz) but DBM addressing is constrained and partially controlled by
a counter internal to the DBM, see DBM Sequential Mode, DBM DRAM Interleaving
and DBM Usage Rules.

Also note the following:

• During test program initialization, the system software detects the installed DBM
size. This is used to validate any DBM configurations specified using
dbm_config_set(). If a DBM configuration is attempted that is not possible, a
warning is displayed and proper DBM operation should not be expected.

• When the DBM configuration is modified, the current DBM contents should be
considered invalid.

• Executing dbm_config_set() resets the current DBM segment selection to
segment 1. See DBM Segment Selection.

• Executing dbm_config_set() sets both DBM Address Masks to enable all
address bits for the configuration being set. See dbm_masks_set().
 2/27/09 Pg-819

Data Buffer Memory Software (DBM)
• Changing the APG’s X or Y address masks has no effect on DBM segmentation or
configuration. When either of the APG’s X or Y address masks is changed,
whether interactively (PatternDebugTool) or via test program C-code (using
numx() and/or numy()), the number of DBM segments is NOT automatically
recomputed by the system software. Thus, in most applications, if either of
numx() and/or numy() are modified the DBM will should be re-configured
(dbm_config_set()) and reloaded.

• When the APG Address Generator fast axis state is changed (using
x_fast_axis()), the DBM must be re-configured (dbm_config_set()) and
reloaded. This is required because dbm_config_set() records the state
returned by x_fast_axis(), and this state affects the subsequent operation of
many DBM access functions.

• The dbm_file_image_write() and dbm_file_image_read() functions are
available to write and read a DBM data to/from a disk file. The file is in a binary
format, as described in DBM Data File Format. This format includes a DBM
configuration, in the form of a header. The dbm_read() function will only load the
file into the DBM if the current DBM configuration exactly matches the
configuration saved in the file header.

Usage
void dbm_config_set(

int numx,
int numy,
int width,
DbmPatternRate rate DEFAULT_VALUE(t_dbm_full_speed));

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

void dbm_config_set(
HSBBoard board,
int numx ,
int numy,
int width,
DbmPatternRate rate DEFAULT_VALUE(t_dbm_full_speed));

where:

numx configures the DBM X-address size, and must be an integer value from 0 to 18.

numy configures the DBM Y-address size, and must be an integer value from 0 to 16.
 2/27/09 Pg-820

Data Buffer Memory Software (DBM)
Note: the total combined X + Y address bits is limited to 32.

width configures the DBM data width. Legal values are 1, 2, 4, 8, 9, 16, 18, 32, 36.

rate is optional and, if used, determines the DBM DRAM Interleaving configuration. Legal
values are of the DbmPatternRate enumerated type. Default = t_dbm_full_speed.
DO review DBM DRAM Interleaving, DBM Sequential Mode and DBM Usage Rules.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

Example
dbm_config_set(8, 10, 8, t_dbm_full_speed);

3.24.11 dbm_config_get()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_config_get() function is used to retrieve the current Data Buffer Memory
(DBM) configuration, as set using dbm_config_set().

All of the arguments to dbm_config_get() are optional. Passing 0 for a given argument
causes that value to not be returned.

Usage
void dbm_config_get(

int* numx DEFAULT_VALUE(0),
int* numy DEFAULT_VALUE(0),
int* width DEFAULT_VALUE(0),
DbmPatternRate* rate DEFAULT_VALUE(0));

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify a target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

void dbm_config_get(
HSBBoard board,
int* numx DEFAULT_VALUE(0),
 2/27/09 Pg-821

Data Buffer Memory Software (DBM)
int* numy DEFAULT_VALUE(0),
int* width DEFAULT_VALUE(0),
DbmPatternRate* rate DEFAULT_VALUE(0));

where:

numx is optional and, if used, is a pointer to an existing int variable, used to return the
current DBM X-address size. Specify 0 if this value is not desired.

numy is optional and, if used, is a pointer to an existing int variable, used to return the
current DBM Y-address size. Specify 0 if this value is not desired.

width is optional and, if used, is a pointer to an existing int variable, used to return the
current DBM data width. Specify 0 if this value is not desired.

rate is optional and, if used, is a pointer to an existing DbmPatternRate variable, used to
return the current setting. See dbm_config_set() and DBM DRAM Interleaving. Specify
0 if this value is not desired.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

Example

In the following example the 2nd argument (numy) is not returned (argument = 0):

int numx, width;
DbmPatternRate rate;
dbm_config_get(&numx, 0, &width, &rate);

3.24.12 DBM Segment Selection
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description

The dbm_segment_set() function is used to choose which DBM segment is currently
selected. The dbm_segment_get() function is used to determine which DBM segment is
currently selected. Note the following:

• When the Data Buffer Memory (DBM) is configured (see dbm_config_set()), if
its size (i.e. the number of used X/Y address bits) is substantially smaller than the
amount installed DBM memory the system software automatically partitions the
 2/27/09 Pg-822

Data Buffer Memory Software (DBM)
DBM into segments. Each segment is a separate section of DBM memory equal in
size to the current DBM configuration. Multiple segments makes it possible for the
DBM to store multiple data patterns, each in its own segment.
For example, a 256MB DBM may use up to 27 address bits to access the DBM. In
a DBM configuration of 9X and 8Y (17 bits), 10 address bits are available for DBM
segment selection. These 10 bits allow up to 1024 (2^10) DBM segments.

• The number of available DBM segments is also affected by the DBM DRAM
Interleaving configuration. When maximum interleaving is used the usable DBM
size and thus the number of available segments is based solely on the number of
used X/Y DBM addresses. When no interleaving is used the usable DBM size is 4
times larger, potentially increasing the number of DBM segments. See DBM
Architecture, DBM DRAM Interleaving and DBM Sequential Mode.

• After the DBM is configured, the number of available DBM segments can be read
using the dbm_num_segments_get() function.

• During the initial program load, DBM segment 1 is selected. The system software
does not otherwise modify the DBM selection.

• Executing dbm_config_set() resets the current DBM segment
selection = segment 1.

• Using dbm_segment_set(), attempting to select an invalid segment results in an
error message and the currently selected DBM segment remains selected.

• Once a segment is selected, any masked reads from or writes to the DBM will
occur only in that segment; however, unmasked read/writes may access other
segments. See Masked vs. Un-masked DBM Operations.

• During test pattern execution, only the currently selected segment is accessed.
• When either of the APG’s X or Y address masks is changed, whether interactively

(PatternDebugTool) or via test program C-code (using numx() and/or (numy()),
the number of DBM segments is NOT automatically recomputed by the system
software. Thus, when either of numx() and/or (numy() change the APG
configuration the DBM must also be re-configured (dbm_config_set()) and
reloaded.

Usage
void dbm_segment_set(int segment);

int dbm_segment_get();

The following functions are the same as the previous but may be used when Sites-per-
Controller > 1 to identify a target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:
 2/27/09 Pg-823

Data Buffer Memory Software (DBM)
void dbm_segment_set(HSBBoard board, int segment);

int dbm_segment_get(HSBBoard board);

where:

segment identifies the DBM segment to be selected.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

dbm_segment_get() returns the currently selected DBM segment.

Example
The following example selects DBM segment 5 as the active segment. This implies that the
currently installed DBM is at least eight times larger than the DUT being tested:

dbm_segment_set(5);

The following example returns the current DBM segment selection:

int segment = dbm_segment_get();

3.24.13 dbm_num_segments_get()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_num_segments_get() function is used to determine how many DBM segments
are currently available, which is based on the current the DBM configuration, as set using
dbm_config_set(). See DBM Segment Selection.

Usage
int dbm_num_segments_get();

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify a target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

int dbm_num_segments_get(HSBBoard board);

where:
 2/27/09 Pg-824

Data Buffer Memory Software (DBM)
board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

dbm_num_segments_get() returns the number of available DBM segments.

Example
output(" Number of DBM segments => %d", dbm_num_segments_get());

3.24.14 dbm_fill()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_fill() function is used to write a specified value to a rectangular area of DBM
addresses. Note the following:

• The rectangular area of the DBM to be written is identified by locating the upper
left corner (xstart/ystart) and lower right corner (xstop/ystop).

• The value written to each DBM address is specified using the data argument.
• The number of bits actually written is affected by the current DBM data width

configuration, set using dbm_config_set(). See DBM Data Widths.
• By default, dbm_fill() uses masked DBM addresses. The type argument can

be used to change operation to use unmasked DBM addresses. See Masked vs.
Un-masked DBM Operations.

• If dbm_fill() attempts to write to addresses outside the current DBM X/Y
configuration (see dbm_config_set()) a warning is generated and the function
terminates without modifying the DBM.

• dbm_fill() operations ignore any non-default DBM Address Masks i.e. all
configured DBM address bits are used.

• Also see dbm_write().

Usage
The following function writes to the currently selected DBM segment:

void dbm_fill(
DWORD xstart,
DWORD xstop,
 2/27/09 Pg-825

Data Buffer Memory Software (DBM)
DWORD ystart,
DWORD ystop,
__int64 data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify a target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

void dbm_fill(
HSBBoard board,
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
__int64 data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

where:

xstart, xstop, ystart, and ystop specify a rectangle of DBM X and Y addresses to be
written. The following rules apply:

• 0 <= xstart <= xstop <= Max DBM X-address (set by dbm_config_set())
• 0 <= ystart <= ystop <= Max DBM Y-address (set by dbm_config_set())

data specifies a single value to be written to each address in the specified area of the DBM.

type is optional and, if used, specifies whether masked or unmasked addresses are used
to access the DBM. See Description. Legal values are of the DbmAccessType enumerated
type. Default = t_masked_access (recommended).

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

Example
The following example will fill a rectangular area of the DBM with the value 0xA5. The area
written is bounded by X0..X127 and Y0..Y63, inclusive:

dbm_fill(0, 127, 0, 63, 0xA5);
 2/27/09 Pg-826

Data Buffer Memory Software (DBM)
3.24.15 dbm_write()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_write() function writes specified value(s) to one or more DBM addresses.

See Note: regarding the use of the Maverick dbm_write_xxx() and dbm_read_xxx()
functions on Magnum 1/2/2x.

All versions of dbm_write() are affected by the current DBM data width configuration (set
using dbm_config_set()). See DBM Data Widths.

dbm_write() operations ignore any non-default DBM Address Masks i.e. all configured
DBM address bits are used.

Seven basic versions (overloads) of dbm_write() are available to provide the capabilities
noted below:

• The first 3 versions (below) sequentially write the number of values specified by
the count argument from the pData array to the DBM, beginning at the electrical
address specified by the addr argument (see Logical vs. Physical, vs. Electrical
Addresses). The value of x_fast_axis() at the time dbm_config_set() was
last executed determines how the electrical address is interpreted. Three functions
provide for 3 different data sizes. These 3 versions are equivalent to the
Maverick-I/-II load_dbm() function.

• The 4th and 5th versions of dbm_write() (below) write a single data value to a
single logical DBM address specified by the x and y arguments. By default,
dbm_write() uses masked DBM addresses. The type argument can be used to
change operation to use unmasked DBM addresses. See Masked vs. Un-masked
DBM Operations. Two functions provide for 2 different data types.

• The 6th and 7th versions of dbm_write() (below) sequentially write count values
from the pData array to a rectangle of DBM addresses. The upper-left corner of
the rectangle is located using the xstart/ystart arguments; the lower-right
corner by the xstop/ystop arguments. The direction that data is written to the
DBM, i.e. whether the X or Y DBM address is incremented fast, is controlled by
the optional fast argument, which defaults to the value returned by
x_fast_axis() at the time dbm_config_set() was last executed. Note that
dbm_write() performance will be slower if fast is different than this default
value. By default, dbm_write() uses masked DBM addresses. The type
 2/27/09 Pg-827

Data Buffer Memory Software (DBM)
argument can be used to change operation to use unmasked DBM addresses.
See Masked vs. Un-masked DBM Operations. Two functions provide for 2 different
data types.

The following rules apply and are checked:

• 0 <= xstart <= xstop <= Max DBM X-address (set by dbm_config_set())
• 0 <= ystart <= ystop <= Max DBM Y-address (set by dbm_config_set())
• pData must not be NULL
• In the versions of dbm_write() which use the xstart/ystart/xstop/ystop

arguments the count must be >= than the number of addresses in the described
rectangle.

If any rules are violated a warning is issued and the DBM is not modified.

Also see dbm_fill().

Usage
The following functions write one or more DBM addresses with values from an array of
values. See Description:

void dbm_write(__int64 addr, BYTE* pData, int count);

void dbm_write(__int64 addr, DWORD* pData, int count);

void dbm_write(__int64 addr, __int64* pData, int count);

The following functions write the specified data value to a single DBM address. See
Description:

void dbm_write(
DWORD x,
DWORD y,
DWORD data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_write(
DWORD x,
DWORD y,
__int64 data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

The following functions write one or more DBM addresses with values from an array of
values. See Description:
 2/27/09 Pg-828

Data Buffer Memory Software (DBM)
void dbm_write(
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
DWORD* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_write(
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
__int64* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

The following functions are the same as the previous set but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

void dbm_write(
HSBBoard board,
__int64 addr,
BYTE* pData,
int count);

void dbm_write(
HSBBoard board,
__int64 addr,
DWORD* pData,
int count);

void dbm_write(
HSBBoard board,
__int64 addr,
__int64* pData,
int count);
 2/27/09 Pg-829

Data Buffer Memory Software (DBM)
void dbm_write(
HSBBoard board,
DWORD x,
DWORD y,
DWORD data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_write(
HSBBoard board,
DWORD x,
DWORD y,
__int64 data,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_write(
HSBBoard board,
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
DWORD* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_write(
HSBBoard board,
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
__int64* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

where:

addr identifies the starting electrical address to be written. See Description.

pData is an array of (at least) count values to be written to the DBM.

count specifies the number of values written from the pData array to the DBM.

x and y identify a single DBM address to be written.
 2/27/09 Pg-830

Data Buffer Memory Software (DBM)
data specifies the value to be written to the DBM address specified by x and y.

type is optional and, if used, specifies whether masked or unmasked addresses are used
to access the DBM. See Description. Legal values are of the DbmAccessType enumerated
type. Default = t_masked_access (recommended).

xstart, xstop, ystart, and ystop define a rectangle of DBM X and Y addresses to be
written.

fast is optional and, if used, determines how DBM addresses are sequentially incremented
when writing multiple values. Legal values are of the DbmFastDirection enumerated
type. Default = t_dbm_auto_fast i.e. the value returned by x_fast_axis() at the time
dbm_config_set() was last executed. See Description.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

Example
The following example writes the 4 sequential values from the vals array to the DBM,
beginning at electrical address 0x100:

BYTE vals[] = { 0x0, 0x1, 0x2, 0x3 };
dbm_write(0x100, vals, 4);

The following example writes the value 0x5A to the DBM at X-address 13, Y-address 9:

dbm_write(13, 9, 0x5A);

The following example writes 8 sequential values from the vals array to the DBM,
beginning at logical address 0. Note that the last 2 values in the vals array are not used.
Since the fast argument is t_dbm_x_fast the X-address is incremented fast i.e. the 2nd
DBM address written is X = 1, Y = 0, the third address written is X = 2, Y = 0, etc.

BYTE vals[] = {0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0xFF, 0xFF};
dbm_write(0, 3, 0, 1, vals, 8, t_dbm_x_fast);

3.24.16 dbm_read()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_read() function is used to read one or more values from the DBM.
 2/27/09 Pg-831

Data Buffer Memory Software (DBM)
See Note: regarding the use of the Maverick dbm_write_xxx() and dbm_read_xxx()
functions on Magnum 1/2/2x.

All versions of dbm_read() are affected by the current DBM data width configuration (set
using dbm_config_set()). See DBM Data Widths.

dbm_read() operations ignore any non-default DBM Address Masks i.e. all configured
DBM address bits are used.

Five basic versions (overloads) of dbm_read() are available to provide the capabilities
noted below. An additional five versions are identical except for the initial HSBBoard
argument: these may be used when Sites-per-Controller > 1 to identify the target DBM by
identifying its HSBBoard:

• The first 2 versions (below) sequentially read the number of values specified by
the count argument from the DBM into the pData array, beginning at the
electrical address specified by the addr argument (see Logical vs. Physical, vs.
Electrical Addresses). The value returned by x_fast_axis() at the time
dbm_config_set() was last executed determines how the electrical address is
interpreted. Multiple functions provide for different data sizes. These versions are
equivalent to the Maverick-I/-II read_dbm() function.

• The 3rd version of dbm_read() (below) reads the value from a single logical DBM
address specified by the x and y arguments and returns the value. By default,
dbm_read() uses masked DBM addresses. The type argument can be used to
change operation to use unmasked DBM addresses. See Masked vs. Un-masked
DBM Operations.

• The 4th and 5th versions of dbm_read() (below) sequentially read count values
from the DBM into the pData array from a rectangle of DBM addresses. The
upper-left corner of the rectangle is located using the xstart/ystart arguments;
the lower-right corner by the xstop/ystop arguments. The direction that data is
read from the DBM (i.e. whether the X or Y DBM address is incremented fast) is
controlled by the optional fast argument, which defaults to the value returned by
x_fast_axis() the last time dbm_config_set() was executed. Note that
dbm_read() performance will be slower if fast is different than this default
value. By default, dbm_read() uses masked DBM addresses. The type
argument can be used to change operation to use unmasked DBM addresses.
See Masked vs. Un-masked DBM Operations. Two functions provide for 2 different
data sizes.

The following rules apply and are checked:

• 0 <= xstart <= xstop <= Max DBM X-address (set by dbm_config_set())
• 0 <= ystart <= ystop <= Max DBM Y-address (set by dbm_config_set())
 2/27/09 Pg-832

Data Buffer Memory Software (DBM)
• pData must not be NULL
• In the versions of dbm_read() which use the xstart/ystart/xstop/ystop

arguments the count must be >= than the number of addresses in the described
rectangle.

If any rules are violated a warning is issued and proper operation is not likely.

Usage
The following functions read one or more DBM addresses into an array. See Description:

void dbm_read(__int64 addr, DWORD* pData, int count);

void dbm_read(__int64 addr, __int64* pData, int count);

The following function reads and returns the value from one DBM address. See Description:

__int64 dbm_read(
DWORD x,
DWORD y,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

The following functions read one or more DBM addresses into an array. See Description:

void dbm_read(
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
DWORD* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_read(
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
__int64* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));
 2/27/09 Pg-833

Data Buffer Memory Software (DBM)
The following functions are the same as the previous set but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

__int64 dbm_read(
HSBBoard board,
DWORD x,
DWORD y,
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_read(HSBBoard board,
__int64 addr,
DWORD* pData,
int count);

void dbm_read(HSBBoard board,
__int64 addr,
__int64* pData,
int count);

void dbm_read(
HSBBoard board,
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
DWORD* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

void dbm_read(
HSBBoard board,
DWORD xstart,
DWORD xstop,
DWORD ystart,
DWORD ystop,
__int64* pData,
int count,
DbmFastDirection fast DEFAULT_VALUE(t_dbm_auto_fast),
DbmAccessType type DEFAULT_VALUE(t_masked_access));

where:

addr identifies the starting electrical address to be read. See Description.
 2/27/09 Pg-834

Data Buffer Memory Software (DBM)
pData is a user-defined array of (at least) count values used to return values read from the
DBM.

count specifies the number of values to read from the DBM and return in the pData array.

x and y identify a single DBM address to be read.

type is optional and, if used, specifies whether masked or unmasked addresses are used
to access the DBM. See Description. Legal values are of the DbmAccessType enumerated
type. Default = t_masked_access (recommended).

xstart, xstop, ystart, and ystop define a rectangle of DBM X and Y addresses to be
read.

fast is optional and, if used, determines how DBM addresses are sequentially incremented
when reading multiple values. Legal values are of the DbmFastDirection enumerated
type. Default = t_dbm_auto_fast i.e. the current x_fast_axis() selection determines
which DBM address is incremented fast.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard. See DBM & Multiple Sites-per-controller.

The version of dbm_read() which returns __int64 returns the value read from the DBM.

Example
The following example reads 4 sequential values from the DBM into the vals array,
beginning at electrical address 0x100:

BYTE vals[4];
dbm_read(0x100, vals, 4);

The following example reads and returns the value from the DBM at X-address 13,
Y-address 9:

__int64 value = dbm_read(13, 9);

The following example reads 8 sequential values from the DBM into the vals array,
beginning at logical address 0. Since the fast argument is t_dbm_x_fast the X-address
is incremented fast i.e. the 2nd DBM address read is X = 1, Y = 0, the third address read is X
= 2, Y = 0, etc.

BYTE vals[8];
dbm_read(0, 3, 0, 1, vals, 8, t_dbm_x_fast);
 2/27/09 Pg-835

Data Buffer Memory Software (DBM)
3.24.17 dbm_file_image_write()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_file_image_write() function is used to save (write) all or part of the data in
the currently selected DBM segment to a file on disk. Note the following:

• The filename argument identifies the destination file on disk.
• NO FILE CLOBBER checks are made i.e. if the specified filename exists (and is

writable) it will be silently over-written, regardless of content.
• If filename doesn’t include an absolute path the file will be located relative to the

test program executable file, typically in the test program Debug\ folder.
• Only data from the currently selected DBM segment is written, not the entire DBM.

See DBM Segment Selection.
• dbm_file_image_write() operation ignores any non-default DBM Address

Masks i.e. all configured DBM address bits are used.
• When multiple DBM locations are written, the DBM address is incremented based

on the value returned by x_fast_axis() at the time dbm_config_set() was
last executed. This sets the fast parameter in the DBM Data File Format header
(more below).

• The xstart, xstop, ystart and ystop arguments are optional. If none of these
arguments are specified the entire DBM segment is written to the file. Using these
values describes a rectangular area of the DBM to be written to the file.

• When any of xstart, xstop, ystart and ystop arguments are specified the
following rules apply:
• 0 <= xstart <= xstop <= Max DBM X-address (set by dbm_config_set())
• 0 <= ystart <= ystop <= Max DBM Y-address (set by dbm_config_set())
If any of these rules are violated dbm_file_image_write() exits immediately,
without writing to the file.

• The following errors are also checked. Any of these errors cause
dbm_file_image_write() to exit without writing to the file:
• filename is NULL
• filename cannot be opened or written.
 2/27/09 Pg-836

Data Buffer Memory Software (DBM)
• The file written is in a binary format, as described in DBM Data File Format. This
format includes, in the form of a header, the current DBM configuration (set using
dbm_config_set()) at the time the file is written. The
dbm_file_image_read() function is available to read a previously saved DBM
data file into the DBM. dbm_file_image_read() will only load the file into the
DBM if the DBM configuration at that time matches the configuration saved in the
file header.

Usage
BOOL dbm_file_image_write(

LPCTSTR filename,
DWORD xstart DEFAULT_VALUE(0x0),
DWORD xstop DEFAULT_VALUE(0xffffffff),
DWORD ystart DEFAULT_VALUE(0x0),
DWORD ystop DEFAULT_VALUE(0xffffffff));

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

BOOL dbm_file_image_write(
HSBBoard board,
LPCTSTR filename,
DWORD xstart DEFAULT_VALUE(0x0),
DWORD xstop DEFAULT_VALUE(0xffffffff),
DWORD ystart DEFAULT_VALUE(0x0),
DWORD ystop DEFAULT_VALUE(0xffffffff));

where:

filename specifies the disk file to be written.

xstart, xstop, ystart, and ystop are optional and, if used, define a rectangle of DBM X
and Y addresses to be written.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard, see DBM & Multiple Sites-per-controller.

dbm_file_image_write() returns TRUE if the file write operation had no errors
otherwise FALSE is returned.
 2/27/09 Pg-837

Data Buffer Memory Software (DBM)
Example
fname[] = "D:\myPath\thatPath\thisFile";
BOOL ok = dbm_file_image_write(fname);
if(!ok) output("ERROR: dbm_file_image_write() returned FALSE");

3.24.18 dbm_file_image_read()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description
The dbm_file_image_read() function is used to load data from a disk file into the
currently selected DBM segment. Note the following:

• A DBM file is a binary file that contains a DBM File Header followed by one or
more DBM File Data Records. dbm_file_image_read() will only load the file
into the DBM if the configuration defined in this header matches the current DBM
configuration, as set using dbm_config_set().

• The filename argument identifies the disk file to load.
• If filename doesn’t include an absolute path the file will be located relative to the

test program executable file, typically in the test program Debug\ folder.
• Only the currently selected DBM segment is modified, not the entire DBM. See

DBM Segment Selection.
• dbm_file_image_read() will only load a file which conforms to the DBM Data

File Format. This format includes, in the form of a header, a DBM configuration.
dbm_file_image_read() will only load the file to the DBM if this configuration
matches the current DBM configuration, as set using dbm_config_set().

• dbm_file_image_read() operation ignores any non-default DBM Address
Masks i.e. all configured DBM address bits are used.

• The file read into the DBM may or may not completely define the current DBM
segment. It is possible, when creating the file, to limit the values to a defined a
rectangle of DBM addresses (see DBM Data File Format). When such a file is read
into the DBM, only those addresses are modified.

• dbm_file_image_write() is available to create a DBM data file by writing data
from the currently selected DBM segment to a specified file. See
dbm_file_image_write().
 2/27/09 Pg-838

Data Buffer Memory Software (DBM)
• The following errors are checked. Any of these errors cause
dbm_file_image_read() to exit without modifying the DBM:
• filename is NULL
• filename cannot be opened or read.
• The disk file does not contain a valid header (see DBM Data File Format).
• The current DBM configuration does not match the configuration read from the

disk file.
• Other errors can occur which result in a partially configured DBM (file read error,

for example). The return value from dbm_file_image_read() should always be
tested.

Usage
BOOL dbm_file_image_read(LPCTSTR filename);

The following function is the same as the previous but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

BOOL dbm_file_image_read(HSBBoard board, LPCTSTR filename);

where:

filename specifies the disk file to be read.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard, see DBM & Multiple Sites-per-controller.

dbm_file_image_read() returns TRUE if the file read operation had no errors otherwise
FALSE is returned.

Example
fname[] = "D:\myPath\thatPath\thisFile";
BOOL ok = dbm_file_image_read(fname);
if(!ok) output("ERROR: dbm_file_image_read() returned FALSE");

3.24.19 DBM Data File Format
See Data Buffer Memory Software (DBM), dbm_file_image_write(),
dbm_file_image_read().
 2/27/09 Pg-839

Data Buffer Memory Software (DBM)
Description
The dbm_file_image_write()and dbm_file_image_read() functions and
(beginning is software release h2.2.7/h1.2.7), DBMTool support accessing a
disk-resident file, called a DBM data file, with a specific format documented here.

The DBM file is a binary file that contains a DBM File Header followed by one or more DBM
File Data Records. dbm_file_image_read() will only load the file to the DBM if the
configuration defined in the header matches the current DBM configuration, as set using
dbm_config_set().

DBM File Header
The header structure of the DBM data file is:

DWORD version_number;
DWORD numx;
DWORD numy;
DWORD width;
DbmPatternRate rate; // Required, but used on Magnum 1 only
BOOL fast_axis;
DWORD xstart;
DWORD xstop;
DWORD ystart;
DWORD ystop;
__int64 num_records;

where:

version_number is a special value allowing dbm_file_image_read() to verify that the
file is a DBM file. The initial value for this field = 0xDBF1.

numx and numy represent the numx and numy values of the DBM configuration, as set using
dbm_config_set().

width represents the width value of the DBM configuration, as set using
dbm_config_set(). The value of width also determines whether the DBM File Data
Records which follow the header are 32-bit or 64-bit values. width values of 1, 2, 4, 8, 16,
and 32 indicate 32-bit data records; width values of 9, 18, and 36 indicate 64-bit records.

rate represents the DBM’s DBM DRAM Interleaving configuration and DBM Sequential
Mode, as set using dbm_config_set().

fast_axis indicates how the DBM File Data Records are ordered i.e. which DBM address
axis (X or Y) is incremented fast as the data is being read from the file and written to the
 2/27/09 Pg-840

Data Buffer Memory Software (DBM)
DBM. TRUE means the X-axis is fast, FALSE means the Y-axis is fast. When the DBM file is
created by dbm_file_image_write(), the value of fast_axis will be the value
returned by x_fast_axis() at the time is dbm_config_set() was last executed.

xstart, xstop, ystart and ystop describe a rectangular area of the DBM represented
by the DBM File Data Records stored in this file. If the DBM file was created using
dbm_file_image_write() these values will correspond to the xstart, xstop, ystart
and ystop arguments to dbm_file_image_write(). When dbm_file_image_read()
is used to load the file into the DBM only the addresses in this rectangle are modified.

num_records indicates the number of 32-bit or 64-bit DBM File Data Records following the
header. Note that, except for widths of 32 and 36, num_records will not represent the
number of DBM addresses represented by the stored data since each record may store
values for more than one DBM address.

DBM File Data Records
As indicated above, the DBM file is a binary file that contains a DBM File Header followed by
one or more DBM File Data Records.

Each data record is either a 32-bit or 64-bit value, as determined by the DBM File Header
width value. Each record consists of data for one or more DBM address(es).

When a data record stores data for more than one DBM address the earlier DBM address
will be at the LSB of the record. The order the data records are stored in the file is from
lowest DBM address to highest address, with the equivalent DBM address incrementing in
the fast_axis direction.
 2/27/09 Pg-841

Data Buffer Memory Software (DBM)
Widths of 1, 2, 4, 8, 16 and 32 are packed into 32-bit records as shown below:

Widths of 9, 18, and 36 are packed into 64-bit records as shown below:

Note that a partial record may exist at the end of each DBM row or column, depending on
the fast_axis parameter. For example, if fast_axis = TRUE (i.e. X addresses are
incrementing fast) the last record for each column may contain data for less than the number
of addresses noted above (each new column address will start a new data record).

Width
32

31 0
1 DBM Address

Width
16

31 01516

Width
8

824
Width

4

31 01516 723

824
Width

2

31 01516 723

824
Width

1

31 01516 723
32 DBM Addresses

16 DBM Addresses

8 DBM Addresses

82431 0
4 DBM Addresses

1516 723

2 DBM Addresses

Not UsedWidth
36

35 0

1718

892627

63 36
1 DBM Address

Not UsedWidth
18

35 063 36
2 DBM Addresses

1718
Not UsedWidth

9

35 063 36
4 DBM Addresses
 2/27/09 Pg-842

Data Buffer Memory Software (DBM)
3.24.20 DBM Address Masks
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description

The dbm_masks_set() function is used to configure the X and Y Data Buffer Memory
(DBM) address masks. The dbm_masks_get() function is used to get the current X/Y
DBM address mask values.

Note: do not confuse DBM address masks, which allow the user to enable DBM
address compression, with APG address masks (set using xmax() or ymax())
which configure the number of APG X and Y addresses to generate.

By default, all used APG Address Generator X and Y address bits are applied to the DBM to
determine which value is output by the DBM in each pattern instruction. The values set
using numx() and numy() determine which APG X/Y addresses are used. The value
specified using x_fast_axis() determines whether X-address or Y-address bits are the
low-order addresses into the DBM.

It is possible to mask selected X and/or Y address bit(s), at the input to the DBM, such that
they do not affect which DBM address is accessed in a given pattern instruction. In this
context, masked DBM X/Y address bit(s) are set to logic-0 at the input to the DBM. Then,
regardless of the actual logic state on these address bit(s), as generated by the APG, the
DBM will output the same value.

For example:

• The APG X address generator is configured to 9 bits i.e. numx() = 9, X-addresses
X0..X8 are used and the X-address range is 0x0 to 0x1FF.

• The APG Y address generator is configured to 5 bits i.e. numy() = 5, Y-addresses
Y0..Y4 are used and the Y-address range is 0x0 to 0x1F.

• The Y-address generator is fast; i.e. x_fast_axis() is FALSE.
• Using dbm_masks_set() (more below) the MSB X-address (X8) is masked i.e.

the xmask argument = 0xFF.
• As the pattern executes, the APG X-address bit X8 may change between logic-0

and logic-1. However, at the input to the DBM, the masked X8 address bit is
always logic-0.
 2/27/09 Pg-843

Data Buffer Memory Software (DBM)
• Thus, when the current APG X-address = 0x1FF the DBM will output the value
stored at X-address 0x0FF. And, the same value is output by the DBM when the
APG X-address is 0x0FF.

Note the following:

• A 0 bit value in the mask represents an address bit to be ignored. For example, to
mask X-address X0, the X-address mask would be 0x1FE.

• Only the bit(s) in xmask and ymask which overlap the currently configured DBM
X-address size and Y-address size (see dbm_config_set()) have any effect. A
warning is issued if xmask is longer than the currently configured DBM X-address
size (numx), or if ymask is longer than the currently configured DBM Y-address
size (numy).

• Executing dbm_config_set() always sets the DBM address masks to enable all
address bits for the configuration being set.

• The system software does not modify the DBM address masks.
• DBM address masks are not modified when the value of numx() and/or numy() is

modified. If, for example, a used upper Y-address bit is masked and later numy()
is reduced, that upper Y-address bit remains masked, which will affect DBM
segmentation operation. Therefore, always re-configure the DBM, using
dbm_config_set(), when numx() and/or numy() are changed.

• DBM address masking only affects test pattern DBM access, to determine which
APG X/Y addresses are used to address the DBM. Conversely, the API functions
which read or write values to/from the DBM (dbm_fill(), dbm_write(),
dbm_read() and dbm_file_image_read()) operate as though no DBM
addresses are masked.

Usage
void dbm_masks_set(DWORD xmask, DWORD ymask);

void dbm_masks_get(DWORD* xmask, DWORD* ymask);

The following functions are the same as the previous set but may be used when Sites-per-
Controller > 1 to identify the target DBM by identifying its HSBBoard. See DBM & Multiple
Sites-per-controller:

void dbm_masks_set(HSBBoard board, DWORD xmask, DWORD ymask);

void dbm_masks_get(HSBBoard board, DWORD* xmask, DWORD* ymask);

where:

xmask and ymask are used in two contexts:
 2/27/09 Pg-844

Data Buffer Memory Software (DBM)
• Using dbm_masks_set(), the xmask argument sets the mask for the X-address
inputs and the ymask argument sets the mask for the Y-address inputs.

• Using dbm_masks_get(), the xmask argument returns the current X-address
mask and the ymask argument returns the current Y-address mask. xmask and
ymask must be a pointer to an existing DWORD variables.

board may be used when Sites-per-Controller > 1 to identify the target DBM by identifying
its HSBBoard, see DBM & Multiple Sites-per-controller.

Example
The following example assumes the current DBM configuration (see dbm_config_set())
sets numx = 10 and numy = 10. This example causes the LSB of the X-address to be
ignored and the MSB of the Y-address to be ignored:

dbm_masks_set(0x3fe, 0x1ff);

The following example returns the currently configured DBM address masks:

DWORD xmask, ymask;
dbm_masks_get(&xmask, &ymask);

3.24.21 dbm_pattern_use()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).

Description

Note: beginning in software release h1.1.23, the need for the dbm_pattern_use()
function was eliminated; the pattern compiler and system software were
enhanced to automatically detect DBM use and configure the APG pipelines
appropriately. However, if dbm_pattern_use() is used in the test program it
takes precedence over the automated method. And, the automated method
requires that any test pattern which uses the DBM be compiled using software
release h1.1.23 or later.

The dbm_pattern_use() function is used to advise the system software that all
subsequent test patterns will use the DBM as a data source. Note the following:
 2/27/09 Pg-845

Data Buffer Memory Software (DBM)
Note: proper operation of test patterns which use the DBM as a data source
REQUIRES setting dbm_pattern_use() = TRUE.

• This is required because the APG pipeline configuration must be modified when
using the DBM. This changes the number of pipeline cycles which must be
executed when performing test pattern branch-on-error, branch-on-abort, etc. See
Error Pipeline Requirements.

• Test patterns which do not use the DBM as a data source will operate correctly
regardless of the state of dbm_pattern_use(), however the additional pipeline
cycles enabled when dbm_pattern_use() = TRUE will continue to occur.

• During initial program load the dbm_pattern_use() state is set to FALSE. The
system software does not otherwise modify this state.

Usage
void dbm_pattern_use(BOOL use);

where:

use specifies whether to configure the APG to support the DBM use in subsequent test
pattern execution(s) (TRUE) or not (FALSE).

Example
The following example prepares the APG to execute test pattern(s) which use the DBM as a
data source:

dbm_pattern_use(TRUE);

The following example restores the APG to execute test pattern(s) which do not use the
DBM as a data source:

dbm_pattern_use(FALSE);

3.24.22 datbuf()
See Data Buffer Memory (DBM), Data Buffer Memory Software (DBM).
 2/27/09 Pg-846

Data Buffer Memory Software (DBM)
Description
The datbuf() function is used to access the DBM, to set or get the data value at the
address currently selected by the APG X/Y address generator outputs.

The versions of datbuf() which take the HSBBoard argument are targeted at applications
with Sites-per-Controller > 1. See DBM & Multiple Sites-per-controller.

Usage
The following functions read the DBM and return the value at the current X/Y address being
output by the APG:

__int64 datbuf();

__int64 datbuf(HSBBoard Board);

The following functions write the DBM, changing the value at the current X/Y address being
output by the APG:

void datbuf(__int64 Value);

void datbuf(HSBBoard Board, __int64 Value);

where:

Board identifies a specific Site Assembly Board (HSBBoard). See DBM & Multiple Sites-
per-controller.

Value specifies the value to be written to the DBM.

The versions of datbuf() which return __int64 return the value read from the DBM.

Example
datbuf(0xA569);
__int64 val = datbuf();

 2/27/09 Pg-847

Error Catch RAM Software
3.25 Error Catch RAM Software
See Error Catch RAM (ECR).

This section contains the following main topics:

• Overview
• ECR Functions

- Types, Enums, etc.
- ecr Data Type
- PointFailure Structure
- PointFailure Memory Management
- Too many other functions to list here, see ECR Functions.

• ECR DDR Functions
- ecr_ddr_mode_set(), ecr_ddr_mode_get()

• ECR Simulation
• Magnum 1 vs. Maverick ECR Functions

3.25.1 Overview
See Error Catch RAM (ECR), Error Catch RAM Software.

The ECR is a hardware option consisting of memory DIMM modules, counters/comparators
and associated software. It is used, during test pattern execution, to capture per-pin failure
information in real-time and supports the following features.

• Redundancy Analysis (RA) and repair for memory devices containing redundant
circuitry. In the typical memory test application the ECR is configured (sized) to
match the DUT size, thus any failing memory address and data bits in the DUT will
be captured at the corresponding ECR locations. Then, Redundancy Analysis (RA)
software uses the ECR contents as a map of good/bad DUT addresses and data
bits. Applies to Memory Test Patterns applications only.

• BitmapTool display of ECR failure information, allowing the user to visualize failure
patterns. Applies to Memory Test Patterns applications only.

• Capture logic vector failures, including vector address, for datalogging applications
and display in LEC Tool. Applies to Logic Test Patterns applications only. This is
documented separately in Logic Error Catch (LEC).
 2/27/09 Pg-848

Error Catch RAM Software
Note: except as noted, the remainder of this section applies to Memory Test Patterns
applications only.

A detailed hardware description is covered in Error Catch RAM (ECR). A simplified model is
shown below, after some errors have been captured:

Figure-53: ECR Simplified Model
The ECR configuration must be set up before use, using ecr_config_set(), typically in
the Site Begin Block. Executing ecr_config_set() also executes ecr_all_clear(),
which deletes any previously captured errors from the ECR.

The ECR captures errors when funtest() (or start_pattern()) is executed with the
fullec argument. Note that there are other argument options to funtest() which impact
the use of the ECR. See Pattern Execution Stop Condition Options for details.

BitmapTool accesses the ECR automatically; i.e. no additional user code is required.

User code accesses errors in the ECR by reading (scanning) the Main ECR RAM using
ecr_main_ram_scan(). To improve scan efficiency/performance the ECR Mini-RAM and/
or Row RAM and/or Column RAM can be scanned first (using ecr_miniram_scan(),
ecr_row_ram_scan() and/or ecr_column_ram_scan()), to determine which areas of
the Main ECR RAM contain errors. The Example uses the Row RAM in this fashion.

0x53 0x37 0x04 0x08 0xF1

0x13R0

C0 C1 C2 C3 Cn

0x20R1
0x55R2
0xB5R3
0x01R4

0x8FRn

0x03 0x00 0x00 0x00 0x10
0x00 0x00 0x00 0x00 0x20
0x51 0x01 0x00 0x00 0x40
0x03 0x35 0x00 0x00 0x80
0x00 0x00 0x00 0x00 0x01

0x01 0x02 0x04 0x08 0x80

Main ECR RAM

Column RAM

Row
RAM

1 = Failure
(bit-wise)

Example Logs
8-pins per
Address

Total Error Counters (not shown) count the total number of address or bit errors.
IOC Error Counters (not shown) count the number errors for each pin being logged.

 2/27/09 Pg-849

Error Catch RAM Software
The Row RAM and Column RAM contain a bit-wise map of the errors in the corresponding
row or column of the Main ECR RAM, with one bit for each pin being logged.

 The diagram above has the ECR configured to capture errors from 8 pins). The Row RAM
and Column RAM are used, for example, during Redundancy Analysis (RA) to quickly
identify which rows and columns contain errors, and thus must be scanned and analyzed.

3.25.2 ECR Functions
See Error Catch RAM (ECR), Error Catch RAM Software.

The various ECR functions are listed below and subsequently organized in this section in
two groups: routinely used and rarely used.

Common to all ECR functions are:

• Types, Enums, etc.
- ecr Data Type
- PointFailure Structure
- PointFailure Memory Management

The following ECR functions are routinely used, listed alphabetically:

• ecr_all_clear()
• ecr_any_overflow_get()

• ecr_column_ram_scan()

• ecr_compare_reg_set(), ecr_compare_reg_get()
• ecr_config_set()

• ecr_config_get()

• ecr_configured_get()

• ecr_interleave_get()

• ECR Hardware Size Functions
- ecr_size_get()
- ecr_ram_module_count_get()
- ecr_ram_module_size_get()

• ecr_counters_config_set(), ecr_counters_config_get()
• ecr_dut_number_set(), ecr_dut_number_get()

• ecr_fast_image_write(), ecr_fast_image_read()
 2/27/09 Pg-850

Error Catch RAM Software
• ecr_file_image_write(), ecr_file_image_read()
• ecr_main_ram_scan()

• ecr_miniram_config_set(), ecr_miniram_config_get()
• ecr_miniram_scan()
• ecr_overflow_get()
• ecr_row_ram_scan()

The following ECR functions are rarely used. Listed alphabetically:

• ecr_area_clear()
• ecr_col_ram_read()
• ecr_col_ram_write()
• ecr_counters_clear()
• ecr_ddr_mode_set(), ecr_ddr_mode_get()

• ecr_error_add()
• ecr_error_counter_set(), ecr_error_counter_get()
• ecr_error_delete()
• ecr_error_get()
• ecr_error_set()
• ecr_miniram_read()
• ecr_miniram_write()
• ecr_rams_clear()
• ecr_rams_update()
• ecr_row_ram_read()
• ecr_row_ram_write()
• ecr_scramble_bank_set(), ecr_scramble_bank_get()
• ecr_scramble_ram_write(), ecr_scramble_ram_read()
• ecr_x_y_data_set()

3.25.2.1 Types, Enums, etc.
See Error Catch RAM Software.
 2/27/09 Pg-851

Error Catch RAM Software
Description
The following enumerated types are used in support of various software functions:

The EcrWriteMode enumerated type is used to specify how the ECR captures errors. See
ecr_config_set(), ecr_config_get(). Note that only t_accum_1 is supported:

enum EcrWriteMode { t_accum_1 = 0,
t_abs_write = 2,
t_write_mode_na };

The EcrFastDirection enumerated type is used when configuring the ECR to optimize
subsequent ECR scan performance. See ecr_config_set(), ecr_config_get(),
ecr_main_ram_scan():

enum EcrFastDirection { t_x_fast, t_y_fast, t_auto_fast };

The EcrRamTypes enumerated type is used to identify a specific ECR RAM type. See
ecr_rams_clear():

enum EcrRamTypes {t_main_array = 0x1,
t_row_catch = 0x2,
t_col_catch = 0x4,t_mini = 0x8,
t_rcm_ram = 0x10, // Not used for Magnum 1

t_all_ecr_rams =
(t_main_array|t_row_catch|t_col_catch|t_mini|t_rcm_ram),

t_ram_type_na };

The EcrScrambleRamTypes enumerated type is used to identify a specific ECR scramble
RAM. See ecr_scramble_ram_write(), ecr_scramble_ram_read():

enum EcrScrambleRamTypes { t_x_scramble,
t_y_scramble,
t_scramble_ram_type_na };

The EcrErrorCounters enumerated type is used to identify specific ECR Error Counters
or group of counters. See ecr_counters_clear(), ecr_overflow_get(),
ecr_compare_reg_set(), ecr_compare_reg_get(),
ecr_error_counter_set(), ecr_error_counter_get() Note that t_rec and
t_cec are not supported on
Magnum 2/2x.:

enum EcrErrorCounters { t_tec, t_rec,n t_cec,
t_ioc1, t_ioc2, t_ioc3, t_ioc4,
t_ioc5, t_ioc6, t_ioc7, t_ioc8,
 2/27/09 Pg-852

Error Catch RAM Software
t_ioc9, t_ioc10, t_ioc11, t_ioc12,
t_ioc13, t_ioc14, t_ioc15, t_ioc16,
t_ioc17, t_ioc18, t_ioc19, t_ioc20,
t_ioc21, t_ioc22, t_ioc23, t_ioc24,
t_ioc25, t_ioc26, t_ioc27, t_ioc28,
t_ioc29, t_ioc30, t_ioc31, t_ioc32,
t_ioc33, t_ioc34, t_ioc35, t_ioc36,
t_all_ioc, t_all_ecr_counters };

The EcrCountingModes enumerated type is used to configure the mode of the ECR Error
Counters. See ecr_counters_config_set(), ecr_counters_config_get():

enum EcrCountingModes {t_address_duplicates = 0,
t_bit_duplicates = 1,
t_address_no_dups = 2,
t_bit_no_dups = 3,
t_count_mode_na };

3.25.2.2 ecr Data Type
See Error Catch RAM Software.

In Maverick-I and Maverick-II test programs, many of the ECR and Redundancy Analysis
(RA) related functions referenced the ecr data type, either by returning a pointer to an ecr
or requiring an ecr argument.

Using Magnum 1, Magnum 2 and Magnum 2x, these legacy functions have all been
replaced with functions which are more consistent with and appropriate for using the
Magnum 1/2/2x ECR hardware architecture. These new functions neither need nor support
the ecr data type. As noted in Magnum 1 vs. Maverick ECR Functions the legacy functions
are supported, but the ecr parameter is ignored.

3.25.2.3 PointFailure Structure
See Error Catch RAM Software, Types, Enums, etc.
 2/27/09 Pg-853

Error Catch RAM Software
Description

The PointFailure structure supports the following functions which scan selected ECR
hardware looking for failure information.

ecr_column_ram_scan()

ecr_row_ram_scan()

ecr_main_ram_scan()

ecr_miniram_scan()

ra_execute() (and ra_scan_area_callback())

The ECR functions can return a variable number of failures, with each failure representing a
specific row address, column address, and failing data bit pattern. An array of
PointFailure is used to return multiple failures.

However, since the number of failures logged to the ECR for a large memory can be
substantial (huge), rather than declare a large array of PointFailures, the
ALLOCA_POINT_FAILURE() and ALLOC_POINT_FAILURE() macros are available to
help with memory management.

Note: proper memory management methods are critical to program reliability.

In most cases, software performing Redundancy Analysis (RA) does not need to process
PointFailure information directly.

Usage
struct PointFailure {

DWORD row, col;
__int64 data;

};

Example
See Example.

3.25.2.4 PointFailure Memory Management
See Error Catch RAM Software, Types, Enums, etc.
 2/27/09 Pg-854

Error Catch RAM Software
Description

The ALLOCA_POINT_FAILURE() macro is used to allocate stack memory to store an array
of PointFailure elements.

The ALLOC_POINT_FAILURE() macro is used to allocate heap memory to store an array
of PointFailure elements. It also creates a PointFailure* variable which points to the
start of the array.

The stack should be used when performance is critical; i.e. in production operations
performing redundancy repair.

Note: fatal stack overflow errors can occur if the array size is made too large. The
maximum size allowed is dynamic, depending on available RAM and the
amount of stack memory already used by the test program. Use caution, test
thoroughly.

Usage
PointFailure* ALLOCA_POINT_FAILURE(size);

ALLOC_POINT_FAILURE(name, size);

where:

ALLOCA_POINT_FAILURE is a Test System Macro used to allocate stack memory for
storing PointFailure elements. ALLOCA_POINT_FAILURE returns a pointer to the
allocated memory.

ALLOC_POINT_FAILURE is a Test System Macro used to allocate heap memory for storing
PointFailure elements. The name argument becomes a pointer to the allocated memory.
name is automatically destroyed and associated memory free’ed when execution exits the
scope where the macro is defined.

size defines the number of PointFailure elements in the array being created.

Example
ALLOC_POINT_FAILURE is used in Example.
 2/27/09 Pg-855

Error Catch RAM Software
3.25.2.5 ecr_all_clear()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_all_clear() function is used to clear the various RAMs in the Error Catch RAM
(ECR). Note the following:

• The term clear means to delete any errors logged in the ECR.
• ecr_all_clear() clears all ECR RAMs (Main ECR RAM, ECR Mini-RAM, Row

RAM and Column RAM).
• ecr_all_clear() clears all ECR counters (Total Error Counters, Row Error

Counters, Col Error Counters, IOC Error Counters).
 2/27/09 Pg-856

Error Catch RAM Software
• By default, the all_duts argument is TRUE which causes ecr_all_clear() to
clear all ECRs identically e.g. in Multi-DUT Test Programs, the Active DUTs Set
(ADS) and Ignored DUTs Set (IDS) have no effect. Setting all_duts = FALSE
causes ecr_all_clear() to only clear those ECRs for DUT(s) currently in the
Active DUTs Set (ADS).

• Executing ecr_config_set()() executes ecr_all_clear(TRUE).
• The Maverick-I/-II clear() function maps to ecr_all_clear(TRUE).

Also see ecr_area_clear(), ecr_rams_clear(), ecr_counters_clear().

Usage
void ecr_all_clear(BOOL all_duts DEFAULT_VALUE(TRUE));

where:

all_duts is optional and, is used, modifies the behavior of ecr_all_clear(), see
Description. Default = TRUE.

Note: executing ecr_all_clear(TRUE) is typically more efficient (faster) than
clearing the ECR per-DUT. In many configurations, ecr_all_clear(FALSE)
requires a series of read-modify-write operations, to maintain the ECR contents
for DUT(s) which are not being cleared. This can consume a noticeable amount
of time.

Example
ecr_all_clear();

3.25.2.6 ecr_any_overflow_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_any_overflow_get() function is used to determine whether any ECR Error
Counters overflowed (i.e. counted past the maximum, rolled-over, etc.). Note the following:

• In Multi-DUT Test Programs, only the ECR for the first DUT in the Active DUTs Set
(ADS) is checked.
 2/27/09 Pg-857

Error Catch RAM Software
• When ecr_any_overflow_get() returns TRUE the specific counter which
overflowed can be determined using ecr_overflow_get().

Usage
BOOL ecr_any_overflow_get();

where:

ecr_any_overflow_get() returns TRUE if any ECR Error Counters from the ECR read
have overflowed, otherwise FALSE is returned.

Example
if(ecr_any_overflow_get() == TRUE)

output("At least one ECR counter overflowed");
else

output("No ECR counters overflowed");

3.25.2.7 ecr_column_ram_scan()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_column_ram_scan() function is used to scan a range of Column RAM
addresses to determine the number of column errors which have been logged. Note the
following:

• Two versions of ecr_column_ram_scan() are provided:
• The 1st only returns an error count, which can be a count of error bits or error

addresses.
• The 2nd counts error addresses and also returns details about each error

counted.
• In Multi-DUT Test Programs, only the ECR logging errors from the first DUT in the

Active DUTs Set (ADS) is scanned.
• The ecr_row_ram_scan() function operates similarly on the Row RAMs and the

ecr_miniram_scan() function operates similarly on the ECR Mini-RAMs.
 2/27/09 Pg-858

Error Catch RAM Software
Usage
The following function scans the specified range of Column RAM address(es) counting
either failing addresses or failing bits:

int ecr_column_ram_scan(int cmin,
int cmax,
__int64 mask,
int max,
BOOL bit_cnt);

The following function scans the specified range of Column RAM address(es) counting
failing addresses. Error details are returned via the failures argument:

int ecr_column_ram_scan(int cmin,
int cmax,
__int64 mask,
int max,
struct PointFailure *failures);

where:

cmin and cmax identify a range of Column RAM address to be read where
0 <= cmin <= cmax <= ymax().

mask is a bit-mask which can be used to ignore errors on a per-pin basis. A logic-1 enables
the error for that bit position to be counted/returned, a logic-0 inhibits an error from being
counted/returned. The order of bits in mask must correspond to the order of pins in the
datapins argument specified for ecr_config_set().

max specifies a maximum number of errors to be read. If this value is exceeded
ecr_column_ram_scan() returns, potentially without scanning the entire Column RAM.

bit_cnt specifies whether error bits are counted (TRUE) or error addresses are counted
(FALSE). Using the latter, any number of error bits at a give Column RAM address will count
as one error.

failures is a pointer to an existing PointFailures array, used to return error details:
row address (always 0 when scanning the Column RAM), column address, and data. User
code is responsible for allocating memory for this array. See ALLOCA_POINT_FAILURE()
for one method. Since the number of failures returned can vary, the number of
PointFailure elements allocated must anticipate the worse case number of failures
which might be returned. When using failures, proper memory management methods
are critical to program reliability.
 2/27/09 Pg-859

Error Catch RAM Software
ecr_column_ram_scan() returns the number of errors counted. This also equates to the
number of valid elements in the failures array.

Example
The following example scans the Column RAM from address 10 to address 20 inclusive and
returns a count of failing bits (up to 100). Only the low 8 bits are counted (0xFF mask):

int c = ecr_column_ram_scan(10, 20, 0xFF, 100, TRUE);

Also see Example for similar application of ecr_row_ram_scan().

3.25.2.8 ecr_compare_reg_set(), ecr_compare_reg_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_compare_reg_set() function is used to write a value to specified ECR Counter
Comparators.

The ecr_compare_reg_get() function can be used to get the currently programmed
value from a specified ECR Counter Comparators.

Note the following:

• The ECR’s Row Error Counters, Col Error Counters, and Total Error Counterseach
have a corresponding comparator, which can signal the Branch-on-error Logic
(Branch Error Choice Logic) when the value in the corresponding counter equals or
exceeds the count specified using ecr_compare_reg_set(). This can be used
to control test pattern branch operations in Memory Test Patterns using the MAR
Error-choice Operands.

• Each counter type has a single compare value, set using
ecr_compare_reg_set(), stored in the compare register for that counter type.
In Multi-DUT Test Program, all counters of a given type share the same compare
register.
 2/27/09 Pg-860

Error Catch RAM Software
• The type argument identifies the counter-type, which determines which compare
register will be accessed (Magnum 2/2x have only one option):

Note: using Total Error Counters and/or IOC Error Counters with either the
t_bit_no_dups or t_address_no_dups options to ecr_counters_config_set(), the
hardware performs a read/modify/write operation, writing only new errors to the
ECR with no duplicates counted in the TEC or IOC. This cannot be done when
ECR interleaving is used, see Magnum ECR Memory Size Options. The controls
for this are the fastest_cycle and seq_length arguments to ecr_config_set().
Proper TEC and IOC counter operation will NOT occur if this rule is violated.

Usage
void ecr_compare_reg_set(EcrErrorCounters type, __int64 value);

__int64 ecr_compare_reg_get(EcrErrorCounters type);

where:

type identifies the counter-type, which determines which compare register will be
accessed. Legal values are of the EcrErrorCounters enumerated type, see table above.

value specifies the comparator value. Legal values are listed in the table above.

ecr_compare_reg_get() returns the currently programmed value. In Multi-DUT Test
Programs, the value is returned for the first DUT in the Active DUTs Set (ADS).

Table 3.25.2.8-1 ECR Counter Comparator Selection

Type
Value

Counter
Comparator

Count
Range

t_tec
TEC Comparator

Register 1 to 17,179,869,183 (234-1)

t_rec
REC Comparator

Register 1 to 262,143 (218-1)

t_cec
CEC Comparator

Register 1 to 262,143 (218-1)

Note: if the value is set to maximum the only comparator match
will occur when the counter exactly equals the value because the
next counter increment will overflow = 0.
 2/27/09 Pg-861

Error Catch RAM Software
Example
ecr_compare_reg_set(t_tec, 0x1234);
__int64 value = ecr_compare_reg_get(t_tec);

3.25.2.9 ecr_config_set()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_config_set() function is used to configure the Error Catch RAM (ECR) prior to
use. The ecr_config_get() function can be used to retrieve (get) the current ECR
configuration.

Note the following:

• Executing ecr_config_set() also executes ecr_all_clear(), clearing errors
from all ECRs.

• The numx and numy arguments configure the ECR’s X and Y address size. In
hardware, this configures the Address CrossPoint. The values specified are before
any address compression is applied (more below). Any X/Y address aspect ratio is
allowed, up to the maximum supported by the APG Address Generator. If the ECR
is too small to support the specified configuration a fatal error is issued.

• The datapins argument determines which pin(s) are logged to the ECR. In
hardware, this configures the Data CrossPoint. Up to 36 pins of each 64-pin Sub-
site (see PE Sub-site Architecture) can be captured.

• For proper Redundancy Analysis (RA) operation, the ECR data configuration must
match the DUT’s data configuration.

Note: in Multi-DUT Test Programs, the datapins pin list will identify pins for a single
DUT. However, the user must account for the number of hardware tester
channels this represents and limit the pin list members such that no more than
36 hardware pins are specified for each 64-pin Sub-site. This requires that the
user carefully consider which tester pins are connected, via the DUT board, to
the DUT pins which are to be captured in the ECR, see DUT-pin to Tester-pin
Connection Requirements.
 2/27/09 Pg-862

Error Catch RAM Software
• The Redundancy Analysis (RA) software does not provide any address
compression facilities; i.e. redundancy software depends upon the ECR logging
failures in a compressed manner, when appropriate. The x_compress_mask and
y_compress_mask arguments provide for address compression by configuring the
Address CrossPoint. Address compression is used when a single redundancy
spare element replaces more than one row or one column. For example, if the
least significant bit in the x_compress_mask is set to zero then the LSB X-address
bit will be ignored by the ECR and all failures from X-addresses 0 and 1 will be
logged in ECR X-address 0. Similarly, all failures from device X-addresses 2 and 3
will be logged to ECR X-address 1, failures from device X-addresses 4 and 5 will be
logged to ECR X-address 2, etc. The net result is a 50% compression (reduction) of
the amount of ECR used to log failures. Thus, if testing 64M device, this
compression would log all the failures in 32M of ECR memory.

• The Redundancy Analysis (RA) software does not provide any data compression
facilities; i.e. redundancy software depends upon the ECR logging failures in a
compressed manner, when appropriate. The data_compress argument indirectly
configures the Data CrossPoint to provide for ECR data compression. Legal values
for data_compress are 1 (no compression), 2, 4, 8, 16, 32. When a data
compression value >1 is specified, failures on 2 (or 4, 8, 16, etc.) adjacent pins are
logged as a single failure in the ECR. For example. setting data_compress to 2
causes failures from the first 2 datapins to be logically OR'ed together into a
single ECR bit. Similarly, the 2nd two datapins are OR'ed together into a single bit,
etc.

Note: on 10/31/06 the documentation for the wr_mode argument was modified to
remove reference to t_abs_write mode. This mode was never implemented
due to hardware limitations. The following paragraphs referring to the ECR
capture mode now reflect what is supported. References to
ecr_write_mode_set() were deleted since it is no longer useful.

• The wr_mode argument sets the ECR capture mode. Only the t_accum_1 mode is
supported, and operates as follows:
• t_accum_1 = accumulate errors. Multiple errors can be logged to a given ECR

address; i.e. errors are accumulated. This allows multiple reads of a given DUT
address to be logged without later reads overwriting errors logged earlier. This
mode is consistent with Maverick-I and Maverick-II ECR operation.

• t_accum_1 sets the write mode for the Main ECR RAM, Row RAM, Column
RAM.
 2/27/09 Pg-863

Error Catch RAM Software
• The wr_mode argument has no effect on the ECR Error Counters, see
ecr_counters_config_set().

• The fast argument is used to configure the ECR to optimize read (scan)
performance, based on which address axis (X or Y) will be scanned fast (see
ecr_main_ram_scan()). This has no effect on ECR capture operation but will
improve read performance. The following options are available:
• t_auto_fast - the system software chooses the fast direction, based on which

axis (X or Y) uses the most address bits. If equal, t_x_fast is selected.
• t_x_fast - configure the ECR to optimize scanning the X-address fast.
• t_y_fast - configure the ECR to optimize scanning the Y-address fast.

• The Main ECR RAM is implemented using burst DRAM, using an interleaving
technique to provide random access at full speed. To capture errors at the
Magnum’s maximum data rate (i.e. 50MHz/20nS strobe rate) requires an
interleave ratio of 8; i.e. the entire ECR main memory size is divided by 8.
Conversely, as the capture data rate is reduced the interleave ratio is reduced,
increasing the effective size of the ECR. The fastest_cycle argument is used
 2/27/09 Pg-864

Error Catch RAM Software
to specify the maximum strobe rate on pins which are to capture errors in the
ECR. The system software uses this value to set up the ECR interleaving, in one
of 4 configurations:

Note: proper ECR operation will NOT be correct if any 2 (or more) strobes on any
pin(s) being captured occur at a rate faster than specified by the
fastest_cycle value.

Table 3.25.2.9-1 Magnum 1 ECR Interleave Configurations

Strobe/Error Capture Rate

>=20nS
and

<40nS

>=40nS
and

<80nS

>=80nS
and

<160nS >=160nS

~25MHz
to

50MHz

~12.5MHz
to

25MHz

~6.25MHz
to

12.5MHz <=6.25MHz

8-way
Interleave

Minimum ECR Size

4-way
Interleave

2-way
Interleave

No
Interleave

Maximum ECR
Size

The Total Error Counters and/or IOC Error
Counters should not be used when

interleaving is enabled. See Note: below and
ecr_counters_config_set().

Total Error
Counters and/or

IOC Error
Counters are

usable.

Note that the interleave ratio also affects the effective ECR size,
see Magnum ECR Memory Size Options. The
ecr_interleave_get() function may be used to determine the
interleave ratio after the ECR has been configured using
ecr_config_set().
 2/27/09 Pg-865

Error Catch RAM Software
Note: using Total Error Counters and/or IOC Error Counters with either the
t_bit_no_dups or t_address_no_dups options to
ecr_counters_config_set(), the hardware performs a read/modify/write
operation, writing only new errors to the ECR with no duplicates counted in the
TEC or IOC. This cannot be done when ECR interleaving is used, see Magnum
ECR Memory Size Options. The controls for this are the fastest_cycle and
seq_length arguments to ecr_config_set(). Proper TEC and IOC counter
operation will NOT occur if this rule is violated.

• Executing ecr_config_set() configures all ECRs identically. In Multi-DUT Test
Programs, the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect
on ecr_config_set().

• Often, the ECR configuration only needs be set up one time, and is commonly
done in the Site Begin Block. However, the ECR configuration can be changed at
any time as needed. Remember, ecr_config_set() always clears the ECR,
which can impact performance (test time).

• Executing ecr_config_set() does not modify the X/Y Scramble RAM, see
ecr_scramble_ram_write().

Note: to capture errors when executing a Double Data Rate (DDR) Mode test pattern
requires additional configuration, using fail_signal_mux() and
ecr_ddr_mode_set(), which must be executed before ecr_config_set().

• A special and rarely used application may require that ecr_dut_number_set()
be executed before ecr_config_set() executed. See ecr_dut_number_set()
and Shared Tester Pins.

Usage
void ecr_config_set(

int numx ,
int numy,
PinList* datapins,
int x_compress_mask DEFAULT_VALUE(0xffffffff),
int y_compress_mask DEFAULT_VALUE(0xffffffff),
int data_compress DEFAULT_VALUE(1),
EcrWriteMode wr_mode DEFAULT_VALUE(t_accum_1),
EcrFastDirection fast DEFAULT_VALUE(t_auto_fast),
double fastest_cycle DEFAULT_VALUE(-1.0),
int seq_length DEFAULT_VALUE(1));
 2/27/09 Pg-866

Error Catch RAM Software
where:

numx configures the ECR size in the X dimension, and corresponds to the X-address size of
the DUT. The maximum value is 18. The numx value is specified before any X address
compression.

numy configures the ECR size in the Y dimension, and corresponds to the Y-address size of
the DUT. The maximum value is 16. The numy value is specified before any Y address
compression.

datapins is a pin list identifying which pins are being captured to the ECR.

x_compress_mask is optional and, if used, specifies X address compression. Legal values
are 0x0 to 0x3ffff (default). In both cases, the default value = no compression. See
Description.

y_compress_mask is optional and, if used, specifies Y address compression. Legal values
are 0x0 to 0xffff (default). In both cases, the default value = no compression. See
Description.

data_compress is optional, and provides for data compression. Legal values for
data_compress are 1 (default = no compression), 2, 4, 8, 16, 32, however the value
specified must evenly divide the number of pins in datapins. See Description.

wr_mode is optional, and if used specifies the desired ECR capture mode. Only the
t_accum_1 mode is supported. Legal values are of the EcrWriteMode enumerated type.
Default = t_accum_1. See Description.

fast is optional, and if used specifies how the ECR should be configured to optimize read
(scan) performance (see ecr_main_ram_scan()). Legal values are of the
EcrFastDirection enumerated type. Default = t_auto_fast. See Description.

fastest_cycle is optional, and if used specifies the maximum strobe rate for all pins
being logged. This determines how the ECR interleaving is configured, which affects the
maximum usable ECR size. Default = -1 = maximum strobe rate = 50Mhz/, which results in
the minimum ECR size configuration. See Description. When not using -1, units should be
used (see Specifying Units).

Note: proper ECR operation will NOT be correct if any 2 (or more) strobes on any pin(s)
being captured occur at a rate faster than specified by the fastest_cycle value.
Also see Note: if using Total Error Counters and/or IOC Error Counters.

seq_length is not used on Magnum 1. Any value specified is silently ignored.

simul_cap_scan is not used on Magnum 1. Any value specified is silently ignored.
 2/27/09 Pg-867

Error Catch RAM Software
Example
ecr_config_set(numx(), numy(), pl_datapins, 0xFFFFF, 0xFFFF, 1,

t_accum_1, t_auto_fast, -1);

3.25.2.10 ecr_config_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_config_get() function can be used to retrieve (get) the current Error Catch
RAM (ECR) configuration, as set using ecr_config_set().

Note: beginning in software release h3.3.xx, the values returned by
ecr_config_get() are valid only if the ECR is currently configured as an
ECR (i.e. not as a Logic Error Catch (LEC)). See ecr_configured_get() and
lec_configured_get().

Detailed descriptions of each return value is described in ecr_config_set().

In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have
no effect on ecr_config_get().

The ecr_config_set() function always configures all sites identically. However, when
Sites-per-Controller > 1 not all pins of the specified datapins pin list may reside on the
same site. The version of ecr_config_get() with the HSBBoard argument may be used
to identify which pins are associated with a given site (HSBBoard). When Sites-per-
Controller > 1 if the version of ecr_config_get() without the HSBBoard argument is
used, it returns all pins previously specified using the datapins argument to
ecr_config_set().

ecr_configured_get() may be used with lec_mode_get() to determine whether the
Error Catch RAM (ECR) is configured for ECR use vs. Logic Error Catch (LEC) use.

Usage
The following function returns multiple values using variable parameter arguments. Each
argument defaults to a NULL pointer, which must be replaced with a pointer to an existing
variable of the appropriate type to obtain the desired value. Any don’t-care values can
remain NULL (0):
 2/27/09 Pg-868

Error Catch RAM Software
void ecr_config_get(int* numx DEFAULT_VALUE(0),
int* numy DEFAULT_VALUE(0),
int* datawidth DEFAULT_VALUE(0),
PinList** datapins DEFAULT_VALUE(0),
int* x_compress_mask DEFAULT_VALUE(0),
int* y_compress_mask DEFAULT_VALUE(0),
int* data_compress DEFAULT_VALUE(0),
EcrWriteMode* wr_mode DEFAULT_VALUE(0),
EcrFastDirection* fast DEFAULT_VALUE(0),
double* fastest_cycle DEFAULT_VALUE(0),
int *seq_length DEFAULT_VALUE(0),
BOOL *simul_cap_scan DEFAULT_VALUE(0));

The following function is used when Sites-per-Controller > 1, see Description. Only the pins
returned via the datapins argument will change as the board argument is changed.

void ecr_config_get(HSBBoard board,
int* numx DEFAULT_VALUE(0),
int* numy DEFAULT_VALUE(0),
int* datawidth DEFAULT_VALUE(0),
PinList** datapins DEFAULT_VALUE(0),
int* x_compress_mask DEFAULT_VALUE(0),
int* y_compress_mask DEFAULT_VALUE(0),
int* data_compress DEFAULT_VALUE(0),
EcrWriteMode* wr_mode DEFAULT_VALUE(0),
EcrFastDirection* fast DEFAULT_VALUE(0),
double* fastest_cycle DEFAULT_VALUE(0),
int *seq_length DEFAULT_VALUE(0),
BOOL *simul_cap_scan DEFAULT_VALUE(0));

where:

numx and numy are pointers to two existing int variables, used to return the number of X
and Y addresses enabled in the current ECR configuration last set using
ecr_config_set().

datawidth is a pointer to an existing int variable, used to return the number of pins per
DUT in the datapins pin list.

datapins is a pointer to an existing PinList* variable, used to return a pin list containing
the pins being captured.
 2/27/09 Pg-869

Error Catch RAM Software
x_compress_mask and y_compress_mask are pointers to two existing int variables,
used to return the X and Y address compression mask values last set using
ecr_config_set().

data_compress is a pointer to an existing int variable, used to return the data
compression value, last set using ecr_config_set().

wr_mode is a pointer to an existing EcrWriteMode variable, used to return the ECR
capture (write) mode, last set using ecr_config_set().

fast is a pointer to an existing EcrFastDirection variable, used to return the current
X/Y fast configuration, last set using ecr_config_set().

fastest_cycle is a pointer to an existing double variable, used to return the
corresponding value, last set using ecr_config_set().

seq_length is a pointer to an existing int variable, used to return the corresponding
value, last set using ecr_config_set().

simul_cap_scan is a pointer to an existing BOOL variable, used to return the
corresponding value, last set using ecr_config_set().

board may be used when Sites-per-Controller > 1 to specify which board will be read.

Example
The following example retrieves all of the currently programmed ECR configuration
parameters except x_compress_mask and y_compress_mask:

int numx, numy, datawidth, dmask;
PinList*pins;
EcrWriteMode wr_mode;
EcrFastDirection fast;
double strobe_rate;
ecr_config_get(&numx, &numy, &datawidth, &pins, 0, 0,

&dmask, &wr_mode, &fast, &strobe_rate);

3.25.2.11 ecr_configured_get()

Note: first available in software release h3.3.xx.

See Error Catch RAM (ECR), Error Catch RAM Software.
 2/27/09 Pg-870

Error Catch RAM Software
Description
The ecr_configured_get() function may be used to determine if the Error Catch RAM
(ECR) is currently configured.

In this context, ecr_configured_get() returns TRUE if the ECR is currently configured,
but returns FALSE if the ECR is not configured or if the ECR is currently configured for LEC
use (using lec_config_set()).

Similarly, the lec_configured_get() function returns TRUE if the ECR is currently
configured for LEC use, but returns FALSE if the ECR not configured, or if ECR is currently
configured for ECR use.

In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have
no effect on ecr_configured_get().

Usage
BOOL ecr_configured_get();

BOOL ecr_configured_get(HSBBoard board);

where:

board is used when Sites-per-Controller > 1 to identify a target site assembly (HSBBoard).

ecr_configured_get() returns TRUE if the ECR is currently configured, but returns
FALSE if the ECR is not configured or if the ECR is currently configured for LEC use (using
lec_config_set()).

Example
BOOL configured = ecr_configured_get();
BOOL ecr_hsb1_configured = ecr_configured_get(t_hsb1);

3.25.2.12 ecr_interleave_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_interleave_get() function may be used to determine the current ECR
interleave ratio. See Overview. This function is not useful until after the ECR has been
configured using ecr_config_set().
 2/27/09 Pg-871

Error Catch RAM Software
Usage
int ecr_interleave_get();

ecr_interleave_get() returns the current ECR interleave ratio.

Example
int Iratio = ecr_interleave_get();

3.25.2.13 ECR Hardware Size Functions
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_size_get() function may be used to determine the overall size of the installed
ECR on a specified site assembly (HSBBoard).

The ecr_ram_module_count_get() function may be used to determine the number of
ECR modules installed on a specified site assembly (HSBBoard).

The ecr_ram_module_size_get() function may be used to determine the size of a
specified ECR module installed on a specified site assembly (HSBBoard).

Usage
int ecr_size_get(HSBBoard board);

int ecr_ram_module_count_get(HSBBoard board);

int ecr_ram_module_size_get(HSBBoard board, int module);

where:

board identifies the target site assembly board (HSBBoard).

module identifies the target ECR module on board.

ecr_size_get() returns the overall ECR size for board, in Giga-bits. 0 is returned if an
invalid board is specified.

ecr_ram_module_count_get() returns the number of ECR modules installed on board.
0 is returned if an invalid board is specified.
 2/27/09 Pg-872

Error Catch RAM Software
ecr_ram_module_size_get() returns the module size of module on board, in Giga-
bits. 0 is returned if an invalid board or module is specified.

Example
int Esize = ecr_size_get(t_hsb1);
if(Esize == -1) output("ERROR");

int count = ecr_ram_module_count_get(t_hsb1);
if(count == -1) output("ERROR");

int Msize = ecr_ram_module_size_get(t_hsb1, 1);
if(Msize == -1) output("ERROR");

3.25.2.14 ecr_counters_config_set(), ecr_counters_config_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_counters_config_set() function is used to configure the count mode for the
ECR Error Counters.

The ecr_counters_config_get() function may be used to retrieve the currently
programmed count mode for the ECR Error Counters.

Note the following:

• All ECR Error Counters, except Row Error Counters, can be configured to count
errors in one of two modes:
• Count individual bit errors
• Count errors per-address

• Row Error Counters can only count per-address errors.
• ECR Error Counters can also be configured to ignore or count duplicate errors; i.e.

the 2nd through nth error at the same address or same bit (pin).
 2/27/09 Pg-873

Error Catch RAM Software
• Thus, in combination, 4 options are available, one of which is specified for each
type of ECR Error Counters:

• All counters of the same type are configured identically.
• In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set

(IDS) have no effect on ecr_counters_config_set() or
ecr_counters_config_get().

Note: using Total Error Counters and IOC Error Counters with either _no_dups option,
the hardware performs a read/modify/write operation, writing only new errors to
the ECR with no duplicates counted in the TEC or IOC. This cannot be done
when ECR interleaving is used, see Magnum ECR Memory Size Options. The
controls for this are the fastest_cycle and seq_length arguments to
ecr_config_set(). Proper TEC and IOC counter operation will NOT occur if
this rule is violated.

Usage
void ecr_counters_config_set(EcrCountingModes tec_mode,

EcrCountingModes rec_mode,
EcrCountingModes cec_mode,
EcrCountingModes ioc_mode);

Option Operation

t_address_duplicates Default. The counter is incremented once for each failing
address, regardless of how many pin(s) are failing.
Duplicate failing addresses are counted.

t_address_no_dups The counter is incremented once for each failing address
but duplicate failing addresses are not counted. See note
below.

t_bit_duplicates The counter is incremented once for each failing bit (pin).
Duplicate failures are counted. This mode cannot be used
for Row Error Counters.

t_bit_no_dups The counter is incremented once for each failing bit (pin)
but duplicate failures are not counted. This mode cannot be
used for Row Error Counters. See note below.
 2/27/09 Pg-874

Error Catch RAM Software
void ecr_counters_config_get(EcrCountingModes* tec_mode,
EcrCountingModes* rec_mode,
EcrCountingModes* cec_mode,
EcrCountingModes* ioc_mode);

where:

tec_mode, rec_mode, cec_mode and ioc_mode are used in two contexts:

• In the set function, these specify the desired counter mode for each counter type.
• In the get function, these are the addresses of existing EcrCountingModes

variables used to return the currently programmed mode for each counter type.

Example
ecr_counters_config_set(t_bit_duplicates, t_bit_duplicates,

t_address_duplicates, t_address_duplicates);

EcrCountingModes tec_mode, rec_mode, cec_mode, ioc_mode;
ecr_counters_config_get(&tec_mode, &rec_mode,

&cec_mode, &ioc_mode);

3.25.2.15 ecr_dut_number_set(), ecr_dut_number_get()
See Error Catch RAM (ECR), Error Catch RAM Software, Shared Tester Pins.

Description

The ecr_dut_number_set() function is used to specify how many DUTs in the pin list
passed to ecr_config_set() should actually be logged to the ECR. This is used only in
situations where multiple DUTs share tester pins, more below.

The ecr_dut_number_get() function may be used to get the current value.

This (uncommon) application shares pins between two DUTs, allowing more DUTs to be
tested in parallel than could be done without sharing pins (however, this application is also
more complex, requiring the user to manage details normally controlled automatically by the
system software). For example, assume the Pin Assignment Table for a given test program
is configured to test 16 DUTs, each with 8 DutPins (signal pins, not DPS, HV, etc.). Then,
for each DutPin, the tester pin mapped to DUT-1 is also mapped to DUT-9, etc. (see
Shared Tester Pins). This example allows twice the number of DUTs to be tested than could
be if pins were not shared between DUTs.
 2/27/09 Pg-875

Error Catch RAM Software
In any Multi-DUT Test Program, each DutPin element in each pin list will, by design,
represent that pin for all DUTs defined in the program. Thus, in this example, each DutPin
element of each pin list will actually represent 16 pins (HDTesterPin), one for each DUT in
the test program (see Pin Lists). Normally this is transparent to both the user and to the
desired program operation. However, when DUTs share pins some of the HDTesterPins
represented by a given DutPin will be duplicates. In this example, half of the
HDTesterPins representing a given DutPin will be duplicates.

By default, when one of these pin lists is used with ecr_config_set(), the ECR Data
CrossPoint will be configured to capture the same pin twice. This is not useful and may
prevent capturing some desired pins.

Thus, when pins are shared, the ECR configuration must specify that it will capture one set
of DUTs at a time. To do this, the ecr_dut_number_set() is used to advise the ECR
software how many DUTs are to be captured. Given the example above,
ecr_dut_number_set(8) is used, which ensures that the duplicate pins for DUT-9
through DUT-16 are not logged to the ECR.

Note the following:

• ecr_dut_number_set() must be executed before executing
ecr_config_set().

• The num argument specifies the number of DUTs to be logged to the ECR. By
design, this will always be the first num DUTs (DUT-1 through DUT-num).

• Proper operation depends upon the rules documented in Shared Tester Pins being
followed. Specifically, the first DUT of the second half must exactly mirror DUT-1,
etc. In the example above, DUT-1 and DUT-9 must use the same pins, DUT-2 and
DUT-10 must use the same pins, etc.

• The num argument to ecr_dut_number_set() may be less than 1/2 of the
number of DUTs defined in the test program, but the pins actually logged to the
ECR will always be begin with DUT-1, followed by DUT-2, etc. See Pin Assignment
Table.

• The system software does not modify or reset any settings made using
ecr_dut_number_set(); i.e. they remain in effect until user code executes
ecr_dut_number_set() AND ecr_config_set() again.

• Normal operation can be restored by executing ecr_dut_number_set(-1)
followed by ecr_config_set().

• The Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on these
functions.
 2/27/09 Pg-876

Error Catch RAM Software
Usage
void ecr_dut_number_set(int num);

int ecr_dut_number_get();

where:

num specifies how many DUTs should be logged to the ECR.

ecr_dut_number_get() returns the value last set using ecr_dut_number_set(). -1 is
returned if ecr_dut_number_set() has not been used to change the default operation.

Usage
ecr_dut_number_set(8);
int num = ecr_dut_number_get();

3.25.2.16 ecr_fast_image_write(), ecr_fast_image_read()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_fast_image_write() function is used to save an image of one ECR’s contents
to a disk file.

The ecr_fast_image_read() function is used to read an ECR image file into one ECR

Note the following:

• These functions are used instead of ecr_file_image_write(),
ecr_file_image_read() when write/read performance is important (only the
Main ECR RAM and ECR configuration is written or read).

• The filename argument specifies the input or output file name.
• If filename doesn’t specify an absolute path the file will be located relative to the

test program executable file, typically in the test program Debug\ folder.
• Using ecr_fast_image_write(), no file clobber check is performed; i.e. any

existing file of the same name WILL be over-written.
 2/27/09 Pg-877

Error Catch RAM Software
• Using ecr_fast_image_write(), the current user must have write permission
on the folder and file being written.

• In Multi-DUT Test Programs, only the ECR of the first DUT in the Active DUTs Set
(ADS) is saved to disk or loaded from disk.

• As indicated, performance is improved because less information is written or read
as compared to ecr_file_image_write(), ecr_file_image_read(). The
following information is NOT written or read:
• The Column RAM, Row RAM, ECR Mini-RAM.
• ECR Error Counters (Total Error Counters, IOC Error Counters, Row Error

Counters, Col Error Counters).
• ECR Counter Comparators.
• None of the Address CrossPoint, Data CrossPoint, X/Y Scramble RAM, etc.

• Using ecr_fast_image_read(), the current ECR configuration MUST exactly
match the configuration in effect when the file being read was written. If this rule is
violated a warning is issued, the specified file is not loaded into the ECR, and
ecr_fast_image_read() returns FALSE.

• Using ecr_fast_image_read(), since most of the ECR configuration was not
included when the file being read was saved, the contents of the various ECR
memories/counters must NOT be used unless first updated using
ecr_rams_update(). This is quite important since most ECR scan routines use
one or more of the ECR RAMs to optimize the scan performance. Depending on
the size of the ECR, ecr_rams_update() can consume a noticeable amount of
time.

• Using ecr_fast_image_write(), the exact number of ECR addresses
containing errors must be determined before any ECR data is written.
• In Multi-DUT Test Programs, this equates to the errors for the first DUT in the

Active DUTs Set (ADS).
• User code can specify this using the optional count argument. The hardware

Total Error Counters can be used to obtain the count value, but note the
following two items:

• The TEC count mode must be set to t_address_duplicates or
t_address_no_dups prior to executing the pattern.

• If the test pattern reads a given address more than once while logging errors to
the ECR the TEC counter mode must be set to t_address_no_dups prior to
executing the pattern (see Note:).

• If count is not specified, ecr_fast_image_write() will determine the
number of errors by scanning the Main ECR RAM, which takes additional time.
 2/27/09 Pg-878

Error Catch RAM Software
Usage
BOOL ecr_fast_image_write(LPCTSTR filename,

__int64 count DEFAULT_VALUE(-1));

BOOL ecr_fast_image_read(LPCTSTR filename);

where:

filename specifies the desired input or output file name. See Description for rules.

count is optional, and if used must specified the exact number of ECR addresses
containing errors. See Description.

Both functions return FALSE if any error(s) occur, otherwise TRUE is returned.

Example
if(ecr_fast_image_write("d:/myEcrOutputFileName") == FALSE)

output(" ERROR: ecr_fast_image_write() returned an error");

if(ecr_fast_image_read("d:/myEcrInputFileName") == FALSE)
output(" ERROR: ecr_fast_image_read() returned an error");

3.25.2.17 ecr_file_image_write(), ecr_file_image_read()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_file_image_write() function is used to save an image of one ECR’s contents
to a disk file.

The ecr_file_image_read() function is used to read an ECR image file into one ECR

Note the following:

• The filename argument specifies the input or output file name.
• If an absolute path is not specified the file will be located relative to the test

program executable file, typically in the test program Debug\ folder.
• Using ecr_file_image_write(), no file clobber check is performed; i.e. any

existing file of the same name WILL be over-written.
 2/27/09 Pg-879

Error Catch RAM Software
• Using ecr_file_image_write(), the current user must have write permission
on the folder and file being written.

• In Multi-DUT Test Programs, only the ECR logging errors from the first DUT in the
Active DUTs Set (ADS) is saved to disk or loaded from disk.

The following ECR information is written or read:

• Main ECR RAM
• Column RAM, Row RAM
• ECR Mini-RAM
• ECR Error Counters (Total Error Counters, IOC Error Counters, Row Error

Counters, Col Error Counters.)
• ECR Counter Comparators values
• Address CrossPoint, X/Y Scramble RAMand Data CrossPoint configuration.

Usage
BOOL ecr_file_image_write(LPCTSTR filename);

BOOL ecr_file_image_read(LPCTSTR filename);

where:

filename specifies the desired input or output file name. See Description for rules.

Both functions return FALSE if any error(s) occur, otherwise TRUE is returned.

Example
if(ecr_file_image_write("d:/myEcrOutputFileName") == FALSE)

output(" ERROR: ecr_file_image_write() returned an error");

if(ecr_file_image_read("d:/myEcrInputFileName") == FALSE)
output(" ERROR: ecr_file_image_read() returned an error");

3.25.2.18 ecr_main_ram_scan()
See Error Catch RAM (ECR), Error Catch RAM Software.
 2/27/09 Pg-880

Error Catch RAM Software
Description
The ecr_main_ram_scan() function is used to read (scan) the Main ECR RAM and
return a count of errors and, optionally, information about those errors.

In Multi-DUT Test Programs, only the ECR logging errors from the first DUT in the Active
DUTs Set (ADS) is scanned.

Errors scanned can optionally be cached to local CPU memory. See
ecr_cache_enable(). This is targeted at improving ECR scan (read) performance in
situations where the ECR contents have not changed but the errors from a defined ECR
address range need to be read multiple times.

Usage
The following function scans a specified area of the Main ECR RAM and returns a count of
the errors up to a specified maximum:

int ecr_main_ram_scan(int rmin, int rmax,
int cmin, int cmax,
__int64 mask,
int max,
BOOL bit_cnt);

The following function scans a specified area of the Main ECR RAM and returns both an
error count and details about the errors up to a specified maximum. The ECR X/Y scan
direction is optionally specified (scan performance will be slower if the fastdir is different
than that set using ecr_config_set()):

int ecr_main_ram_scan(int rmin, int rmax,
int cmin, int cmax,
__int64 mask,
int max,
struct PointFailure *failures,

EcrFastDirection fastdir DEFAULT_VALUE(t_auto_fast));

The following function scans a specified area of the Main ECR RAM and returns both an
error count and details about the errors up to a specified maximum per unmasked pin. The
ECR X/Y scan direction is optionally specified (scan performance will be slower if the
fastdir is different than that set using ecr_config_set()):

int ecr_main_ram_scan(int rmin, int rmax,
int cmin, int cmax,
__int64 mask,
int max,
 2/27/09 Pg-881

Error Catch RAM Software
struct PointFailure *failures,
WORD *counts,

EcrFastDirection fastdir DEFAULT_VALUE(t_auto_fast));

where:

rmin, rmax, cmin and cmax are used to define a rectangular area of ECR addresses
(inclusive) to be scanned.

mask is a bit-mask which can be used to ignore failures on a per-pin basis. A logic-1 enables
failures for that bit position to be counted and returned, a logic-0 inhibits a failure from being
counted/returned.

max is used in two contexts:

• Using the versions of ecr_main_ram_scan() which have a bit_cnt argument
max will specify either a maximum number of failing addresses to count or a
maximum number of failing bits to count. The bit_cnt argument determines the
mode.

• Using the other versions of ecr_main_ram_scan(), max specifies a maximum
number of failing addresses to count and return.

bit_cnt controls two things:

• Determines whether max specifies a maximum number of failing addresses
(FALSE) or failing bits (TRUE). See max above.

• Determines whether ecr_main_ram_scan() returns the number of failing
addresses counted (FALSE) or failing bits counted (TRUE).

failures is a pointer to an array of PointFailure structs, each element of which
represents detailed information about one failure: row address, column address, and data.
The fastdir argument controls which ECR axis is scanned fast (scan performance will be
slower if the fastdir is different than that set using ecr_config_set()). User code is
responsible for allocating memory for the failures array. See
ALLOCA_POINT_FAILURE() for one method. Since the number of failures returned can
vary, the number of PointFailure elements allocated must anticipate the worse case
number of failures which might be returned. When using failures, proper memory
management methods are critical to program reliability.

fastdir see failures above.

counts is a pointer to an existing WORD array, which contains a maximum count value for
each pin which was logged to the ECR. The software assumes that each non-masked pin
has a non-zero value in counts. During the scan operation, for each failing ECR address
read, the appropriate value in counts is decremented for each bit failing at that address,
 2/27/09 Pg-882

Error Catch RAM Software
and the total failed bit count is incremented for each decrement performed. Then, for each
pin which is not mask’ed, if the post-decrement value in counts = 0, a local mask bit is set,
causing that pin/count value to be ignored for the rest of the scan. The function returns when
one of the following occurs:

• The total failed address count = max
• When all bits are set in the local mask
• When the entire ECR region has been processed

pins identifies a PinList containing the pins of interest. Note that these can be any signal
pins, including pins which span sites when Sites-per-Controller > 1.

The version of ecr_main_ram_scan() which has the bit_cnt argument returns either
the number of failing addresses or number of failing bits, as controlled by bit_cnt.

The version of ecr_main_ram_scan() which has the counts argument returns an
integer count of the number of failing addresses counted. See counts for details.

Example
The example below shows usage for several ECR functions and macros documented in this
section. The example assumes that ecr_config_set() has previously configured the
ECR, and that funtest() has executed a test pattern using one of the execution options
which logs to the ECR (see Pattern Execution Stop Condition Options). This example uses
each overload of ecr_main_ram_scan() to scan the ECR and report (datalog) up to 100
(MAX_FAILS) failing addresses for the low 8 data pins. This is not typical in that only one
overload is typically used. The Program Output is shown below:

// ECR scan routine: get a list of rows containing errors into
// row_fails PointFailure array. Then for each of these rows scan
// main array, getting errors into main_fails1 PointFailure array.

// Allocate heap memory for the PointFailure array which stores
// failed row info. Sized as though every row failed.
ALLOC_POINT_FAILURE(row_fails, xmax()); // ALLOC_POINT_FAILURE()

// Allocate heap memory for the PointFailure array which stores
// fails read from main array, one row at a time. Sized as though
// every column failed.
ALLOC_POINT_FAILURE(main_fails1, ymax());
ALLOC_POINT_FAILURE(main_fails2, ymax());
 2/27/09 Pg-883

Error Catch RAM Software
// Set mask to only scan 8 pins
int dmask = 0xff;
// Set max fail limit
#define MAX_FAILS 100

// This example assumes a multi-DUT program, Scan per active DUT
{

ActiveDutIterator duts;
while (duts.More()) {

// Count and ID which rows have failures
int row_fail_count =

ecr_row_ram_scan(0, xmax(), dmask, xmax(), row_fails);

output("\nFailed Addresses for DUT => %d ",active_dut_get()+1);

// Separate counters for each overload
int fail_address_count1 = 0, fail_bit_count1 = 0;
int fail_address_count2 = 0, fail_address_count3 = 0;

// For each row with failures, scan main array and get fails
for (int i = 0; i < row_fail_count; ++i) {

int row = row_fails[i].row; // Get the next failed row

////////////// Overload #1A //////////////
BOOL bit_cnt = FALSE;
int main_fail_count1a =

ecr_main_ram_scan(row, row, 0, ymax(),
dmask, MAX_FAILS, bit_cnt);

if(main_fail_count1a > 0) {
output(" #1A Failed Address Count => %d",

main_fail_count1a);
fail_address_count1 += main_fail_count1a;

}
else output(" #1A reports 0 fails");

////////////// Overload #1B //////////////
bit_cnt = TRUE;
int main_fail_count1b =

ecr_main_ram_scan(row, row, 0, ymax(),
dmask, MAX_FAILS, bit_cnt);

if(main_fail_count1b > 0) {
output(" #1B Failed Bit Count => %d",

main_fail_count1b);
 2/27/09 Pg-884

Error Catch RAM Software
fail_bit_count1 += main_fail_count1b;
}
else output(" #1B reports 0 fails");

////////////// Overload #2 //////////////
// Count and ID failures in this row
int main_fail_count2 =

ecr_main_ram_scan(row, row, 0, ymax(),
dmask, MAX_FAILS, main_fails1);

if(main_fail_count2 > 0) {
for (int i = 0; i < main_fail_count2; ++i)

output(" #2 Row = %d, Col = %d, Data => 0x%I64x",
main_fails1[i].row,
main_fails1[i].col,
main_fails1[i].data);

output("");
fail_address_count2 += main_fail_count2;

}
else output(" #2 reports 0 fails");

////////////// Overload #3 //////////////
WORD counts[] = { 1,2,3,4,5,6,7,8 }; // Size = 8 pins
int main_fail_count3 =

ecr_main_ram_scan(row, row, 0, ymax(), dmask,
MAX_FAILS, main_fails2, counts,
t_auto_fast);

if(main_fail_count3 > 0) {
for (int j = 0; j < main_fail_count3; ++j)

output(" #3 Row = %d, Col = %d, Data => 0x%I64x",
main_fails2[j].row,
main_fails2[j].col,
main_fails2[j].data);

fail_address_count3 += main_fail_count3;
}
else output(" #3 reports 0 fails");

output("Total failed addresses = %d\n", fail_address_count2);
} // End: for each active DUT...

}

 2/27/09 Pg-885

Error Catch RAM Software
Program Output
TBD

3.25.2.19 ecr_cache_enable()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_cache_enable() function is used to enable Error Catch RAM (ECR) error
caching. This only affects subsequent executions of ecr_main_ram_scan() as described
below.

This is targeted at improving ECR scan (read) performance in situations where the ECR
contents have not changed but the errors from a defined ECR address range need to be
read multiple times. The performance benefit of ECR error caching is obtained when testing
4 or more DUTs per Site Assembly Board.

Note the following:

• ecr_cache_enable() is used to enable or disable the ECR cache mode. The
Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on this function.

• ecr_cache_enable(FALSE) is set during initial program load. The cache enable
state is not otherwise changed by the system software.

• When the cache mode is FALSE, all versions (overloads) of
ecr_main_ram_scan() operate without caching errors in local CPU memory i.e.
each execution of ecr_main_ram_scan() always reads the ECR hardware to
return error data.

• When the cache mode is TRUE, the operation of ecr_main_ram_scan()
changes, as follows:
• Only the versions of ecr_main_ram_scan() which have the PointFailure

argument are affected.
• Memory is allocated to store errors read from the ECR. The memory allocation is

sized as though every address within the range specified to
ecr_main_ram_scan() contained an error. If insufficient memory is available
ecr_main_ram_scan() will not cache any errors, and no warning is issued.
 2/27/09 Pg-886

Error Catch RAM Software
• The ECR is scanned (read) and any errors are stored in the cache. In Multi-DUT
Test Programs, errors from all DUTs are cached by a given execution of
ecr_main_ram_scan().

• The errors from the first DUT in the Active DUTs Set (ADS) are returned via the
PointFailure parameter.

• Any subsequent execution of ecr_main_ram_scan() which specifies an
address range which completely resides within the cache will retrieve the errors
from the cache. ecr_main_ram_scan() will be faster than when reading errors
from the ECR hardware.

• Any subsequent execution of ecr_main_ram_scan() which specifies an
address which is not completely resident in the cache will cause the ECR
hardware to be scanned, for the entire address range specified. This does NOT
reset the cache range and does NOT cause the new ECR scan errors to be
cached.

• To reset the ECR cache address range requires user code to execute
ecr_cache_enable(FALSE), then ecr_cache_enable(TRUE), before
executing ecr_main_ram_scan() again.

• ecr_cache_enable(FALSE) invalidates any current ECR error cache content.

Usage
void ecr_cache_enable(BOOL on_off);

where:

on_off specifies whether ECR error caching is enabled (TRUE) or disabled (FALSE).

Example
ecr_cache_enable(TRUE);

3.25.2.20 ecr_miniram_config_set(), ecr_miniram_config_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_miniram_config_set() function is used to configure the ECR Mini-RAM prior
to use. See ECR Mini-RAM for the hardware description and target application description.
 2/27/09 Pg-887

Error Catch RAM Software
The ecr_miniram_config_get() function is used to get the current ECR Mini-RAM
configuration.

Note the following:

• The ECR Mini-RAM is not configured by the system software; i.e. user code is
required, using ecr_miniram_config_set().

• Proper operation requires that ecr_miniram_config_set() be executed after
configuring the ECR using ecr_config_set(), and prior to logging errors to the
ECR.

• In hardware, the Mini-RAM is a 16K memory, storing one bit per DUT at each
address. This limits the total number of address inputs to 14 (combined X + Y). The
Mini RAM CrossPoint allows any combination of X vs. Y addresses to be used, as
configured using ecr_miniram_config_set().

• Each address in the Mini-RAM potentially represents many addresses in the Main
ECR RAM. To configure the Mini-RAM, user code specifies how many X (row)
address(es) and how many Y (column) address(es) are routed to the Mini RAM and
which addresses are enabled (not masked). See Usage and Examples.

• The address inputs to the Mini RAM CrossPoint are not compressed; i.e. any
address compression applied to the Main ECR RAM occurs after the addresses are
routed to the Mini RAM CrossPoint.

• In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set
(IDS) have no effect on ecr_miniram_config_set() or
ecr_miniram_config_get().

Usage
void ecr_miniram_config_set int numx,

int numy,
int x_compress_mask DEFAULT_VALUE(0),
int y_compress_mask DEFAULT_VALUE(0));

void ecr_miniram_config_get(int* numx,
int* numy,
int* x_compress_mask,
int* y_compress_mask);

where:

numx and numy are used in two contexts:
 2/27/09 Pg-888

Error Catch RAM Software
• In the set function, numx and numy specify the number of row and column address
bits used to access the ECR Mini-RAM. These values configure the Mini-RAM with
2numx rows and 2numy columns. The maximum combined numx plus numy values
must result in 14 or less total address bits.

• In the get function, numx and numy are the addresses of existing int variables
used to return the currently programmed numx and numy values.

x_compress_mask is used in two contexts:

• In the set function, x_compress_mask is optional, and if used specifies a bit-wise
value which determines which row address bits, of the 18 available, are enabled to
the ECR Mini-RAM. A logic-1 enables a given address bit, a logic-0 disables the
address bit. The default value (0) causes the system software to set a mask which
enables numx MSB X address bits, where the specific bits are determined by the
numx argument passed to ecr_config_set(). For example, if the numx
argument passed to ecr_config_set() = 10, and the numx value passed to
ecr_miniram_config_set() = 3, the default x_compress_mask will be 0x380.

• In the get function, x_compress_mask is a pointer to an existing int variable
used to return the currently programmed x_compress_mask value.

y_compress_mask is used in two contexts:

• In the set function, y_compress_mask is optional, and if used specifies a bit-wise
value which determines which column address bits, of the 16 available, are
enabled to the ECR Mini-RAM. A logic-1 enables a given address bit, a logic-0
disables the address bit. The default value (0) causes the system software to set
a mask which enables numy MSB Y address bits where the specific bits are
determined by the numy argument passed to ecr_config_set(). For example,
if the numy argument passed to ecr_config_set() = 8, and the numy value
passed to ecr_miniram_config_set() = 3, the default y_compress_mask will
be 0xE0.

• In the get function, y_compress_mask is a pointer to an existing int variable
used to return the currently programmed y_compress_mask value.

Note: if x_compress_mask and/or y_compress_mask are specified, there must be
exactly numx logic-1 bits in the x_compress_mask and exactly numy logic-1
bits in the y_compress_mask.
 2/27/09 Pg-889

Error Catch RAM Software
Example
The following diagrams illustrate two different Mini RAM configurations (a more complex
example follows). To keep the diagram manageable the ECR is configured to only use 2 X
address bits and 2 Y address bits, for a total 16 Main ECR RAM addresses:

The top example shows the Mini RAM configured with 4 addresses, using 2 X address bits
and 0 Y address bits. In this configuration, each ECR Mini-RAM address corresponds to an
entire row in the Main ECR RAM. This configuration is obtained using one of the following:

ecr_miniram_config_set(2, 0); // Default X/Y masks

ecr_miniram_config_set(2, 0, 0, 0); // Default X/Y masks

ecr_miniram_config_set(2, 0, 0x3); // Default Y mask

ecr_miniram_config_set(2, 0, 0x3, 0); // Default Y mask

ecr_miniram_config_set(2, 0, 0x3, 0x0);

The bottom example shows the Mini RAM configured to use 1 X address bit and 1 Y address
bit. Again, the Mini RAM will have 4 addresses (2 address bits), with each address

00

01

10

11

R
ow

 A
dd

re
ss

00 01 10 11
Column Address

ECR Mini-RAM
Main ECR

RAM Configuration:
2 X Address Bits
0 Y Address Bits

00

01

10

11

R
ow

 A
dd

re
ss

00 01 10 11
Column Address

Configuration:
1 X Address Bit
1 Y Address Bit

ECR Mini-RAM

Main ECR
RAM
 2/27/09 Pg-890

Error Catch RAM Software
corresponding to a 2 x 2 square main ECR RAM addresses, as shown. This configuration is
obtained using one of the following:

ecr_miniram_config_set(1, 1); // Default X/Y masks

ecr_miniram_config_set(1, 1, 0, 0); // Default X/Y masks

ecr_miniram_config_set(1, 1, 0x1); // Default Y mask

ecr_miniram_config_set(1, 1, 0x1, 0); // Default Y mask

ecr_miniram_config_set(1, 1, 0x1, 0x1);

The following example demonstrates the use of the X/Y address mask arguments to
ecr_miniram_config_set(). This example assumes the ECR is configured to use 4
row address bits and 4 column address bits, for a total ECR size of 256:

Figure-54: Mini-RAM Example Configuration
This configuration can be obtained using:

ecr_miniram_config_set(2, 1); // Default X/Y masks

ecr_miniram_config_set(2, 1, 0, 0); // Default X/Y masks

ecr_miniram_config_set(2, 1, 0xC, 0); // Default Y mask

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000

0
0
0
1

0
0
1
0

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

Column Address

R
ow

 A
dd

re
ss

Main ECR RAM

1
1
1
1

0
0
0
0

Block-1 Block-2

Block-3 Block-4

Block-5 Block-6

Block-7 Block-8

ECR Mini-RAM
 2/27/09 Pg-891

Error Catch RAM Software
ecr_miniram_config_set(2, 1, 0xC, 0x8);

This was determined as follows:

3.25.2.21 ecr_miniram_scan()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_miniram_scan() function is used to scan a range of ECR Mini-RAM addresses
to obtain failure count and optionally failure details. Note the following:

• Each ECR Mini-RAM address actually represents an arbitrary number of Main ECR
RAM addresses, as configured using ecr_miniram_config_set(). Each Mini-
RAM address stores one bit indicating whether any of the associated Main ECR
RAM addresses contain error(s).

ecr_miniram_config_set(2, 1, 0xC, 0x8);

y_compress_mask enables only the
MSB column address bit for use in
accessing the ECR Mini-RAM (the
low 3 column address bits are
masked)

x_compress_mask enables the 2 MSB
row address bits for use in accessing the
ECR Mini-RAM (the low 2 row address
bits are masked)

Four ECR Mini-RAM rows are needed, thus the numx
argument specifies that 2 row address bits are used to
select between ECR Mini-RAM rows. The
x_compress_mask determines that the 2 MSB bits
are used.

2 ECR Mini-RAM columns are needed, thus the
numy argument specifies that 1 column address
bit is used to select between ECR Mini-RAM
columns. The y_compress_mask determines
that the MSB bit is used.
 2/27/09 Pg-892

Error Catch RAM Software
• When a given Mini-RAM address/bit contains an error it indicates that one or more
errors were logged at any of the DUT addresses mapped to the Mini-RAM.

• Two versions of ecr_miniram_scan() are provided:
• The 1st only returns an error count.
• The 2nd counts error addresses and also returns details about each error

counted.
• In Multi-DUT Test Programs, only the ECR logging errors from the first DUT in the

Active DUTs Set (ADS) is scanned.
• The ecr_column_ram_scan() function operates similarly on the Column RAMs

and the ecr_row_ram_scan() function operates similarly on the Row RAMs.

Usage
The following function scans the specified range of ECR Mini-RAM address(es) counting
either failing addresses or failing bits:

int ecr_miniram_scan(int rmin,
int rmax,
int cmin,
int cmax,
int max,
BOOL bit_cnt);

The following function scans the specified range of ECR Mini-RAM address(es) counting
errors. Error details are returned via the failures argument:

int ecr_miniram_scan(int rmin,
int rmax,
int cmin,
int cmax,
int max,
struct PointFailure *failures);

where:

rmin, rmax, cmin and cmax identify a range of ECR Mini-RAM address(es) to be read
where
0 <= rmin <= rmax <= ((1 << miniram_numx) -1) and
0 <= cmin <= cmax <= ((1 << miniram_numy) -1). Note that these values should be
specified in the context of the Mini-RAM; i.e. were there any errors logged to the Mini-RAM
within the range of Mini-RAM rmin/cmin to rmax/cmax, as configured using
ecr_miniram_config_set()).
 2/27/09 Pg-893

Error Catch RAM Software
max specifies a maximum number of errors to be read.

bit_cnt specifies whether error bits are counted (TRUE) or error addresses are counted
(FALSE). Since the Mini-RAM only stores 1 bit per address, bit count and address count
scans of the Mini-RAM will return identical results. This argument is included for consistency
with the other scan functions.

failures is a pointer to an existing PointFailures array, used to return error details:
Mini-RAM row address, column address, and data (0 or 1). User code is responsible for
allocating memory for this array. See ALLOCA_POINT_FAILURE() for one method. Since
the number of failures returned can vary, the number of PointFailure elements allocated
must anticipate the worse case number of failures which might be returned. When using
failures, proper memory management methods are critical to program reliability.

ecr_miniram_scan() returns the number of errors counted. This also equates to the
number of valid elements in the failures array.

Example
The following example could be used to scan the Mini-RAM Example Configuration shown
above:

PointFailure *fails = ALLOCA_POINT_FAILURE(8);
int c = ecr_miniram_scan(0, 3, 0, 1, 8, fails);

3.25.2.22 ecr_overflow_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_overflow_get() function is used to determine whether a specific ECR Error
Counters overflowed (i.e. counted past the maximum, rolled-over, etc.). Note the following:

• The ecr_any_overflow_get() function can be used to determine whether any
counter overflowed. Then, the specific counter which overflowed can be determined
using ecr_overflow_get().

• In Multi-DUT Test Programs, only the ECR from the first DUT in the Active DUTs
Set (ADS) is checked.
 2/27/09 Pg-894

Error Catch RAM Software
Usage
BOOL ecr_overflow_get(EcrErrorCounters type);

where:

type specifies which of the ECR Error Counters is to be checked. Legal values are of the
EcrErrorCounters enumerated type.

ecr_overflow_get() returns TRUE if the specified counter had overflowed and FALSE if
not.

Example
The following example checks the Total Error Counter for each DUT in the Active DUTs Set
(ADS):

ActiveDutIterator duts;
while (duts.More()) {

if(ecr_overflow_get(t_tec) == TRUE)
output(" DUT-%d: the TEC DID overflow",

active_dut_get()+1);
else

output(" DUT-%d: the TEC did NOT overflow",
active_dut_get()+1);

}

3.25.2.23 ecr_row_ram_scan()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_row_ram_scan() function is used to scan a range of Row RAM addresses to
determine the number of row errors which have been logged. Note the following:

• Two versions of ecr_row_ram_scan() are provided:
• The 1st only returns an error count, which can be a count of error bits or error

addresses.
• The 2nd counts error addresses and also returns details about each error

counted.
 2/27/09 Pg-895

Error Catch RAM Software
• In Multi-DUT Test Programs, only the ECR logging errors from the first DUT in the
Active DUTs Set (ADS) is scanned.

• The ecr_column_ram_scan() function operates similarly on the Column RAMs
and the ecr_miniram_scan() function operates similarly on the ECR Mini-
RAMs.

Usage
The following function scans the specified range of Row RAM address(es) counting either
failing addresses or failing bits:

int ecr_row_ram_scan(int rmin,
int rmax,
__int64 mask,
int max,
BOOL bit_cnt);

The following function scans the specified range of Row RAM address(es) counting failing
addresses. Error details are returned via the failures argument:

int ecr_row_ram_scan(int rmin,
int rmax,
__int64 mask,
int max,
struct PointFailure *failures);

where:

rmin and rmax identify a range of Row RAM address to be read where
0 <= rmin <= rmax <= xmax().

mask is a bit-mask which can be used to ignore errors on a per-pin basis. A logic-1 enables
the error for that bit position to be counted/returned, a logic-0 inhibits an error from being
counted/returned. The order of bits in mask must correspond to the order of pins in the
datapins argument specified for ecr_config_set().

max specifies a maximum number of errors to be read. If this value is exceeded
ecr_row_ram_scan() returns, potentially without scanning the entire Row RAM.

bit_cnt specifies whether error bits are counted (TRUE) or error addresses are counted
(FALSE). Using the latter, any number of error bits at a given Row RAM address will count
as one error.

failures is a pointer to an existing PointFailures array, used to return error details:
row address, column address (always 0 when scanning the Row RAM), and data. User code
 2/27/09 Pg-896

Error Catch RAM Software
is responsible for allocating memory for this array. See ALLOCA_POINT_FAILURE() for
one method. Since the number of failures returned can vary, the number of PointFailure
elements allocated must anticipate the worse case number of failures which might be
returned. When using failures, proper memory management methods are critical to
program reliability.

ecr_row_ram_scan() returns the number of errors counted. This also equates to the
number of valid elements in the failures array.

Example
int c = ecr_row_ram_scan(10, 20, 0xFF, 100, TRUE);

Also see Example.

3.25.2.24 ecr_write_mode_set(), ecr_write_mode_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Note: on 10/31/06 the Magnum 1 documentation for the ECR write mode was
modified to remove references to the t_abs_write mode. The mode was
never implemented due to hardware limitations. This effectively makes these
two functions obsolete using Magnum 1 since the ECR write mode must be set
to the only supported mode using ecr_config_set(). Thus, the text for these
functions was removed.

3.25.2.25 ecr_area_clear()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_area_clear() function is used to clear a specific area of an Error Catch RAM
(ECR). Note the following:

• The term clear means to delete any errors logged within the specified region of
ECR address(es).
 2/27/09 Pg-897

Error Catch RAM Software
• By default, ecr_area_clear() clears only the Main ECR RAM; i.e. the Row
RAM, Column RAM and ECR Mini-RAM are not cleared. The clear_rcmini
argument can be used to change this operation (not recommended, see Note:).

• ecr_area_clear() does not modify the ECR Error Counters.
• By default, the all_duts argument is FALSE which, in Multi-DUT Test Programs,

causes ecr_area_clear() to only clear ECRs for DUT(s) currently in the Active
DUTs Set (ADS). Setting all_duts = TRUE causes ecr_area_clear() to clear
the ECR for all DUTs; i.e. ignore the Active DUTs Set (ADS).

• The ECR area to be cleared is specified using 4 values:
- rmin and cmin identify the upper left corner of the area to be cleared.
- rmax and cmax identify the lower right corner of the area to be cleared.
- The ECR address region bounded by these corners will be cleared.

• A single ECR address can be cleared: set rmin=rmax and cmin=cmax. However,
ecr_error_set() is a better method.

• A single ECR column can be cleared: set cmin=cmax to identify the column. Set
rmin and rmax to identify which addresses within the column to be cleared.

• A single ECR row can be cleared: set rmin=rmax to identify the row. Set cmin
and cmax to identify which addresses within the row are to be cleared.

• The default Maverick-I/-II clear_area() function maps to:
ecr_area_clear(r,r,c,c,TRUE,TRUE).

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after
funtest() is executed. Conversely, these values are suspect ANY time user-
code or ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Also see ecr_all_clear(), ecr_rams_clear(), ecr_counters_clear().

Usage
void ecr_area_clear(DWORD rmin,

DWORD rmax,
DWORD cmin,
DWORD cmax,
BOOL clear_rcmini DEFAULT_VALUE(FALSE),
BOOL all_duts DEFAULT_VALUE(FALSE));
 2/27/09 Pg-898

Error Catch RAM Software
where:

rmin and cmin identify the upper left corner of the region to be cleared. These are zero-
based values; i.e. 0,0 is the first address of the ECR (upper left corner).

rmax and cmax identify the lower right corner of the region to be cleared.

clear_rcmini is optional, and if used specifies whether the corresponding Row RAM,
Column RAM and ECR Mini-RAM addresses should be cleared. Default = FALSE.
Important: see Note:.

all_duts is optional, and only used in Multi-DUT Test Programs. See Description.

Example
The following function sets up the ECR for the subsequent clear examples:

ecr_config_set(numx(), numy(), datapins); // ecr_config_set()

The following function clears only the first ECR address of the Main ECR RAM, for the
DUT(s) in the Active DUTs Set (ADS):

ecr_area_clear(0, 0, 0, 0);

The following function clears the first row of the Main ECR RAM for all DUTs:

ecr_area_clear(0, 0, 0, ymax(), FALSE, TRUE);

The following function clears the first column for DUT(s) in the Active DUTs Set (ADS):

ecr_area_clear(0, xmax(), 2, 2); // Clear entire third column

The following example clears a 3x3 area of the Main ECR RAM and the corresponding Row
RAM, Column RAM, and ECR Mini-RAM (not shown below) addresses. Note that 2 errors
(red) remain in the Main ECR RAM which are not correctly flagged in the Row RAM and
Column RAM; i.e. when if the ECR Row RAM and/or Column RAM are scanned (read)
these 2 errors will not be reported. In most applications, this is BAD. See Note:.
 2/27/09 Pg-899

Error Catch RAM Software
ecr_area_clear(2, 4, 1, 3, TRUE);

3.25.2.26 ecr_col_ram_read()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_col_ram_read() function is used to read error data from one or more ECR
Column RAM addresses. Note the following:

• Two versions of ecr_col_ram_read() are provided:
• The first returns the value of one location in the Column RAM.
• The second returns an array of values from a range of Column RAM addresses,

identified using the cmin and cmax arguments.
• Using the latter, each bit of each returned value represents a corresponding pin

being logged to the ECR. The number of valid bits and the bit order matches the
order of pins specified by the datapins argument to ecr_config_set().

• In Multi-DUT Test Programs, the Column RAM of the ECR for the first DUT in the
Active DUTs Set (ADS) is read.

• Also see ecr_row_ram_read().

Columns
0 41 2 3 5 6 7 8 9

0
1
2
3
4
5
6
7
8
9

Rows

...

...

...

...

...

...

...

...

...

...
...
...
...
...
...
...
...
...
...
...

Cleared areas shown
in green

Main ECR RAM

Row RAM

Column RAM

 2/27/09 Pg-900

Error Catch RAM Software
Usage
__int64 ecr_col_ram_read(int adr);

void ecr_col_ram_read(int cmin,
int cmax,
unsigned __int64* values,
int numValues);

where:

adr identifies one Column RAM address to be read.

cmin and cmax identify a range of Column RAM address(es) to be read where
0 <= cmin <= cmax <= ymax().

values is a pointer to an existing unsigned __int64 array used to return one or more
values. The values array must be allocated by user code, and be [at least]
((cmax - cmin) + 1) elements long.

numValues specifies the size of the values array. If numValues < ((cmax - cmin) + 1), a
warning is issued, and the contents of values is unchanged.

The first version of ecr_col_ram_read() returns the value read from the specified adr.
See Description.

Example
The following example will read the Column RAM from address 5 through 10 and place the
values read into the vals array at indexes 0 through 5. This requires an array with 6
elements:

unsigned __int64 vals[6];
ecr_col_ram_read(5, 10, vals, 6);

3.25.2.27 ecr_col_ram_write()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_col_ram_write() function is used to write value(s) into one or more ECR
Column RAM addresses. Note the following:
 2/27/09 Pg-901

Error Catch RAM Software
• Two versions of ecr_col_ram_write() are provided:
• The first writes to one specified Column RAM address.
• The second writes an array of values to a range of Column RAM addresses,

identified using the cmin and cmax arguments. Each array value represents the
value written to one Column RAM address.

• Each bit of each value written represents a corresponding pin being logged to the
ECR. The number of valid bits and the bit order must match the order of pins
specified by the datapins argument to ecr_config_set().

• In Multi-DUT Test Programs, values are written to the Column RAMs of all ECRs of
DUT(s) in the Active DUTs Set (ADS).

• Also see ecr_row_ram_write().

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Usage
void ecr_col_ram_write(int adr,

unsigned __int64 value);

void ecr_col_ram_write(int cmin,
int cmax,
unsigned __int64* values,
int numValues);

where:

adr identifies one Column RAM address to be written.

value specifies the value to be written to adr.

cmin and cmax identify a range of Column RAM address to be written where
0 <= cmin <= cmax <= ymax().

values is an array containing one or more values to be written to the range of Column RAM
address specified by cmin and cmax. The array must contain at least as many values as
((cmax-cmin)+1). If this rule is violated a warning is issued and the Column RAM is not
modified.
 2/27/09 Pg-902

Error Catch RAM Software
numValues specifies the size of the values array.

Example
ecr_col_ram_write(10, 0xA5);

unsigned __int64 errs[] = {0x1, 0x2, 0x3,0x4 };
ecr_col_ram_write(10, 13, errs, 4);

3.25.2.28 ecr_counters_clear()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_counters_clear() function is used to clear a specific Error Catch RAM (ECR)
counter. Note the following:

• The term clear means to set the specified counter to 0.
• By default, all ECR counters are cleared. The counter argument can be used to

identify specific ECR counter(s) to be cleared (see Note:):

• The Main ECR RAM, Row RAM, Column RAM and ECR Mini-RAMare not
modified.

EcrRamTypes Hardware RAM

t_tec Total Error Counters

t_rec Row Error Counters

t_cec Col Error Counters

t_ioc1
thru

t_ioc36
Specified IOC Error Counters

t_all_ioc All IOC Error Counters

t_all_ecr_counters All the above
 2/27/09 Pg-903

Error Catch RAM Software
• By default, the all_duts argument is FALSE which, in Multi-DUT Test Programs,
causes ecr_counters_clear() to clear the counter(s) only for DUT(s) currently
in the Active DUTs Set (ADS). Setting all_duts = TRUE causes
ecr_counters_clear() to clear the counter(s) for all DUTs; i.e. ignore the
Active DUTs Set (ADS).

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Also see ecr_all_clear(), ecr_area_clear(), ecr_rams_clear().

Usage
void ecr_counters_clear(

EcrErrorCounters counter DEFAULT_VALUE(t_all_ecr_counters),
BOOL all_duts DEFAULT_VALUE (FALSE));

where:

counter is optional, and if specified, identifies which counter(s) are to be cleared.
Default = all ECR counters (t_all_ecr_counters). Legal values are of the
EcrErrorCounters enumerated type (see table above).

all_duts is optional, and only useful in Multi-DUT Test Programs. all_duts determines
whether the counter(s) of all ECRs are cleared (TRUE) or whether only the counter(s) of
ECR(s) connected to DUT(s) in the Active DUTs Set (ADS) are cleared (FALSE, default).

Example
ecr_counters_clear();
ecr_counters_clear(t_all_ioc, TRUE);

3.25.2.29 ecr_error_add()
See Error Catch RAM (ECR), Error Catch RAM Software.
 2/27/09 Pg-904

Error Catch RAM Software
Description
The ecr_error_add() function is used to add one or more error(s) to the ECR RAMs
(Main ECR RAM, Row RAM, Column RAM and ECR Mini-RAM). Note the following:

• ecr_error_add() can only add errors, it cannot remove errors (see
ecr_error_delete() and ecr_error_set()).

• Two versions of ecr_error_add() are provided:
• The 1st modifies a single ECR address.
• The 2nd modifies one or more addresses, using an array of values. Array values

are always written to the ECR in X-fast order.
• Errors are added using a bit-wise value, with each logic-1 bit adding an error on a

corresponding pin being logged to the ECR. The number of valid bits and the bit
order must match the order of pins specified by the datapins argument to
ecr_config_set(). Logic-0 bit values have no effect on the ECR contents.

• Errors are added as appropriate to all ECR RAMs; i.e. Main ECR RAM, Row RAM,
Column RAM and ECR Mini-RAM.

• The ECR Error Counters are not modified, see note below.
• In Multi-DUT Test Programs, the ECRs for all DUTs in the Active DUTs Set (ADS)

are modified.

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Usage
void ecr_error_add(int row, int col, __int64 data);

void ecr_error_add(int rmin, int rmax,
int cmin, int cmax,
__int64* values,
int numValues);

where:

row and col identify a single ECR address to be modified, where
0 <= row <= xmax() and 0 <= col <= ymax().
 2/27/09 Pg-905

Error Catch RAM Software
data specifies the value to write to the ECR. See Description.

rmin, rmax, cmin and cmax identify a range of ECR addresses to be modified, where
0 <= rmin <= rmax <= xmax() and 0 <= cmin <= cmax <= ymax().

values is an array of values to be written to the ECR. See Description. The values array
must include [at least] ((rmax - rmin)+1)*((cmax - cmin)+ 1) elements. If this rule is
violated a warning is issued and the ECR is not modified.

numValues specifies the size of the values array.

Example
ecr_error_add(10, 20, 0xA5);
__int64 values[] = { 0x1, 0x2, 0x3, 0x4, 0x5, 0x6 };
ecr_error_add(2, 3, 5, 7, values, 6)

3.25.2.30 ecr_all_tecs_get(), ecr_all_ioc_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_all_tecs_get() function is used to read the values from all Total Error
Counters into a user-defined array.

The ecr_all_ioc_get() function is used to read the values from all IOC Error Counters
into a user-defined array.

Note the following:

Values are read and stored for every DUT in the program, as defined in the Pin Assign-
ment Table; i.e. the Active DUTs Set (ADS)is ignored.ECR Error CountersUsage

void ecr_all_tecs_get(__int64 *tec_array);

void ecr_all_ioc_get(EcrErrorCounters counter,
__int64 *ioc_array);

where:
 2/27/09 Pg-906

Error Catch RAM Software
tec_array is a user-defined and allocated __int64 array, used to return the values read
from the Total Error Counters. Values are stored in the array in DUT-number order; i.e.
t_dut1, t_dut2, etc.

counter identifies one I/O counter to be read. Legal values are of the
EcrErrorCounters enumerated type but only t_ioc1 to t_ioc36 are valid here.

ioc_array is a user-defined and allocated __int64 array, used to return the values read
from counter. Values are stored in the array in DUT-number order; i.e. t_dut1, t_dut2,
etc.

Example
__int64 vals[8]; // 8 DUTs in Pin Assignment Table
ecr_all_tecs_get(vals);

3.25.2.31 ecr_error_counter_set(), ecr_error_counter_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_error_counter_set() function is used to write a value to a specified ECR
Error Counters.

The ecr_error_counter_get() function is used to read a value from a specified ECR
Error Counters.

Note the following:

• The maximum legal count value depends upon the counter type:

Counter Type Bits Max Count

Total Error Counters t_tec
34

234 -1 = 17,179,869,183

 2/27/09 Pg-907

Error Catch RAM Software
• In Multi-DUT Test Programs, ecr_error_counter_set() sets the ECR for all
DUT(s) in the Active DUTs Set (ADS) and ecr_error_counter_get() reads the
ECR for the first DUT in the Active DUTs Set (ADS).

Usage
void ecr_error_counter_set(EcrErrorCounters counter,

__int64 value);

__int64 ecr_error_counter_get(EcrErrorCounters counter);

where:

counter identifies the counter to be accessed. Legal values are of the
EcrErrorCounters enumerated type. See table above.

value specifies the value to write to counter. Legal values are 0 to maximum, where
maximum is based on the specific counter being written. See table above.

ecr_error_counter_get() returns the current value from the counter read.

Example
ecr_error_counter_set(t_tec, 12345);
__int64 val = ecr_error_counter_get(t_tec);

3.25.2.32 ecr_error_delete()
See Error Catch RAM (ECR), Error Catch RAM Software.

Row Error Counters t_rec 18 218 -1 = 262,143

Col Error Counters t_cec 18 218 -1 = 262,143

IOC Error Counters
t_ioc1
thru

t_ioc36

32

232 -1 = 4,294,967,295

Counter Type Bits Max Count
 2/27/09 Pg-908

Error Catch RAM Software
Description
The ecr_error_delete() function is used to delete an error from one Main ECR RAM,
and optionally to update the ECR RAMs (Row RAM, Column RAM and ECR Mini-RAM), but
not ECR Error Counters

Note the following:

• The data value specified is a bit-wise value. The number of valid bits and the bit
order must match the order of pins specified by the datapins argument to
ecr_config_set(). For a given bit (pin), a logic-1 deletes an error from the ECR
and a logic-0 has no effect.

• By default, the other various ECR RAMs (see above) but not ECR Error Counters
are updated after the specified ECR address is written. To do this may require
scanning much or all of the Main ECR RAM, which can consume a noticeable
amount of time. The optional recalc argument can be used to inhibit this update,
but subsequent ECR scan (read) operations may not report errors correctly (see
Note below). In general, the only time the update should be inhibited is when
multiple ECR modifications are being made and ecr_rams_update() will be
executed (last) to update the ECR Mini-RAMs and ECR Error Counters.

• In Multi-DUT Test Programs, the ECRs for all DUTs in the Active DUTs Set (ADS)
are modified.

• Also see ecr_error_set() and ecr_error_add().

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Usage
void ecr_error_delete(int row,

int col,
__int64 data,
BOOL recalc DEFAULT_VALUE(TRUE));

where:

row and col identify a single ECR address to be modified, where
0 <= row <= xmax() and 0 <= col <= ymax().
 2/27/09 Pg-909

Error Catch RAM Software
data specifies a bit-wise mask, indicating which errors are to be deleted. See Description.

recalc is optional, and if specified determines whether the various ECR RAMs are updated
after the ECR modifications are complete. Default = TRUE; i.e. do update the ECR RAMs.
Before changing this to FALSE, read the Description and the Note above. This argument
has no effect on the ECR Error Counters, which are not updated.

Example
ecr_error_delete(10, 20, 0xA5);

3.25.2.33 ecr_error_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_error_get() function is used to read one Main ECR RAM address.

In Multi-DUT Test Programs, only the ECR for the first DUT in the Active DUTs Set (ADS) is
read.

Usage
__int64 ecr_error_get(int row, int col);

where:

row and col identify a single Main ECR RAM address to be read, where
0 <= row <= xmax() and 0 <= col <= ymax().

ecr_error_get() returns the value read. The number of valid bits and the bit order will
match the order of pins specified by the datapins argument to ecr_config_set(). For
a given bit (pin), a logic-1 represents an error and a logic-0 represents no error.

Example
__int64 errs = ecr_error_get(10, 20);
 2/27/09 Pg-910

Error Catch RAM Software
3.25.2.34 ecr_error_set()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_error_set() function is used to completely initialize one or more address(es) in
the Main ECR RAM, and optionally to update the ECR RAMs (Row RAM, Column RAM and
ECR Mini-RAM), but not ECR Error Counters.

Note the following:

• Two versions of ecr_error_set() are provided:
• The 1st writes to a single Main ECR RAM address.
• The 2nd writes to one or more addresses, using an array of values. Array values

are always written to the Main ECR RAM in X-fast order.
• The value written to each address is bit-wise value. The number of valid bits and

the bit order must match the order of pins specified by the datapins argument to
ecr_config_set(). For a given bit (pin), a logic-1 inserts an error to the ECR
and a logic-0 clears an error from the ECR.

• By default, the other various ECR RAMs (see above) but not ECR Error Counters
are updated after the specified ECR addresses are written. This may require
scanning much or all of the Main ECR RAM, which can consume a noticeable
amount of time. The optional recalc argument can be used to inhibit this update,
but subsequent ECR scan (read) operations may not report errors correctly (see
Note below). In general, the only time the update should be inhibited is when
multiple ECR modifications are being made and ecr_rams_update() will be
executed (last) to update the ECR RAMs and ECR Error Counters.

• In Multi-DUT Test Programs, the ECRs for all DUTs in the Active DUTs Set (ADS)
are modified.

• Also see ecr_error_delete() and ecr_error_add().

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().
 2/27/09 Pg-911

Error Catch RAM Software
Usage
void ecr_error_set(int row,

int col,
__int64 data,
BOOL recalc DEFAULT_VALUE(TRUE));

void ecr_error_set(int rmin, int rmax,
int cmin, int cmax,
__int64* values,
int numValues,
BOOL recalc DEFAULT_VALUE(TRUE));

where:

row and col identify a single ECR address to be modified, where
0 <= row <= xmax() and 0 <= col <= ymax().

data specifies the value to write to the ECR. See Description.

recalc is optional, and if specified determines whether the various ECR RAMs are updated
after the ECR modifications are complete. Default = TRUE; i.e. do update the ECR RAMs.
Before changing this to FALSE, read the Description and the Note above. This argument
has no effect on the ECR Error Counters, which are not updated.

rmin, rmax, cmin and cmax identify a range of ECR address to be modified, where
0 <= rmin <= rmax <= xmax() and 0 <= cmin <= cmax <= ymax().

values is an array of values to be written to the ECR. See Description. The values array
must include [at least] (((rmax - rmin) +1) * (cmax - cmin) + 1)) elements. If this rule is
violated a warning is issued and the ECR is not modified.

numValues specifies the size of the values array.

Example
ecr_error_set(10, 20, 0xA5);
__int64 values[] = { 0x1, 0x2, 0x3, 0x4, 0x5, 0x6 };
ecr_error_set(2, 3, 5, 7, values, 6);

3.25.2.35 ecr_miniram_read()
See Error Catch RAM (ECR), Error Catch RAM Software.
 2/27/09 Pg-912

Error Catch RAM Software
Description
The ecr_miniram_read() function is used to read one or more ECR Mini-RAM
addresses. Note the following:

• The addresses to be read are specified in the context of the ECR Mini-RAM, not
DUT addresses or ECR addresses. See ECR Mini-RAM for a description of the
hardware and ecr_miniram_config_set() for a description of ECR Mini-RAM
addressing and how it maps to the main ECR.

• Values are returned in a user-defined array.
• Only the LSB bit of each value read is valid. A logic-1 indicates an error was logged

to the ECR Mini-RAM address and a logic-0 indicates no error was logged to the
ECR Mini-RAM address. As noted in ecr_miniram_config_set(), a given
Mini-RAM error can represent a large number of errors in the Main ECR RAM.

• The ECR Mini-RAM is always read in the X-fast direction.
• A single address can be read by setting xmax = xmin and ymax = ymin.
• In Multi-DUT Test Programs, the ECR Mini-RAM of the ECR for the first DUT in the

Active DUTs Set (ADS) is read.
• Also see ecr_miniram_scan().

Usage
The following function reads one ECR Mini-RAM address:

int ecr_miniram_read(int x, int y);

The following function reads one or more ECR Mini-RAM address(es):

void ecr_miniram_read(int xmin,
int xmax,
int ymin,
int ymax,
int* values,
int numValues);

where:

x and y specify one address to be read.

xmin, xmax, ymin and ymax identify a range of ECR Mini-RAM address to be read, where:

• 0 <= xmin <= xmax <= MiniRam_xmax, where MiniRam_xmax is determined by
the numx argument to ecr_miniram_config_set(); i.e.
MiniRam_xmax = 2numx.
 2/27/09 Pg-913

Error Catch RAM Software
• 0 <= ymin <= ymax <= MiniRam_ymax, where MiniRam_ymax is determined by
the numy argument to ecr_miniram_config_set(); i.e.
MiniRam_xmax = 2numy.

values is a pointer to an existing user-defined array used to return a value for each
address read. User code is responsible for allocating array memory, which must include [at
least] ((xmax - xmin) +1) * ((ymax - ymin) + 1)) elements. If this rule is violated a warning is
issued and no values are returned.

numValues specifies the size of the values array.

Example
int vals[12];
ecr_miniram_read(0, 2, 0, 3 , vals, 12);

3.25.2.36 ecr_miniram_write()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_miniram_write() function is used to write errors to one or more ECR Mini-RAM
addresses. Note the following:

• ecr_miniram_write() does NOT update any other ECR RAMs (Main ECR
RAM, Row RAM, Column RAM and ECR Mini-RAM) or ECR Error Counters. See
Note below.

• The addresses to be written are specified in the context of the ECR Mini-RAM, not
DUT addresses or ECR addresses. See Mini-RAM for a description of the
hardware and ecr_miniram_config_set() for a description of Mini-RAM
addressing and how it maps to the main ECR. As noted in
ecr_miniram_config_set(), a given Mini-RAM error can represent a large
number of errors in the Mini-RAM.

• Value(s) are written to the ECR Mini-RAM using an array, with each element
written to one Mini-RAM address. Values are always written in the X-fast order.

• Only the LSB bit of each value is valid. A logic-1 represents an error and a logic-0
represents no error.

• In Multi-DUT Test Programs, the ECRs for all DUTs in the Active DUTs Set (ADS)
are modified.
 2/27/09 Pg-914

Error Catch RAM Software
Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Usage
The following function modifies one ECR Mini-RAM address:

void ecr_miniram_write(int x, int y, int value);

The following function modifies one or more Mini-RAM address(es):

void ecr_miniram_write(int xmin,
int xmax,
int ymin,
int ymax,
int* values,
int numValues);

where:

x and y specify one address to be written.

xmin, xmax, ymin and ymax identify a range of Mini-RAM address to be written, where:

• 0 <= xmin <= xmax <= MiniRam_xmax, where MiniRam_xmax is determined by
the numx argument to ecr_miniram_config_set(); i.e.
MiniRam_xmax = (2numx -1).

• 0 <= ymin <= ymax <= MiniRam_ymax, where MiniRam_ymax is determined by
the numy argument to ecr_miniram_config_set(); i.e.
MiniRam_xmax = (2numy -1).

values is a user-defined array of values. See Description. The array must contain at least
as many values as ((xmax - xmin) +1) * (ymax - ymin) +1). If this rule is violated a warning
is issued and the ECR Mini-RAM is not modified.

numValues specifies the size of the values array.
 2/27/09 Pg-915

Error Catch RAM Software
Example
int errs[] = { 1, 0, 1, 1, 1, 0 };
ecr_miniram_write(0, 1, 0, 2, errs, 6);

3.25.2.37 ecr_rams_clear()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_rams_clear() function is used to clear a specific Error Catch RAM (ECR)
RAMs. Note the following:

• The term clear means to delete any errors logged in the specified RAM.
• The ram_type argument identifies the ECR RAM to be cleared:

• The ECR Error Counters are not modified, see ecr_counters_clear() and
ecr_all_clear().

• By default, the all_duts argument is FALSE which, in Multi-DUT Test Programs,
causes ecr_rams_clear() to only clear the RAM(s) of ECRs for DUT(s)
currently in the Active DUTs Set (ADS). Setting all_duts = TRUE causes
ecr_rams_clear() to clear the RAM(s) of all ECRs; i.e. ignore the Active DUTs
Set (ADS).

EcrRamTypes Hardware RAM

t_main_array Main ECR RAM

t_row_catch Row RAM

t_col_catch Column RAM

t_mini ECR Mini-RAM

t_all_ecr_rams All the above
 2/27/09 Pg-916

Error Catch RAM Software
Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Also see ecr_all_clear(), ecr_area_clear(), ecr_counters_clear().

Usage
void ecr_rams_clear(EcrRamTypes ram_type,

BOOL all_duts DEFAULT_VALUE(FALSE));

where:

ram_type identifies the ECR RAM to be cleared. Legal values are of the EcrRamTypes
enumerated type. See table above.

all_duts is optional, and only used in Multi-DUT Test Programs. all_duts determines
whether the RAM(s) of all ECRs are cleared (default = FALSE) or whether only the RAM(s)
of ECR(s) connected to DUT(s) in the Active DUTs Set (ADS) are cleared (TRUE). See
Description.

Example
The following example clears only the Main ECR RAM. In Multi-DUT Test Programs, only
ECRs for DUT(s) currently in the Active DUTs Set (ADS) are affected:

ecr_rams_clear(t_main_array);

3.25.2.38 ecr_rams_update()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_rams_update() function is used to re-synchronize the Row RAM, Column RAM
and ECR Mini-RAM and optionally the ECR Error Counters. This may be necessary after
modifying the contents of the Main ECR RAM using any of ecr_error_delete(),
 2/27/09 Pg-917

Error Catch RAM Software
ecr_error_set(), ecr_area_clear() (but not ecr_error_add()) or using
ECRTool. See Note below.

By default, the Row RAM, Column RAM and ECR Mini-RAM and ECR Error Counters are all
updated when ECR contents are modified using ecr_error_delete(),
ecr_error_set() or ecr_area_clear(), but this operation can be over-ridden. And, if
the Main ECR RAM contents are modified using ECRTool, these RAMs/counters are
guaranteed to be out-of-sync with the main ECR RAM contents.

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after
funtest() is executed. Conversely, these values are suspect ANY time user-
code or ECRTool modifies some values in the ECR hardware. Use
ecr_rams_update() to reestablish synchronization.

Executing ecr_rams_update() causes the entire Main ECR RAM to be scanned, which
can consume a noticeable amount of time. To improve this performance, each time the ECR
is modified using the functions noted above, the system software records the changes made
to the ECR. Then, to re-synchronize the RAMs/counters with the main ECR RAM this
change list is used by ecr_rams_update() to selectively update the RAMs/counters.

The main ECR RAM and the associated RAMs/counters are also re-synchronized any time
the ECR is cleared, which can be done using ecr_all_clear() or ecr_config_set(),
which also clears the ECR.

Beginning in software release h2.3.xx/h1.3.xx, after 16k modifications are made to the main
ECR RAM without performing either of the above and without using ecr_rams_update(),
the system software stops tracking any new changes to the main RAM. Then, if
ecr_rams_update() is executed the system software assumes that the entire ECR has
been modified and re-scans the entire ECR (prior to 16K changes ecr_rams_update()
uses the change list to scan only the area of the ECR that has been changed, which may be
faster). This can be prevented by clearing the ECR (ecr_all_clear()), reconfiguring the
ECR (ecr_config_set()) or executing ecr_rams_update() before 16K ECR
modifications are made as described above.

In Multi-DUT Test Programs, ecr_rams_update() only affects the ECRs for DUT(s)
currently in the Active DUTs Set (ADS).

In Multi-DUT Test Programs, the ECRs for all DUTs in the Active DUTs Set (ADS) are
modified.
 2/27/09 Pg-918

Error Catch RAM Software
Usage
void ecr_rams_update(

BOOL update_counters DEFAULT_VALUE (FALSE));

where:

update_counters is optional, and if specified determines whether the various ECR Error
Counters are also updated (TRUE) or not updated (FALSE). Default = FALSE.

Example
ecr_rams_update(TRUE);

3.25.2.39 ecr_row_ram_read()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_row_ram_read() function is used to read error data from one or more ECR Row
RAM addresses. Note the following:

• Two versions of ecr_row_ram_read() are provided:
• The first returns the value in one specified Row RAM address.
• The second returns an array of values from a range of Row RAM addresses,

identified using the rmin and rmax arguments.
• Using the latter, each bit of each returned value represents a corresponding pin

being logged to the ECR. The number of valid bits and the bit order matches the
order of pins specified by the datapins argument to ecr_config_set().

• In Multi-DUT Test Programs, only the Row RAM of the ECR for the first DUT in the
Active DUTs Set (ADS) is read.

• Also see ecr_col_ram_read().

Usage
__int64 ecr_row_ram_read(int adr);
 2/27/09 Pg-919

Error Catch RAM Software
void ecr_row_ram_read(int rmin,
int rmax,
unsigned __int64* value,
int numValues);

where:

adr identifies one Row RAM address to be read.

rmin and rmax identify a range of Row RAM address to be read where
0 <= rmin <= rmax <= xmax().

values is a pointer to an existing unsigned __int64 array used to return one or more
error values. The values array must be allocated by user code, and be [at least]
((rmax - rmin) + 1) elements long.

numValues specifies the size of the values array. If numValues < ((rmax - rmin) + 1), a
warning is issued, and the contents of values is unchanged.

The first version of ecr_row_ram_read() returns the number of errors read from the
specified adr. See Description.

Example
The following example will read the Row RAM from address 3 through 8 and place the
values read into the vals array at indexes 0 through 5. This requires an array with 6
elements:

unsigned __int64 vals[6];
ecr_row_ram_read(3, 8, vals, 6);

3.25.2.40 ecr_row_ram_write()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ecr_row_ram_write() function is used to write value(s) into one or more ECR Row
RAM addresses. Note the following:

• Two versions of ecr_row_ram_write() are provided:
• The first writes to one specified Row RAM address.
 2/27/09 Pg-920

Error Catch RAM Software
• The second writes an array of values to a range of Row RAM addresses,
identified using the rmin and rmax arguments. Each array value represents the
value written to one Row RAM address.

• Each bit of each value written represents a corresponding pin being logged to the
ECR. The number of valid bits and the bit order must match the order of pins
specified by the datapins argument to ecr_config_set().

• In Multi-DUT Test Programs, values are written to the Row RAMs of all ECRs of
DUT(s) in the Active DUTs Set (ADS).

• Also see ecr_col_ram_write().

Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Usage
void ecr_row_ram_write(int adr, unsigned __int64 value);

void ecr_row_ram_write(int rmin,
int rmax,
unsigned __int64* value,
int numValues);

where:

adr identifies one Row RAM address to be written.

value specifies the value to be written to adr.

rmin and rmax identify a range of Row RAM address to be written where
0 <= rmin <= rmax <= xmax().

values is an array containing one or more values to be written to the range of Row RAM
address specified by rmin and rmax. The array must contain at least as many values as
((rmax-rmin)+1). If this rule is violated a warning is issued and the Row RAM is not
modified.

numValues specifies the size of the values array.
 2/27/09 Pg-921

Error Catch RAM Software
Example
ecr_row_ram_write(13, 0xA5);

unsigned __int64 errs[] = {0x1, 0x2, 0x3,0x4 };
ecr_col_ram_write(22, 25, errs, 4);

3.25.2.41 ecr_scramble_bank_set(), ecr_scramble_bank_get()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description
The ECR has 4 banks each of X/Y Scramble RAM. The X/Y Scramble RAMs allow the X
and/or Y address bit(s) mapping to the ECR to be modified.

The ecr_scramble_bank_set() function is used to select which of 4 X and/or Y
Scramble RAM banks is enabled.

The ecr_scramble_bank_get() function is used to get the current bank selections.

Note the following:

• During initial program load, bank-0 is selected for both X and Y addresses. The
system software does not otherwise change this selection.

• The currently selected banks are used during ECR capture operations.
• Only the currently selected banks are accessed by

ecr_scramble_ram_write(), ecr_scramble_ram_read().

Usage
void ecr_scramble_bank_set(int x_bank, int y_bank);

void ecr_scramble_bank_get(int* x_bank, int* y_bank);

where:

x_bank and y_bank are used in two contexts:

• In the set function, they are used to select the bank. Legal values are 0 to 3,
representing bank-0 to bank-3.

• In the get function, these are pointers to 2 existing int variables used to return
the current bank selection.
 2/27/09 Pg-922

Error Catch RAM Software
Example
The following example sets bank-2 for both the X and Y Scramble RAM, then gets the
current selection:

ecr_scramble_bank_set(2, 2);
int x_bank, y_bank;
ecr_scramble_bank_set(&x_bank, &y_bank);

3.25.2.42 ecr_scramble_ram_write(), ecr_scramble_ram_read()
See Error Catch RAM (ECR), Error Catch RAM Software.

Description

The ecr_scramble_ram_write() function is used to write values to the X/Y Scramble
RAMs.

The ecr_scramble_ram_read() function can be used to read values from the X/Y
Scramble RAMs.

Note the following:

• The X/Y Scramble RAM has 4 banks, selectable using the
ecr_scramble_bank_set() function. The currently selected bank is accessed
when using ecr_scramble_ram_write() and ecr_scramble_ram_read().

• During the initial program load, bank-0 is linearized, the other 3 banks are not
configured i.e. they contain random contents. The system software does not
otherwise modify the X/Y Scramble RAM.

Usage
void ecr_scramble_ram_write(EcrScrambleRamTypes type,

int start,
int stop,
int* values,
int numValues);
 2/27/09 Pg-923

Error Catch RAM Software
void ecr_scramble_ram_read(EcrScrambleRamTypes type,
int start,
int stop,
int* values,
int numValues);

where:

type selects whether the X (t_x_scramble) or Y (t_y_scramble) Scramble RAM is
being accessed. Legal values are of the EcrScrambleRamTypes enumerated type.

start and stop specify the first and last address being accessed.

values is an array of numValues size. In the set function, values contains the values to
be written to the selected Scramble RAM. In the get function, values returns the values
read from the selected Scramble RAM.

If numValues < (stop-start)+1 a warning is issued and the function returns immediately.

Example
int write_values[] = { 0, 2, 4, 6, 8, 1, 3, 5, 7, 9 };
ecr_scramble_ram_write(t_x_scramble, 0, 9, write_values, 10);
int read_values[10];
ecr_scramble_ram_read(t_x_scramble, 0, 9, read_values, 10);

3.25.2.43 ecr_x_y_data_set()
See Error Catch RAM (ECR), Error Catch RAM Software.

Note: on 10/14/2008, this function was un-documented as a way of deprecating its
use. Use ecr_config_set(), to ensure all dependent hardware and software
is correctly configured.

3.25.3 ECR DDR Functions
See Error Catch RAM (ECR), Error Catch RAM Software, Double Data Rate (DDR) Mode.

This section contains the following:
 2/27/09 Pg-924

Error Catch RAM Software
• ecr_ddr_mode_set(), ecr_ddr_mode_get()

3.25.3.1 ecr_ddr_mode_set(), ecr_ddr_mode_get()
See Error Catch RAM (ECR), Error Catch RAM Software, Double Data Rate (DDR) Mode.

Description

The ecr_ddr_mode_set() function is used to enable DDR ECR use. The
ecr_ddr_mode_get() function is used to look-up the current DDR state of the ECR.

Note: there is an execution order dependency between ecr_ddr_mode_set() and
ecr_config_set(). ecr_ddr_mode_set() is used to set a mode which is
detected by ecr_config_set(). Thus ecr_ddr_mode_set() MUST be
executed before ecr_config_set().

When ecr_config_set() is executed, a check is made to see if ecr_ddr_mode_set()
has set DDR mode and the ECR is configured accordingly. See DDR Fail Signal MUX:
Memory Error Catch.

To toggle between DDR and non-DDR mode is simpler, provided the basic ECR
configuration is not changed:

• To toggle to non-DDR, execute ecr_ddr_mode_set(FALSE).
• To re-enable DDR, execute ecr_ddr_mode_set(TRUE,t_xx), where xx

identifies the address differentiator (see DDR Fail Signal MUX: Memory Error
Catch).

• When ecr_ddr_mode_set() is executed to change the address differentiator
(t_xx above) ecr_config_set() MUST be executed again.

• If ecr_config_set() is to be executed again, as might be done to change the
ECR configuration, the ecr_ddr_mode_set() function must also be executed
again, before ecr_config_set().

• The Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on these
functions.

Usage
The following function is used to set the ECR DDR mode configuration:
 2/27/09 Pg-925

Error Catch RAM Software
void ecr_ddr_mode_set(BOOL allow_ddr, TesterFunc ddr_adr);

The following function is used to get the current ECR DDR configuration:

BOOL ecr_ddr_mode_get(TesterFunc *ddr_adr);

where:

allow_ddr specifies whether the ECR is to be configured for DDR capture (TRUE) or non-
DDR capture (FALSE).

ddr_adr is used in two contexts:

• In the setter function, ddr_adr specifies the address differentiator (see DDR Fail
Signal MUX: Memory Error Catch). Legal values are one of the TesterFunc
enumerated types.

• In the getter function, ddr_adr is a pointer to an existing TesterFunc variable
used to return the current address differentiator value.

ecr_ddr_mode_get returns the ECR’s current DDR configuration state.

Example
ecr_ddr_mode_set(TRUE, t_y0);

TesterFunc f;
BOOL state = ecr_ddr_mode_get(&f);

3.25.4 ECR Simulation
See Error Catch RAM Software.

To simulate Magnum 1/2/2x ECR operation only requires performing the Magnum 1/2/2x
Simulation Setup.

Note the following:

• User code must insert failures into the simulated ECR, using ecr_error_set()
and/or ecr_error_add(). Executing a pattern (i.e. funtest()) does not add
errors to the simulated ECR.

• The simulated ECR uses computer RAM to store errors. Simulating a large device
may require more memory than is available in the computer.
 2/27/09 Pg-926

Error Catch RAM Software
3.25.4.1 Magnum 1 vs. Maverick ECR Functions
See Error Catch RAM Software.

This section provides a very limited correlation of Maverick ECR functions to Magnum 1
ECR functions.

As stated at the start of this chapter:

• DO NOT mix the Maverick ECR functions with the Magnum 1 ECR functions: they
DO NOT inter-operate.

• For all new Magnum 1 test programs, it is highly recommended that the new ECR
functions be used.

The following table lists the Maverick-I/-II ECR functions with the Magnum 1 function which
performs an equivalent or related operation:

Maverick
Function

Magnum
Function Notes

make_ecr() ecr_config_set()

clear()
ecr_all_clear()
ecr_rams_clear()

ecr_counters_clear()

clear_area() ecr_area_clear()

set_error()
get_error()

ecr_error_set()
ecr_error_get()

add_error() ecr_error_add()

del_error() ecr_error_delete()

scan_x()
ecr_column_ram_scan()
ecr_row_ram_scan()

scan_rc() ecr_main_ram_scan()

configure() ecr_config_set()
Not documented
for Maverick

set_numx()
set_numy()

TBD
ecr_x_y_data_set() ???

Not documented
for Maverick
 2/27/09 Pg-927

Error Catch RAM Software
set_datawidth()
TBD

ecr_x_y_data_set() ???
Not documented
for Maverick

set_x_compress_mask()
set_y_compress_mask()

TBD
ecr_config_set() ???

Not documented
for Maverick

set_data_compress()
TBD

ecr_config_set() ???
Not documented
for Maverick

get_numx()
get_numy()

TBD
ecr_config_get() ???

Not documented
for Maverick

get_datawidth()
TBD

ecr_config_get() ???
Not documented
for Maverick

get_x_compress_mask()
get_y_compress_mask()

TBD
ecr_config_get() ???

Not documented
for Maverick

get_data_compress()
TBD

ecr_config_get() ???
Not documented
for Maverick

linearize_ecr_scram()
TBD

ecr_scramble_ram_write() ???
Not documented
for Maverick

set_ecr_xscram()
set_ecr_yscram()

ecr_xscram_set()
ecr_yscram_set()
Not documented yet

error_count_area()
ra_error_count_area_get()

Not documented yet
Change from ECR to DUT

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-928

Error Catch RAM Software
The following table lists the ECR functions which are DONE. The table which follows lists the
ECR functions which still need work:

ecr_all_clear() ecr_area_clear()

ecr_any_overflow_get()
ecr_col_ram_read()
ecr_col_ram_write()

ecr_column_ram_scan() ecr_counters_clear()

ecr_compare_reg_set(),
ecr_compare_reg_get()

ecr_error_add()

ecr_config_set()
ecr_config_get()

ecr_error_counter_set(),
ecr_error_counter_get()

ecr_counters_config_set(),
ecr_counters_config_get()

ecr_error_delete()

ecr_fast_image_write(),
ecr_fast_image_read()

ecr_error_set()
ecr_error_get()

ecr_file_image_write(),
ecr_file_image_read()

ecr_miniram_write()
ecr_miniram_read()

ecr_main_ram_scan() ecr_rams_clear()

ecr_miniram_config_set(),
ecr_miniram_config_get()

ecr_rams_update()

ecr_miniram_scan()
ecr_row_ram_write()
ecr_row_ram_read()

ecr_overflow_get()
ecr_scramble_bank_set(),
ecr_scramble_bank_get()

ecr_row_ram_scan()
ecr_scramble_ram_write(),
ecr_scramble_ram_read()

ecr_write_mode_set(),
ecr_write_mode_get()

ecr_x_y_data_set()
 2/27/09 Pg-929

Logic Error Catch (LEC)
3.26 Logic Error Catch (LEC)
See Error Catch RAM (ECR), Error Catch RAM Software.

This section includes the following:

• Overview
• LEC Counters
• VAR/SAR Description
• LEC Mode
• LEC Capture Options
• DDR LEC Operation
• Types, Enums, etc.
• lec_config_set()

• lec_config_get()

• lec_configured_get()

• lec_mode_set(), lec_mode_get()
• lec_scan()
• LEC Capture Data
• Magnum 1/2/2x vs. Maverick-I/-II LEC Software Compatibility

3.26.1 Overview
See Logic Error Catch (LEC).

The Logic Error Catch (LEC) facility uses the optional Error Catch RAM (ECR) hardware to
capture pin PASS/FAIL information (and other information, see LEC Counters, LEC Mode
and LEC Capture Options) when executing Logic Test Patterns.

To use the LEC requires the steps outlined below. The related code will typically be found in
Test Blocks:

1. Using lec_config_set(), configure the ECR for use as an LEC, specify which DUT
pins to capture, and set the default LEC Mode.
 2/27/09 Pg-930

Logic Error Catch (LEC)
2. Optionally, use lec_mode_set() to select a non-default LEC Mode.

Note: some WaveTool options can modify the Logic Error Catch (LEC) configuration
set using lec_config_set() and/or lec_mode_set(). WaveTool does not
restore any changes made.

3. Execute a functional test (funtest()) to log PASS/FAIL pin information to the LEC.
Arguments to funtest() affect which vectors will log information to the LEC, see LEC
Capture Options. Note that passing vectors can be logged in addition to failing vectors.

Note: unlike memory error catch mode, logic capture is not cumulative i.e. each
funtest() execution clears the LEC.

4. View LEC information using LEC Tool. Or...

5. Retrieve information from the LEC using lec_scan(). Information must be retrieved
before executing another funtest() or changing the LEC mode.

6. Use the returned LEC Capture Data.

Details of each step and the associated data structures are documented below. A complete
Example is included in the LEC Capture Data section.

3.26.2 LEC Counters
See Logic Error Catch (LEC), Error Catch RAM (ECR).

Several LEC capture options allow LEC counter values to be captured/logged (see
lec_mode_set()). These counters are targeted at resolving which iteration(s) of a pattern
loop were logged.

When the test pattern contains single-instruction loops (i.e. RPT or a loop controlled using a
VAR counter and an explicit branch instruction) or multi-instruction loops (i.e. STARTLOOP/
ENDLOOP or a loop explicitly controlled using a VAR counter with an explicit branch
instruction) the LEC may capture the same VAR value more than once. To determine which
execution(s) of a loop were actually logged requires logging the LEC counter associated
with the VAR counter used to control the loop.

For example, if a RPT 10 instruction is logged using LEC_only_errors it is not possible to
determine which loop iteration(s) contained errors (and thus were logged) without also
 2/27/09 Pg-931

Logic Error Catch (LEC)
logging LEC counter 4, the LEC counter associated with the VAR counter which controls
RPT loops.

As indicated, the four LEC counters operate in conjunction with the four logic pattern VAR
counters, but do not contain the same values and do not count the same way. Instead, a
given LEC counter is set and modified based on how its corresponding VAR counter is used,
as follows:

The following pattern and setup conditions are used to describe the LEC counter operation
which follows:

• The following pattern is executed, logging all cycles (LEC_first_vectors, see
LEC Capture Options):

Table 3.26.2.0-1 LEC Counter Operation

VAR
Counter
Operation

First
Pattern
Cycle

nth

Pattern
Cycle VAR Counter Used

RPT Clear Increment COUNT4

STARTLOOP1 Clear COUNT1, COUNT22, COUNT32

ENDLOOP3 Increment COUNT1, COUNT22, COUNT32

COUNTVUDATA Clear See Pattern VCOUNT Instruction

DECR Increment See Pattern VCOUNT Instruction

DEC2 Increment See Pattern VCOUNT Instruction

INCR Increment See Pattern VCOUNT Instruction

NOCOUNT Hold None. Default VCOUNT
Instruction

All LEC counters are set = 0 at the start of pattern execution.
Notes:
1) The associated LEC counter is cleared once when a STARTLOOP begins
2) COUNT2 and COUNT3 are used when the pattern contains nested
 STARTLOOPs. COUNT1 controls the outermost loop, etc.
3) The associated LEC counter is incremented each time pattern execution
 decrements the VAR counter used to control the loop; i.e. each time the
 loop repeats.
 2/27/09 Pg-932

Logic Error Catch (LEC)
PATTERN(myPat, logic)
% VEC HL10XZV
% RPT 4 HL10XZV // Controlled using VAR COUNTER 4
% VEC HL10XZV
STARTLOOP 3 // Controlled using VAR COUNTER 1
% VEC HL10XZV
% VEC HL10XZV
ENDLOOP
% VEC HL10XZV

VAR DONE

• Prior to pattern execution, the LEC Mode is set to t_lec_mode_2 (see
lec_mode_set()) and LEC counters 4 (t_lec_vcount4) and 1
(t_lec_vcount1) are selected to be logged:

As indicated, by design, RPT instructions are controlled by VAR counter-4. Given the LEC
setup noted above the value in LEC counter-4 is captured for each pattern cycle captured.
When the LEC captures the VAR for the RPT instruction, the captured LEC counter value
can be used to determine which loop iteration(s) were logged:

Pattern
Relative

VAR

LEC
Counter

4

LEC
Counter

1 Comments

0 0 0 All LEC counters reset at pattern start

1 0 0 LEC Counter 4 reset in 1st RPT cycle

1 1 0 LEC Counter 4 incremented in 2nd RPT cycle

1 2 0 LEC Counter 4 incremented in 3rd RPT cycle

1 3 0 LEC Counter 4 incremented in 4th RPT cycle

2 3 0 All LEC counters hold, no VAR counters used

3 3 0 LEC Counter 1 reset in 1st STARTLOOP cycle

4 3 0 All LEC counters hold, no VAR counters used

3 3 1 LEC Counter 1 incremented in 2nd STARTLOOP
cycle

4 3 1 All LEC counters hold, no VAR counters used
 2/27/09 Pg-933

Logic Error Catch (LEC)
Note that VAR counters are used implicitly for RPT and STARTLOOP control and thus must
not be used explicitly in vectors with those instructions. VAR counter COUNT4 is always used
for RPT control. VAR counters COUNT1 through COUNT3 are used for STARTLOOP control,
allowing up to three levels of nesting. Since nested STARTLOOPs are rare, it is likely that
VAR counters COUNT2 and COUNT3 are available for explicit LEC applications.

3.26.3 VAR/SAR Description
See Logic Error Catch (LEC), Error Catch RAM (ECR).

The Logic Error Catch (LEC) stores (captures, logs, etc.) the VAR and/or SAR for each entry
in the LEC.

The term VAR originally referred to Vector Address Register, which stores the address of the
logic instruction (vector) being executed (or about to be executed). In this documentation,
the term VAR is also used:

• When referring to the hardware engine which controls logic pattern instruction
execution; i.e. VAR Engine.

• To represent the pattern instruction which controls logic pattern execution
sequence; i.e. VAR instruction. Note that most pure Logic Test Patterns will not
contain an explicit VAR instruction because the VEC/RPT instructions implicitly
control the VAR Engine.

• The current value in the VAR register. This is the address of the logic pattern
instruction being executed.

When using the Logic Error Catch (LEC), the VAR of a logic instruction (vector) may be
logged, allowing the user to identify which pattern instructions had information captured in
the LEC.

3 3 2 LEC Counter 1 incremented in 3rd STARTLOOP
cycle

4 3 2 All LEC counters hold, no VAR counters used

5 3 2 All LEC counters hold, no VAR counters used

Pattern
Relative

VAR

LEC
Counter

4

LEC
Counter

1 Comments
 2/27/09 Pg-934

Logic Error Catch (LEC)
The term SAR refers to Scan Address Register, the address of a scan instruction. Like the
VAR, when using the LEC, the SAR of a scan instruction may be logged, allowing the user to
identify which scan instructions had information captured in the LEC.

Since both logic instructions and scan instructions are stored in the same physical memory;
i.e. the combined Logic Vector Memory (LVM)/Scan Vector Memory (SVM), it is necessary
to describe the VAR/SAR numbering system. These will be the values logged to the LEC
and retrieved by the user. Note the following:

• Any VAR value captured in the LEC is the absolute address of the associated logic
instruction in the LVM. The addrs() function may be used to convert this to a
pattern relative value, where the first instruction in the pattern = 0.

• When the test pattern contains loops the LEC may capture the same VAR value
more than once. To determine which execution(s) of a loop were actually logged
requires logging the LEC counter associated with the VAR counter which controls
the loop. See LEC Counters and LEC Mode.

• Scan instructions are packed into the LVM/SVM, thus a given VAR will typically
store multiple scan instructions. The packing ratio (i.e. the maximum number of
SARs stored in each VAR) is set by the number of scan pins defined for the test
pattern. See Scan Test Patterns and SCANDEF Compiler Directive. However, the
actual packing is also constrained to specific increments of 1, 2, 4, 8, or 16 (and
other things, more below). Thus, for example, if the test pattern defines 6 scan
pins the pattern compiler generates output for 8 pins (the two undefined pins have
no effect except to consume LVM/SVM).

• The reason the previous bullet is important is because the SAR values logged to
the LEC are derived from the VAR which stores a given scan instruction and the
data width used to store each scan instruction:

where P is the scan vector position in the packed LVM/SVM location (more below).
Note that the LEC hardware logs absolute VAR and SAR values, not pattern-relative
values. Absolute values can be converted to the more useful pattern-relative values
using the addrs() function. In the example below the VAR and SAR values are
shown as pattern-relative values.

• In Scan instructions, a new LVM instruction is started (and the VAR incremented):
• Any time a Scan instruction selects a new time-set and/or pin-scramble map.
• In any instruction containing VAR DONE, RETURN or PAUSE.
This means that the SAR values captured for a series of sequential scan
instructions may not be sequential.

SAR VAR 64
DataWidth
-----------------------------× P+=
 2/27/09 Pg-935

Logic Error Catch (LEC)
For example:
%%SCANDEF p1, p2, p3, p4, p5, p6 // Sets data width = 8
PATTERN(myPat, logic)
% VEC HL10XZVHL10XZVHL10XZV // VEC-1: VAR = 0
% VEC HL10XZVHL10XZVHL10XZV // VEC-2: VAR = 1
% SVEC HL10XH // SVEC-1: VAR = 2, SAR = 16
% SVEC HL10XH // SVEC-2: VAR = 2, SAR = 17
% SVEC HL10XH // SVEC-3: VAR = 2, SAR = 18
% SVEC HL10XH, TSET2 // SVEC-4: VAR = 3, SAR = 24
% SVEC HL10XH, TSET2 // SVEC-5: VAR = 3, SAR = 25
% SVEC HL10XH, TSET2 // SVEC-6: VAR = 3, SAR = 26
% SVEC HL10XH, TSET2 // SVEC-7: VAR = 3, SAR = 27
% SVEC HL10XH, TSET2 // SVEC-8: VAR = 3, SAR = 28
% SVEC HL10XH, TSET2 // SVEC-9: VAR = 3, SAR = 29
% SVEC HL10XH, TSET2 // SVEC-10: VAR = 3, SAR = 30
% SVEC HL10XH, TSET2 // SVEC-11: VAR = 3, SAR = 31
% SVEC HL10XH, TSET2 // SVEC-12: VAR = 4, SAR = 32
% SVEC HL10XH, TSET2 // SVEC-13: VAR = 4, SAR = 33
% VEC HL10XZVHL10XZVHL10XZV // VEC-3: VAR = 5
% SVEC HL10XH // SVEC-14: VAR = 6, SAR = 48
% VEC HL10XZVHL10XZVHL10XZV // VEC-4: VAR = 7

As noted above, the VAR and SAR values shown are pattern-relative values
whereas the values captured in the LEC will be the absolute VAR/SAR addresses
of each instruction in LVM. Use addrs() to convert to a pattern-relative value.The
following table shows how the LVM/SVM stores the example above and the
(pattern relative) VAR/SAR values which are valid and thus will be captured in the
LEC given that each SVEC instruction is logged. Scan width = 8:

VAR1 Inst. SAR Notes

0 VEC VEC-1

1 VEC VEC-2

2 SVEC 16 17 182 19 20 21 22 23 SVECs 1-3

3 SVEC 24 25 26 27 28 29 30 31 SVECs 4-11

4 SVEC 32 333 34 35 36 37 38 39 SVECs 12,13

5 VEC VEC-3
 2/27/09 Pg-936

Logic Error Catch (LEC)
As indicated, the improvement in LVM/SVM memory consumption gained by
packing scan instructions is best when each sequence of scan instructions
completely consumes an entire VAR.

3.26.4 LEC Mode
See Logic Error Catch (LEC), Error Catch RAM (ECR).

The Logic Error Catch (LEC) in Magnum 1/2/2x has four capture modes, which determine
the type of information captured, as described in the following table. Executing
lec_config_set() always sets the default LEC mode. Subsequently, the
lec_mode_set() function may be used to change the mode. The lec_mode_get()
function may be used to retrieve the currently set LEC Mode:

6 SVEC 484 48 50 51 52 53 54 55 SVEC 14

7 VEC VEC-4

Notes:
1) See earlier comment about absolute VAR/SAR values.
2) VAR increments because the time-set changes in next SVEC
3) VAR increments because the next instruction is not SVEC
4) VAR increments because the next instruction is not SVEC
5) Grey cells do not store scan instructions thus SAR will
 not be logged to the LEC.

LEC Mode Capture

t_lec_mode_1 64 pin P/F states (per ECR), 32 bit VAR, 32 bit SAR. Default.

t_lec_mode_2 64 pin P/F states (per ECR), 28 bit VAR or SAR, 1 bit VAR/SAR flag,
one 32 bit counter value, one 18 bit counter value.

t_lec_mode_3 64 pin P/F states (per ECR), 28 bit VAR or SAR; 1 bit VAR/SAR flag,
four 12 bit counter values.

t_lec_mode_4 64 pin P/F states (per ECR), 28 bit VAR, 28 bit SAR, one 20 bit
counter value.

VAR = Vector Address. SAR = Scan Vector Address. See VAR/SAR Description.

VAR1 Inst. SAR Notes
 2/27/09 Pg-937

Logic Error Catch (LEC)
Note the following:

• See LEC Capture Data for a more detailed explanation of each mode.
• All LECs are configured the same, including in multi-site program configurations.
• The LEC Mode must be set prior to executing a functional test which is to log data

to the LEC using that mode.
• The contents of the LEC should be considered as undefined after changing the

LEC configuration (lec_config_set()) or LEC Mode (lec_mode_set()).
• Arguments to funtest() determine which vectors will log information to the LEC

(see LEC Capture Options).
• Unlike in Maverick, the LEC Mode does not affect the information read by

errmar(), errvar(), and errsar().

Note: some WaveTool options can modify the Logic Error Catch (LEC) configuration,
including the LEC mode. WaveTool does not restore any changes made.

3.26.5 LEC Capture Options
See Logic Error Catch (LEC), Error Catch RAM (ECR).

When using the Logic Error Catch (LEC), two controls are provided which affect the
information logged:

• The LEC Mode selects which parameters are logged, which can be various
combinations of VAR, SAR, and LEC Counters.

• The PatStopCond argument passed to funtest() when executing the test
pattern. This determines which test vectors are logged. In some applications, only
failing vectors are desired; however, the LEC design supports logging passing
vectors also.

The rest of this section refers to PatStopCond.

Note: the PatStopCond values documented here are limited to those used for LEC
applications. See funtest() for other PatStopCond options.
 2/27/09 Pg-938

Logic Error Catch (LEC)
Usage
PFState funtest(Pattern *pPattern, PatStopCond Condition);

where:

pPattern is a pointer to the pattern to be executed. See funtest().

Condition is one of the PatStopCond values from the following table:

3.26.6 DDR LEC Operation
See Logic Error Catch (LEC), Error Catch RAM (ECR).

The Logic Error Catch (LEC) can be used with Double Data Rate (DDR) Mode patterns, with
the following constraints:

• The LEC must be explicitly configured for DDR operation using the t_double
option. For example:

lec_config_set(myPins, t_double);

• Up to 32 pins per sub-site can be captured. This is described in the DDR Fail
Signal MUX: Logic Error Catch section.

Table 3.26.5.0-1 funtest() Logic Error Capture Options

Option Purpose

LEC_first_vectors Capture the first 2Meg (221-6) vectors executed. Ignores
Pass/Fail.

LEC_last_vectors Capture the last 2Meg (221-6) vectors executed. Ignores
Pass/Fail.

LEC_before_error Capture the first failing vector plus the previous 2Meg (221-6)
vectors executed.

LEC_after_error Capture the first failing vector plus the next 2Meg (221-6)
vectors executed.

LEC_only_errors Capture the first 2Meg (221-6) failing vectors.

LEC_center_error Capture the first failing vector plus up to 512K vectors
executed before the failure and up to 512K vectors executed
after the failure.
 2/27/09 Pg-939

Logic Error Catch (LEC)
• fail_signal_mux() must be executed to complete the hardware configuration
before executing the test being logged to the LEC.

• In DDR mode, one LEC entry (address) stores the captured pin data for both the
A and B cycles. See LEC Capture Data.This effectively doubles the size of the
LEC for DDR patterns.

• When logging errors (LEC_only_errors, LEC_center_error, etc.) both the A
and B DDR cycles will be logged for each error, even of one of the DDR cycles
has no failing strobes.

3.26.7 Types, Enums, etc.
See Logic Error Catch (LEC), Error Catch RAM (ECR).

Description
The following enumerated types are used in support of the various Logic Error Catch (LEC),
functions:

Usage
The FailMuxSelectOpt enumerated type is used to configure the DDR Fail Signal MUX.
See fail_signal_mux():

enum FailMuxSelectOpt { t_single, t_double, t_mux_opt_na };

The LecMode enumerated type is used to set and get the LEC Mode:

enum LecMode { t_lec_mode_1,
t_lec_mode_2,
t_lec_mode_3,
t_lec_mode_4,
t_lec_mode_na };

The LecCounter enumerated type is used to specify which VAR counter(s) are to be
logged to the LEC. See LEC Mode and lec_mode_set():

enum LecCounter { t_lec_vcount1,
t_lec_vcount2,
t_lec_vcount3,
t_lec_vcount4 };
 2/27/09 Pg-940

Logic Error Catch (LEC)
The LecEntry and LecEntryArray data structures are used to return information read
from the LEC (see lec_scan()). Each of the LEC Modes uses different subsets of data in
this structure; i.e. not all fields will contain valid data in a given mode. Fields that are not
used in a given mode will be set = -1 (0xFFFFFFFF):

typedef struct LecEntryStruct {
 unsigned __int64 data;
 DWORD var; // VAR value for this entry
 DWORD sar; // SAR value for this entry
 DWORD counter1; // Value in VCOUNT1 for this entry
 DWORD counter2; // Value in VCOUNT2 for this entry
 DWORD counter3; // Value in VCOUNT3 for this entry
 DWORD counter4; // Value in VCOUNT4 for this entry
 unsigned char var_sar_id; // 0 = VAR is valid. 1 = SAR is valid
} LecEntry;

typedef CArray< LecEntry, LecEntry & > LecEntryArray;

3.26.8 lec_config_set()
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

Description
The lec_config_set() function is used configure the LEC prior to use. Note the
following:

• Executing lec_config_set() puts the Error Catch RAM (ECR) into LEC mode.
To restore the ECR for use with memory patterns use ecr_config_set().

• The datapins argument selects which pin(s) are to be captured in the LEC. If the
pins in datapins span sites (i.e. Sites-per-Controller > 1) the system software will
create a separate pin list per-site, and configure the LEC for each site
appropriately.

• The option argument allows the user to specify whether the LEC should be
configured for DDR LEC Operation. By default (i.e. non-DDR mode) up to 128 pins
(64 per sub-site) can be captured to the LEC. In DDR mode 64 pins (32 per sub-
site) can be captured. Read the DDR LEC Operation; important details are
documented there.
 2/27/09 Pg-941

Logic Error Catch (LEC)
• Executing lec_config_set() always sets the LEC Mode to t_lec_mode_1.
The lec_mode_set() function may subsequently be used to change the mode,
which alters the type of information captured in the LEC.

• lec_config_set() does not clear the LEC but any previously captured
information should be considered invalid.

Note: some WaveTool options can modify the Logic Error Catch (LEC) configuration.
WaveTool does not restore any changes made.

Usage
void lec_config_set(

PinList* datapins,
FailMuxSelectOpt option DEFAULT_VALUE(t_single));

where:

datapins identifies the pin(s) to be captured in the LEC. Only signal pins are legal. The
order pins appear in the pin list determines the order of data returned in the entries
parameter passed to lec_scan(). The first pin in datapins will be the LSB of the
returned data, etc. See LEC Capture Data. Pins from multiple sites are allowed if Sites-per-
Controller > 1 (see Description).

option is optional and, if specified, determines whether the LEC is configured for DDR
LEC Operation. Default = t_single = non-DDR. The user is responsible for correctly
setting the DDR mode (t_double) if/when a DDR test pattern is to log errors to the LEC.
Additional steps are normally required to log errors from DDR patterns, see DDR LEC
Operation.

Example
See Example.

3.26.9 lec_config_get()
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).
 2/27/09 Pg-942

Logic Error Catch (LEC)
Description
The lec_config_get() function is used to retrieve the values last set using
lec_config_set(). Two versions are supplied:

• If Sites-per-Controller = 1 both versions will return identical values.
• If Sites-per-Controller > 1 the returned option value will be identical for all

boards but the datapins returned may be different based on which version of
lec_config_get() is executed. See Usage.

Each lec_config_get() argument defaults to a NULL pointer, which must be replaced
with a pointer to an existing variable of the appropriate type to obtain the desired value. Any
don’t-care values can remain NULL (0).

Note: beginning in software release h3.3.xx, the values returned by
lec_config_get() are valid only if the ECR is currently configured as an
Logic Error Catch (LEC) (i.e. not as an ECR). See lec_configured_get()
and ecr_configured_get().

Usage
The following version should be used to retrieve the original pin list passed to
lec_config_set():

void lec_config_get(PinList** datapins DEFAULT_VALUE(0),
FailMuxSelectOpt *option DEFAULT_VALUE(0));

The following version should be used to retrieve pins for a specific board. When Sites-per-
Controller = 1 both functions return the same pin list:

void lec_config_get(HSBBoard board,
PinList** datapins DEFAULT_VALUE(0),
FailMuxSelectOpt *option DEFAULT_VALUE(0));

where:

datapins is optional. If not 0 (NULL) datapins must be a pointer to an existing
PinList* used to return the pins being logged to the LEC.

option is optional. If not 0 (NULL) option must be a pointer to an existing
FailMuxSelectOpt variable used to return the option argument passed to
lec_config_set().
 2/27/09 Pg-943

Logic Error Catch (LEC)
Example
See Example.

3.26.10 lec_configured_get()
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

Note: first available in software release h3.3.xx.

Description
The lec_configured_get() function may be used to determine if the Error Catch RAM
(ECR) is currently configured for Logic Error Catch (LEC) use.

In this context, lec_configured_get() returns TRUE if the ECR is currently configured
for LEC use, but returns FALSE if the ECR is not configured or if the ECR is currently
configured for ECR use (using ecr_config_set()).

Similarly, the ecr_configured_get() function returns TRUE if the ECR is currently
configured for ECR use, but returns FALSE if the ECR not configured, or if ECR is currently
configured for LEC use.

In Multi-DUT Test Programs, the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have
no effect on lec_configured_get().

Usage
BOOL lec_configured_get();

BOOL lec_configured_get(HSBBoard board);

where:

board is used when Sites-per-Controller > 1 to identify a target site assembly (HSBBoard).

lec_configured_get() returns TRUE if the ECR is currently configured for LEC use, but
returns FALSE if the ECR is not configured or if the ECR is currently configured for ECR use
(using ecr_config_set()).
 2/27/09 Pg-944

Logic Error Catch (LEC)
Example
BOOL lec_configured = lec_configured_get();
BOOL lec_hsb1_configured = lec_configured_get(t_hsb1);

3.26.11 lec_mode_set(), lec_mode_get()
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

Description

The lec_mode_set() function is used to change the LEC Mode from the default mode
(t_lec_mode_1) set each time lec_config_set() is executed. In some modes this
determines which LEC counter(s) are captured.

The lec_mode_get() function is used to get the current LEC Mode and, in some modes,
which LEC counter(s) are currently being captured.

Note the following:

• lec_config_set() must be executed at least once, to put the ECR into LEC
mode. Then, lec_mode_set() can be executed zero or more times to change
the LEC mode, as desired. Executing lec_config_set() always sets the LEC
mode to t_lec_mode_1.

• lec_config_set() must be executed to set the LEC Mode before executing a
test pattern which is to log values to the LEC using that mode.

• lec_mode_set() sets the LEC Mode for all sites; i.e. in Multi-DUT Test Programs
the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on
lec_mode_set().

• Using lec_mode_set(), the counter1 argument is only used in LEC Modes
t_lec_mode_2 and t_lec_mode_4, to specify the first LEC counter to be logged
to the LEC. The counter2 argument is only used in LEC Mode t_lec_mode_2 to
specify the second LEC counter to be logged to the LEC. See LEC Counters.

• Using lec_mode_get(), the counter1 argument only returns a valid value in
LEC Modes t_lec_mode_2 and t_lec_mode_4. The counter2 argument only
returns a valid value in LEC Mode t_lec_mode_2.

• Using lec_mode_set(), in LEC Mode t_lec_mode_2 the two LEC counters
specified using counter1 and counter2 must be different counters. A warning is
issued if this rule is violated.
 2/27/09 Pg-945

Logic Error Catch (LEC)
• Executing lec_mode_set() does not clear the LEC, but the contents are
undefined (not valid if scanned).

• The t_lec_mode_na may not be specified using lec_mode_set(). To change
the LEC back to ECR operation use ecr_config_set().

A brief example which logs a LEC counter is shown in VAR/SAR Description.

Note: some WaveTool options can modify the Logic Error Catch (LEC) configuration,
including the LEC mode. WaveTool does not restore any changes made.

lec_mode_set() may be used with ecr_configured_get() to determine whether the
Error Catch RAM (ECR) is configured for ECR use vs. LEC use.

Usage
void lec_mode_set(

LecMode mode,
LecCounter counter1 DEFAULT_VALUE(t_lec_vcount1),
LecCounter counter2 DEFAULT_VALUE(t_lec_vcount4));

LecMode lec_mode_get(LecCounter *counter1 DEFAULT_VALUE(0),
LecCounter *counter2 DEFAULT_VALUE(0));

where:

mode specifies the desired LEC Mode.

counter1 and counter2 are used in two contexts:

• Using lec_mode_set, counter1 and counter2 are both optional and, if used,
select which LEC counter is to be logged. See Description, LEC Counters and LEC
Mode. Default for counter1 = t_lec_vcount1 (STARTLOOP). Default for
counter2 = t_lec_vcount4 (RPT).

• Using lec_mode_get, counter1 and counter2 are optional and, if used, are
pointers to existing LecCounter variables used to return which LEC counters are
currently being logged. See Description, LEC Counters and LEC Mode.

lec_mode_get() returns the currently set LEC Mode. t_lec_mode_na is returned if the
ECR is not currently configured for LEC use (see Overview, lec_config_set()).

Example
lec_config_set(myPins); // lec_config_set()

lec_mode_set(t_lec_mode_4, t_lec_vcount2);
 2/27/09 Pg-946

Logic Error Catch (LEC)
LecCounter c1, c2;
LecMode mode = lec_mode_get(&c1, &c2);
if(mode == t_lec_mode_2)

// Use c1 and c2
else if(mode == t_lec_mode_4)

// Use c1 only

Also see Example.

3.26.12 lec_scan()
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

Description
The lec_scan() function is used to retrieve information from the Logic Error Catch (LEC).

Note the following:

• Two versions of lec_scan() are provided. The version to be used is determined
by the value set for Sites-per-Controller. See Usage.

• When the ECR is configured for LEC use, the LEC content is over-written each
time a test pattern is executed; i.e. it is not accumulated (unlike memory ECR
use). The user must retrieve any desired LEC information before executing
another test pattern.

• lec_scan() returns information retrieved from the LEC via the entries
argument. See Usage and LEC Capture Data.

Usage
The following function should be used when Sites-per-Controller = 1. In Multi-DUT Test
Programs values are returned for the first DUT in the Active DUTs Set (ADS). In non-Multi-
DUT Test Programs values are returned for the pins logged:

int lec_scan(int start,
int stop,
__int64 mask,
int max,
LecEntryArray &entries);

The following function should be used when Sites-per-Controller > 1. In Multi-DUT Test
Programs values are returned for the first DUT in the Active DUTs Set (ADS) from the LEC
 2/27/09 Pg-947

Logic Error Catch (LEC)
on the specified board. In non-Multi-DUT Test Programs values are returned for the pins
logged on the specified board:

int lec_scan(HSBBoard board,
int start,
int stop,
__int64 mask,
int max,
LecEntryArray & entries);

where:

board is used only when Sites-per-Controller > 1, to identify which Site Assembly Board
(HSB) is to be accessed.

start and stop identify the first and last LEC location to be read. Legal values are 0 to
221-6. Only the number of entries actually captured will be returned and the system software
will set stop to the maximum value if the user specifies a value too large. The max
parameter (below) will also limit the number of values returned. However...

Note: lec_scan() performance is proportional to the number of addresses read, set
using start/stop and max (below). The time needed to retrieve 21-6 entries can
be substantial (minutes).

mask determines which pin(s) are to have values read from the LEC. This is a bit-wise mask
where a logic-1 enables values to be read for the corresponding pin and logic-0 disables
values to be read for the corresponding pin. Mask bits must be ordered to match the DUT
pin order in the pin list passed to lec_config_set() with the LSB mask bit = first pin in
the pin list, etc. lec_config_get() can be used to retrieve the pins being logged.

max specifies the maximum number of entries to return from the LEC. This will set the
upper size limit of the returned entries array. See Note above.

entries is a pointer to an existing LecEntryArray, used to return the information
retrieved from the LEC. The array is automatically resized by the system software and any
prior contents are lost. The standard CArray member functions may be used to access the
array. See LEC Capture Data.

lec_scan() returns the number of elements in the entries array.

Example
LecEntryArray lec_data;
int num_entries = lec_scan(0, 0x7fff, 0xffff, 0x8000, lec_data);
 2/27/09 Pg-948

Logic Error Catch (LEC)
Also see Example.

3.26.13 LEC Capture Data
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

The lec_scan() function is used to retrieve information from the LEC. The information is
returned in an LecEntryArray, which is an array of LecEntry structs. These structures
are shown below:

typedef struct LecEntryStruct {
 unsigned __int64 data;
 DWORD var; // VAR value for this entry
 DWORD sar; // SAR value for this entry
 DWORD counter1; // Value in VCOUNT1 for this entry
 DWORD counter2; // Value in VCOUNT2 for this entry
 DWORD counter3; // Value in VCOUNT3 for this entry
 DWORD counter4; // Value in VCOUNT4 for this entry
 unsigned char var_sar_id; // 0 = VAR is valid. 1 = SAR is valid
} LecEntry;

typedef CArray< LecEntry, LecEntry & > LecEntryArray;

Note the following:

• lec_scan() automatically resizes the passed LecEntryArray array to contain
the number of elements (addresses) read from the LEC. Any prior array contents
are lost. The standard CArray member functions can be used to access the array.

• Each LecEntry element in the array contains the information read from one LEC
address. In Multi-DUT Test Programs values are returned for the first DUT in the
Active DUTs Set (ADS).

• The 64-bit data field captures the Pass/Fail results for up to 64 pins (32 pins in
DDR mode). The order of bits in this field matches the order of pins in the
datapins pin list argument passed to lec_config_set(), with the LSB = the
first pin in datapins, etc.

• In Double Data Rate (DDR) Mode (see DDR LEC Operation), each LEC entry
(address) stores the captured pin data for both the A and B cycles. Thus, the data
field returns the pin status information for up to 32 pins, for both the A and B
 2/27/09 Pg-949

Logic Error Catch (LEC)
cycles stored in a given physical LEC address. The pin information is packed such
that the A cycle data is stored in the LSB bits, with the B cycle data immediately
above it. For example, given a 16-pin pin list is passed to lec_config_set():

• The LEC Mode in effect at the time the LEC captures data determines the type of
information logged to the LEC. The LecEntry structure is designed to
accommodate all possible LEC data, even though not all of the parameters will
contain valid information.

• Several LEC Modes allow capture of one or more VAR counter values. Arguments
to lec_mode_set() specify which one or two of the 4 possible VAR counter(s)
are to be logged to the LEC using t_lec_mode_2 or t_lec_mode_4. The LecEntry
structure has separate fields used to store values for each counter. Thus, for
example, if VAR counter-3 is logged to the LEC, the LecEntry counter3 field
will contain the value read from the LEC for that counter.

A-Cycle Data

P
1
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

0101010101010101

1
0 123456789

1
1

1
2

1
3

1
4

1
5 0

P
1
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
9

P
1
1

P
1
2

P
1
3

P
1
4

P
1
5

P
1
6

0101010101010101

3
1

2
0
1
9
1
8
1
7
1
6

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

B-Cycle Data

...

3
2

6
3
...
 2/27/09 Pg-950

Logic Error Catch (LEC)
• The following table indicates which fields are valid for each LEC Mode:

Note the following:

• The VAR value captured in the LEC is the absolute address of the instruction in
the LVM. The addrs() function should be used to convert this to a pattern
relative value, where the first instruction in the pattern = 0. In DDR mode, a given
VAR stores both the A and B cycle information (see DDR LEC Operation).

• In t_lec_mode_1 mode the VAR is a 32-bit value (4,294,967,296 max.). In the
other three modes the VAR is a 28-bit value (268,435,456 max.). Both exceed the
maximum size of the LVM by a substantial margin.

Mode
Valid
Fields Comments

t_lec_mode_1 data
var
sar

Pass/Fail for 64 pins
32-bit VAR
32-bit SAR

t_lec_mode_2 data
var or sar
var_sar_id
counter1
counter2
counter3
counter4

Pass/Fail for 64 pins
28-bit VAR or SAR
0 = VAR, 1 = SAR

t_lec_mode_3 data
var or sar
var_sar_id
counter1
counter2
counter3
counter4

Pass/Fail for 64 pins
28-bit VAR or SAR
0 = VAR, 1 = SAR

t_lec_mode_4 data
var
sar

counter1
counter2
counter3
counter4

Pass/Fail for 64 pins
28-bit VAR
28-bit SAR

Select any two of four LEC counters
First counter, 32 bits logged
Second counter, 18 bits logged

All four LEC counters are logged
12 bits logged

Select any one of four LEC counters
20 bits logged
 2/27/09 Pg-951

Logic Error Catch (LEC)
• The SAR value captured in the LEC is derived from the VAR which stores a given
scan instruction and the data width used to store each scan instruction:

where P is the scan vector position in the packed LVM/SVM location (see VAR/SAR
Description). Note that the LEC hardware logs absolute VAR and SAR values, not
pattern-relative values. Absolute values can be converted to the more useful
pattern-relative values using the addrs() function.

• In t_lec_mode_1 mode the SAR is a 32-bit value (4,294,967,296 max.). In the
other three modes the SAR is a 28-bit value (268,435,456 max.). It is possible, in
programs which mostly fill the LVM/SVM with scan patterns, for the maximum SAR
value to exceed the number of bits available to record it. When this occurs, the
SAR value will roll-over (and there is no way to know this has occurred).

• In t_lec_mode_1 mode and t_lec_mode_4 mode both the VAR and SAR are
always captured.

• In t_lec_mode_2 mode and t_lec_mode_3 mode, if the captured instruction is
a scan vector the SAR will be captured and the value of var_sar_id will = 1,
otherwise the VAR will be captured and the value of var_sar_id will = 0.

Note: a given scan instruction controls the pins defined to receive scan data. See
Scan Test Patterns and SCANDEF Compiler Directive. However, non-scan pins
can still be logged if they are included in the pin list passed to
lec_config_set().

• In t_lec_mode_1 mode no VAR counters are captured.
• In t_lec_mode_2 mode one or two VAR counters are captured, as specified

using lec_mode_set() prior to pattern execution. The counter1 argument to
lec_mode_set() determines which counter is logged as a 32-bit value. The
counter2 argument to lec_mode_set() determines which counter is logged as
a 18-bit value. In either case, user code must retrieve values from the LecEntry
field based on the specific counter being logged. For example, if t_lec_vcount4
is specified as either counter argument to lec_mode_set() the counter4 field
of the LecEntry struct will be used to return the value logged in the LEC.

• In t_lec_mode_3 mode all four VAR counters are captured, as 12-bit values.
User code will retrieve the value of VAR counter-3 from the counter3 field of the
LecEntry struct, etc.

SAR VAR 64
DataWidth
-----------------------------× P+=
 2/27/09 Pg-952

Logic Error Catch (LEC)
• In t_lec_mode_4 mode one VAR counter is captured, as specified using the
counter1 argument to lec_mode_set() prior to pattern execution. User code
must retrieve values from the LecEntry field based on the specific counter being
logged.

• When the value in a VAR counter exceeds the number of bits captured by the LEC
the upper bits are not captured. Thus, for example, in t_lec_mode_3, when the
VAR counters are being captured as 12-bit values (i.e. 4096 max.) it will not be
possible to distinguish the value 12 from 4108 (4096+12).

Example
The following example uses many of the LEC functions documented here. A supporting
function (myPrintLECcount) follows:

lec_config_set(datapins); // lec_config_set()
lec_mode_set(t_lec_mode_2, t_lec_vcount4, t_lec_vcount2);
PFState result = funtest(myPat, LEC_only_errors); // funtest()

if(result == FAIL) {
LecEntryArray errs;
LecCounter ctr1, ctr2;
LecModemode = lec_mode_get(&ctr1, &ctr2);
{ // ActiveDutIterator scope
ActiveDutIterator duts;
while (duts.More()) { // For each DUT

output("DUT-%d", active_dut_get());
int count = lec_scan(0, 0x1FFF, 0x3F, 0x2000, errs);
for(int i = 0; i < count; ++i) { // For each LEC entry

if(errs[i].var_sar_id == 0) // t_lec_mode_2
output(" VAR => %d", errs[i].var);

else
output(" SAR => %d", errs[i].sar);

// Print LEC counter values, if appropriate
switch(mode) {
case t_lec_mode_2 :

myPrintLECcount(ctr1, &errs[i]); // See below
myPrintLECcount(ctr2, &errs[i]);

break;
case t_lec_mode_3 :

myPrintLECcount(t_lec_vcount1, &errs[i]);
myPrintLECcount(t_lec_vcount2, &errs[i]);
myPrintLECcount(t_lec_vcount3, &errs[i]);
 2/27/09 Pg-953

Logic Error Catch (LEC)
myPrintLECcount(t_lec_vcount4, &errs[i]);
break;
case t_lec_mode_4 :

myPrintLECcount(ctr1, &errs[i]);
}

PinList* pins;
FailMuxSelectOpt opt;
lec_config_get(&pins, &opt);
unsigned __int64 data = errs[i].data;

DutPin* dp;
if(opt == t_single) { // Not DDR

for(int p = 0; pin_info(pins, p, &dp); ++p) {
output("%s => %d", resource_name(dp), data & 1);
data >>= 1;

}
}
else { // t_double: DDR, need A/B cycle outer loop

for(int cycle = 0; cycle <= 1; ++cycle) {
if(cycle == 0)

output(" A Cycle");
else

output(" B Cycle");
for(int p = 0; pin_info(pins, p, &dp); ++p) {

output(" %s => %d", resource_name(dp), data & 1);
data >>= 1;

}
}

}
} // for each LEC entry

} // while each DUT
} // ActiveDutIterator scope

} // if result

void myPrintLECcount(LecCounter c, const LecEntry *e) {
switch(c){
case t_lec_vcount1 :

output(" LEC Counter-1 => %d", e->counter1);
break;

case t_lec_vcount2 :
output(" LEC Counter-2 => %d", e->counter2);
 2/27/09 Pg-954

Logic Error Catch (LEC)
break;
case t_lec_vcount3 :

output(" LEC Counter-3 => %d", e->counter3);
break;

case t_lec_vcount4 :
output(" LEC Counter-4 => %d", e->counter4);
break;

}
}

3.26.14 Magnum 1/2/2x vs. Maverick-I/-II LEC Software
Compatibility
See Logic Error Catch (LEC), Error Catch RAM Software, Error Catch RAM (ECR).

The Magnum 1/2/2x Error Catch RAM (ECR) architecture is a super-set of the ECR
available using Maverick-I and Maverick-II. Rather than attempt to adapt the legacy ECR
related functions to the Magnum 1/2/2x ECR architecture, a new set of functions was
implemented. This includes the functions which support the Logic Error Catch (LEC).

There are only three related LEC-specific functions, which operate as noted below when
executed on a Magnum 1/2/2x:

• lvm_error_mode() - does nothing. Replaced by lec_config_set().
• ConfigureLEC() - calls lec_config_set() with the same arguments.

However, it is recommended that the user migrate to the Magnum 1/2/2x methods;
i.e. use lec_config_set().

• LEC_scan() - the function name is the same for Maverick-I/-II and
Magnum 1/2/2x however the arguments are different. Operation of the
Maverick-I/-II version on Magnum 1/2/2x is not defined, and vice-versa. The user
must modify the arguments before desired operation will occur.

 2/27/09 Pg-955

Waveform Functions
3.27 Waveform Functions

Note: the Waveform functions and related information documented here were added
to the Magnum 1 software beginning in software release h2.2.7/h1.2.7. These
functions were developed for the Lightning Test System, which contains
waveform generation and capture hardware not available using
Magnum 1/2/2x, thus, Magnum 1/2/2x applications must synthesize waveform
contents using other methods. References to Lightning hardware were removed
from this section, to reduce confusion. Refer to the Lightning Programmer’s
Manual for more information.

Note: many of the Waveform functions use parameter values specified in MKS Units.
In most cases, this will just work. However, the user should read and
understand the requirements for migrating test programs which don’t currently
use MKS Units to use MKS Units.

The Waveform* container is used to store information, such as waveforms, measured DC
values, histograms, FFT data, etc. The software documented in this section addresses how
waveforms are created, defined, stored and loaded to/from disk, etc.

• Waveform Overview, including Waveform* Attributes and Waveform Terminology
• Waveform Mathematical View
• Decibel (dB)
• Waveform File Formats
• Types, Enums, etc.
• Waveform Sample Value Notations
• Waveform Units
• Waveform Macros
• waveform_create(), waveform_destroy()

• waveform_invalidate()
• Waveform Generate Functions

- waveform_generate_triangle_wave()
- waveform_generate_sine_wave()
- waveform_generate_ramp()
 2/27/09 Pg-956

Waveform Functions
- waveform_generate_square_wave()
- waveform_generate_gaussian_noise()
- waveform_generate_white_noise()
- waveform_generate_periodic_white_noise()
- waveform_generate_periodic_pink_noise()
- waveform_generate_DC()
- waveform_constant_fill()
- waveform_randomize(), waveform_reset_random_seed()

• Waveform File Write/Read Functions
• waveform_fetch(), waveform_send()
• Waveform Name, Date, Type and Version Information

- waveform_dump()
- waveform_get_date(), waveform_set_date()
- waveform_get_name()
- waveform_get_typename()
- waveform_get_version()
- Waveform Set/Get X/Y Units Functions
- reciprocal()

• Waveform Sample Programming
- waveform_set_rrect(), waveform_get_rrect()
- waveform_set_rlong(), waveform_get_rlong()
- waveform_set_crect(), waveform_get_crect()
- waveform_set_polar(), waveform_get_polar()
- waveform_get_x_start()
- waveform_get_x_increment()
- waveform_set_x_scale()
- waveform_get_size()
- waveform_get_element(), waveform_set_element()
- waveform_set_signal_spread(), waveform_get_signal_spread()
- waveform_zero_pad()

• Waveform Manipulation Functions
• Waveform Equality Functions
• Waveform Conversion Functions
• Waveform Boolean Functions
• Waveform Bitwise Functions
• Waveform Logrithmic Functions
• Waveform Window Functions
 2/27/09 Pg-957

Waveform Functions
• Waveform Convolution/Corrleation Functions
• Waveform Wierd Functions
• Waveform Compression Functions
• Waveform FFT Functions
• Waveform Analysis Functions including INL & DNL Functions

3.27.1 Waveform Overview
See Waveform Functions, Waveform Mathematical View.

Note that a formal mathematical description of waveforms is described in Waveform
Mathematical View.

User code must create waveforms. Various functions documented in this section are used to
define a waveforms’s properties. Other functions save a waveform to disk for subsequent
reuse. The attributes of waveforms can be defined within the the executing test program, or,
waveforms can be created off-line, each stored in a separate ASCII file, and loaded by the
test program. Any defined waveform can be stored on disk and reused (loaded) as needed.

3.27.2 Waveform* Attributes
See Waveform Functions, Waveform Mathematical View.
 2/27/09 Pg-958

Waveform Functions
In software, each waveform object is represented as a Waveform*, which can be created
using the Waveform Macros or waveform_create(). The waveform_destroy()
function can be used to destroy an existing Waveform*.

The following attributes are defined for Waveform*. This list does not include the
waveform’s sample values:

Table 3.27.2.0-1 Waveform* Attributes

Attribute
Default
Value Comments

Type BAD_WAVE

Identifies the notation used to store the
waveform’s sample values. See Waveform
Sample Value Notations. The terms waveform
type and sample value notation are used
interchangably in this document.

Size 0
Number of sample values. For two-part notations,
size will be indentical for both parts. See
waveform_get_size().

X_start 0.0

Identifies the first value in the X axis, in X_units.
See waveform_get_x_start() and
waveform_set_x_scale(). Note that a
waveform’s Y axis values are the discrete sample
values, described in Y_units.

X_increment 1.0

Identifies the resolution of X axis values, in
X_units. This is often called sample frequency
or sample period. See
waveform_get_x_increment().

X_units SCALE_NOXUNITS
The base units of X axis values. See Waveform
Units.

Y_units SCALE_NOYUNITS
The base units of Y axis values. See Waveform
Units.

The functions noted in this table are included for reference only. A
waveform’s attributes are accessed and/or modified in many ways, not limited
to just the functions noted here.
 2/27/09 Pg-959

Waveform Functions
Signal
spread

0
Very specialized. Refers to how windowing
spreads a waveform’s sample values. See
Waveform Window Functions.

Odd flag FALSE

Very specialized. Identifies whether the number of
sample values in the input waveform to real
inverse FFT is even or odd. See
waveform_real_ifft_even(),
waveform_real_ifft_odd().

Date n/a
Identifies the waveform’s creation date. See
waveform_get_date(),
waveform_set_date().

Table 3.27.2.0-1 Waveform* Attributes (Continued)

Attribute
Default
Value Comments

The functions noted in this table are included for reference only. A
waveform’s attributes are accessed and/or modified in many ways, not limited
to just the functions noted here.
 2/27/09 Pg-960

Waveform Functions
3.27.3 Waveform Terminology
The diagram below shows how various terminology is used in the context of an AC
waveform:

Figure-55: AC Waveform Terminology
Note the following:

• Each waveform consists of one or more digital sample values.
• Waveform sample values can be represented in several ways (see Waveform

Sample Value Notations):
- RRECT_WAVE: real rectangular notation
- RLONG_WAVE: long real rectangular notation
- CRECT_WAVE: complex rectangular notation
- POLAR_WAVE: complex polar notation

Time

DC Offset

P-P Amplitude

0V
Stop

Trigger

A
B

C

D
E

F

G

Start
Trigger

Trigger

Delay

Sample period
(1/Freq.)

aka
Sample frequency

(1/Time)
aka

X_increment in
X_units

(see Waveform
Mathematical

View)

Static
DC Level Transition

Static
DC Level

(centerpoint)

Sample Values
(7 shown)

Total = Size
Values in Y_units
 2/27/09 Pg-961

Waveform Functions
The waveform in Figure-55: is a sine wave. In the magnified portion of the
waveform note the 7 sample values shown, labeled A through G. Given a 1000
sample waveform (Size = 1000), the corresponding sample values (in
RRECT_WAVE notation) for these might be:

A 0.98228725072868872
B 0.99211470131447788
C 0.99802672842827156
D 1.00000000000000000
E 0.99802672842827156
F 0.99211470131447776
G 0.98228725072868850

• AC waveforms have predefined X and Y unit types. X_units, represents time
(SCALE_SECONDS), Y_units represent voltage (SCALE_VOLTS). Other waveform
applications will utilize other units types. See Waveform Units.

3.27.4 Waveform Mathematical View
See Waveform Functions, Waveform Overview.

Earlier paragraphs describe waveforms in the context of test applications. However, there is
also a mathematical view, which becomes significant when analyzing or manipulating
waveforms.

• A waveform contains discrete values of a function, where the term function refers
to the formal mathematical definition.

• Waveforms are always two dimensional, storing Y data as a function of X. For
each X value, there can only be one Y value. The Y values must be specified for
a finite and evenly spaced span of X values. Generic X and Y data pairs,
sometimes referred to as XY data, are not supported.

• Waveforms restrict X values to be real, but Y values can be real, complex, or
polar.

• Instead of storing all possible X values, a waveform stores a starting X value
(X_start), the number of values (Size), and the distance between each values
(X_increment).

• The units associated with the X axis values and Y axis values are stored (as
LPCTSTR). In a given waveform, X axis values are defined in the terms of X_units,
Y axis values are defined in the terms of Y_units.
 2/27/09 Pg-962

Waveform Functions
Example
Imagine an AC signal (waveform) digitized and captured using a hardware capture
instrument:

• The waveform Y axis represents sampled voltage values
• The waveform X axis represents even increments of time
• The time scale on the X axis starts at the time the instrument receives the first

sample clock. If no trigger delay is specified the first waveform sample is
considered to have occured at time zero (X_start = 0).

• If the instrument samples at 1MHz, then the time between each sample is 1uS
(X_increment = 1uS).

• If 1000 samples are captured the last sample would have an X value of:
X_start + 999 * X_increment = 999uS

• Using waveform_subset() to remove the first one hundred samples and return
the remainder, the new X_start value is 100uS. The X_increment remains 1uS and
the last data point remains at 999uS.

• Using waveform_deinterleave() to split the waveform into two waveforms, the
X_increment value changes to 2uS in both waveforms. The first waveform's
X_start value remains at 100uS. The second waveform's X_start value is 101uS.
These waveforms still associate the Y data values with the original relative time at
which they were captured.

3.27.5 Decibel (dB)
See Waveform Functions, Waveform Overview.

The decibel (dB) is a unit based on a ratio of two values:

Voltage dB 20 10
V1
V2
-------⎝ ⎠

⎛ ⎞log×= =

Power dB 10 10
P1
P2
-------⎝ ⎠

⎛ ⎞log×= =
 2/27/09 Pg-963

Waveform Functions
A positive dB value indicates a ratio of >1, negative dB < 1:

Digital devices are based on powers of two, where each bit is worth 6dB:

6.02dB 20 10
2V
1V
-------⎝ ⎠

⎛ ⎞log×=

20dB 20 10
10V
1V
----------⎝ ⎠

⎛ ⎞log×=

80dB 20 10
10000V

1V
-------------------⎝ ⎠

⎛ ⎞log×=

40dB 20 10
100V
1V

-------------⎝ ⎠
⎛ ⎞log×=

60dB 20 10
1000V

1V
----------------⎝ ⎠

⎛ ⎞log×=

6.02dB– 20 10
1V
2V
-------⎝ ⎠

⎛ ⎞log×=

20dB– 20 10
1V
10V
----------⎝ ⎠

⎛ ⎞log×=

80dB– 20 10
1V

10000V
-------------------⎝ ⎠

⎛ ⎞log×=

40dB– 20 10
1V

100V
-------------⎝ ⎠

⎛ ⎞log×=

60dB– 20 10
1V

1000V
----------------⎝ ⎠

⎛ ⎞log×=

100dB– 20 10
1V

100000V
----------------------⎝ ⎠

⎛ ⎞log×=

6.02dB 20 10 21()log×=

48dB 20 10 28()log×=

144dB 20 10 224()log×=

60dB 20 10 210()log×=

84dB 20 10 214()log×=

1 Bit =

8 Bits =

10 Bits =

12 Bits =

14 Bits =

16 Bits =

24 Bits =

96dB 20 10 216()log×=

72dB 20 10 212()log×=
 2/27/09 Pg-964

Waveform Functions
In digital devices the LSB is worth 1 part in 2N possible states:

To convert from dB to a ratio, use the following:

48dB– 20 10
1
28
-----⎝ ⎠

⎛ ⎞log×=

60dB– 20 10
1

210
-------⎝ ⎠

⎛ ⎞log×=

84dB– 20 10
1

214
-------⎝ ⎠

⎛ ⎞log×=

8 Bit DUT, LSB =

96dB– 20 10
1

216
-------⎝ ⎠

⎛ ⎞log×=

72dB– 20 10
1

212
-------⎝ ⎠

⎛ ⎞log×=

10 Bit DUT, LSB =

12 Bit DUT, LSB =

14 Bit DUT, LSB =

16 Bit DUT, LSB =

24 Bit DUT, LSB = 144dB– 20 10
1

224
-------⎝ ⎠

⎛ ⎞log×=

10
dB
20
-------⎝ ⎠

⎛ ⎞

ratio=

10
6.02dB

20
-----------------⎝ ⎠

⎛ ⎞

2=

10
20dB

20
-------------⎝ ⎠

⎛ ⎞

10=

10
40dB

20
-------------⎝ ⎠

⎛ ⎞

100=

10
60dB

20
-------------⎝ ⎠

⎛ ⎞

1000=
 2/27/09 Pg-965

Waveform Functions
To convert from dB to a N bits, use the following:

Using values in dB, products can be added, ratios can be subtracted.

Attenuators reduce amplitude, resulting in negative dB values:

= 14 Bits
84dB

6

= 16 Bits
96dB

6

= 12 Bits
72dB

6

= 10 Bits
60dB

6

= 8 Bits
48dB

6

= Bits
dB
6

+6dB

X2 X2 X2 X2

+6dB +6dB +6dB

= X16
= +24dB

24dB 20 10 16()log×=

-6dB

÷2

-6dB -6dB -6dB

÷2 ÷2 ÷2
= ÷16 i.e.

= -24dB

1
16

24dB– 20 10
1

16
------⎝ ⎠

⎛ ⎞log×=
 2/27/09 Pg-966

Waveform Functions
Beware! Some competitor’s software outputs Volts peak squared when converting
CRECT_WAVE to POLAR_WAVE:

This must be considered when converting programs from other companies equipment.
Notice that multiplying by 10 instead of 20 is the same thing as taking the square root of the
ratio before converting to dB.

3.27.6 Waveform File Formats
See Waveform Functions, Waveform Overview.

A waveform may be stored or read to/from a disk file using Waveform File Write/Read
Functions and WaveformTool (MSWT)’s File->Open, File->Save and File->Save As
controls.

The following waveform file formats are supported:

Format Origin Comments

.nwav
Nextest

proprietary
file format

This is the native Nextest mixed signal (Lightning) file format.
The only file format which supports all sample value
notations (see Waveform Sample Value Notations).

.wav
Microsoft
WAV file
format

 .wav files are used by various Microsoft Windows (and
other) applications. Only RRECT_WAVE sample value notation
is supported (see Waveform Sample Value Notations).
See Note: below.

.au
Suns audio

format

.au files are used by various Sun Microsystems applications.
Only RRECT_WAVE sample value notation is supported (see
Waveform Sample Value Notations).

.aif

Apple
Macintosh

audio
format

.aif files are used by various Apple Computer applications.
Only RRECT_WAVE sample value notation is supported (see
Waveform Sample Value Notations).

db 10 10
V12

V22

⎝ ⎠
⎜ ⎟
⎛ ⎞

log×=
 2/27/09 Pg-967

Waveform Functions
Note: there are 23 different .wav waveform encodings, most of which can NOT be
used directly (MPEG 3 layer 1, for example).

File read/write support for foreign file formats is documented in Waveform File Write/Read
Functions.

3.27.6.1 Nextest Waveform File Format (.nwav)
See Waveform Functions, Waveform Overview.

The .nwav file format is the only format directly supported by the system software. Other
formats (.wav, .au etc) will be supported selectively.

Guiding principles

• The .nwav file format is intended for machine generated and machine read files.
• It is not a programming language. It is text based to make it possible for the user

to create an input file with a text editor, C program, Perl script, etc.
• The format grammar should be simple.
• An .nwav waveform definition should be editable with a standard text editors

(emacs, notepad, etc.).
• An .nwav waveform should support all attributes of the Nextest Waveform*

object.
• Keywords are case insensitive.
• Unknown keywords generate a warning, but, are otherwise ignored. This assumes

that the statement conforms to basic grammar: <keyword> <value string>
• Warnings are written to the appropriate UI output window.

3.27.6.2 .nwav Grammar Description
See Waveform Functions, Waveform Overview.

// ... <eol>
comment specifier.
 2/27/09 Pg-968

Waveform Functions
version <string>
Some string used to determine the structure of the rest of the file.

name <string>
Name of the waveform.
Optional, default is the filename minus it extension.

sample_interval <double>
The time interval between samples.
Optional, default is 1.0e-3

delay <double>
The delay of the waveform.
Optional, default is 0.0

x_units <string>
X axis description, can be any string.
Optional, default is "s"

y_units <string>
X axis description, can be any string.
Optional, default is "v"

domain [Frequency | Time]
Does the data represent a time domain or frequency domain waveform?
Optional, default is Time.

type [rrect | crect | polar | rlong]
What type of waveform is this. Used to interpret
waveform data that follows.

size <integer>
How many waveform samples follow. This is optional. The size of the
resulting waveform is defined by the number samples in the file.
If the sizes don't match, reader issues a warning and ignores the
value.

[*<double> | *(<double>,<double>) | *<hex>]
Data for waveform. Must be last data in the file. The "hex" format
is legal with rlong only. Once the reader starts reading the
waveform data, it reads to the end of the file.

3.27.7 Types, Enums, etc.
See Waveform Overview.
 2/27/09 Pg-969

Waveform Functions
Description
The following type definitions support the waveform functions documented in this section.

Usage
The two Pi definitions below are available for convenience:

#define NEXTEST_PI 3.1415926535897932384626433832795028841971693993751
#define NEXTEST_TWO_PI (2.0 * NEXTEST_PI)

The WType enumerated type values are used as both arguments to and values returned
from waveform related functions. These values represent the notation used to define a
waveform’s sample values. Details are documented in Waveform Sample Value Notations
and Waveform Sample Programming. The BadWave value is returned in situations where a
given waveform is partially or completely undefined i.e. the Waveform* is valid but the
underlying waveform is incompletly defined:

enum WType { BadWave, RRectWave, CRectWave, PolarWave, RLongWave };

The LineFitMethod enumerated type is used to specify the method used to analyize
histograms when performing INL/DNL analysis. See INL & DNL Functions.

enum LineFitMethod {t_endpoint_fit,
t_adjusted_fit,
t_least_squares_fit };

The RoundingMethod enumerated type is used to specify a rounding method when
rounding is to be performed:

enum RoundingMethod { t_round_to_nearest,
t_round_down,
t_round_up,
 2/27/09 Pg-970

Waveform Functions
t_round_to_even,
t_round_to_odd,
t_truncate };

The following table helps illustrate the effect of each of the rounding methods:

The following declarations are used by waveform_write_file() to specify the type of
encoding which is to be used when writing the output file:

Enum Value Description

t_round_to_nearest The value is set to the closest integer. If equidistant values
exist, the next largest integer is selected.

t_round_down The greatest integer not greater than the value is selected.
Sometimes referred to as the floor function.

t_round_up The smallest integer not less than the value is selected.
Sometimes referred to as the ceiling function.

t_round_to_even The value is set to the closest even integer. If equidistant
values exist, the next largest even integer is selected.

t_round_to_odd The value is set to the closest odd integer. If equidistant
values exist, the next largest odd integer is selected.

t_truncate Truncation is the default operation used by C and C++ to
convert from a floating point number to an integer. It involves
removing the fractional part of the value and leaving the
integer part. For positive numbers, it has the same effect as
t_round_down, but for negative numbers it has the same
effect as t_round_up.

Original Data -2.3 -1.7 -1.3 -0.5 0.3 0.5 0.7 1.0 1.3 1.7 2.0 2.3 2.7

t_round_to_nearest -2 -2 -1 0 0 1 1 1 1 2 2 2 3

t_round_down -3 -2 -2 -1 0 0 0 1 1 1 2 2 2

t_round_up -2 -1 -1 0 1 1 1 1 2 2 2 3 3

t_round_to_even -2 -2 -2 0 0 0 0 2 2 2 2 2 2

t_round_to_odd -3 -1 -1 -1 1 1 1 1 1 1 3 3 3

t_truncate -2 -1 -1 0 0 0 0 1 1 1 2 2 2
 2/27/09 Pg-971

Waveform Functions
extern const unsigned long WavefileEncoding_PCM;
extern const unsigned long WavefileEncoding_FLOAT;

3.27.8 Waveform Sample Value Notations
See Waveform Functions, Waveform Overview, Waveform Mathematical View

Waveform sample values can be represented in several ways, using either rectangular or
polar notation.

Note: in this document, the term waveform type refers to the notation used to
describe its sample values.

The notation used to define the sample values of a given waveform can be determined using
waveform_get_typename().

In general, the notation that most naturally fits a given task is used. Sample values in one
notation can be transformed into the other representations using Waveform Manipulation
Functions. Note that many Waveform Functions only support specific notation(s) or the
effect of the function is defined separately for some notations vs. other notations.
 2/27/09 Pg-972

Waveform Functions
There are three rectangular notations and one polar notation:

Figure-56: Waveform Sample value Notation
The notation used by a given waveform can be determined using:

waveform_get_typename(some_waveform); //waveform_get_typename()

Notation Description Comments

RRECT_WAVE Real rectangular notation

A one-part notation

WType = RRectWave

Each waveform sample consists of a
signed floating point value (double)
representing its magnitude relative to 0V.

RLONG_WAVE Long real rectangular
notation

A one-part notation

WType = RLongWave

Identical to a RRECT_WAVE except integer
values are used instead of floating point
values. Only 53 bits + sign are used.
Typically used to represent DAC/ADC
codes and histogram data. More below.

CRECT_WAVE Complex rectangular notation

A two-part notation

WType = CRectWave

Each waveform sample consists of two
floating point (double) values, a real
value (cosine) and an imaginary value
(sine), stored in separate arrays.
Notation typically returned by FFT.

POLAR_WAVE Complex polar notation

A two-part notation

WType = PolarWave

Polar notation. Also called a vector
notation (not to be confused with logic
test vectors). Each sample consists of two
values: magnitude@angle, where angle is
specified in radians (2π radians = 360°).
The angle is also called theta, and shown
using the greek symbol θ. In signal
analysis, the angle is used to represent
phase, and magnitude frequency. Typically
used to store frequency domain (spectral)
data.

BAD_WAVE Used to indicate an undefined waveform or an error when a Waveform*
is returned by a function. WType = BadWave.
 2/27/09 Pg-973

Waveform Functions
Note: it is not legal to mix notations defining the sample values of a given waveform.
For example, an existing waveform defined using the RRECT_WAVE notation can
only be sucessfully accessed using the _rrect form functions
(waveform_get_rrect(), etc.). In most cases, if this rule is violated a
warning message will be displayed in the appropriate site output window and/or
the function will return an error value. BUT, program execution will not be
interrupted and incorrect test results will be likely.

Rectangular forms describe a data point in terms of length and direction of two sides of a
rectangle. Polar describe a data point in terms of the length of a [diagonal] line across a
rectangle and the phase angle of that line:

Using polar notation, magnitude values are specified in peak amplitude:

Using polar notation, phase is in Radians:

Phase is relative to cosine i.e. a sinewave will have a -90° offset.

Data Point (sample value)

0°

90°

180°

270°

0.707

1.
0

45

0.707

Rectangular = 0.707, 0.707
Polar = 1.0 @ 45°

RMS peak 0.7071068×=
Peak-to-peak peak 2×=

dBv 20 Log10
Peak
1.0

-------------⎝ ⎠
⎛ ⎞×=

dBm 20 Log10
Peak

0.2236
----------------⎝ ⎠

⎛ ⎞×= Assuming 50Ω

π
2
---⎝ ⎠

⎛ ⎞
 2/27/09 Pg-974

Waveform Functions
In general, all functions which accept RLONG_WAVE notation will try to determine the
resulting sample value type. If it can be predicted that no non-integer sample values can
result from the operation, the result will use RLONG_WAVE notation. If it's possible that a non-
integer sample value may occur, the result will use the RRECT_WAVE notation, even if all the
samples end up being integer values.

The notation terms used above, and throughout this document, are based on the following
definitions:

3.27.9 Waveform Units
See Waveform Functions, Waveform Overview, Waveform Mathematical View

Description
To most, a waveform is a sine wave, triangle wave, etc. However, using the Waveform
Functions, a waveform is just a container for 2-D data.

To use a waveform requires that the units of the data be specified, for both the X and Y axis
of the waveform. All waveforms have a single X_units type and a single Y_units type.

#define RRECT_WAVE "RRectWave"

#define RLONG_WAVE "RLongWave"

#define CRECT_WAVE "CRectWave"

#define POLAR_WAVE "PolarWave"

#define BAD_WAVE "BadWave"

degrees radians 180
π

---------⎝ ⎠
⎛ ⎞=

radians degrees π
180
---------⎝ ⎠

⎛ ⎞=
 2/27/09 Pg-975

Waveform Functions
Waveform units are specified as a “string” (LPCTSTR). Although any string may be used, the
following strings are defined in and recognized, to make conversions, check for errors,
etc.:

Unit Prefixes
The following standard prefixes are recognized when applied to base units (volts, amperes,
hertz, seconds). The following prefixes are recognized:

#define SCALE_AMPERES "amperes"

#define SCALE_BOOLEAN "boolean"

#define SCALE_CODES "codes"

#define SCALE_COUNTS "counts"

#define SCALE_DECIBELS "decibels"

#define SCALE_HERTZ "Hertz"

#define SCALE_MICROVOLTS "microvolts"

#define SCALE_NANOAMPERES "nanoamperes"

#define SCALE_NOXUNITS "noXUnits"

#define SCALE_NOYUNITS "noYUnits"

#define SCALE_OFFSET "offset"

#define SCALE_PICOSECONDS "picoseconds"

#define SCALE_RADIANS "radians"

#define SCALE_SAMPLES "samples"

#define SCALE_SECONDS "seconds"

#define SCALE_VOLTS "volts"

seconds Allows time values to be converted between any of the three base units, in
concert with optional metric prefixes (see Unit Prefixes) i.e. it is possible to
convert milliseconds to microhours.

minutes

hours

atto centi deci femto

giga kilo nano mega

micro milli pico tera
 2/27/09 Pg-976

Waveform Functions
Thus, in the context of Waveform Units, the following (useful) examples are recognized:

• “millivolts” “nanovolts”
• “milliseconds” “microseconds” “nanoseconds”
• “milliamperes” “microamperes” “picoamperes”

Some invalid examples include:

• “millicodes” “nanolsbs” “picoradians”

Units Applications
The X_units type applies equally to all sample values in the waveform.

BAD_WAVE type waveforms have X_units = SCALE_NOXUNITS and
Y_units = SCALE_NOYUNITS.

RRECT_WAVE and RLONG_WAVE waveform types only have one data part, therefore the
Y_units type applies to it.

CRECT_WAVE waveform types have two data parts, real and imaginary. The Y_units type
applies to both parts.

POLAR_WAVE waveform types have two data parts, magnitude and phase. The Y_units type
applies only to the magnitude part; the Y_units type of the phase data part is always
assumed to be SCALE_RADIANS.

The following Waveform Generate Functions each create a time domain waveform, thus
they each set the output waveform's X_units to SCALE_SECONDS and the Y_units to
SCALE_VOLTS.

• waveform_generate_triangle_wave()
• waveform_generate_sine_wave()

• waveform_generate_ramp()

• waveform_generate_square_wave()

• waveform_generate_gaussian_noise()

• waveform_generate_white_noise()

• waveform_generate_periodic_white_noise()

• waveform_generate_periodic_pink_noise()

• waveform_generate_DC()

The following functions require explicit X_units and Y_units be specified for the output
waveform because they can be used to create waveform containing various data types:
 2/27/09 Pg-977

Waveform Functions
• waveform_set_rrect()
• waveform_set_rlong()
• waveform_set_crect()
• waveform_set_polar()
• waveform_constant_fill()

User code can change X_units and/or Y_units for a specified waveform using
waveform_set_x_scale() and waveform_set_y_units().

The Waveform FFT Functions recognize time domain waveforms as well as frequency
domain waveforms. Using these functions, if the X_units type of the input waveform is a
recognized time unit the output waveform's X_units will be changed to SCALE_HERTZ, after
the corresponding conversions are made. Similarly, if the X_units type of the input waveform
is a recognized frequency unit the output waveform's X_units will be converted to
SCALE_SECONDS, after the corresponding conversion from frequency to time is made. An
FFT does not modify the waveform’s Y_units. Any unrecognized X_units will be converted
as follows:

"unknown" --> "fourier(unknown)"

"fourier(unknown) --> "unknown"

Other functions that set the X_units or Y_units to known values include:

• waveform_settling_time()

• waveform_histogram() sets the output waveform's X_units to match the input
waveform's Y_units. It sets the output waveform's Y_units to SCALE_COUNTS.

• The INL and DNL waveforms returned by the INL & DNL Functions have X_units
and X_units set based on the input waveform. See INL & DNL Functions.

• If waveform_split() is called with an input waveform of type POLAR_WAVE, the
first output waveform's Y_units will be set to match the input waveform's Y_units.
The second output waveform's Y_units are set to SCALE_RADIANS.

• The waveform Waveform Equality Functions and Waveform Boolean Functions may
output a waveform consisting of boolean sample values. These waveforms have
Y_units set to SCALE_BOOLEAN.

Only the functions noted above set or check for specific waveform X_units/Y_units types.
 2/27/09 Pg-978

Waveform Functions
3.27.9.1 Units Applications
See Waveform Units.

The following table shows the types of units to be used in the situations noted:

The functions noted above directly require that units be specified as an argument to the
function. This results in a waveform which has correctly defined units for the target
application. Other functions change the units on the X or Y axis. It is possible to explicitly set
units for a waveform using the Waveform Set/Get X/Y Units Functions functions.

Note: some functions check the units of a waveform, and an attempt to use a
waveform with units inappropriate for the target application will cause an error
message to be displayed in the appropriate controller window. However, testing
otherwise continues and proper operation is unlikely.

3.27.10 Waveform Macros
See Waveform Overview.

Type X Axis Y Axis Comments

AC Waveform Time
SCALE_SECONDS

Voltage
SCALE_VOLTS

waveform_set_rrect(),
waveform_set_rlong(),
waveform_set_crect(),
waveform_set_polar()

Histogram SCALE_COUNTS waveform_histogram()

Voltage Measurement Voltage
SCALE_VOLTS

SCALE_SAMPLES

Current Measurement Current
SCALE_AMPERES

SCALE_SAMPLES

These values need
example

applications =>

SCALE_CODES SCALE_BOOLEAN

SCALE_HERTZ SCALE_RADIANS

SCALE_AMPERES SCALE_NOXUNITS

SCALE_DECIBELS SCALE_NOYUNITS
 2/27/09 Pg-979

Waveform Functions
Description

All waveforms are fundamentally a C++ object. However since the Nextest software is C-
based, waveforms are represented by the Waveform* data type.

Static waveforms (Waveform*) are created using the WAVEFORM() macro. These are
created as the test program loads, are expected to be persistent for the duration of the
program session, and do not require any user code to manage memory, etc.

The WAVEFORM() macro is designed to allow waveform definition functions to be executed
within the macro body code, to define waveform attributes, however this is not required. See
Examples below. These waveforms will always have a name which can be retrieved using
waveform_get_name().

Within the body of the WAVEFORM() macro, the waveform object being defined is accesible
using either the waveform name, or using the generic token obj. For example:

WAVEFORM(myWF) {
LPCTSTR n = waveform_get_name(obj); // Or...
n = waveform_get_name(myWF);

}

Dynamic waveforms are created using the waveform_create() function. This method is
discouraged due to the requirement for robust memory management and the associated risk
of memory leaks. The waveform_destroy() function is used to destroy dynamic
waveforms and free the associated memory. Waveforms created using
waveform_create() optionally have a “name” which can be retrieved using
waveform_get_name().

See Waveform* Attributes for a description attributes common to all waveforms.

Usage
The following macro is used to create a new Waveform object:

WAVEFORM(name){
// Optionally, call functions here to define waveform attributes

}

The following macro is used to make an external or forward declaration:

EXTERN_WAVEFORM(name)

The following macro is used to add an existing Waveform object as a component of a new
Waveform being created:
 2/27/09 Pg-980

Waveform Functions
INCLUDE_WAVEFORM(name)

where:

name is the waveform (Waveform*) being create, defined, or include.

Example
The examples below demonstrate the four basic styles of defining static waveforms using
the WAVEFORM macro.

Example 1:
These examples both create a new waveform named WF1. Neither define any waveform
attributes:

WAVEFORM(WF1){} // Static waveform

Waveform* WF1 = waveform_create(); // Dynamic waveform

Example 2:
This example creates a new waveform named WF1 and defines its attributes by reading the
specified waveform file using waveform_read_file(). Note that the Waveform* being
created is passed as an argument to waveform_read_file():

WAVEFORM(WF1) {
waveform_read_file(obj, "../wf1File.nwav");

}

Example 3:
This example creates the waveform named simpleWave and defines its attributes in place:

WAVEFORM (simpleWave) {
double samples[] = {

0.0,
0.0627905,
0.125333,
0.187381,
// ... snip: typically lots more values are needed ...
-0.125333,
-0.0627905,

};
int size = sizeof(samples)/sizeof(double);
 2/27/09 Pg-981

Waveform Functions
// See waveform_set_rrect()
void waveform_set_rrect(obj,

size,
samples,
SCALE_VOLTS,
0,
reciprocal(10 MHZ),
SCALE_SECONDS);

}

Example 4:
This example creates the waveform named tri_1K. The set of waveform samples is
created within the macro body by calling waveform_generate_triangle_wave():

WAVEFORM(tri_1K) {
int num_samples = 1000;

// See waveform_generate_triangle_wave()
void waveform_generate_triangle_wave(obj,

int num_samples,
10 MHZ,
0 V,
3 V,
10 MHZ);

}

3.27.11 waveform_create(), waveform_destroy()
See Waveform Overview.

Description

The waveform_create() function can be used to dynamically create a new Waveform*.
The WAVEFORM() macro is used to create static waveforms during the program load
process.

The waveform_destroy() function can be used to destroy an existing Waveform* and
free associated memory.
 2/27/09 Pg-982

Waveform Functions
Note: when using dynamic waveforms it is possible to create memory leaks, which
may cause the test program to crash, with very confusing symptoms. It is the
user’s responsibility to correctly manage memory when using dynamic
waveforms.

Usage
Waveform* waveform_create(LPCTSTR name WDEFAULT_VALUE(0));

void waveform_destroy(Waveform* &obj);

where:

name is optional, and if used is the name of the waveform to be created (as a LPCTSTR).
See waveform_get_name().

obj is a pointer to an existing Waveform* to be destroyed.

waveform_create() returns a valid Waveform* if the waveform is created successfully,
otherwise a NULL pointer is returned.

Example
The following example dynamically creates a Waveform* (with no name), uses it to store a
waveform, and destroys it when done.

Waveform* tmpWF = waveform_create();
// Define and process tmpWF samples here
waveform_destroy(tmpWF); // Free waveform memory

3.27.12 waveform_invalidate()
See Waveform Overview.

Description
The waveform_invalidate() function deallocates the memory used by the specified
waveform and marks the waveform Type = BAD_WAVE . This is the same state as an
uninitialized waveform.
 2/27/09 Pg-983

Waveform Functions
Usage
void waveform_invalidate(Waveform* obj);

where:

Example
???

3.27.13 Waveform Generate Functions
See Waveform Overview, Waveform Mathematical View, Waveform Units

The following functions are used to create waveforms with properties related to the name of
the function:

• waveform_generate_triangle_wave()
• waveform_generate_sine_wave()
• waveform_generate_ramp()
• waveform_generate_square_wave()
• waveform_generate_gaussian_noise()
• waveform_generate_white_noise()
• waveform_generate_periodic_white_noise()
• waveform_generate_periodic_pink_noise()
• waveform_constant_fill()
• waveform_randomize(), waveform_reset_random_seed()

3.27.13.1 waveform_generate_triangle_wave()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_triangle_wave() function is used to define a waveform with
sample values which represent a triangle AC waveform.
 2/27/09 Pg-984

Waveform Functions
Arguments to waveform_generate_triangle_wave() are used to specify:

• Number of sample values (num_samples)
• Sample frequency (sampling_freq). (Also see X_increment in Waveform

Mathematical View)
• The triangle waveform frequency (frequency)
• The initial waveform phase
• The minimum (low_level) and maximum level (high_level) of the waveform,

which also sets the initial ramp direction (ascending or descending, see Usage)
The number of triangle waveform cycles contained in the waveform can be determined
using:

where:

M = number of triangle wave cycles

N = number of samples

Ft = frequency of triangle wave

Fs = sample frequency

Also note the following:

• The waveform samples are defined in RRECT_WAVE notation
• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_triangle_wave(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts low_level,

M Ft N×
Fs

---------------=
 2/27/09 Pg-985

Waveform Functions
MKSVolts high_level,
MKSFrequency frequency DEFAULT_VALUE(1.0),
double phase DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

low_level and high_level specify the minimum and maximum voltage level of the
waveform, in MKSVolts.

frequency is optional, and if used, specifies actual frequency of the triangle waveform,
in MKSFrequency. Default = 1Hz.

phase is optional, and if used, specifies initial waveform phase, in radians. Default = 0.0.
Commonly used values include:

• phase = 0.0 the the triangle wave will start at midlevel

• To start the triangle wave at the high_level specify phase of
• To start at the low_level specify .

Example
???

3.27.13.2 waveform_generate_sine_wave()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_sine_wave() function is used to define a waveform with
sample values which represent a sine wave AC waveform.

Arguments to waveform_generate_sine_wave() are used to specify:

• Number of sample values (num_samples)

low_level high_level+
2

---⎝ ⎠
⎛ ⎞

Π
2

Π–
2

 2/27/09 Pg-986

Waveform Functions
• Sample frequency (sampling_freq). (Also see X_increment in Waveform
Mathematical View)

• The sine wave waveform frequency (frequency)
• The initial waveform phase
• The minimum (low_level) and maximum level (high_level) of the waveform,

which also sets the initial ramp direction (ascending or descending, see Usage)
• The number of sine wave cycles contained in the waveform can be determined

using:

where:

N = number of samples

Ft = frequency of the sine wave

Fs = sample frequency

M = number of sine wave cycles

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_sine_wave(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts pkpkAmplitude,
MKSVolts DCoffset,
MKSFrequency frequency,
double phase DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

M Ft N×
Fs

---------------=
 2/27/09 Pg-987

Waveform Functions
num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

pkpkAmplitude specifies the peak-to-peak voltage level of the waveform, in MKSVolts.

DCoffset specifies the DC offset voltage of the waveform, in MKSVolts.

frequency is optional, and if used, specifies actual frequency of the sine waveform, in
MKSFrequency. Default = 1Hz.

phase is optional, and if used, specifies initial waveform phase, in radians. Default = 0.0.
Commonly used values include:

• phase = 0.0 the the sine wave will start at midlevel

• To start the sine wave at the high_level specify phase of
• To start at the low_level specify .

Example
???

3.27.13.3 waveform_generate_ramp()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_ramp() function is used to define a waveform with sample
values which represent a linear ramp AC waveform.

Arguments to waveform_generate_ramp() are used to specify:

• Number of sample values (num_samples)
• Sample frequency (sampling_freq). (Also see X_increment in Waveform

Mathematical View)
• The linear ramp waveform frequency (frequency)
• The initial waveform phase
• The start_level and end_level of the waveform, which also sets the ramp

direction (ascending or descending, see Usage)

low_level high_level+
2

---⎝ ⎠
⎛ ⎞

Π
2

Π–
2

 2/27/09 Pg-988

Waveform Functions
• The number of ramp cycles contained in the waveform can be determined using:

where:

N = number of samples

Ft = frequency of ramp wave

Fs = sample frequency

M = number of ramp wave cycles

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_ramp(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts start_level,
MKSVolts end_level,
MKSFrequency frequency DEFAULT_VALUE(1.0),
double phase DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

start_level and end_level specify the lower and upper voltage levels of the waveform,
in MKSVolts. If end_level < start_level an ascending ramp will be defined. If
end_level > start_level a descending ramp will be defined.

M Ft N×
Fs

---------------=
 2/27/09 Pg-989

Waveform Functions
frequency is optional, and if used, specifies actual frequency of the ramp waveform, in
MKSFrequency. Default = 1Hz.

phase is optional, and if used, specifies initial waveform phase, in radians. Default = 0.0.
Commonly used values include:

• phase = 0.0 the the ramp will start at midlevel

• To start the ramp at the high_level specify phase of
• To start at the low_level specify .

Example
???

3.27.13.4 waveform_generate_square_wave()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_square_wave() function is used to define a waveform with
sample values which represent a square wave AC waveform.

Arguments to waveform_generate_square_wave() are used to specify:

• Number of sample values (num_samples)
• Sample frequency (sampling_freq). (Also see X_increment in Waveform

Mathematical View)
• The square wave waveform frequency (frequency)
• The low_level and high_level of the waveform. The generated sample values

will only contain the values low_level and high_level i.e. no intermediate
(transition) values are introduced. low_level and high_level also set the initial
square wave level (high or low, see Usage)

• The number of square wave cycles contained in the waveform can be determined
using:

low_level high_level+
2

---⎝ ⎠
⎛ ⎞

Π
2

Π–
2

M Ft N×
Fs

---------------=
 2/27/09 Pg-990

Waveform Functions
where:

N = number of samples

Ft = frequency of square wave

Fs = sample frequency

M = number of square wave cycles

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_square_wave(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts low_level,
MKSVolts high_level,
MKSFrequency frequency DEFAULT_VALUE(1.0),
double duty_cycle DEFAULT_VALUE(50.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the waveform sample frequency, in MKSFrequency.

low_level and high_level specify the minimum and maximum voltage level of the
waveform, in MKSVolts. If low_level < high_level the initial square wave sample
value will be set to low_level. If low_level > high_level the initial square wave
sample value will be set to high_level.

frequency is optional, and if used, specifies actual frequency of the square wave
waveform, in MKSFrequency. Default = 1Hz.

duty_cycle is optional, and if used specifies desired high time vs low time duty cycle, in
percent. Default = 50%.
 2/27/09 Pg-991

Waveform Functions
Example
???

3.27.13.5 waveform_generate_gaussian_noise()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_gaussian_noise() function is used to define a waveform
with sample values which represent white noise with a Guassian distribution. Note the
following:

• Gaussian (normal) white noise is noise containing all frequencies, with a Gaussian
distribution of voltages within the specified standard deviation. This means there
will be more sample values clustered near the DCoffset voltage than there will
be positioned further away.

• A histogram (see waveform_histogram()) of a Gaussian white noise waveform
will exhibit the so-called bell-curve.

• The standard deviation of the waveform is specified using std_dev. This means
that the actual voltage range will only be within the specified std_dev about 68% of
the time; the full voltage swing will usually be 3 or 4 times as large.

• The random number generator is used. See waveform_randomize(),
waveform_reset_random_seed().

• When a waveform is required to have a Gaussian distribution within fixed voltage
limits the waveform_rescale() function can be used to linearly rescale the
waveform without affecting the Gaussian distribution of the sample values.

See waveform_generate_white_noise() and
waveform_generate_periodic_white_noise().

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to the reciprocal of the sampling_frequency argument.
• X_units is set to SCALE_SECONDS
 2/27/09 Pg-992

Waveform Functions
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_gaussian_noise(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts std_dev,
MKSVolts DCoffset DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

std_dev specifies the peak-to-peak amplitude of the waveform, in MKSVolts.

DCoffset is optional, and if used, specifies the DC offset (centerpoint) of the waveform, in
MKSVolts. Default = 0V.

Example
???

3.27.13.6 waveform_generate_white_noise()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_white_noise() function is used to define a waveform with
sample values which represent white noise.

White noise is noise containing all frequencies, with uniform probability. This is a random
burst of noise and will not be periodic. See
waveform_generate_periodic_white_noise().

Each sample of the output waveform will vary between:
 2/27/09 Pg-993

Waveform Functions
See waveform_generate_periodic_white_noise() and
waveform_generate_gaussian_noise().

The random number generator is used. See waveform_randomize(),
waveform_reset_random_seed().

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to the reciprocal of the sampling_frequency argument.
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_white_noise(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts pkpkAmplitude,
MKSVolts DCoffset DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

pkpkAmplitude specifies the peak-to-peak amplitude of the waveform, in MKSVolts.

DCoffset is optional, and if used, specifies the DC offset (centerpoint) of the waveform, in
MKSVolts. Default = 0V.

Example
???

pkpkAmplitude–
2

--- DCoffset+ and +pkpkAmplitude
2

--- DCoffset+
 2/27/09 Pg-994

Waveform Functions
3.27.13.7 waveform_generate_periodic_white_noise()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_periodic_white_noise() function is used to define a
waveform with sample values which are an approximation of periodic white noise.

Using a periodic white noise waveform, the frequency response of a device may be
analyzed with an FFT (see Waveform FFT Functions) without requiring averaging or
windowing techniques. See waveform_average() and Waveform Window Functions.

The waveform created by waveform_generate_periodic_white_noise() results in
an approximation to white noise since not all frequencies are represented, just all of the
periodic frequencies up to the Nyquist limit. Given the number of waveform sample values
(N) and sample frequency (Fs), the output waveform will be:

The random number generator is used. See waveform_randomize(),
waveform_reset_random_seed().

The phases of each of the sine waves will be random.

The overall peak-to-peak amplitude is set to the value specified by pkpkAmplitude.

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to the reciprocal of the sampling_frequency argument.
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

1Fs
N

--------- 2Fs
N

--------- 3Fs
N

--------- ...

N
2
---- 1–⎝ ⎠

⎛ ⎞ Fs

N
-------------------------+ + + +
 2/27/09 Pg-995

Waveform Functions
Usage
void waveform_generate_periodic_white_noise(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts pkpkAmplitude,
MKSVolts DCoffset DEFAULT_VALUE(0.0)

);

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

pkpkAmplitude specifies the peak-to-peak amplitude of each sine wave component of the
noise waveform, in MKSVolts. As noted in Description, this does NOT necessarily
represent the peak-to-peak amplitude of the resulting waveform.

DCoffset is optional, and if used, specifies the DC offset (centerpoint) of the waveform, in
MKSVolts. Default = 0V.

Example
???

3.27.13.8 waveform_generate_periodic_pink_noise()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_periodic_pink_noise() function is used to define a
waveform with sample values which are an approximation of periodic pink noise.

The waveform created by waveform_generate_periodic_pink_noise() results in an
approximation to pink noise because not all frequencies are represented, just all of the
periodic frequencies up to the Nyquist limit. Given the number of waveform sample values
(N) and sample frequency (Fs), the output waveform will be:
 2/27/09 Pg-996

Waveform Functions
The random number generator is used. See waveform_randomize(),
waveform_reset_random_seed().

The phases of each of the sine waves will be random.

The overall peak-to-peak amplitude is set to the value specified by pkpkAmplitude.

Also note the following:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to the reciprocal of the sampling_frequency argument.
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_generate_periodic_pink_noise(

Waveform* out_wave,
int num_samples,
MKSFrequency sampling_freq,
MKSVolts pkpkAmplitude,
MKSVolts DCoffset DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.

pkpkAmplitude specifies the peak-to-peak amplitude of the first sine wave component of
the noise waveform, in MKSVolts. See Description.

1Fs
N

--------- 2Fs
N

--------- 3Fs
N

--------- ...

N
2
---- 1–⎝ ⎠

⎛ ⎞ Fs

N
-------------------------+ + + +
 2/27/09 Pg-997

Waveform Functions
DCoffset is optional, and if used, specifies the DC offset (centerpoint) of the waveform, in
MKSVolts. Default = 0V.

Example
???

3.27.13.9 waveform_generate_DC()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_generate_DC() function is used to generate a waveform containing a
specified number of sample values, each of a specified constant value . Note the following:

• The output waveform Size is set to the num_samples argument. Any prior
waveform contents are overwritten or deleted.

• Waveform sample values are defined using RRECT_WAVE notation.
• The output waveform Y_units type is set = SCALE_VOLTS.
• The output waveform X_units type is set = SCALE_SECONDS.
• The output waveform X_increment value is set to the reciprocal of the

sampling_freq.
• The output waveform sample rate = 1, and X_units = SCALE_SECONDS.

Usage
void waveform_generate_DC(Waveform* out_wave,

int num_samples,
MKSFrequency sampling_freq,
MKSVolts DCoffset DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of samples in the Waveform* being defined.

sampling_freq specifies the sample frequency, in MKSFrequency.
 2/27/09 Pg-998

Waveform Functions
DCoffset is optional, and if used, specifies the value for each sample value, in MKSVolts.
Default = 0V.

Example
???

3.27.13.10 waveform_constant_fill()
See Waveform Overview, Waveform Generate Functions.

Description
The waveform_constant_fill() function can be used to define a waveform containing
a specified number of sample values, each of a specified constant value . Note the following:

• The output waveform Size is set to the num_samples argument. Any prior
waveform contents are overwritten or deleted.

• If the fill value is an integer, the resulting waveform will be defined using
RLONG_WAVE notation otherwise it will be RRECT_WAVE.

• The output waveform Y_units types are set = SCALE_NOYUNITS. See
waveform_set_y_units().

• The output waveform sample rate = 1, and X_units = SCALE_NOXUNITS. See
waveform_set_x_scale().

Usage
void waveform_constant_fill(Waveform* out_wave,

int num_samples,
double value DEFAULT_VALUE(0.0));

where:

out_wave identifies the output waveform.

num_samples specifies the number of sample values in the output waveform. See
Description.

value is optional, and if specified sets the fill value. Default = 0.0.
 2/27/09 Pg-999

Waveform Functions
Example
???

3.27.13.11 waveform_randomize(), waveform_reset_random_seed()
See Waveform Overview, Waveform Generate Functions.

Description

The waveform_randomize() and waveform_reset_random_seed() functions do not
create or define a Waveform. However, they will indirectly affect the creation of all noise
Waveforms (waveform_generate_gaussian_noise(),
waveform_generate_white_noise(), etc.), all of which use the random number
generator to determine each sample value during the waveform creation process.

When generating a random number, the generator uses a seed. Each time a test program is
loaded, the initial seed is set to the same value. This means that, by default, the first random
number generated after the program is loaded will always be the same. And, the second
random number will be the same each time, etc. Thus, by default,
waveform_generate_white_noise(), for example, will always generate the same
noise waveform the first time it is executed. This is often useful during program development
or to reduce variations during correlation efforts.

But, it is also useful, at times, to have truly random data. To accomplish this, the seed value
may be specified using waveform_reset_random_seed(), or the
waveform_randomize() function can be used to generate a random seed.

Usage
void waveform_randomize();

void waveform_reset_random_seed(
unsigned int seed DEFAULT_VALUE(1));

where:

seed is optional, and if used specifies the value used to initialize the computer’s random
number generator seed value. Default = 1.

Example
???
 2/27/09 Pg-1000

Waveform Functions
3.27.14 Waveform File Write/Read Functions
See Waveform Overview, Waveform File Formats.

Description

The waveform_write_file() function is used to save one or more existing
Waveform*(s) to a disk file. The waveform_read_file() function is used to read a
waveform from a file to define one or more Waveform*(s).

Note the following:

• Several waveform file formats are supported, see Waveform File Formats.
• The .nwav format only supports one channel whereas the other formats can have

up to 256 channels (stereo, for example).
• Two encoding schemes are supported:

Figure-57: Waveform Encoding Schemes
• The number of bits to use to represent the data can be specified. The value can

be between 8 .. 32.
• User code is responsible for checking for read/write file permissions, file exists,

etc.

Usage
The following functions read one or more waveform(s) from the specified file:

BOOL waveform_read_file(Waveform* obj, LPCTSTR fname);

BOOL waveform_read_file(WaveformArray** pWaveforms,
LPCTSTR fname);

BOOL waveform_read_file(LPCTSTR fname, Waveform* first,...);

The following functions write one or more waveform(s) to the specified file:

BOOL waveform_write_file(Waveform* obj, LPCTSTR fname);

Encoding Scheme Formats Supported

WavefileEncoding_PCM .wav, .aif, .au

WavefileEncoding_FLOAT .nwav, .wav
 2/27/09 Pg-1001

Waveform Functions
BOOL waveform_write_file(const WaveformArray& waveforms,
LPCTSTR fname,
unsigned int encoding,
unsigned int bitwidth);

BOOL waveform_write_file(const WaveformArray* waveforms,
LPCTSTR fname,
unsigned int encoding,
unsigned int bitwidth);

BOOL waveform_write_file(LPCTSTR fname,
unsigned int encoding,
unsigned int bitwidth,
Waveform* first,...);

where:

obj identifies the Waveform* being written to the file on disk or being defined by reading
the file from the disk.

fname specifies the path/file name to the fiole to be read or written. If fname specifies a
relative path to the the target file its location is relative to the test program executable file i.e.
the testprogram\Debug folder.

pWaveforms is a pointer to an existing WaveformArray used to store one or more
waveforms read from the specified input file. pWaveforms will be resized automatically, with
each member of the array consisting of one Waveform*. This method is typically used
when the input file contains an unknown number of sound channels.

first identifies the first of a variable number of Waveform* arguments. Each argument
represents one Waveform* being read from the input file. The last argument must be 0.
This method is typically used when the file contains a known number of sound channels i.e.
stereo. See Example 2:.

waveforms is a WaveformArray containing one or more Waveform* to be written to the
output file. Two forms are available:

• WaveformArray& specifies an existing WaveformArray variable.
• WaveformArray* must be a pointer to an existing WaveformArray variable.

encoding specifies the type of encoding to use when writing the output file. See
Description. Legal values are WavefileEncoding_PCM and
WavefileEncoding_FLOAT.

bitwidth specifies the number of bits used to represent each sample value. Legal values
are 8..32.
 2/27/09 Pg-1002

Waveform Functions
These functions return TRUE if the specified operation was successful, otherwise FALSE is
returned.

Example

Example 1:
In the following example, tmpWF is created and then saved to the specified file..

Waveform* outWF = waveform_create("outWF"); // waveform_create()
// Setup waveform outWF as desired
LPCTSTR fname = "c:/WF_file_name.nwav";
BOOL OK = waveform_write_file(outWF , fname);
if(!OK) output(" ERROR: writing waveform file %s", fname);
Waveform* inWF = waveform_create("inWF");
OK = waveform_read_file(inWF , fname);
if(!OK) output(" ERROR: reading waveform file %s", fname);

Example 2:
In the following example, a stereo waveform is read from a file into two Waveform*
variables. Then those two are interleveaved into a single Waveform*.

WAVEFORM(ding) {
Waveform* ding0 = waveform_create("ding0");// waveform_create()
Waveform* ding1 = waveform_create("ding1");
waveform_read_file("ding.wav", ding0, ding1, 0);
waveform_interleave(ding, ding0, ding1);//waveform_interleave()
waveform_destroy(ding0);// waveform_destroy()
waveform_destroy(ding1);

}

3.27.15 waveform_fetch(), waveform_send()

Description

The waveform_send() function is used to send a waveform to a specified site.

The waveform_fetch() function is used to get a waveform from a specified site.

Note the following:
 2/27/09 Pg-1003

Waveform Functions
• These functions are used to transfer a waveform between sites.
• A Waveform of the same name must exist on both the source and destination sites.
• All existing attributes of the waveform on the destination site will be replaced

(over-written, lost, etc.).
• Site numbering is the same as used with remote_set(), etc. i.e. Host = 0,

site-1 = 1, etc. See User Tools for information about tool site numbering.
• It is not legal to specify site -1 (UI) as the source or destination site.

Usage
void waveform_fetch(Waveform* wave, int site);

void waveform_send(Waveform* wave, int site);

where:

wave identifies the waveform to be sent or fetched.

site specifies the source or destination site.

Example
The following examples assume that waveform_create() was executed as shown in both
the Host process and on site-2:

Waveform* wf1 = waveform_create();
if(SiteNum() == 2) waveform_fetch(wf1, 0);// Get from Host
if(OnHost()) waveform_send(wf1, 2); // Send to Site-2

3.27.16 Waveform Name, Date, Type and Version Information
See Waveform Overview.

Description
All waveforms (Waveform*) have name, date, version, and typename attributes
automatically defined as the waveform is created. These attributes are used by the system
software for various needs but can also be accessed by user code using:

• waveform_dump()

• waveform_get_date(), waveform_set_date()
 2/27/09 Pg-1004

Waveform Functions
• waveform_get_name()
• waveform_get_typename()
• waveform_get_version()
• Waveform Set/Get X/Y Units Functions
• reciprocal()

3.27.16.1 waveform_dump()
See Waveform Overview.

Description
The waveform_dump() function is used to dump the contents of a specified waveform into
the controller output window.

Usage
void waveform_dump(Waveform* obj);

where:

obj identifies the target waveform.

Example
???

3.27.16.2 waveform_get_date(), waveform_set_date()
See Waveform Overview.

Description

Each waveform has a date attribute which can be retrieved using waveform_get_date()
or modified using waveform_set_date().

A waveform’s date is set when the waveform is:

• Created, using the WAVEFORM() macro or waveform_create()
 2/27/09 Pg-1005

Waveform Functions
• Loaded from disk using waveform_read_file(). The Waveform* date is set to
the modification date of the file.

• waveform_copy() transfers the date of the source Waveform* to the copy.

Usage
CTime waveform_get_date(Waveform* obj);

void waveform_set_date(Waveform* obj, const CTime& date);

where:

obj is a pointer to the target waveform.

date is a a pointer to an existing CTime variable previously initialized with the desired date/
time information.

waveform_get_date() returns date/time information in the form of a CTime structure.
CTime can be researched using the Developer Studio on-line documentation.

Example
Waveform* inWF = waveform_create("inWF"); // waveform_create()
LPCTSTR fname = "c:/WF_file_name.nwav";
BOOL OK = waveform_read_file(inWF , fname);
if(!OK) output(" ERROR: reading waveform file %s", fname);
CTime time = waveform_get_date(inWF);
output(" date => %d/%d/%d", time.GetDay(),

time.GetMonth(),
time.GetYear());

waveform_destroy(inWF);

3.27.16.3 waveform_get_name()

Description
Each waveform has an optional name attribute which can be retrieved using
waveform_get_name(). Note the following:

A waveform’s name is set when:

• A waveform’s name is set when the waveform is created using the WAVEFORM()
macro
 2/27/09 Pg-1006

Waveform Functions
• A waveform’s name is optionally set when the waveform is created using the
waveform_create() function.

Usage
CString waveform_get_name(Waveform* obj);

where:

obj is a pointer to the target waveform.

waveform_get_name() returns a specified waveform’s name as a CString. An empty
string is returned if a name was not specified when creating the waveform.

Example
In the following example, since the optional name argument was not specified when
waveform_create() is called waveform_get_name() returns an empty string.

Waveform* wf = waveform_create();
CString name = waveform_get_name(wf);
output(" name => %s", name);
waveform_destroy(wf); // waveform_destroy()

3.27.16.4 waveform_get_typename()
See Waveform Overview.

Description
A waveform’s sample values are defined using one of the Waveform Sample Value
Notations. The waveform_get_typename() function can be used to get the notation used
to define a given waveform’s sample values.

The value returned by waveform_get_typename() is a CString. The following
definitions can be used to evaluate the returned value:

#define BAD_WAVE "BadWave"

#define RRECT_WAVE "RRectWave"
 2/27/09 Pg-1007

Waveform Functions
BAD_WAVE is returned for any Waveform* which exists but has not been defined, or which
has invalid sample values based on an error detected by the system software.

Usage
CString waveform_get_typename(Waveform* obj);

where:

obj is a pointer to the target waveform.

waveform_get_typename() returns values in the form of a CString. See Description
for returned value options. Also see Waveform Sample Value Notations.

Example
CString tname = waveform_get_typename(wf);
output(" Waveform Sample Notation => %s", tname);

3.27.16.5 waveform_get_version()
See Waveform Overview, Waveform Name, Date, Type and Version Information

Description
The waveform library has a version attribute, targeted at allowing the system software to
adapt to possible future changes to the waveform software. The version attribute can be
retrieved by user code using the waveform_get_version().

Usage
CString waveform_get_version();

where:

waveform_get_version() returns values in the form of a CString. The first version
was: "000.000".

#define CRECT_WAVE "CRectWave"

#define POLAR_WAVE "PolarWave"

#define RLONG_WAVE "RLongWave"
 2/27/09 Pg-1008

Waveform Functions
Example
CString vers = waveform_get_version();
output(" vers => %s", vers);

3.27.16.6 Waveform Set/Get X/Y Units Functions
See Waveform Overview.

Description

The waveform_set_y_units() function is used to set the Y_units value for a specified
waveform.

The waveform_get_y_units() function is used to get the Y_units value of a specified
waveform.

The waveform_get_x_units() function is used to get the X_units value of a specified
waveform.

See Waveform Units for a description of why units are required, how they are used, etc. The
functions documented here are used to set and get the units information for a specified
waveform.

The Waveform Sample Programming functions and waveform_set_x_scale() explicitly
set a waveform’s X_units/Y_units values. The Waveform Generate Functions functions
implicitly set a waveform’s X_units/Y_units value. Many other waveform functions set or
modify X_units and/or Y_units based on the operation being performed by the function.
See Waveform Units and Units Applications.

Note: there is no waveform_set_x_units() function. To set X_units requires also
setting the X_start value and X_increment value (sample period) using the
Waveform Sample Programming functions or waveform_set_x_scale()
function.

Usage
void waveform_set_y_units(Waveform* obj, LPCSTR yunits);

CString waveform_get_y_units(Waveform* obj);
 2/27/09 Pg-1009

Waveform Functions
CString waveform_get_x_units(Waveform* obj);

where:

obj identifies the target waveform.

yunits specifies the Y_units type of the waveform’s sample values. See Waveform*
Attributes, Waveform Units.

waveform_get_x_units() and waveform_get_y_units() return the currently
programmed X_units or Y_units value for the specified Waveform*.

Example
waveform_set_y_units(wf, SCALE_VOLTS);
CString val = waveform_get_y_units(wf);

if(val == SCALE_VOLTS) { // ... do something ... }

3.27.16.7 reciprocal()

Description
The reciprocal() function is used to convert [waveform] frequency values, specified in
MKSFrequency, to time values, specified in MKSPeriod, and vice versa.

The reciprocal() function is declared inline, which can mostly be ignored. For those
interested, the inline declaration can be researched using the Developer Studio on-line
documentation.

Usage
inline MKSPeriod reciprocal(MKSFrequency freq) {

return (1.0 HZ / freq) S;
}

inline MKSFrequency reciprocal(MKSPeriod time) {
return (1.0 S / time) HZ;

}

Example
???
 2/27/09 Pg-1010

Waveform Functions
3.27.17 Waveform Sample Programming
See Waveform Overview, Waveform Mathematical View, Waveform Units

The functions documented in this section are used to set (define) or get the following
attributes for a specified Waveform* (see Waveform* Attributes).:

• Number of samples (Size)
• Sample values
• Y_units value
• X_start value
• X_increment value
• X_units value

See Waveform Overview, Waveform Mathematical View, Waveform Sample Value
Notations, Waveform Units.

One or more arrays are used to store a waveform’s sample values. Waveform samples
defined using Waveform Sample Value Notations, thus different functions are available to
support the different notations:

• The waveform_set_rrect() function is used to define waveform sample values
using the real rectangular notation (RRECT_WAVE). The waveform_get_rrect()
function can be used to read sample values for a waveform defined using this
notation.

• The waveform_set_rlong() function is used to define waveform sample values
using the long real rectangular notation (RLONG_WAVE). The
waveform_get_rlong() function can be used to read sample values for a
waveform defined using this notation.

• The waveform_set_crect() function is used to define waveform sample values
using the complex rectangular notation (CRECT_WAVE). The
waveform_get_crect() function can be used to read sample values for a
waveform defined using this notation.

• The waveform_set_polar() function is used to define waveform sample values
using the polar notation (POLAR_WAVE). The waveform_get_polar() function
can be used to read sample values for a waveform defined using this notation.

When a given waveform is described using any of the rectangular notations each waveform
sample will have a corresponding magnitude. The magnitudes of all samples of that
waveform can be retrieved using the waveform_magnitudes() function.
 2/27/09 Pg-1011

Waveform Functions
Note: it is not legal to mix notations defining the sample values of a given waveform.
For example, an existing waveform defined using the RRECT_WAVE notation can
only be sucessfully accessed using the _rrect form functions
(waveform_get_rrect(), etc.). In most cases, if this rule is violated a
warning message will be displayed in the appropriate site output window and/or
the function will return an error value. BUT, program execution will not be
interrupted.

A waveform’s initial X axis value (X_start) and increment value (X_increment) are specified
as arguments to the various setter functions. These attributes can subsequently be modified
or retrieved using waveform_set_x_scale().

A waveform’s Size represents the number of samples specified for that waveform, and can
be retrieved using the waveform_get_size() function. For generated waveforms, the
waveform’s Size is explicitly set or modified using various waveform functions or implicitly
set based on the size of a data structure storing sample values. For captured waveforms,
the waveform Size is determined by the number of samples actually captured.

3.27.17.1 waveform_set_rrect()
See Waveform Overview, Waveform Sample Programming.

Description
The waveform_set_rrect() function is used to specify attributes for a waveform defined
using RRECT_WAVE notation (see Waveform* Attributes, Waveform Sample Value
Notations):

Usage
void waveform_set_rrect(Waveform* obj,

int size,
const double *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);
 2/27/09 Pg-1012

Waveform Functions
void waveform_set_rrect(Waveform* obj,
const DoubleArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rrect(Waveform* obj,
int size,
const float *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rrect(Waveform* obj,
const FloatArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

where:

obj identifies the target waveform.

size specifies the number of sample values (Size) in the waveform being defined. Does not
apply when using the DoubleArray form (see waveform).

waveform represents an array of waveform sample values, specified in yunits. Two
usages are available:

• waveform is a pointer to an existing array of double or float containing at least
size sample values.

• waveform is a pointer to an existing DoubleArray or FloatArray containing
sample values. All values in the DoubleArray or FloatArray are used, which
sets size implicitly.

yunits specifies the Y_units value. See Waveform* Attributes, Waveform Units.

xstart specifies the first X axis value (X_start), in xunits. See Waveform* Attributes,
Waveform Mathematical View.

xincr specifies the waveform’s X_increment value, in xunits. Must be > 0.

xunits specifies the X_units value. See Waveform Units.
 2/27/09 Pg-1013

Waveform Functions
Example

Example 1:
This example shows the preferred method for creating a Waveform* i.e. using the
WAVEFORM() macro to create a static waveform. Sample values are stored in a local array,
then used to define the simpleWave waveform. The number of samples of simpleWave
waveform is based on the number of values in the samples[] array. simpleWave has a
sample frequency of 10MHz:

WAVEFORM (simpleWave) {
double samples[] = {

0.0,
0.0627905,
0.125333,
0.187381,
// ... snip: typically lots more values are needed ...
-0.125333,
-0.0627905,

};
int size = sizeof(samples)/sizeof(double);

// See waveform_set_rrect()
void waveform_set_rrect(simpleWave,

size,
samples,
SCALE_VOLTS,
0,
reciprocal(10 MHZ),
SCALE_SECONDS);

}

Example 2:
This example uses waveform_create() to dynamically create a waveform identical to
that in Example 1:. This method is discouraged due to the potential for creating memory
leaks:

double samples[] = {
0.0,
0.0627905,
0.125333,
0.187381,
// ... snip: typically lots more values are needed ...
 2/27/09 Pg-1014

Waveform Functions
-0.125333,
-0.0627905,

};
int size = sizeof(samples)/sizeof(double);
// See waveform_create()
Waveform* simpleWave = waveform_create("simpleWave");

// See waveform_set_rrect()
void waveform_set_rrect(simpleWave,

size,
samples,
SCALE_VOLTS,
0,
reciprocal(10 MHZ),
SCALE_SECONDS);

}

3.27.17.2 waveform_get_rrect()
See Waveform Overview, Waveform Sample Programming.

Description
The waveform_get_rrect() function is used to get sample values from a waveform
defined using the real rectangular notation (RRECT_WAVE).

Usage
int waveform_get_rrect(Waveform* obj, const double *waveform[]);

int waveform_get_rrect(Waveform* obj,
DoubleArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rrect(Waveform* obj,
FloatArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

where:

obj identifies the target waveform.
 2/27/09 Pg-1015

Waveform Functions
waveform represents the array used to return sample values:

• waveform is a pointer to an existing double pointer. This pointer will be returned
pointing to the actual data array for the specified waveform i.e. the sample data is
not copied.

• waveform is a pointer to an existing DoubleArray or FloatArray. This array
will be resized as necessary, and returned containing a copy of the waveform
sample values specified via nElements and start.

start is optional, and if used specifies the first sample value to return. Default is 0 = first
sample value.

nElements is optional, and if used specifies the number of samples to return.
Default is -1 = all samples after start are returned.

waveform_get_rrect() returns the number of samples actually returned. If obj is NULL
or if the notation of the Waveform* is not RRECT_WAVE the return value is -1. If start +
nElements is greater than the number of available sample values the available values are
returned, an error message is output in the appropriate controller output window, and testing
continues.

Example

Example 1:
Using the DoubleArray form, get 5 sample values starting with sample 7:

DoubleArray vals;
int count = waveform_get_rrect(rrect_WF, &vals, 5, 7);
if(count == -1)

output(" ERROR: waveform_get_rrect() returned -1");
else

for(int i = 0; i < count; i++)
output(" RRect: vals[%d] => %0.20g", i, vals.GetAt(i));

output("");

Example 2:
Using the const *double[] form, get all sample values:

const double* dvals;
int count = waveform_get_rrect(rrect_WF, &dvals);
if(count == -1)

output(" ERROR: waveform_get_rrect() returned -1");
else
 2/27/09 Pg-1016

Waveform Functions
for(int i = 0; i < count; i++)
output(" RRect: dvals[%d] => %0.20g", i, dvals[i]);

output("");

3.27.17.3 waveform_set_rlong()
See Waveform Overview, Waveform Sample Programming

Description
The waveform_set_rlong() function is used to specify attributes for a waveform defined
using RLONG_WAVE notation (see Waveform* Attributes, Waveform Sample Value
Notations).

Several versions of these functions are available, the only difference is the data type of the
sample values. The diffrerent data types are intended to facilitate the transfer of waveform
data to/from alternate data representations. However, normally waveform data is stored
internally using double precision values, with only 54 bits used (53 bits plus sign, equivalent
to two's complement 54 bit). This supports a range of values of
-9,007,199,254,740,992 to +9,007,199,254,740,991. If waveform_set_rlong() attempts
to set a value outside of this range, an underflow/overflow message is displayed in the
appropriate controller window and the value is clamped. The underlying data type of
ShortArray, IntArray, LongArray, and Int64Array are signed and can handle
positive and negative values. The underlying data type of ByteArray, WordArray, and
DWordArray are unsigned and cannot store a negative sample value.

Usage
void waveform_set_rlong(Waveform* obj,

int size,
const BYTE *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const ByteArray& waveform,
LPCTSTR yunits,
 2/27/09 Pg-1017

Waveform Functions
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const short *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const ShortArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const int *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const IntArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const WORD *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const WordArray& waveform,
LPCTSTR yunits,
 2/27/09 Pg-1018

Waveform Functions
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const long *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const LongArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const DWORD *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const DWordArray& waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
int size,
const __int64 *waveform,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_rlong(Waveform* obj,
const Int64Array& waveform,
LPCTSTR yunits,
 2/27/09 Pg-1019

Waveform Functions
double xstart,
double xincr,
LPCTSTR xunits);

where:

obj identifies the target waveform.

size specifies the number of sample values (Size) in the waveform being defined. Does not
apply when using the LongArray or Int64Array forms (see waveform).

waveform represents an array of waveform sample values, specified in yunits. Two basic
forms are available:

• In the first usage, waveform is a pointer to an existing array of BYTE, short, int,
WORD, long, DWORD or __int64 containing at least size sample values.

• In the second usage, waveform is a pointer to one of the array types noted
above. All values in the array are used, which sets size implicitly.

yunits specifies the Y_units value. See Waveform* Attributes, Waveform Units.

xstart specifies the first X axis value (X_start) , in xunits. See Waveform* Attributes,
Waveform Mathematical View.

xincr specifies the waveform’s X_increment value, in xunits. Must be > 0.

xunits specifies the X_units value. See Waveform Units.

Example
???

3.27.17.4 waveform_get_rlong()
See Waveform Overview, Waveform Sample Programming.

Description
The waveform_get_rlong() function is used to get sample values from a waveform
defined using the real long rectangular notation (RLONG_WAVE).

Several versions of these functions are available, the only difference is the data type of the
sample values. The diffrerent data types are intended to facilitate the transfer of waveform
data to/from alternate data representations. However, normally waveform data is stored
 2/27/09 Pg-1020

Waveform Functions
internally using double precision values, with only 54 bits used (53 bits plus sign, equivalent
to two's complement 54 bit). This supports a range of values of
-9,007,199,254,740,992 to +9,007,199,254,740,991. If waveform_get_rlong() attempts
to retrieve a value outside of this range, an underflow/overflow message is displayed in the
appropriate controller window and the value is clamped.

waveform_get_rlong() will also complain when a value is too large to be placed into the
requested data type. The underlying data type of ShortArray, IntArray, LongArray,
and Int64Array are signed and can handle positive and negative values. The underlying
data type of ByteArray, WordArray, and DWordArray are unsigned and will produce an
underflow warning if the retrieval of a negative value is attempted. All forms of underflow/
overflow will result in the value being clamped to the closest value supported by the
destination data type.

Usage
int waveform_get_rlong(Waveform* obj,

ByteArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rlong(Waveform* obj,
ShortArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rlong(Waveform* obj,
IntArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rlong(Waveform* obj,
WordArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rlong(Waveform* obj,
LongArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_rlong(Waveform* obj,
DWordArray *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));
 2/27/09 Pg-1021

Waveform Functions
int waveform_get_rlong(Waveform* obj,
Int64Array *waveform,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

where:

obj identifies the target waveform.

waveform is a pointer to an existing array, of one of the types noted above, used to return
sample values. The array will be resized as necessary, and return containing a copy of the
waveform sample values specified via nElements and start.

start is optional, and if used specifies the first sample value to return. Default is 0 = first
sample value.

nElements is optional, and if used specifies the number of samples to return.
Default is -1 = all samples after start are returned.

waveform_get_rlong() returns the number of samples actually returned. If obj is NULL
or if the notation used in defining the Waveform* is not RLONG_WAVE the return value is -1.
If start + nElements is greater than the number of available sample values the available
values are returned, an error message is output in the appropriate controller output window,
and testing continues.

Example
???

3.27.17.5 waveform_set_crect()
See Waveform Overview, Waveform Sample Programming

Description
The waveform_set_crect() function is used to specify attributes for a waveform defined
using CRECT_WAVE notation (see Waveform* Attributes, Waveform Sample Value
Notations):

Two sample value arrays are used to store the two-part sample values. One array stores the
real components, the other array stores the imaginary components. These arrays must be
the same Size. If not, the shorter array determines the size of the waveform. When size is
explicitly set, if the shorter array is smaller than size the undefined values are set to 0.
 2/27/09 Pg-1022

Waveform Functions
In use, each waveform sample value is comprised of the two parts:

Usage
void waveform_set_crect(Waveform* obj,

int size,
const double *realPart,
const double *imaginaryPart,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_crect(Waveform* obj,
const DoubleArray& realPart,
const DoubleArray& imaginaryPart,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_crect(Waveform* obj,
int size,
const float *realPart,
const float *imaginaryPart,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_crect(Waveform* obj,
const FloatArray& realPart,
const FloatArray& imaginaryPart,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

where:

obj identifies the target waveform.

a bi+ i 1–=where
Or, in the context of the function arguments

Part n[]real inaryPart n[] i×imag+ i 1–=where and [n] is the position in the array
 2/27/09 Pg-1023

Waveform Functions
size specifies the number of sample values (Size) in the waveform being defined. Does not
apply when using the DoubleArray or FloatArray form (see waveform).

realPart represents an array of waveform sample values. This array stores the real
component of the two-part notation (see Waveform Sample Value Notations). Two usages
are available:

• In the first usage, waveform is a pointer to an existing array of double or float
containing at least size sample values.

• In the second usage, waveform is a pointer to an existing DoubleArray or
FloatArray containing sample values. All values in the DoubleArray or
FloatArray are used, which sets size implicitly.

imaginaryPart represents an array of waveform sample values. This array stores the
imaginary component of the two-part notation (see Waveform Sample Value Notations). Two
usages are available:

• In the first usage, waveform is a pointer to an existing array of double or float
containing at least size sample values.

• In the second usage, waveform is a pointer to an existing DoubleArray or
FloatArray containing sample values. All values in the DoubleArray or
FloatArray are used, which sets size implicitly.

yunits specifies the Y_units value. See Waveform* Attributes, Waveform Units.

xstart specifies the first X axis value (X_start), in xunits. See Waveform* Attributes,
Waveform Mathematical View.

xincr specifies the waveform’s X_increment value, in xunits. Must be > 0.

xunits specifies the X_units value. See Waveform Units.

Example
???

3.27.17.6 waveform_get_crect()
See Waveform Overview, Waveform Sample Programming.
 2/27/09 Pg-1024

Waveform Functions
Description
The waveform_get_crect() function is used to get sample values from a waveform
defined using the complex rectangular notation (CRECT_WAVE).

Usage
int waveform_get_crect(Waveform* obj,

const double *realPart[],
const double *imaginaryPart[]);

int waveform_get_crect(Waveform* obj,
DoubleArray *realPart,
DoubleArray *imaginaryPart,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_crect(Waveform* obj,
FloatArray *realPart,
FloatArray *imaginaryPart,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

where:

obj identifies the target waveform.

realPart and imaginaryPart represent two arrays used to return sample values:

• realPart and imaginaryPart are the addresses of two existing double
pointers. These pointers will be returned pointing to the actual data arrays for the
specified waveform i.e. the sample data is not copied.

• realPart and imaginaryPart are the addresses of two existing DoubleArray
or FloatArray. These arrays will be resized as necessary, and return containing
a copy of the waveform sample values specified via nElements and start.

start is optional, and if used specifies the first sample value to return. Default is 0 = first
sample value.

nElements is optional, and if used specifies the number of samples to return.
Default is -1 = all samples after start are returned.

waveform_get_crect() returns the number of samples actually returned. If obj is NULL
or if the notation of the Waveform* is not DoubleArray the return value is -1.
If start + nElements is greater than the number of available sample values the available
 2/27/09 Pg-1025

Waveform Functions
values are returned, an error message is output in the appropriate controller output window,
and testing continues.

Example
???

3.27.17.7 waveform_set_polar()
See Waveform Overview, Waveform Sample Programming, Waveform Units

Description
The waveform_set_polar() function is used to specify attributes for a waveform defined
using POLAR_WAVE notation (see Waveform* Attributes, Waveform Sample Value
Notations).

Two sample value arrays are used to store the two-part polar values. One array stores the
magnitude components, the other array stores the phase components. These arrays must
be the same Size. If not, the shorter array determines the size of the waveform. When size is
explicitly set if the shorter array is smaller than size the undefined values are set to 0.

Usage
void waveform_set_polar(Waveform* obj,

int size,
const double *magnitude,
const double *phase,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_polar(Waveform* obj,
const DoubleArray& magnitude,
const DoubleArray& phase,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);
 2/27/09 Pg-1026

Waveform Functions
void waveform_set_polar(Waveform* obj,
int size,
const float *magnitude,
const float *phase,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

void waveform_set_polar(Waveform* obj,
const FloatArray& magnitude,
const FloatArray& phase,
LPCTSTR yunits,
double xstart,
double xincr,
LPCTSTR xunits);

where:

obj identifies the target waveform.

size specifies the number of sample values (Size) in the waveform being defined. Does not
apply when using the DoubleArray form (see waveform).

magnitude represents an array of waveform sample values. This array stores the
magnitude component of the two-part notation (see Waveform Sample Value Notations).
Two basic forms are available:

• In the first usage, waveform is a pointer to an existing array of double or float
containing at least size sample values.

• In the second usage, waveform is a pointer to an existing DoubleArray or
FloatArray containing sample values. All values in the DoubleArray or
FloatArray are used, which sets size implicitly.

phase represents an array of waveform sample values. This array stores the phase
component of the two-part notation (see Waveform Sample Value Notations). Two basic
forms are available:

• In the first usage, waveform is a pointer to an existing array of double or float
containing at least size sample values.

• In the second usage, waveform is a pointer to an existing DoubleArray or
FloatArray containing sample values. All values in the DoubleArray or
FloatArray are used, which sets size implicitly.

yunits specifies the Y_units value. See Waveform* Attributes, Waveform Units.
 2/27/09 Pg-1027

Waveform Functions
xstart specifies the first X axis value (X_start) , in xunits. See Waveform* Attributes,
Waveform Mathematical View.

xincr specifies the waveform’s X_increment value, in xunits. Must be > 0.

xunits specifies the X_units value. See Waveform Units.

Example
???

3.27.17.8 waveform_get_polar()
See Waveform Overview, Waveform Sample Programming.

Description
The waveform_get_polar() function is used to get sample values from a waveform
defined using the polar notation (POLAR_WAVE).

Usage
int waveform_get_polar(Waveform* obj,

const double *magnitude[],
const double *phase[]);

int waveform_get_polar(Waveform* obj,
DoubleArray *magnitude,
DoubleArray *phase,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

int waveform_get_polar(Waveform* obj,
FloatArray *magnitude,
FloatArray *phase,
int start DEFAULT_VALUE(0),
int nElements DEFAULT_VALUE(-1));

where:

obj identifies the target waveform.

magnitude and phase represent two arrays used to return sample values:
 2/27/09 Pg-1028

Waveform Functions
• magnitude and phase are the addresses of two existing double pointers. These
pointers will be returned pointing to the actual data arrays for the specified
waveform i.e. the sample data is not copied.

• magnitude and phase are the addresses of two existing DoubleArray or
FloatArray. These arrays will be resized as necessary, and return containing a
copy of the waveform sample values specified via nElements and start.

start is optional, and if used specifies the first sample value to return. Default is 0 = first
sample value.

nElements is optional, and if used specifies the number of samples to return.
Default is -1 = all samples after start are returned.

waveform_get_polar() returns the number of samples actually returned. If obj is NULL
or if the notation of the Waveform* is not DoubleArray the return value is -1.
If start + nElements is greater than the number of available sample values the available
values are returned, an error message is output in the appropriate controller output window,
and testing continues.

Example
???

3.27.17.9 waveform_get_x_start()
See Waveform Overview

Description
The waveform_get_x_start() function is used to get the initial X axis value for a
specified waveform. See Waveform Mathematical View for details.

The Waveform Sample Programming functions and waveform_set_x_scale() explicitly
set a waveform’s X_start value. The Waveform Generate Functions functions implicitly set
a waveform’s X_start value.

Usage
double waveform_get_x_start(Waveform* obj);

where:

obj identifies the target waveform.
 2/27/09 Pg-1029

Waveform Functions
waveform_get_x_start() returns the current value of X_start, in X_units (see
waveform_get_x_units()).

Example
???

3.27.17.10 waveform_get_x_increment()
See Waveform Overview

Description
The waveform_get_x_increment() function is used to get the X_increment value for a
specified waveform. See Waveform* Attributes, Waveform Mathematical View for details.

The Waveform Sample Programming functions and waveform_set_x_scale() set the
X_increment value.

The Waveform Sample Programming functions and waveform_set_x_scale() explicitly
set the X_increment value. The Waveform Generate Functions functions implicitly set the
X_increment value.

Usage
double waveform_get_x_increment(Waveform* obj);

where:

obj identifies the target waveform.

waveform_get_x_increment() returns the X_increment value for the specified
waveform, in X_units (see waveform_get_x_units()).

Example
???

3.27.17.11 waveform_set_x_scale()
See Waveform Overview
 2/27/09 Pg-1030

Waveform Functions
Description
The waveform_set_x_scale() function is used to set the following X axis parameters for
a specified waveform:

• X_start: the initial X axis value, in X_units
• X_increment: the sample increment for X axis values, in X_units
• X_units: the units in which the X axis values are represented

See Waveform* Attributes, Waveform Mathematical View and Waveform Units for details of
these parameters, how they are used, etc.

The Waveform Sample Programming functions and waveform_set_x_scale() explicitly
set these waveform attributes. The Waveform Generate Functions functions implicitly set
these waveform attributes.

The waveform_get_x_start() function is used to get the currently programmed
X_start value.

The waveform_get_x_increment() function is used to get the currently programmed
X_increment value.

The waveform_get_x_units() function is used to get the currently programmed X
X_units value.

Usage
void waveform_set_x_scale(Waveform* obj,

double xstart,
double xincr,
LPCSTR xunits);

where:

obj identifies the target waveform.

xstart specifies the first X axis value (X_start), in xunits. See Waveform* Attributes,
Waveform Mathematical View.

xincr specifies the waveform’s X_increment value, in xunits. Must be > 0.

xunits specifies the X_units value. See Waveform Units.

Example
???
 2/27/09 Pg-1031

Waveform Functions
3.27.17.12 waveform_get_size()
See Waveform Overview, Waveform Sample Programming.

Description
The waveform_get_size() function is used to return the number of sample values (Size)
of a specified waveform.

For waveforms defined using two-part values (CRECT_WAVE, POLAR_WAVE) the number of
samples is the same as if the waveform was defined using a one-part value (RLONG_WAVE,
RRECT_WAVE).

Usage
int waveform_get_size(Waveform* obj);

where:

obj identifies the Waveform* of interest.

waveform_get_size() returns the number of samples (Size) currently defined for obj.

Example
???

3.27.17.13 waveform_get_element(), waveform_set_element()
See Waveform Overview, Waveform Sample Programming.

Description

The waveform_get_element() function is used to retrieve one sample value from a
specified waveform.

The waveform_set_element() function is used to modify one sample value for a
specified waveform.

Different prototypes are defined for accessing waveforms defined using one-part vs. two-
part notations (see below).
 2/27/09 Pg-1032

Waveform Functions
Usage
The following functions are used with waveforms defined using a one-part notation
(RRECT_WAVE, RLONG_WAVE):

double waveform_get_element(Waveform* obj, int element_index);

void waveform_set_element(Waveform* obj,
int element_index,
double scalar);

The following functions are used with waveforms defined using a two -part notation
(CRECT_WAVE, POLAR_WAVE):

void waveform_get_element(Waveform* obj,
int element_index,
double *scalar1,
double *scalar2);

void waveform_set_element(Waveform* obj,
int element_index,
double scalar1,
double scalar2);

where:

obj identifies the target waveform.

element_index identifies the zero based sample value to be accessed. For the getter
functions, if index exceeds the sample Size of the waveform (see waveform_get_size())
an error message is displayed and the return value(s) = 0.0. For the setter functions, if index
exceeds the sample Size of the waveform the waveform is enlarged to accommodate the
new value and intervening samples are set = 0.

scalar1 and scalar2 are used to identify a two-part sample value. scalar1 corresponds
to the magnitude value of a POLAR_WAVE sample, or the real value of a CRECT_WAVE
sample. scalar2 corresponds to the phase value of a POLAR_WAVE sample, or the
imaginary value of a CRECT_WAVE sample. In the set function, scalar1 and scalar2 are
simple double values or variables. In the get function, scalar1 and scalar2 are pointers
to existing double variables used to return the two-part value.

scalar specifies the sample value to be set in obj.

In the first form above, waveform_get_element() returns a one-part sample value.
 2/27/09 Pg-1033

Waveform Functions
Example
???

3.27.17.14 waveform_set_signal_spread(),
waveform_get_signal_spread()

See Waveform Overview, Waveform Sample Programming.

Description

The waveform_set_signal_spread() function is used to specify the signal spread
value for a user defined window coefficient waveform. See Waveform Window Functions for
details of how a coefficient waveform is used to apply windowing to an existing waveform.

The waveform_get_signal_spread() function may be used to get the signal spread
value for a specified window coefficient waveform.

When windowing is applied to a time domain waveform before an FFT is performed, the
signals and harmonics get spread into more than one FFT bin. The amount of spread is
determined by the windowing coefficients applied. See Waveform Window Functions.

Windowing is normally employed when a signal is captured under noncoherent conditions.
This prevents the signal from spreading completely throughout all of the FFT bins.

The signal spread is defined to be the number of bins on both sides of a signal bin to include
when calculating signal strengths (i.e. SNR, SINAD, THD, etc.). This value is normally zero.

When a set of window coefficients is generated, the corresponding signal spread associated
with that window is recorded within the coefficient waveform. When the window is applied to
a waveform, the signal spread information is also applied.

Functions such as waveform_sinad(), waveform_snr(), waveform_thd(), etc.
comprehend windowing and will utilize the signal spread value when determining signal
strengths. Signal spread handling is therefore automatic, and only needs explicit attention if
the user needs to generate and apply a custom window type.
 2/27/09 Pg-1034

Waveform Functions
The built-in window types have the following spread values:

Usage
void waveform_set_signal_spread(Waveform* obj, int spread);

int waveform_get_signal_spread(Waveform* obj);

where:

obj identifies the target waveform.

spread ???

waveform_get_signal_spread() the current signal spread value for a specified
waveform.

Example
???

3.27.17.15 waveform_zero_pad()
See Waveform Overview, Waveform Sample Programming.

Window Type Signal Spread

Triangle 1
See Waveform Windowing Coefficient Functions.

Hamming 1
See Waveform Windowing Coefficient Functions.

Hanning 1
See Waveform Windowing Coefficient Functions.

Blackman 2
See Waveform Windowing Coefficient Functions.

Blackman-Harris 3
See Waveform Windowing Coefficient Functions.

Dolph-Chebyshev Variable, computed from alpha value.
See waveform_dolph_chebyshev_window_coefficients()
 2/27/09 Pg-1035

Waveform Functions
Description
The waveform_zero_pad() function is used to append zeroes to the end of the given
waveform i.e. append sample values, with the value 0, to the end of a specifed waveform.
Note the following:

• The waveform to be padded can be defined using the following notations:
RRECT_WAVE, RLONG_WAVE, CRECT_WAVE, or POLAR_WAVE. The output waveform
will use the same notation.

• The length parameter represents the number of sample values to be appended.
length must be a non-negative value.

Usage
void waveform_zero_pad(Waveform* out_wave,

Waveform* in_wave,
int length);

where:

out_wave specifies the output waveform.

in_wave identifies the input waveform.

length specifies how many sample values to append.

Example
???

3.27.18 Waveform Manipulation Functions
See Waveform Overview.

The following functions are used to modify or otherwise manipulate an existing waveform.
Also see Waveform Analysis Functions:

• waveform_absolute_value()

• waveform_add()

• waveform_clamp()

• waveform_concat()

• waveform_copy()
 2/27/09 Pg-1036

Waveform Functions
• waveform_decimate()

• waveform_differencing()

• waveform_divide()

• waveform_double_strided_copy()

• waveform_integerize()

• waveform_join_complex()

• waveform_join_polar()

• waveform_lookup()

• waveform_make_complex()

• waveform_multiply()

• waveform_negate()

• waveform_polar_to_rectangular()

• waveform_reciprocal()

• waveform_rectangular_to_polar()

• waveform_replace_subset()

• waveform_resample()

• waveform_rescale()

• waveform_reverse()

• waveform_rotate_left(), waveform_rotate_right()

• waveform_sort()

• waveform_split()

• waveform_strided_copy()

• waveform_subset()

• waveform_subtract()

• waveform_sum()

• waveform_summing()

3.27.18.1 waveform_absolute_value()
See Waveform Overview, Waveform Manipulation Functions.
 2/27/09 Pg-1037

Waveform Functions
Description
The waveform_absolute_value() function is used to convert each sample of an input
waveform into its equivalent absolute value.

The mathematical operation used for each waveform Type is shown below (see Waveform*
Attributes, Waveform Sample Value Notations and Waveform Mathematical View):

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_absolute_value(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave is the output waveform:

in_wave is the input waveform to be processed.

Example
???

3.27.18.2 waveform_add()
See Waveform Overview, Waveform Manipulation Functions.

RRECT_WAVE f(x) = |x|

CRECT_WAVE f(x + yi) = sqrt(x2 + y2) + 0i

POLAR_WAVE f(r, theta) = |r|, 0

RLONG_WAVE f(x) = |x| (same as RRECT_WAVE)
 2/27/09 Pg-1038

Waveform Functions
Description
The waveform_add() function is used to modify an existing waveform by adding a value to
each sample of a specified waveform.

Two basic forms are provided:

• Each sample of the output waveform consists of the addition of the two
corresponding samples of two input waveforms.

• Each sample of the output waveform consists of the addition of a corresponding
sample of an input waveform plus a scalar value (RRECT_WAVE, RLONG_WAVE) or
two scaler values (CRECT_WAVE, POLAR_WAVE).

Also note:

• If both inputs are RLONG_WAVE, the output will be RLONG_WAVE.
• If both inputs are RRECT_WAVE, the output will be RRECT_WAVE.
• If one input is RRECT_WAVE and the other is RLONG_WAVE, the output will be

RRECT_WAVE.
• If both inputs are CRECT_WAVE, the output will be CRECT_WAVE:

real = real1 + real2
imag = imag1 + imag2;

• If both inputs are POLAR_WAVE, vector addition is performed. Both input
waveforms are converted to rectangular notation, summed, then converted back to
polar notation.

• If one input is CRECT_WAVE, the other input waveform is converted to complex
using waveform_make_complex(). The results are summed and left in complex
form (CRECT_WAVE). waveform_make_complex() appends an imaginary value
of zero to RRECT_WAVE and RLONG_WAVE waveforms. For POLAR_WAVE
waveforms, waveform_polar_to_rectangular() is called.

• When adding a waveform and a single scalar:
- If the input waveform is RRECT_WAVE, the output is RRECT_WAVE.
- If the input waveform is RLONG_WAVE, the output remains RLONG_WAVE if the
 scalar is an integer value otherwise the output is RRECT_WAVE.
- If the input waveform is CRECT_WAVE, the results are formed by:

real = real1 + scalar
imag = imag1

- If the input is POLAR_WAVE, the scalar is promoted to the vector (scalar, 0.0) and
 vector addition is performed.
 2/27/09 Pg-1039

Waveform Functions
• When adding a waveform and two scalars, the input waveform type must be either
CRECT_WAVE or POLAR_WAVE. The scalars are intrepeted to represent a tuple of
the same type as the input wave type and the addition is performed.

In all cases, addition is performed on a per-sample basis (see Waveform Sample
Programming). The following rules apply:

• When two waveforms are being added they must have the sample sample Size. If
this rule is violated the output waveform will be the size of the smaller input
waveform, a warning message is output in the appropriate controller output
window, and testing otherwise continues.

• The output waveform will be [re-]sized to contain only the samples resulting from
the addition. This makes sense when the output Waveform* initially contains no
sample data, but also applies when an existing Waveform*, which does contain
sample values, is redefined (clobbered).

Also note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the first input
waveform. See Waveform* Attributes, Waveform Mathematical View and Waveform
Units for descriptions of these parameters.

• BAD_WAVE propegates i.e. if any input waveform is BAD_WAVE, the output
waveform will be BAD_WAVE.

Usage
The following function adds two waveforms, sample-by-sample:

void waveform_add(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

The following function is only usable with waveforms defined using a one-part notation
(RRECT_WAVE, RLONG_WAVE):

void waveform_add(Waveform* out_wave,
Waveform* in_wave,
double scalar);

The following function is only usable with waveforms defined using a two-part notation
(CRECT_WAVE, POLAR_WAVE):

Waveform* in_wave,
double scalar1,
double scalar2);
 2/27/09 Pg-1040

Waveform Functions
where:

out_wave is the output waveform which results from the addition:

in_wave1 and in_wave2 identify two waveforms which are to be added.
out_wave = in_wave1 + in_wave2.

in_wave identifies one waveform which will have scalar value(s) addition to each sample.
out_wave = in_wave1 + scalar (RRECT_WAVE, RLONG_WAVE) or
out_wave = in_wave1 + scalar1 and scalar2 (CRECT_WAVE, POLAR_WAVE). See
Description.

scalar, scalar1, and scalar2 are scalar values to be added to each sample of the input
waveform. See Description.

Example
???

3.27.18.3 waveform_clamp()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_clamp() function is used to modify waveform sample values. Note the
following:

• Only valid for RRECT_WAVE and RRECT_WAVE waveforms. See Waveform Sample
Value Notations.

• waveform_clamp() sets (clamps) values less than min_value to min_value.
Values greater than max_value will be set to max_value.

• If the input waveform is RLONG_WAVE, the output waveform remains RLONG_WAVE
only if min_value and min_value are both integers, otherwise the output
waveform is converted to RRECT_WAVE.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.
 2/27/09 Pg-1041

Waveform Functions
Note that the sequence:

waveform_clip_lower(out, in, min_value); //waveform_clip_lower()

wavefrom_clip_upper(out, out, max_value);//waveform_clip_upper()

results in the same output as:

waveform_clamp(out, in, min_value, max_value);

Usage
void waveform_clamp(Waveform* out_wave,

Waveform* in_wave,
double min_value,
double max_value);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

min_value identifies the minimum clip value. See Description.

max_value identifies the maximum clip value. See Description.

Example
???

3.27.18.4 waveform_concat()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_concat() function is used to concatenate two waveforms into a single
waveform. This has the effect of appending the sample values for one waveform to the end
of another waveform, resulting in a waveform consisting of the combined samples.

Note the following about the output waveform:

• Except as noted next, both input waveforms must be of the same type
(RRECT_WAVE, CRECT_WAVE, etc.). The output waveform will be the same type.
 2/27/09 Pg-1042

Waveform Functions
• RRECT_WAVE and RLONG_WAVE waveforms can be concatenated. The output
waveform will be RRECT_WAVE.

• X_units, Y_units, X_start, and X_increment are set to match the first input
waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_concat(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

in_wave1 and in_wave2 are the two waveforms to be concatenated. The result is placed
in out_wave with the sample values of in_wave1 occuring before those from in_wave2.

Example
???

3.27.18.5 waveform_copy()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_copy() function is used to make an identical copy of an existing waveform,
often as the basis for creating a new waveform by modifying the copy.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_copy(Waveform* out_wave, Waveform* in_wave);

where:
 2/27/09 Pg-1043

Waveform Functions
out_wave is an existing Waveform* which becomes the new copy.

in_wave is the Waveform* to be copied.

Note: any prior attributes of the Waveform* out_wave argument are lost when this
function is executed.

Example
In the following example, existingWF is an existing waveform being copied to tmpWF.

// See waveform_create()
Waveform* tmpWF = waveform_create("tmpWF");
waveform_copy(existingWF, tmpWF);
// Use tmpWF as desired
waveform_destroy(tmpWF); // See waveform_destroy()

3.27.18.6 waveform_decimate()
See Waveform Overview, Waveform Manipulation Functions.

Description

The waveform_decimate() function is used to copy every nth sample value from an input
waveform to an output waveform, starting with a specified sample. Note the following:

• Copying begins with the sample value specified by start.
• The stride parameter specifies which samples to copy. For example, if

stride = 5, every 5th sample value from the input waveform will be copied to the
output waveform.

• The copying stops when the end of the input waveform is reached, thus the Size
of the output waveform will be:

floor size start+
stride

----------------------------⎝ ⎠
⎛ ⎞
 2/27/09 Pg-1044

Waveform Functions
where floor() rounds-down to the nearest integer value and size is the number
of sample values (Size) in the input waveform.

• The input waveform sample values may be defined using any notation (see
Waveform Sample Value Notations). The ouput waveform sample values will be
defined using the same notation.

The waveform_deinterleave() function can be used to deinterleave one waveform into
two waveforms. waveform_decimate() is more versatile, since it can be used to
deinterleave one waveform into to any number of waveforms. For example, to deinterleave
one waveform to three waveforms:

waveform_decimate(part1WF, inWF, 0, 3);

waveform_decimate(part2WF, inWF, 1, 3);

waveform_decimate(part3WF, inWF, 2, 3);

Also note the following about the output waveform:

• X_units and Y_units are set to match the input waveform
• X_start is set to the time associated with the first sample value.
• X_increment is set to the X_increment of the input waveform times the stride

value. The rationale for this is logical. For example. If only every fourth sample is
copied the effect is the same as if the waveform was sampled four times slower.

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_decimate(Waveform* out_wave,

Waveform* in_wave,
int start DEFAULT_VALUE(0),
int stride DEFAULT_VALUE(10));

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

start specifies the first sample value to be copied to the output waveform.

stride specifies which sample values to copy, beginning with start. See Description.
 2/27/09 Pg-1045

Waveform Functions
Example
???

3.27.18.7 waveform_differencing()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_differencing() function returns a waveform containing sample values
each of which is the difference of the corresponding input waveform sample value and the
sample after it. In other words, the nth element of the output waveform is equal to the (n+1)th
element of the input waveform minus the nth element of the input waveform.

Subtraction is performed appropriate to the notation used to define the sample values of the
input waveform (see Waveform Sample Value Notations).

Note the following about the output waveform:

• The ouput waveform sample value notation is the same as the input waveform
(see Waveform Sample Value Notations), but the waveform Size (number of
sample values) is one less.

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_differencing(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform.

in_wave specifies the input waveform.

Example
???
 2/27/09 Pg-1046

Waveform Functions
3.27.18.8 waveform_divide()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_divide() function is used to perform sample-by-sample division on a
waveform, with the resulting values stored in an output waveform.

Two basic forms are provided:

• Each sample of the output waveform consists of the division of the two
corresponding samples of two input waveforms.

• Each sample of the output waveform consists of the division of a corresponding
sample of an input waveform by a scalar value (RRECT_WAVE, RLONG_WAVE) or
two scaler values (CRECT_WAVE, POLAR_WAVE).

Also note:

• If both inputs are RLONG_WAVE, the output will be RLONG_WAVE.
• If both inputs are RRECT_WAVE, the output will be RRECT_WAVE.
• If one input is RRECT_WAVE and the other is RLONG_WAVE, the output will be

RRECT_WAVE.
• If both inputs are CRECT_WAVE, the output will be CRECT_WAVE and calculated as:

• If the first input is CRECT_WAVE and the other is an RRECT_WAVE or RLONG_WAVE,
the output is CRECT_WAVE and calculated as:

real 1real 2real× 1imag 2imag×+()

2real 2 2imag 2+()
---=

imag 2real 1imag× 1real 2imag×–()

2real 2 2imag 2+()
---=

real 1real
2real

------------=

imag 1imag
2real

---------------=
 2/27/09 Pg-1047

Waveform Functions
• If the first input is RRECT_WAVE or RLONG_WAVE and the other is an CRECT_WAVE,
the output is CRECT_WAVE and calculated as:

• The waveform_divide() function does not support division by a POLAR_WAVE
value.

When performing division using two scalar value(s):

• The input waveform must be CRECT_WAVE waveform.
• The scalars are intrepeted to represent a tuple of the same type as the input wave

type and the division is performed.
When performing division using one scalar value

• If the input is RRECT_WAVE, the output is RRECT_WAVE.
• If the input is RLONG_WAVE, the output remains RLONG_WAVE if the scalar is an

integer value otherwise the output is RRECT_WAVE.
• If the input is CRECT_WAVE, the results are formed by:

• If the input is POLAR_WAVE, the results are formed by:

In all cases, division is performed on a per-sample basis (see Waveform Sample
Programming). The following rules apply:

• When two waveforms are being divided they must have the same sample Size. If
this rule is violated the output waveform will be the size of the smaller input
waveform, a warning message is output in the appropriate controller output
window, and testing otherwise continues.

real 1real 2real×()

2real 2 2imag 2+()
---=

imag 1real 2real×()

2real 2 2imag 2+()
---–=

real real
scalar
----------------=

imag imag
scalar
----------------=

magnitude magnitude
scalar

----------------------------=

angle angle=
 2/27/09 Pg-1048

Waveform Functions
• The output waveform will be [re-]sized to contain only the samples resulting from
the division. This makes sense when the output Waveform* initially contains no
sample data, but also applies when an existing Waveform*, which does contain
sample values, is redefined (clobbered).

• X_units, Y_units, X_start, and X_increment of the output waveform are set to match
the first input waveform. See Waveform* Attributes, Waveform Mathematical View
and Waveform Units for descriptions of these parameters.

• BAD_WAVE propegates i.e. if any input waveform is BAD_WAVE, the output
waveform will be BAD_WAVE.

Usage
The following function performs a sample-by-sample division; in_wave1 divided by
in_wave2:

void waveform_divide(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

The following function is only usable with waveforms defined using a one-part notation
(RRECT_WAVE, RLONG_WAVE):

void waveform_divide(Waveform* out_wave,
Waveform* in_wave,
double scalar);

The following function is only usable with CRECT_WAVE waveforms:

void waveform_divide(Waveform* out_wave,
Waveform* in_wave,
double scalar1,
double scalar2);

where:

out_wave is the output waveform which results from the division:

in_wave1 and in_wave2 identify two waveforms which are to be divided. See description.

in_wave identifies one waveform which will have each sample divided by scalar value(s).
See Description.

scalar, scalar1, and scalar2 are the scalar values to be divided into each sample of
the input waveform. See Description.
 2/27/09 Pg-1049

Waveform Functions
Example

???

3.27.18.9 waveform_double_strided_copy()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_double_strided_copy() function is used to copy sample values from
an input waveform to an output waveform. Note the following:

• The output waveform is set to be the same Size as the input waveform.
• Copying begins by taking the input waveform sample value at the location (index)

specified by the input_start argument and copying it to the output waveform at
the index specified by the output_start argument.

• The input_stride parameter then identifies how values are subsequently taken
from the input waveform. For example, if input_stride = 5, every 5th sample
value from the input waveform will be copied to the output waveform.

• The output_stride parameter specifies how subsequent destinations are
identified. For example, if output_stride = 7, after the first value is copied to
output_start, subsequent values will copied into the 7th index location after the
previous location. See Figure-58: .

• The copying process wraps back to the beginning of both the input and output
waveforms as needed, and stops when the number of samples copied matches
the Size of the input waveform.

• As with waveform_strided_copy(), if the input_stride value is not mutually
prime with the input waveform Size (see Mutually Prime), some of the input
waveform sample values will be repeated in the output waveform, and other
sample values will not be copied. This is not an error.

• However, if the output_stride value is not mutually prime with the input
waveform Size not all of the output waveform samples will be valid i.e. the output
waveform would contain undefined values (holes). When this is detected, an error
message is output in the appropriate controller window, the copy process is
terminated, the output waveform will be invalid, and the waveform Type is
set = BAD_WAVE.
 2/27/09 Pg-1050

Waveform Functions
• Also, the input_stride and output_stride values must be mutually prime
with each other, or a similar error is issued.

• The input waveform sample values may be defined using any notation (see
Waveform Sample Value Notations). The ouput waveform sample values will be
defined using the same notation.

Also note the following about the output waveform:

• X_units and Y_units are set to match the input waveform

•

• X_start = X_startin + input_start x X_incrementin - out_start x X_increment
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

The diagram below shows how an input waveform containing 12 sample values is copied
when mutually prime rules are satisified:

waveform_strided_copy(outWF, inWF, 2, 5, 9, 7);

Figure-58: waveform_double_strided_copy() User Model

X_increment =
input_stride
output_stride

x X_incrementin

Size = 12

Size = 121.0 3.24.6 7.2 9.3 0.0 2.9 0.1 4.4 8.5 8.2 7.0
0 11543 6 107 8 91 2 Index

inWF

input_start

3 104116 9 52 7 128 1

1.0 3.24.6 7.2 9.3 0.0 2.9 0.1 4.4 8.5 8.2 7.0outWF
0 11543 6 107 8 91 2 Index

10 3927 4 811 6 15 12

Order copied

Order copied

output_stride = 7

output_stride = 5

output_start
 2/27/09 Pg-1051

Waveform Functions
The waveform_double_strided_copy() function may be used to undo the effects of
waveform_strided_copy(). For example:

waveform_strided_copy(outWF, inWF, start, stride);

may be undone with:

waveform_double_strided_copy(outWF, inWF, start, stride);

Note that this only operates correctly if waveform_strided_copy() performed a full copy
(num_elements = input waveform Size) AND the input_stride value represented a
well-formed value i.e. was mutually prime with the Size of the input waveform (see Mutually
Prime).

This capability can be used to unravel a sampled waveform. For instance, given a waveform
consisting of 1024 sample values which represent five cycles of a periodic signal, assuming
that the waveform was coherently captured, it can be converted to a representation of a
single cycle of the signal using:

waveform_double_strided_copy(outWF, inWF, 0, 5);

This cycle scrambling application may extend in both directions. For example, the following
can be used to to expand the same five signal cycles into seven:

waveform_double_strided_copy(outWF, inWF, 0, 5, 0, 7);

Usage
void waveform_double_strided_copy(

Waveform* out_wave,
Waveform* in_wave,
int output_start,
int output_stride DEFAULT_VALUE(1),
int input_start DEFAULT_VALUE(0),
int input_stride DEFAULT_VALUE(1));

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

output_start where the first value copied to the output waveform will be located. This is
the zero based location (index) in the output waveform where the input waveform sample
located by input_start will be copied.
 2/27/09 Pg-1052

Waveform Functions
output_stride is optional, and if used specifies how destination locations in the output
waveform are identified after output_start. See Description. Default = 1 i.e. no output
locations are skipped after output_start.

input_start is optional, and if used identifies the zero based location (index) of the first
value to be copied from the input waveform. Default = 0 = copy the first value in the input
waveform.

input_stride is optional, and if used specifies how input waveform samples after
input_start are located. See Description. Default = 1 = no values are skipped.

Example
???

3.27.18.10 waveform_integerize()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_integerize() function is used to convert the sample values of waveform
defined using RRECT_WAVE notation to RLONG_WAVE notation. Conversion is done by
rounding each sample value individually, using a specified rounding method. See
RoundingMethod in Types, Enums, etc.

Usage
void waveform_integerize(

Waveform* out_wave,
Waveform*in_wave,
RoundingMethod rounding_method

DEFAULT_VALUE(t_round_to_nearest)
);

where:

out_wave specifies the output waveform.

in_wave specifies the waveform to be converted.

rounding_method is optional, and if used specifies the desired rounding method. See
RoundingMethod in Types, Enums, etc. Default = t_round_to_nearest.
 2/27/09 Pg-1053

Waveform Functions
Example
???

3.27.18.11 waveform_join_complex()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_join_complex() function is used to create an output waveform
containing sample values defined in the CRECT_WAVE notation, from two input waveforms
defined using a RRECT_WAVE or RLONG_WAVE notation.

It is expected that the two input waveforms are the same Size (see
waveform_get_size()). If not, an error message is output in the appropriate controller
window, sample values from the longer waveform are ignored, and testing otherwise
continues.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the first input
waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_join_complex(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave specifies the destination for the joined waveform.

in_wave1 and in_wave2 specify the two waveforms to be joined into out_wave.

Example
???
 2/27/09 Pg-1054

Waveform Functions
3.27.18.12 waveform_join_polar()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_join_polar() function is used to create an output waveform with sample
values defined in the POLAR_WAVE notation from two inputs waveforms defined using
RRECT_WAVE or RLONG_WAVE notation.

It is expected that the two input waveforms are the same Size (see
waveform_get_size()). If not, an error message is output in the appropriate controller
window, sample values from the longer waveform are ignored, and testing otherwise
continues.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the first input
waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_join_polar(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave specifies the destination for the joined waveform.

in_wave1 and in_wave2 specify the two waveforms to be joined into out_wave.

Example
???

3.27.18.13 waveform_lookup()
See Waveform Overview, Waveform Manipulation Functions.
 2/27/09 Pg-1055

Waveform Functions
Description
The waveform_lookup() function provides a table lookup facility using a waveform’s
sample values as table index values.

Note the following:

• The lookup_table argument may be a waveform containing sample values in
any notation. Values from in_wave will be transferred to out_wave as noted
below,

• The in_wave waveform Type must be RLONG_WAVE. Each sample value of
in_wave is interpreted as an index into the lookup_table. The in_wave
sample values must be from zero up to the Size of the lookup_table minus one.

• As each element of the input waveform (in_wave) is processed, the
corresponding sample value from the lookup_table waveform is placed into the
out_wave waveform. Output waveform sample values will be the same notation
as those in the lookup_table, and out_wave will be the same Size as the
in_wave waveform.

Description
void waveform_lookup(Waveform* out_wave,

Waveform* in_wave,
Waveform* lookup_table);

where:

out_wave specifies the output waveform.

in_wave specifies a set of index values, in the form of a waveform sample values, which
determine which sample values are taken from lookup_table to define out_wave.

lookup_table specifies the waveform from which sample values will be taken to define
out_wave.

Example
???

3.27.18.14 waveform_make_complex()
See Waveform Overview, Waveform Manipulation Functions.
 2/27/09 Pg-1056

Waveform Functions
Description
The waveform_make_complex() function is used to convert a waveform defined using
other notations to complex values. See Waveform Sample Value Notations.

Note the following:

• The output waveform Type is always CRECT_WAVE.
• For RRECT_WAVE and RLONG_WAVE waveforms, imaginary zeros are added to

create complex values.
• For CRECT_WAVE, the operation copies the input Waveform* to the output

Waveform*.
• For POLAR_WAVE, a polar-to-rectangular conversion is performed.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_make_complex(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform.

in_wave specifies the waveform to be converted.

Example
???

3.27.18.15 waveform_multiply()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_multiply() function is used to perform sample-by-sample multiplication
on a waveform, with the resulting values stored in an output waveform.
 2/27/09 Pg-1057

Waveform Functions
Two basic forms are provided:

• Each sample of the output waveform consists of the multiplication of the two
corresponding samples of two input waveforms.

• Each sample of the output waveform consists of the multiplication of a
corresponding sample of an input waveform times a scalar value (RRECT_WAVE,
RLONG_WAVE) or two scaler values (CRECT_WAVE, POLAR_WAVE).

Also note:

• If both inputs are RLONG_WAVE, the output will be RLONG_WAVE.
• If both inputs are RRECT_WAVE, the output will be RRECT_WAVE.
• If one input is RRECT_WAVE and the other is RLONG_WAVE, the output will be

RRECT_WAVE.
• If both inputs are CRECT_WAVE, the output will be CRECT_WAVE and calculated as:

• If both inputs are POLAR_WAVE, the vector dot product is performed as:

• If one input is CRECT_WAVE and the other is an RRECT_WAVE or RLONG_WAVE, the
output is CRECT_WAVE and calculated as:

• If one input is CRECT_WAVE and the other is POLAR_WAVE, the polar waveform is
converted to rectangular, the product is computed using complex multiplication
and the result is left in complex form (CRECT_WAVE).

When performing multiplication using two scalar value(s):

• The input waveform must be CRECT_WAVE or POLAR_WAVE waveform.
• The scalars are intrepeted to represent a tuple of the same type as the input wave

type and the multiplication is performed.
When performing multiplication using one scalar value

• If the input is RRECT_WAVE, the output is RRECT_WAVE.
• If the input is RLONG_WAVE, the output remains RLONG_WAVE if the scalar is an

integer value otherwise the output is RRECT_WAVE.

real 1real 2real 1imag 2imag×–×=
imag 1real 2imag 2real 1imag×+×=

phase 0=
mag mag1 mav2× phase1 phase2–()cos×=

real 1real 2real×=
imag 1 2real×imag=
 2/27/09 Pg-1058

Waveform Functions
• If the input is CRECT_WAVE, the results are formed by:

• If the input is POLAR_WAVE, the results are formed by:

In all cases, multiplication is performed on a per-sample basis (see Waveform Sample
Programming). The following rules apply:

• When two waveforms are being multiplied they must have the same sample Size.
If this rule is violated the output waveform will be the size of the smaller input
waveform, a warning message is output in the appropriate controller output
window, and testing otherwise continues.

• The output waveform will be [re-]sized to contain only the samples resulting from
the multiplication. This makes sense when the output Waveform* initially contains
no sample data, but also applies when an existing Waveform*, which does
contain sample values, is redefined (clobbered).

• X_units, Y_units, X_start, and X_increment of the output waveform are set to match
the first input waveform. See Waveform* Attributes, Waveform Mathematical View
and Waveform Units for descriptions of these parameters.

• BAD_WAVE propegates i.e. if any input waveform is BAD_WAVE, the output
waveform will be BAD_WAVE.

Usage
The following function performs a sample-by-sample multiplication. Both waveforms must be
defined using the same notation (see Waveform Sample Value Notations).

void waveform_multiply(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

The following function is only usable with waveforms defined using a one-part notation
(RRECT_WAVE, RLONG_WAVE):

void waveform_multiply(Waveform* out_wave,
Waveform* in_wave,
double scalar);

The following function is only usable with waveforms defined using a two-part notation
(CRECT_WAVE, POLAR_WAVE):

real 1real scalar×=
imag 1 scalar×imag=

real 1real scalar×=
imag 1imag=
 2/27/09 Pg-1059

Waveform Functions
void waveform_multiply(Waveform* out_wave,
Waveform* in_wave,
double scalar1,
double scalar2);

where:

out_wave is the output waveform which results from the multiplication:

in_wave1 and in_wave2 identify two waveforms which are to be multiplied. out_wave =
in_wave1 * in_wave2.

in_wave identifies one waveform which will have each sample multiplied by scalar value(s).
out_wave = in_wave1 * scalar (RRECT_WAVE, RLONG_WAVE) or
out_wave = in_wave1 * scalar1 and scalar2 (CRECT_WAVE, POLAR_WAVE). See
Description.

scalar, scalar1, and scalar2 are scalar values to be multiplied with each sample of the
input waveform. See Description.

Example
???

3.27.18.16 waveform_negate()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_negate() function is used to negate each sample value of a specified
input waveform placing the results in an output waveform.

The mathematical operation used for each waveform Type is shown below (see Waveform*
Attributes, Waveform Sample Value Notations and Waveform Mathematical View):

• RRECT_WAVE

• CRECT_WAVE

• POLAR_WAVE

• RLONG_WAVE (same as RRECT_WAVE)

Note the following about the output waveform:

f x() x–=
f x yi+() x yi––=
f r theta,() r theta,–=
f x() x–=
 2/27/09 Pg-1060

Waveform Functions
• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_negate(Waveform* out_wave, Waveform* in_wave);

where:

out_wave specifies the output waveform.

in_wave specifies the waveform to be negated.

Example
???

3.27.18.17 waveform_polar_to_rectangular()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_polar_to_rectangular() function is used to convert an input
waveform, with sample values defined using polar notation (POLAR_WAVE), to rectangular
notation (CRECT_WAVE) placing the result in the output waveform. See Waveform Sample
Value Notations. Note the following:

• The input Waveform* Type must be POLAR_WAVE.
• The output Waveform* Type will be CRECT_WAVE.
• The input waveform samples will be interpreted as magntude and phase (angle)

and will be converted to real and imaginary amplitude values.
Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.
 2/27/09 Pg-1061

Waveform Functions
Usage
void waveform_polar_to_rectangular(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform.

in_wave specifies the waveform to be converted.

Example
???

3.27.18.18 waveform_reciprocal()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_reciprocal() function is used to convert each input waveform sample
value to the reciprocal of that value with the results placed in the output waveform.

The mathematical operation used for each waveform Type is shown below (see Waveform
Sample Value Notations and Waveform Mathematical View):

• RRECT_WAVE

• CRECT_WAVE

• POLAR_WAVE Error

• RLONG_WAVE Transformed to RRECT_WAVE

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_reciprocal(Waveform* out_wave, Waveform* in_wave);

f x() 1
x
---=

f x yi–() 1
x yi–()

------------------ x
x2 y2+()

--------------------- yi
x2 y2+()

---------------------–= =
 2/27/09 Pg-1062

Waveform Functions
where:

out_wave specifies the output waveform.

in_wave specifies the input waveform to be processed.

Example
???

3.27.18.19 waveform_rectangular_to_polar()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_rectangular_to_polar() function is used to convert a waveform from
rectangular notation to polar notation. See Waveform Sample Value Notations. This is
commonly done to convert the complex results of an FFT to polar representation.

Note the following:

• The input Waveform* Type must be CRECT_WAVE.
• The output Waveform* Type will be POLAR_WAVE.
• The input waveform sample values will be interpreted as real and imaginary

amplitude values and will be converted to magnitude and phase (angle) values.
• Phase values are returned in the range of -Pi to +Pi.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_rectangular_to_polar(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform.
 2/27/09 Pg-1063

Waveform Functions
in_wave specifies the input waveform to be converted.

Example
???

3.27.18.20 waveform_replace_subset()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_replace_subset() function is used to replace all or part of one
waveform (in_wave1) with the entire contents of a second waveform (in_wave2), placing
the result in a third waveform (out_wave). Note the following:

• Neither in_wave1 nor in_wave2 are modified.
• in_wave1 and in_wave2 must use the same sample notation (see Waveform

Sample Value Notations). RRECT_WAVE and RRECT_WAVE are considered
compatible.

• out_wave will use the same sample notation, and will inherit all of the scaling
information from in_wave1. See Waveform* Attributes.

• The starting point (starting_offset) for the data replacement must be a valid
offset within in_wave1. i.e. 0 to size(in_wave1) -1.

• The output waveform will, if necessary, be resized to include all samples from
in_wave2.

Usage
void waveform_replace_subset(

Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2,
int starting_offset DEFAULT_VALUE(0));

where:

out_wave specifies the output waveform.

in_wave1 specifies the first input waveform.
 2/27/09 Pg-1064

Waveform Functions
in_wave2 specifies the second input waveform.

starting_offset is optional, and if used specifies the first value from in_wave1 to be
repaced. Default = 0 i.e. start with the first sample value.

Example
The following example rotates a portion of a waveform

// Using waveform_subset(), get some samples from the original
// waveform
waveform_subset(subsetWF, originalWF, 10, 25);

// Rotate these samples: waveform_rotate_left()
waveform_rotate_left(subsetWF, subsetWF);

// Replace the original WF with the rotated WF
waveform_replace_subset(originalWF, originalWF, subsetWF, 10);

3.27.18.21 waveform_resample()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_resample() function utilizes Shannon's resampling theorem to convert a
waveform to an alternate representation. The new representation reflects the same
waveform sampled at a different frequency. Note the following:

• The input Waveform must be RRECT_WAVE or RLONG_WAVE.
• The output waveform will be RRECT_WAVE.
• The desired number of samples in the output waveform is specified using the

num_samples parameter.
• Since the function relies on FFT operations, both the input waveform and the

output waveform must be at least eight samples long.
• The output waveform will have the same X_start, X_units, and Y_units as the

input, but the X_increment value will be appropriately adjusted.
• num_samples may represent a value which is less than, equal to, or greater than

the input waveform's length. If it is less than, the resulting waveform may change
in appearance. This would occur only if the input waveform has high frequency
components that fall below the newly lowered Nyquist frequency. In this situation,
 2/27/09 Pg-1065

Waveform Functions
the output waveform is an accurate representation of what the input waveform
would look like if it was undersampled. The high frequency components would
alias to lower frequencies.

Usage
void waveform_resample(Waveform* out_wave,

Waveform* in_wave,
int num_samples);

where:

out_wave specifies the output waveform.

in_wave specifies the input waveform to be converted.

num_samples specifies the desired number of samples in the output waveform. See
Description.

Example
???

3.27.18.22 waveform_rescale()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_rescale() function is used to linearly map the current range of waveform
sample values from an input waveform to a new range with the results placed in an output
waveform.

waveform_rescale() is only usable on waveforms defined a one-part notation
(RRECT_WAVE, RLONG_WAVE). The resulting output waveform is in the RRECT_WAVE
notation. See Waveform Sample Value Notations.

Two versions of waveform_rescale() are available:
 2/27/09 Pg-1066

Waveform Functions
• The first version takes a single scaling parameter: max_value. The input
waveform’s sample values are analyzed to identify the maximum positive sample
value (sample_max) and all samples matching this value are reset to the specified
max_value. All other waveform sample values are then scaled using the formula:

• The second version takes two scaling parameters: max_value and min_value.
The input waveform’s sample values are analyzed to identify the maximum sample
value (sample_max) and the minimum sample value (sample_min). Then, all
waveform sample values are scaled using the formula:

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_rescale(Waveform* out_wave,

Waveform* in_wave,
double max_value DEFAULT_VALUE(1.0));

void waveform_rescale(Waveform* out_wave,
Waveform* in_wave,
double min_value,
double max_value);

where:

out_wave specified the destination for the rescaled waveform.

in_wave specifies the waveform to be rescaled

max_value and min_value are used as noted in Description.

Example
???

out in max_value×
sample_max

-------------------------------------=

out in sample_min–() max_value min_value–()×
sample_max sample_min–()

-- min_value+=
 2/27/09 Pg-1067

Waveform Functions
3.27.18.23 waveform_reverse()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_reverse() function can be used to reverse the sample value order of an
input waveform, putting the result into an output waveform.

Note the following about the output waveform:

• X_units and Y_units are set to match the input waveform
• X_start is set to: input waveform X_start + (size-1) * input waveform X_increment
• X_increment is set to: -1 * input waveform X_increment

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_reverse(Waveform* out_wave, Waveform* in_wave);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

Example
???

3.27.18.24 waveform_rotate_left(), waveform_rotate_right()
See Waveform Overview, Waveform Manipulation Functions.

Description

The waveform_rotate_left() function may be used to left rotate the sample values of a
specified waveform a specified number of locations. This could be used to phase shift a
periodic time domain waveform.
 2/27/09 Pg-1068

Waveform Functions
The waveform_rotate_right() function may be used to right rotate the sample values
of a specified waveform a specified number of locations.

Note the following:

• The input waveform sample values may be defined using any notation (see
Waveform Sample Value Notations). The ouput waveform sample values will be
defined using the same notation.

• The output waveform will be the same Size as the input waveform (see
waveform_get_size()).

• The specified locations value is reduced modulo the Size of the input
waveform.

• Negative numbers effectively shift in the opposite direction, therefore:
waveform_rotate_left(outWF, inWF, -3);

is equivalent to:
waveform_rotate_right(outWF, inWF, 3);

Also note the following about the output waveform:

• X_units and Y_units are set to match the input waveform
• X_start is set to to match the time associated with the first sample in the output

waveform
• X_increment is set to match the input waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_rotate_left(Waveform* out_wave,

Waveform* in_wave,
int locations DEFAULT_VALUE(1));

void waveform_rotate_right(Waveform* out_wave,
Waveform* in_wave,
int locations DEFAULT_VALUE(1));

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

locations specifies the number of locations the sample values are rotated.
 2/27/09 Pg-1069

Waveform Functions
Example
???

3.27.18.25 waveform_sort()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_sort() function is used to sort the sample values of an input waveform
and copy the result to an output waveform. The sort can order the results in ascending or
descending order.

Note the following about the output waveform:

• X_units and Y_units units are set to match the input waveform
• X_start is set to to match the time associated with the first sample in the output

waveform
• X_increment is set to match the input waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_sort(Waveform* out_wave,

Waveform* in_wave,
BOOL ascending DEFAULT_VALUE(TRUE));

where:

out_wave identifies the output waveform.

out_wave identifies the input waveform to be sorted.

ascending is optional, and if used specifes whether the sort should put the sample values
in ascending order (TRUE) or descending order (FALSE). Default = TRUE = ascending.

Example
???
 2/27/09 Pg-1070

Waveform Functions
3.27.18.26 waveform_split()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_split() function is used to split an input waveform with sample values
defined using CRECT_WAVE or POLAR_WAVE notation into two output waveforms defined
using the RRECT_WAVE notation.

The sample data of the first output RRECT_WAVE waveform corresponds to the magnitude
values of a POLAR_WAVE, or the real value of a CRECT_WAVE.

The sample data of the second output RRECT_WAVE waveform corresponds to the phase
value of a POLAR_WAVE, or the imaginary value of a CRECT_WAVE.

Note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the input waveform
See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_split(Waveform* out_wave1,

Waveform* out_wave2,
Waveform* in_wave);

where:

out_wave1 and out_wave2 specify the destinations for the split waveform. See
Description.

in_wave specifies the waveform to be split. This must be a waveform defined using a two-
part notation (CRECT_WAVE or POLAR_WAVE); see Description.

Example
???
 2/27/09 Pg-1071

Waveform Functions
3.27.18.27 waveform_strided_copy()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_strided_copy() function is used to copy sample values from an input
waveform to an output waveform. Note the following:

• Copying begins with the input waveform sample value identified by the
input_start argument.

• The input_stride parameter specifies which subsequent samples to copy. For
example, if input_stride = 5, every 5th sample value from the input waveform
will be copied to the output waveform.

• The num_elements argument specifies the number of elements to copy. The
output waveform Size will be num_elements. If num_elements is small enough,
copying will stop before reaching the end of the input waveform. If
num_elements is large enough, copying will wrap back to the start of the input
waveform. If num_elements is not supplied, or specified as -1, its value will be
the Size of the input waveform.

• The input waveform sample values may be defined using any notation (see
Waveform Sample Value Notations). The ouput waveform sample values will be
defined using the same notation.

Also note the following about the output waveform:

• X_units and Y_units units are set to match the input waveform
• X_start is set to the time associated with the first sample value.
• X_increment is set to ???.

X_incrementSee Waveform Mathematical View and Waveform Units for descriptions of
these parameters.

For example, given an input waveform containing the following 10 sample values:

{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }

Executing:

waveform_strided_copy(outWF, inWF, 2, 3),

operates as follows:

1. Since num_elements is not specified, it defaults = 10 = Size of the input waveform.
 2/27/09 Pg-1072

Waveform Functions
2. input_start = 2, so the sample value at index 2 (which = 2) is copied to the output
waveform.

3. input_stride = 3, so the next sample to be copied is at index 2 + 3 = 5, followed by
the sample value at 5 + 3 = 8, etc.

4. The next index should be 8 + 3 = 11, but this is beyond the end of the input waveform, so
it is reduced by the length of the input waveform i.e. 11 - 10 = 1. Thus the sample value
at 1 is copied next.

5. Copying continues with the samples at index 4 and 7, then another wrap occurs at index
10, which becomes 0. The process continues for all 10 sample values.

The output waveform will contain the following:

{ 2, 5, 8, 1, 4, 7, 0, 3, 6, 9 }

Note that if the input_stride value is set = 1 (default), waveform_strided_copy()
operates the same as waveform_rotate_left(), i.e.:

waveform_strided_copy(outWF, inWF, 10);

is equivalent to:

waveform_rotate_left(outWF, inWF, 10);

Another use for waveform_strided_copy() is to replicate a waveform a specified
number of times and to concatenate the copies into the output waveform. For example, if
inWF contains 1000 sample values (Size = 1000), the following will replicate/concatenate
the waveform five times in outWF:

waveform_strided_copy(outWF, inWF, 0, 1, 5000);

The waveform_double_strided_copy() function may be used to undo the effects of
waveform_strided_copy(). For example:

waveform_strided_copy(outWF, inWF, start, stride);

may be undone with:

waveform_double_strided_copy(outWF, inWF, start, stride);

Note that this only functions correctly if waveform_strided_copy() had previously
performed a full copy (num_elements = input waveform Size) AND the input_stride
value represented a well-formed value (see Mutually Prime, next).
 2/27/09 Pg-1073

Waveform Functions
Mutually Prime
Two numbers are said to be mutually prime if they share no common factors (other than
one). The concept of mutually prime is important when using waveform_strided_copy()
and waveform_double_strided_copy().

If waveform_strided_copy() is executed with num_elements = input waveform Size, it
might seem that all samples from the input waveform would be copied to the output
waveform, with only the order changing. However, this is not necessarily true. If the
input_stride parameter is not mutually prime with the Size of the input waveform, some
sample values of the input waveform will be duplicated in the output waveform, while others
will be skipped. When this occurs, the input parameters (input_stride vs. input
waveform Size) are referred to as not well formed. This situation is not detected and thus no
warning messages are issued.

For example, given an input waveform of 100 sample values, executing the following will not
copy all input waveform sample values to the output waveform, even though
num_elements = input waveform Size:

// Not "well formed"
waveform_strided_copy(outEF, inWF, 11, 18, 100);

The input_stride value (18) shares a factor (2) with the waveform Size (100). Since
copying starts on an odd sample value index (11) , and an even number (18) is always
added to obtain the next index, and wrapping always subtracts an even number (Size =
100), the index will always remain an odd number. The result is that all of the sample values
at odd index locations will be copied to the output waveform, twice, and none of the even
indexed values will be copied.

Usage
void waveform_strided_copy(

Waveform* out_wave,
Waveform* in_wave,
int input_start DEFAULT_VALUE(0),
int input_stride DEFAULT_VALUE(1),
int num_elements DEFAULT_VALUE(-1));

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

input_start is optional, and if used identifies location (zero based) of the first value from
the input waveform to be copied to the output waveform. Default = 0 = first sample value.
 2/27/09 Pg-1074

Waveform Functions
input_stride is optional, and if used specifies how sample values to be copied after
input_start to are identified. See Description. Default = 1 = no values are skipped.

num_elements is optional, and if used specifies how many sample values to copy. See
Description. Default = -1 = copy all values.

Example
???

3.27.18.28 waveform_subset()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_subset() function can be used to create an output waveform containing a
subset of sample values from an input waveform.

Note the following about the output waveform:

• X_units and Y_units units are set to match the input waveform
• X_start of the output waveforms is set to to match the time associated with the first

sample in the waveform
• X_increment is set to match the input waveform

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_subset(Waveform* out_wave,

Waveform* in_wave,
int offset DEFAULT_VALUE(0),
int length DEFAULT_VALUE(-1));

where:

out_wave specified the output waveform.

in_wave specifies the input waveform.
 2/27/09 Pg-1075

Waveform Functions
offset is optional, and if used specifies the first value from in_wave to be copied.
Default = 0 i.e. start with the first sample value.

length is optional, and if used specifies the number of samples to take from in_wave.
Default = -1 i.e. take all samples from offset to the end of the waveform.

Example
???

3.27.18.29 waveform_subtract()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_subtract() function is used to perform sample-by-sample subtraction on
waveform(s), with the resulting values stored in an output waveform.

Two basic forms are provided:

• Each sample of the output waveform consists of the subtraction of two
corresponding samples of two input waveforms.

• Each sample of the output waveform consists of the subtraction of a
corresponding sample of an input waveform minus a scalar value (RRECT_WAVE,
RLONG_WAVE) or two scaler values (CRECT_WAVE, POLAR_WAVE).

Also note:

• If both inputs are RLONG_WAVE, the output will be RLONG_WAVE.
• If both inputs are RRECT_WAVE, the output will be RRECT_WAVE.
• If one input is RRECT_WAVE and the other is RLONG_WAVE, the output will be

RRECT_WAVE.
• If both inputs are CRECT_WAVE, the output will be CRECT_WAVE:

real = real1 - real2
imag = imag1 - imag2;

• If both inputs are POLAR_WAVE, vector subtraction is performed. Both input
waveforms are converted to rectangular notation, subtracted, then converted back
to polar notation.
 2/27/09 Pg-1076

Waveform Functions
• If one input is CRECT_WAVE, the other input waveform is converted to complex
using waveform_make_complex(). The results are subtracted and left in
complex form (CRECT_WAVE). waveform_make_complex() appends an
imaginary value of zero to RRECT_WAVE and RLONG_WAVE waveforms. For
POLAR_WAVE waveforms, waveform_polar_to_rectangular() is called.

• When subtracting a waveform and a single scalar:
- If the input waveform is RRECT_WAVE, the output is RRECT_WAVE.
- If the input waveform is RLONG_WAVE, the output remains RLONG_WAVE if the
 scalar is an integer value otherwise the output is RRECT_WAVE.
- If the input waveform is CRECT_WAVE, the results are formed by:

real = real1 - scalar
imag = imag1

- If the input is POLAR_WAVE, the scalar is promoted to the vector (scalar, 0.0) and
 vector subtraction is performed.

• When subtracting a waveform and two scalars, the input waveform type must be
either CRECT_WAVE or POLAR_WAVE. The scalars are intrepeted to represent a
tuple of the same type as the input wave type and the subtraction is performed.

In all cases, subtraction is performed on a per-sample basis (see Waveform Sample
Programming). The following rules apply:

• When two waveforms are being subtracted they must have the sample sample
Size. If this rule is violated the output waveform will be the size of the smaller input
waveform, a warning message is output in the appropriate controller output
window, and testing otherwise continues.

• The output waveform will be [re-]sized to contain only the samples resulting from
the subtraction. This makes sense when the output Waveform* initially contains
no sample data, but also applies when an existing Waveform*, which does
contain sample values, is redefined (clobbered).

Also note the following about the output waveform:

• X_units, Y_units, X_start, and X_increment are set to match the first input
waveform. See Waveform* Attributes, Waveform Mathematical View and Waveform
Units for descriptions of these parameters.

• BAD_WAVE propegates i.e. if any input waveform is BAD_WAVE, the output
waveform will be BAD_WAVE.
 2/27/09 Pg-1077

Waveform Functions
Usage
The following function performs a sample-by-sample subtraction; in_wave1 minus
in_wave2. Both waveforms must be defined using the same notation (see Waveform
Sample Value Notations).

void waveform_subtract(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

The following function is only usable with waveforms defined using a one-part notation
(RRECT_WAVE, RLONG_WAVE):

void waveform_subtract(Waveform* out_wave,
Waveform* in_wave,
double scalar);

The following function is only usable with waveforms defined using a two-part notation
(CRECT_WAVE, POLAR_WAVE):

void waveform_subtract(Waveform* out_wave,
Waveform* in_wave,
double scalar1,
double scalar2);

where:

out_wave is the output waveform which results from the subtraction:

in_wave1 and in_wave2 identify two waveforms which are to be subtracted. out_wave =
in_wave1 - in_wave2.

in_wave identifies one waveform which will have scalar value(s) subtracted from each
sample. out_wave = in_wave1 - scalar (RRECT_WAVE, RLONG_WAVE) or
out_wave = in_wave1 - scalar1 and scalar2 (CRECT_WAVE, POLAR_WAVE). See
Description.

scalar, scalar1, and scalar2 are scalar values to be subtracted from each sample of
the input waveform. See Description.

Example
???
 2/27/09 Pg-1078

Waveform Functions
3.27.18.30 waveform_sum()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_sum() function can be used to obtain a sum of all sample values of a
specified waveform. Only waveforms defined using the RRECT_WAVE or RLONG_WAVE
notation are supported.

Usage
double waveform_sum(Waveform* in_wave);

where:

in_wave specifies the waveform to be summed.

waveform_sum() returns the sum of all sample values of in_wave.

Example
???

3.27.18.31 waveform_summing()
See Waveform Overview, Waveform Manipulation Functions.

Description
The waveform_summing() function returns an output waveform containing sample values
which are the running sum of sample values from an input waveform. The nth sample value
of the output waveform is equal to the sum of nth sample value of the input waveform and all
sample values preceding it. The sum is computed using the method of addition appropriate
for the notation used to define the input waveform sample values (see Waveform Sample
Value Notations).

The Size (see waveform_get_size()) and sample value notation (see Waveform
Sample Value Notations) of the output waveform is the same as the input waveform.

Note the following about the output waveform:
 2/27/09 Pg-1079

Waveform Functions
• X_units and Y_units units are set to match the input waveform
• X_start is set to ???
• X_increment is set to ???

X_startX_incrementSee Waveform Mathematical View and Waveform Units for
descriptions of these parameters.

Usage
void waveform_summing(Waveform* out_wave, Waveform* in_wave);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

Example
???

3.27.19 Waveform Equality Functions
See Waveform Overview, Waveform Units

• waveform_gt()

• waveform_lt()

• waveform_ge()

• waveform_le()

• waveform_eq()

• waveform_within_bounds()

3.27.19.1 waveform_gt()
See Waveform Overview, Waveform Equality Functions.
 2/27/09 Pg-1080

Waveform Functions
Description
The waveform_gt() function is used to determine if each sample value of a specified input
waveform is greater than (gt) either a specified scalar value or a corresponding sample
value of a second specified waveform.

Two versions of waveform_gt() are available:

• The versions which return a BOOL value only return an overall result of the
comparison.

• The versions with the out_wave argument return the out_wave Waveform* with
each sample value containing the result of comparing the corresponding sample
values of the two input waveforms.

Also note the following:

• The waveform(s) must be defined using RRECT_WAVE or RLONG_WAVE notation.
• When comparing two waveforms they are not required to match in Type i.e. it is

valid to compare RRECT_WAVE vs. RLONG_WAVE.
• When two waveforms are compared they should have the same number of sample

values i.e. be the same Size (see waveform_get_size()). If not, an error is
output in the appropriate controller window, the extra sample values of the larger
waveform are ignored, and testing otherwise continues.

• When two waveforms are compared, the X_units type and sample rate
(X_increment) of the output waveform are inherited from the first input waveform.
The Y_units type = SCALE_BOOLEAN.

Usage
BOOL waveform_gt(Waveform* in_wave, double scalar);

BOOL waveform_gt(Waveform* in_wave1, Waveform* in_wave2);

void waveform_gt(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

void waveform_gt(Waveform* out_wave,
Waveform* in_wave,
double scalar);

where:

in_wave identifies the waveform to be evaluated.

scalar specifies the value to be compared with each in_wave sample value.
 2/27/09 Pg-1081

Waveform Functions
out_wave specifies the output waveform in which each sample value is the result of the
comparison of the corresponding sample values of in_wave1 vs. in_wave2. The
out_wave sample values (RLONG_WAVE notation) will consist of 1 = TRUE or 0 = FALSE.

The versions of waveform_gt() which return BOOL will return TRUE when the test of every
sample value returns TRUE, otherwise FALSE is returned. See Description.

Example
???

3.27.19.2 waveform_lt()
See Waveform Overview, Waveform Equality Functions.

Description
The waveform_lt() function is used to determine if each sample value of a specified input
waveform is less than (lt) either a specified scalar value or a corresponding sample value of
a second specified waveform.

Two versions of waveform_lt() are available:

• The versions which return a BOOL value only return an overall result of the
comparison.

• The versions with the out_wave argument return the out_wave Waveform* with
each sample value containing the result of comparing the corresponding sample
values of the two input waveforms.

Also note the following:

• The waveform(s) must be defined using RRECT_WAVE or RLONG_WAVE notation.
• When comparing two waveforms they are not required to match in Type i.e. it is

valid to compare RRECT_WAVE vs. RLONG_WAVE.
• When two waveforms are compared they should have the same number of sample

values i.e. be the same Size (see waveform_get_size()). If not, an error is
output in the appropriate controller window, the extra sample values of the larger
waveform are ignored, and testing otherwise continues.

• When two waveforms are compared, the X_units type and sample rate
(X_increment) of the output waveform are inherited from the first input waveform.
The Y_units type = SCALE_BOOLEAN.
 2/27/09 Pg-1082

Waveform Functions
Usage
BOOL waveform_lt(Waveform* in_wave, double scalar);

BOOL waveform_lt(Waveform* in_wave1, Waveform* in_wave2);

void waveform_lt(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

void waveform_lt(Waveform* out_wave,
Waveform* in_wave,
double scalar);

where:

in_wave identifies the waveform to be evaluated.

scalar specifies the value to be compared with each in_wave sample value.

out_wave specifies the output waveform in which each sample value is the result of the
comparison of the corresponding sample values of in_wave1 vs. in_wave2. The
out_wave sample values (RLONG_WAVE notation) will consist of 1 = TRUE or 0 = FALSE.

The versions of waveform_lt() which return BOOL will return TRUE when the test of every
sample value returns TRUE, otherwise FALSE is returned. See Description.

Example
???

3.27.19.3 waveform_ge()
See Waveform Overview, Waveform Equality Functions.

Description
The waveform_ge() function is used to determine if each sample value of a specified input
waveform is greater than (g) or equal to (e) either a specified scalar value or a
corresponding sample value of a second specified waveform.

Two versions of waveform_ge() are available:

• The versions which return a BOOL value only return an overall result of the
comparison.
 2/27/09 Pg-1083

Waveform Functions
• The versions with the out_wave argument return the out_wave Waveform* with
each sample value containing the result of comparing the corresponding sample
values of the two input waveforms.

Also note the following:

• The waveform(s) must be defined using RRECT_WAVE or RLONG_WAVE notation.
• When comparing two waveforms they are not required to match in Type i.e. it is

valid to compare RRECT_WAVE vs. RLONG_WAVE.
• When two waveforms are compared they should have the same number of sample

values i.e. be the same Size (see waveform_get_size()). If not, an error is
output in the appropriate controller window, the extra sample values of the larger
waveform are ignored, and testing otherwise continues.

• When two waveforms are compared, the X_units type and sample rate
(X_increment) of the output waveform are inherited from the first input waveform.
The Y_units type = SCALE_BOOLEAN.

Usage
BOOL waveform_ge(Waveform* in_wave, double scalar);

BOOL waveform_ge(Waveform* in_wave1, Waveform* in_wave2);

void waveform_ge(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

void waveform_ge(Waveform* out_wave,
Waveform* in_wave,
double scalar);

where:

in_wave identifies the waveform to be evaluated.

scalar specifies the value to be compared with each in_wave sample value.

out_wave specifies the output waveform in which each sample value is the result of the
comparison of the corresponding sample values of in_wave1 vs. in_wave2. The
out_wave sample values (RLONG_WAVE notation) will consist of 1 = TRUE or 0 = FALSE.

The versions of waveform_ge() which return BOOL will return TRUE when the test of every
sample value returns TRUE, otherwise FALSE is returned. See Description.
 2/27/09 Pg-1084

Waveform Functions
Example
???

3.27.19.4 waveform_le()
See Waveform Overview, Waveform Equality Functions.

Description
The waveform_le() function is used to determine if each sample value of a specified input
waveform is less than (l) or equal to (e) either a specified scalar value or a corresponding
sample value of a second specified waveform.

Two versions of waveform_le() are available:

• The versions which return a BOOL value only return an overall result of the
comparison.

• The versions with the out_wave argument return the out_wave Waveform* with
each sample value containing the result of comparing the corresponding sample
values of the two input waveforms.

Also note the following:

• The waveform(s) must be defined using RRECT_WAVE or RLONG_WAVE notation.
• When comparing two waveforms they are not required to match in Type i.e. it is

valid to compare RRECT_WAVE vs. RLONG_WAVE.
• When two waveforms are compared they should have the same number of sample

values i.e. be the same Size (see waveform_get_size()). If not, an error is
output in the appropriate controller window, the extra sample values of the larger
waveform are ignored, and testing otherwise continues.

• When two waveforms are compared, the X_units type and sample rate
(X_increment) of the output waveform are inherited from the first input waveform.
The Y_units type = SCALE_BOOLEAN.

Usage
BOOL waveform_le(Waveform* in_wave, double scalar);

BOOL waveform_le(Waveform* in_wave1, Waveform* in_wave2);
 2/27/09 Pg-1085

Waveform Functions
void waveform_le(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

void waveform_le(Waveform* out_wave,
Waveform* in_wave,
double scalar);

where:

in_wave identifies the waveform to be evaluated.

scalar specifies the value to be compared with each in_wave sample value.

out_wave specifies the output waveform in which each sample value is the result of the
comparison of the corresponding sample values of in_wave1 vs. in_wave2. The
out_wave sample values (RLONG_WAVE notation) will consist of 1 = TRUE or 0 = FALSE.

The versions of waveform_le() which return BOOL will return TRUE when the test of every
sample value returns TRUE, otherwise FALSE is returned. See Description.

Example
???

3.27.19.5 waveform_eq()
See Waveform Overview, Waveform Equality Functions.

Description
The waveform_eq() function is used to determine if each sample value of a specified
waveform is equal to (eq) either a specified scalar value or a corresponding sample value of
another specified waveform.

Equality comparisons of floating point values are not always useful when an exact match is
performed. For instance, the expressions

both evaluate to 1.0000..., but if the operations are performed in a different order, the results
may not exactly match, depending on how floating point round-off is handled.

1.0
3.0
------- 3.0× 1.0 3.0

3.0
-------×... and ...
 2/27/09 Pg-1086

Waveform Functions
Therefore, the waveform_eq() function supports an optional tolerance parameter,
which allows the user to control the equality tolerance. The tolerance parameter may be
interpreted as an absolute tolerance or a relative tolerance, depending on the values being
compared:

• When the values being compared are < 1, tolerance is treated as an absolute
tolerance. For example, if tolerance = 0.01, then 0.815 is equal to 0.822,
because the absolute difference is <= 0.01.

• When the values being compared are >= 1, tolerance is treated as an relative
tolerance. Using the same tolerance value (0.01) 123,456.0 is equal to 122,789.0
because the difference is >= 1234.56 (0.01 * 123,456). Note that this large
tolerance value is examined for illustration purposes only; normally tolerance
will be a much smaller value.

• If no tolerance is specified, it defaults to 1.0e-7.
• If tolerance is set = 0, an exact match is performed.

Two versions of waveform_eq() are available:

• The versions which return a BOOL value only return an overall result of the
comparison.

• The versions of waveform_eq() which use the out_wave argument return a
Waveform* in which each sample value is the result of an equality test of the
corresponding sample values from the two specified input waveforms.

Also note the following:

• When comparing two waveforms defined using RRECT_WAVE or RLONG_WAVE
notation they are not required to match in Type i.e. it is valid to compare
RRECT_WAVE vs. RLONG_WAVE.

• Unlike the other Waveform Equality Functions, some forms of waveform_eq()
may be used with waveforms defined using CRECT_WAVE or POLAR_WAVE notation.
See Usage. When comparing CRECT_WAVE or POLAR_WAVE waveforms, the two
waveforms must be defined using the same notation.

• The sample values of waveform defined using CRECT_WAVE or POLAR_WAVE
notation consist of two parts. For CRECT_WAVE these are the real and imaginary
parts. For POLAR_WAVE these are the magnitude and phase. waveform_eq()
performs two equality tests for each sample value, one for each part, and the
tolerance value is applied separately to each part. The two equality tests for
each sample must both be equal otherwise the comparison returns FALSE.
 2/27/09 Pg-1087

Waveform Functions
• When two Waveform* are compared they should have the same number of
sample values i.e. be the same Size (see waveform_get_size()). If not, an
error is output in the appropriate controller window, the extra sample values of the
longer waveform are ignored, and testing otherwise continues.

• When two Waveform* are compared, the X_units type and sample rate
(X_increment) of the output waveform are inherited from the first input waveform.
The Y_units type = SCALE_BOOLEAN.

Usage
BOOL waveform_eq(Waveform* in_wave,

double scalar,
double tolerance DEFAULT_VALUE(1.0e-7));

void waveform_eq(Waveform* out_wave,
Waveform* in_wave,
double scalar,
double tolerance);

The following versions of waveform_eq() (only) may be used with waveforms defined
using CRECT_WAVE or POLAR_WAVE notation:

BOOL waveform_eq(Waveform* in_wave1,
Waveform* in_wave2,
double tolerance DEFAULT_VALUE(1.0e-7));

void waveform_eq(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2,
double tolerance DEFAULT_VALUE(1.0e-7));

where:

in_wave identifies the waveform to be evaluated.

scalar specifies the value to be used during the equality test of each in_wave sample
value.

tolerance see Description.

out_wave specifies the output waveform in which each sample value is the result of an
equality test of the corresponding sample values of in_wave1 and in_wave2. The
out_wave sample values (RLONG_WAVE notation) will consist of 1 = TRUE or 0 = FALSE.

The versions of waveform_eq() which return BOOL will return TRUE when every equality
test returned TRUE, otherwise FALSE is returned. See Description.
 2/27/09 Pg-1088

Waveform Functions
Example
???

3.27.19.6 waveform_within_bounds()
See Waveform Overview, Waveform Equality Functions.

Description
The waveform_within_bounds() function is used to determine if every sample value of
a specified waveform is numerically within specified bounds.

Two basic variations of waveform_within_bounds() are available (which partially
explains the number of waveform_within_bounds() function overloads):

• The versions which return a BOOL value only return an overall result of the
evaluation.

• The versions which use the out_wave argument return a Waveform* in which
each sample value is the result of the evaluation of each input sample value.

Note the following:

• The input waveform must be defined using RRECT_WAVE and RLONG_WAVE
notation.

• Both minimum bound and maximum bound values must be specified. The within-
bounds test is inclusive. e.g. a value is within bounds when:

minimum bound value <= sample value <= maximum bound value

• The minimum and/or maximum bound values may be specified using a scalar
value or a waveform. When a scalar value is used for either bound the within-
bounds test is made by comparing every sample value of the input waveform
against the same scalar value. When a bound is specified using a waveform, the
within-bounds test is made by comparing every sample value of the input
waveform against the corresponding sample value of the specified waveform. Four
combinarions of scalar vs. waveform are possible, which partially explains the
number of waveform_within_bounds() function overloads.
 2/27/09 Pg-1089

Waveform Functions
• When a bound is specified using a waveform, that waveform is expected to have
the same number of sample values as the input waveform i.e. be the same Size
(see waveform_get_size()). If not, an error is output in the appropriate
controller window, the extra sample values of the longer waveform are ignored,
and testing otherwise continues.

• When an output waveform is specified, the sample values of that waveform are
the boolean result of the within-bounds test of each corresponding sample value of
the input waveform.

Also note the following about the output waveform:

• The sample values are specified in RLONG_WAVE notation, and will consist of
1 = TRUE or 0 = FALSE

• Y_units is set to SCALE_BOOLEAN
• X_start is set to 0
• X_increment is set = 1
• X_units is set to SCALE_NOXUNITS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

X_units/Y_unitsX_incrementUsage
BOOL waveform_within_bounds(Waveform* in_wave,

double min_scalar,
double max_scalar);

BOOL waveform_within_bounds(Waveform* in_wave,
Waveform* min_wave,
double max_scalar);

BOOL waveform_within_bounds(Waveform* in_wave,
double min_scalar,
Waveform* max_wave);

BOOL waveform_within_bounds(Waveform* in_wave,
Waveform* min_wave,
Waveform* max_wave);

void waveform_within_bounds(Waveform* out_wave,
Waveform* in_wave,
double min_scalar,
double max_scalar);
 2/27/09 Pg-1090

Waveform Functions
void waveform_within_bounds(Waveform* out_wave,
Waveform* in_wave,
Waveform* min_wave,
double max_scalar);

void waveform_within_bounds(Waveform* out_wave,
Waveform* in_wave,
double min_scalar,
Waveform* max_wave);

void waveform_within_bounds(Waveform* out_wave,
Waveform* in_wave,
Waveform* min_wave,
Waveform* max_wave);

where:

in_wave identifies the waveform to be evaluated.

Bound minimum and maximum values can be set using any combination of:

• min_scalar and max_scalar, which specify a single value to compare with
each in_wave sample value.

• min_wave and max_wave. When used, each sample value of min_wave and/or
max_wave are compared with the corresponding sample value of in_wave.

out_wave specifies the output waveform. When used, each out_wave sample value is the
result of the within-bounds check of the corresponding sample value of in_wave. See
Description.

The versions of waveform_within_bounds() which return BOOL will return TRUE if all
input waveform sample values are within bounds, otherwise FALSE is returned. See
Description.

Example
???

3.27.20 Waveform Conversion Functions
See Waveform Overview.

The waveform conversion functions are used for translating waveform sample values from
one integer representation to another.
 2/27/09 Pg-1091

Waveform Functions
Only input waveforms with sample values defined using the RLONG_WAVE notation are
supported.

The output waveform Type = RLONG_WAVE.

Those representations whose interpretation is based on word size also take a bitwidth
argument, which represents the width of each sample value in bits. In this mode, when
converting from binary, the output waveform will only contain non-zero bits (ones) in the
least significant bitwidth bits of each sample value. The most significant bits will be all
zeroes. Legal bitwidth values range from 2 to 54. Sample values which cannot be legally
represented in the bitwidth specified are clamped (with no warning) or converted to valid
values, the details of which may be found in the description for the specific translation
function.

The term binary refers to the native representation of RLONG_WAVEs. If a waveform
containing converted sample values is passed to a math function, the contained values will
not be interpreted as their encoded values. The bit sequences would instead be
reinterpreted as a different binary value. All alternate representations should be converted to
binary before attempting math operations, comparison operations, etc.

3.27.20.1 waveform_binary_to_gray_code()
See Waveform Overview, Waveform Conversion Functions.

Description
The waveform_binary_to_gray_code() function will convert the binary representation
of each sample value of the input waveform to its Grey code equivalent binary value. Note
the following:

• Only positive input waveform sample values will be converted. Negative values
are set to binary 0.

• The table below illustrates the first 16 gray code value:

Binary Value Gray Code Representation

0 0000

1 0001

2 0011

3 0010
 2/27/09 Pg-1092

Waveform Functions
Usage
void waveform_binary_to_gray_code(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

Example
???

3.27.20.2 waveform_gray_code_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_binary_to_gray_code().

4 0110

5 0111

6 0101

7 0100

8 1100

9 1101

10 1111

11 1110

12 1010

13 1011

14 1001

15 1000

Binary Value Gray Code Representation
 2/27/09 Pg-1093

Waveform Functions
Only positive input waveform sample values will be converted. Negative values are set to
binary 0.

Usage
void waveform_gray_code_to_binary(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

Example
???

3.27.20.3 waveform_binary_to_bcd()
See Waveform Overview, Waveform Conversion Functions.

Description
The waveform_binary_to_bcd() function will convert the binary representation of each
sample value of the input waveform to its equivalent BCD binary value. Note the following:

• BCD stands for Binary Coded Decimal.
• In BCD representation, every four binary bits represents a decimal value (0 to 9).

BCD is less compact than binary.
• The largest BCD value supported is 19,999,999,999,999 (53 bits). Larger values

will be clamped to this limit.
• Only positive sample values are converted. Negative numbers are set to binary

zero.
 2/27/09 Pg-1094

Waveform Functions
• The table below illustrates the first 16 BCD values:

Usage
void waveform_binary_to_bcd(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

Example
???

Binary Value BCD Representation

0 0 0000

1 0 0001

2 0 0010

3 0 0011

4 0 0100

5 0 0101

6 0 0110

7 0 0111

8 0 1000

9 0 1001

10 1 0000

11 1 0001

12 1 0010

13 1 0011

14 1 0100

15 1 0101
 2/27/09 Pg-1095

Waveform Functions
3.27.20.4 waveform_bcd_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_binary_to_bcd().

Only positive input waveform sample values will be converted. Negative values are set to
binary 0.

Usage
void waveform_bcd_to_binary(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

Example
???

3.27.20.5 waveform_binary_to_ones_complement()
See Waveform Overview, Waveform Conversion Functions.

Description
The waveform_binary_to_ones_complement() function will convert the binary
representation of each sample value of the input waveform to its equivalent one’s
complement binary value. Note the following:

• One's complement is a representation where negative integers are inverted (all of
the bits are flipped).
 2/27/09 Pg-1096

Waveform Functions
• There are two potential representations for zero. For an eight bit word, 00000000
is the usual form of zero and is sometimes called +0, however, 11111111 is also
equal to zero and is referred to as -0.
waveform_binary_to_ones_complement() always uses the +0
representation for zero.

• A bitwidth of N can represent values in the range:

Values will be clamped to fit within the range.
• The table below illustrates the values available for a bitwidth of four:

Binary Value
One’s Complement
Representation

-7 1000

-6 1001

-5 1010

-4 1011

-3 1100

-2 1101

-1 1110

-0* 1111

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

2– N 1– 1+ to 2N 1– 1–
 2/27/09 Pg-1097

Waveform Functions
Usage
void waveform_binary_to_ones_complement(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.20.6 waveform_ones_complement_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_ones_complement_to_binary().

Illegal values are converted to binary zero. Both +0 and -0 encodings are converted to zero.
See waveform_ones_complement_to_binary().

Usage
void waveform_ones_complement_to_binary(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.
 2/27/09 Pg-1098

Waveform Functions
Example
???

3.27.20.7 waveform_binary_to_twos_complement()
See Waveform Overview, Waveform Conversion Functions.

Description
The waveform_binary_to_twos_complement() function will convert the binary
representation of each sample value of the input waveform to its equivalent two’s
complement binary value. Note the following:

• RLONG values are stored in 32 or 64 bit two's complement integer arrays.
• waveform_binary_to_twos_complement() allows integer sample values to

be translated to different word widths.
• A bitwidth of N can represent values in the range:

Values will be clamped to fit within the range.
• The table below illustrates the values available for a bitwidth of four:

Binary Value
Two’s complement
Representation

-8 1000

-7 1001

-6 1010

-5 1011

-4 1100

-3 1101

-2 1110

-1 1111

0 0000

2– N 1– 1+ to 2N 1– 1–
 2/27/09 Pg-1099

Waveform Functions
Usage
void waveform_binary_to_twos_complement(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.20.8 waveform_twos_complement_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_twos_complement_to_binary().

Illegal values are converted to binary zero.

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

Binary Value
Two’s complement
Representation
 2/27/09 Pg-1100

Waveform Functions
Usage
void waveform_twos_complement_to_binary(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.20.9 waveform_binary_to_offset_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
The waveform_binary_to_offset_binary() function will convert the binary
representation of each sample value of the input waveform to its equivalent offset binary
value. Note the following:

• Offset binary is the representation that results from adding an offset value to each
sample value. This has the effect of shifting the the representable range so that
the entire range is encoded as positive values.

• A bitwidth of N can represent values in the range:

These values are offset by:

2– N 1– 1+ to 2N 1– 1–

2N
 2/27/09 Pg-1101

Waveform Functions
to yield values in the range of:

• Values will be clamped to fit within the range.
• The table below illustrates the values available for a bitwidth of four:

Usage
void waveform_binary_to_offset_binary(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

Binary Value
Offset Binary
Representation

-8 0000

-7 0001

-6 0010

-5 0011

-4 0100

-3 0101

-2 0110

-1 0111

0 1000

1 1001

2 1010

3 1011

4 1100

5 1101

6 1110

7 1111

0 to 2N 1–
 2/27/09 Pg-1102

Waveform Functions
in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.20.10 waveform_offset_binary_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_binary_to_offset_binary().

Illegal values are converted to 0.

Usage
void waveform_offset_binary_to_binary(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.20.11 waveform_binary_to_sign_and_magnitude()
See Waveform Overview, Waveform Conversion Functions.
 2/27/09 Pg-1103

Waveform Functions
Description
The waveform_binary_to_sign_and_magnitude() function will convert the binary
representation of each sample value of the input waveform to its equivalent sign and
magnitude binary value. Note the following:

• The sign and magnitude representation uses a separate bit (the MSB) of each
sample value to represent the sign of the integer value. A zero indicates positive
and a one indicates negative.

• The remaing bits of the sample value represent the magnitude value (absolute
value) of the integer. As with one's complement (see
waveform_ones_complement_to_binary()), this yields two representations
for zero (+0 and -0). waveform_binary_to_sign_and_magnitude() always
uses the +0 representation for zero.

• A bitwidth of N can represent values in the range:

Values will be clamped to fit within the range.
• The table below illustrates the values available for a bitwidth of four:

Binary
Value

Sign & Magnitude
Representation

-7 1111

-6 1110

-5 1101

-4 1100

-3 1011

-2 1010

-1 1001

-0* 1000

0 0000

1 0001

2 0010

3 0011

2– N 1– 1+ to 2N 1– 1–
 2/27/09 Pg-1104

Waveform Functions
Usage
void waveform_binary_to_sign_and_magnitude(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value.
Includes 1 bit for the sign with remaining bits used for magnitude. Bits above bitwidth are
set to zero.

Example
???

3.27.20.12 waveform_sign_and_magnitude_to_binary()
See Waveform Overview, Waveform Conversion Functions.

Description
This is the inverse function of waveform_binary_to_sign_and_magnitude().

Illegal values are converted to 0. Both +0 and -0 encodings are converted to 0 (see
waveform_ones_complement_to_binary()).

4 0100

5 0101

6 0110

7 0111

* Negative zero (-0) is converted to 0.

Binary
Value

Sign & Magnitude
Representation
 2/27/09 Pg-1105

Waveform Functions
Usage
void waveform_sign_and_magnitude_to_binary(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

bitwidth specifies the number of valid bits in each the output waveform sample value. Bits
above bitwidth are set to zero.

Example
???

3.27.21 Waveform Boolean Functions
See Waveform Overview.

• Waveform Logical Functions
• waveform_select_indices()

• waveform_select_elements()

• waveform_selective_merge()

• waveform_reorder()

3.27.21.1 Waveform Logical Functions
See Waveform Overview, Waveform Boolean Functions.

Description
waveform_logical_and()waveform_logical_or()waveform_logical_xor()waveform_logical_not()

The waveform_logical_and() function creates an output waveform containing a
sample-by-sample logical AND of two specified input waveforms.
 2/27/09 Pg-1106

Waveform Functions
The waveform_logical_or() function creates an output waveform containing a sample-
by-sample logical OR of two specified input waveforms.

The waveform_logical_xor() function creates an output waveform containing a
sample-by-sample logical XOR (exclusive OR) of two specified input waveforms.

The waveform_logical_not() function creates an output waveform containing a
sample-by-sample complement of one specified input waveform.

Note the following:

• The name of the function determines the logical operation i.e. AND, OR, XOR
(exclusive OR), NOT (invert). The NOT operation evaluates values from a single
input waveform, whereas the other operations require two values, one from each
of two input waveforms.

• The two input waveforms must be the same Size (see waveform_get_size()).
If not, an error message is output in the appropriate controller window, values from
the larger waveform are ignored, and testing otherwise continues.

• The sample values of the two input waveform are treated as boolean values,
where 0 = FALSE and any non-zero value = TRUE. The two input waveforms must
be defined using the RRECT_WAVE or RLONG_WAVE notation.

• The sample values of the output waveform will be RLONG_WAVE, and will contain
only the values ‘1’ and ‘0’, representing TRUE and FALSE. Note that any non-zero
value in the input waveform is considered TRUE.

Also note the following about the output waveform:

• Y_units is set to SCALE_BOOLEAN
• X_start is set to 0
• X_increment is set = 1
• X_units is set to SCALE_NOXUNITS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

X_unitsY_unitsX_incrementUsage
void waveform_logical_and(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

void waveform_logical_or(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);
 2/27/09 Pg-1107

Waveform Functions
void waveform_logical_xor(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2);

void waveform_logical_not(Waveform* out_wave,
Waveform* in_wave);

where:

out_wave specifies the output waveform. See Description.

in_wave1 and in_wave2 specify the two input waveforms. See Description.

Example
???

3.27.21.2 waveform_select_indices()
See Waveform Overview, Waveform Boolean Functions.

Description
The waveform_select_indices() function is used to create a list of input waveform
sample value locations (indices) which contain TRUE values

. Note the following:

• The input waveform sample values are treated as boolean, where 0 = FALSE and
non-zero = TRUE. The input waveform must be defined using the RRECT_WAVE or
RLONG_WAVE notation.

• The select waveform must be defined using the RRECT_WAVE or RLONG_WAVE
notation.
 2/27/09 Pg-1108

Waveform Functions
• waveform_select_indices() evaluates each sample value of the select
waveform. For each non-zero value (= TRUE), the index of that sample value is
placed in the output waveform (in RLONG_WAVE notation). The number of sample
values in the output waveform (see waveform_get_size()) will be equal to the
number of non-zero values in the select waveform.

Figure-59: waveform_select_indices() User Model

Usage
void waveform_select_indices(Waveform* out_indices,

Waveform* select);

where:

out_indices specifies the output waveform.

select specifies the waveform to be evaluated. See Description.

Example
???

0
0
2
1
0
-1
0
1
1
0
0

1
1
2
3
4
5
6
7
8
9

10
11

0

Select
Waveform

3
4
6
8
9

0

Index of TRUE

Sample
Index

Ouput
(out_indices)

Waveform

(non-zero) values is
put in out_indices

waveform

Sample
Values
 2/27/09 Pg-1109

Waveform Functions
3.27.21.3 waveform_select_elements()
See Waveform Overview, Waveform Boolean Functions.

Description
The waveform_select_elements() function copies selected sample values from an
input waveform to an output waveform based on the boolean sample values of a select
waveform. Note the following:

• The input waveform may be any Type (see Waveform* Attributes, Waveform
Sample Value Notations). The output waveform will be of the same type, the
X_units and Y_units of the output waveform are set to match the input waveform.

• The input waveform and the select waveform must be the same Size (see
waveform_get_size()). If not, an error message is output in the appropriate
controller window, values from the larger waveform are ignored, and testing
otherwise continues.

• The sample values of the select waveform are treated as boolean values, where
0 = FALSE and any non-zero value = TRUE. The select waveform must be
defined using the RRECT_WAVE or RLONG_WAVE notation.

• waveform_select_elements() uses the select waveform as a mask, to
determine which values from the input waveform to put into the output waveform.
For each TRUE value in the select waveform, the corresponding value in the
 2/27/09 Pg-1110

Waveform Functions
input waveform is put into the output waveform. The number of sample values in
the output waveform (Size) will be equal to the number of non-zero values in the
select waveform.

Figure-60: waveform_select_elements() User Model
• The following code...

waveform_select_elements(out, in, select);

... is equivalent to
waveform_select_indices(indices, select);
waveform_reorder(out, in, indices);

See waveform_select_indices(), waveform_bitwise_reorder().

Usage
void waveform_select_elements(Waveform* out_wave,

Waveform* in_wave,
Waveform* select);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

select specifies the waveform to be used as the mask. See Description.

0
0
2
1
0
-1
0
1
1
0
0

1

Select
Waveform

0.840
0.025
0.001
0.125
0.623
0.628
0.342
0.783
0.945
0.023
0.102

0.362

= True
= True

= True

= True
= True

= True
0.001
0.125
0.628
0.783
0.945

0.362

Input
Waveform

Output
Waveform
 2/27/09 Pg-1111

Waveform Functions
Example
???

3.27.21.4 waveform_selective_merge()
See Waveform Overview, Waveform Boolean Functions.

Description
The waveform_selective_merge() function selectively copies sample values from two
input waveforms into an output waveform based on the boolean sample values of a select
waveform.

Note the following:

• The input waveforms may be defined using any notation (see Waveform Sample
Value Notations) but must be defined using the same notation. If not,
waveform_selective_merge() returns immediately, an error message is output
in the appropriate controller window, the output waveform is corrupt, and testing
otherwise continues.

• The two input waveforms and the select waveform must be the same Size (see
waveform_get_size()). If not, an error message is output in the appropriate
controller window, values from the larger waveform(s) are ignored, and testing
otherwise continues.

• The sample values of the select waveform are treated as boolean values, where
0 = FALSE and any non-zero value = TRUE. The select waveform must be
defined using the RRECT_WAVE or RLONG_WAVE notation.

• waveform_selective_merge() copies values from the first input waveform
when the corresponding sample value of the select waveform is TRUE, otherwise
the value from the second input waveform is copied to the output waveform. The
 2/27/09 Pg-1112

Waveform Functions
number of sample values in the output waveform (Size) will be equal to the
number of sample values of the smallest of the two input or the select waveform
(which as noted above should be of equal size).

Figure-61: waveform_selective_merge() User Model
• The output waveform will be of the same Type as the first input waveform, the

X_units and Y_units of the output waveform are set to match the first input
waveform.

0
0
2
1
0
-1
0
1
1
0
0

1

Select
Waveform

0.840
0.025
0.001
0.125
0.623
0.628
0.342
0.783
0.945
0.023
0.102

0.362

= True
= True

= True

= True
= True

= True

1st Input
Waveform

0.648
0.276
0.000
0.799
0.325
0.362
0.688
0.334
0.107
0.667
0.999

0.445

2nd Input
Waveform

0.648
0.276
0.001
0.125
0.325
0.628
0.688
0.783
0.945
0.667
0.999

0.362

Output
Waveform

= False
= False

= False

= False

= False
= False
 2/27/09 Pg-1113

Waveform Functions
Usage
void waveform_selective_merge(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2,
Waveform* select);

where:

out_wave specifies the output waveform. See Description.

in_wave1 and in_wave2 specifies the two input waveforms. See Description.

select specifies the waveform to be used as the merge map. See Description.

Example
???

3.27.21.5 waveform_reorder()
See Waveform Overview, Waveform Boolean Functions.

Description
The waveform_reorder() function is used to reorder the sample values of a specified
waveform based on an indices waveform (see waveform_select_indices()). Note the
following:

• The input waveform may defined using any notation. See Waveform Sample Value
Notations.

• Each sample value of the indices waveform selects an element of the input
waveform to be copied into the corresponding sample value of the output
waveform.

• The indices waveform must be defined using RLONG_WAVE notation.
• The indices waveform sample values must consist of valid indices into the input

waveform (i.e. 0 through Size-1, inclusive).
• The output waveform will be defined using the same notation as the input

waveform and will be the same Size as the indices waveform. Both X_units and
Y_units of the output waveform will match the input waveform.
 2/27/09 Pg-1114

Waveform Functions
• Input sample values may be duplicated in the output by including duplicate values
in the indices waveform.

• Input sample values may be excluded from the output by omitting value(s) from
the indices waveform.

• Any errors cause execution to be aborted, an error message will be displayed in
the appropriate controller window, and BAD_WAVE will be returned in the
out_wave argument.

Figure-62: waveform_reorder() User Model
To reorder the bits of each sample value see waveform_bitwise_reorder().

Usage
void waveform_reorder(Waveform* out_wave,

Waveform* in_wave,
Waveform* indices);

where:

out_wave specifies the output waveform. See Description.

in_wave specifies the input waveform. See Description.

indices specifies the waveform to be used as the reorder map. See Description.

Indices
Waveform

0.840
0.025
0.001
0.125
0.623
0.628
0.342
0.783
0.945
0.023
0.102

0.362

Input
Waveform

1
4
5
9
2
8
7
0
6
11
10

3
0.840
0.125
0.623
0.945
0.025
0.783
0.342
0.362
0.628
0.102
0.023

0.001

Output
Waveform

1
2
3
4
5
6
7
8
9

10
11

0

Indices
 2/27/09 Pg-1115

Waveform Functions
Example
???

3.27.22 Waveform Bitwise Functions
See Waveform Overview.

• waveform_bitwise_or()

• waveform_bitwise_and()

• waveform_bitwise_xor()

• waveform_bitwise_shift_left()

• waveform_bitwise_shift_right()

• waveform_bitwise_rotate_left()

• waveform_bitwise_rotate_right()

• waveform_bitwise_reverse()

• waveform_bitwise_reorder()

3.27.22.1 waveform_bitwise_or()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_or() function is used to perform a bitwise logical OR operation
on the sample values of a specified waveform. Two forms are available:

• Each sample value of the specified waveform is OR’ed with a corresponding
sample value of a second specified waveform. If the two waveforms differ in Size,
the larger waveform will be truncated to match the size of the smaller waveform.

• Each sample value of the specified waveform is OR’ed with a specified scalar
value.

The waveform_bitwise_or() function only operates correctly with waveforms defined
using the RLONG_WAVE one-part notation. When this rule is violated, operation will be
 2/27/09 Pg-1116

Waveform Functions
aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

Usage
void waveform_bitwise_or(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

void waveform_bitwise_or(Waveform* out_wave,
Waveform* in_wave,
__int64 scalar);

where:

out_wave contains the waveform resulting from the bitwise OR operation.

in_wave1 represents the input waveform. Each sample value of in_wave1 will be AND’ed
with the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be AND’ed
with scalar.

in_wave2 contains sample values to be AND’ed with the sample values of in_wave1. See
Description.

scalar contain a single sample value to be AND’ed with each sample value of in_wave.
See Description.

Example
???

3.27.22.2 waveform_bitwise_and()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_and() function is used to perform a bitwise logical AND
operation on the sample values of a specified waveform. Two forms are available:
 2/27/09 Pg-1117

Waveform Functions
• Each sample value of the specified waveform is AND’ed with a corresponding
sample value of a second specified waveform. If the two waveforms differ in Size,
the larger waveform will be truncated to match the size of the smaller waveform.

• Each sample value of the specified waveform is AND’ed with a specified scalar
value.

The waveform_bitwise_and() function only operates correctly with waveforms defined
using the RLONG_WAVE one-part notation. When this rule is violated, operation will be
aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to ((2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

Usage
void waveform_bitwise_and(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

void waveform_bitwise_and(Waveform* out_wave,
Waveform* in_wave,
__int64 scalar);

where:

out_wave contains the waveform resulting from the bitwise AND operation.

in_wave1 represents the input waveform. Each sample value of in_wave1 will be AND’ed
with the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be AND’ed
with scalar.

in_wave2 contains sample values to be AND’ed with the sample values of in_wave1. See
Description.

scalar contain a single sample value to be AND’ed with each sample value of in_wave.
See Description.

Example
???
 2/27/09 Pg-1118

Waveform Functions
3.27.22.3 waveform_bitwise_xor()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_xor() function is used to perform a bitwise logical XOR
(exclusive OR) operation on the sample values of a specified waveform. Two forms are
available:

• Each sample value of the specified waveform is XOR’ed with a corresponding
sample value of a second specified waveform. If the two waveforms differ in Size,
the larger waveform will be truncated to match the size of the smaller waveform.

• Each sample value of the specified waveform is XOR’ed with a specified scalar
value.

The waveform_bitwise_xor() function only operates correctly with waveforms defined
using the RLONG_WAVE one-part notation. When this rule is violated, operation will be
aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to ((2^53 -1) in value i.e. up to
9,007,199,254,740,991). Results of operations involving negative values are undefined.

Usage
waveform_bitwise_xor(Waveform*out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

void waveform_bitwise_xor(Waveform* out_wave,
Waveform* in_wave,
__int64 scalar);

where:

out_wave contains the waveform resulting from the bitwise XOR operation.

in_wave1 represents the input waveform. Each sample value of in_wave1 will be XOR’ed
with the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be XOR’ed
with scalar.
 2/27/09 Pg-1119

Waveform Functions
in_wave2 contains sample values to be XOR’ed with the sample values of in_wave1. See
Description.

scalar contain a single sample value to be XOR’ed with each sample value of in_wave.
See Description.

Example
???

3.27.22.4 waveform_bitwise_shift_left()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_shift_left() function is used to perform a bitwise left shift
operation on the sample values of a specified waveform. Two forms are available:

• Each sample value of the specified waveform is shifted left the number bit
positions specified by a corresponding sample value of a second specified
waveform. If the two waveforms differ in Size, the larger waveform will be truncated
to match the size of the smaller waveform.

• Each sample value of the specified waveform is shifted left the number of bit
positions specified by a scalar value.

Bits which are shifted off the left end are lost. The shift fill bit value is zero. If the shift value is
negative, the input sample value is shifted right by the absolute shift value.

The waveform_bitwise_shift_left() function only operates correctly with waveforms
defined using the RLONG_WAVE one-part notation. When this rule is violated, operation will
be aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991). Results of operations involving negative values are undefined.

Usage
void waveform_bitwise_shift_left(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);
 2/27/09 Pg-1120

Waveform Functions
void waveform_bitwise_shift_left(Waveform* out_wave,
Waveform* in_wave,
int shift DEFAULT_VALUE(1));

where:

out_wave contains the waveform resulting from the bitwise left shift operation.

in_wave1 represents the input waveform. Each sample value in_wave1 will be shifted left
the number of bit positions specified by the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be shifted left
the number of bit positions specified by shift.

in_wave2 contains sample values each of which specifies the number of bit positions that
the corresponding sample value of in_wave1 will be left shifted. See Description.

shift is optional, and if used specifies a single value which specifies the number of bit
positions that each sample value of in_wave will be left shifted. Default = 1. See
Description.

Example
???

3.27.22.5 waveform_bitwise_shift_right()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_shift_right() function is used to perform a bitwise right shift
operation on the sample values of a specified waveform. Two forms are available:

• Each sample value of the specified waveform is shifted right the number bit
positions specified by a corresponding sample value of a second specified
waveform. If the two waveforms differ in Size, the larger waveform will be truncated
to match the size of the smaller waveform.

• Each sample value of the specified waveform is shifted right the number of bit
positions specified by a scalar value.

Bits which are shifted off the right end are lost. The shift fill bit value is zero. If the shift value
is negative, the input sample value is shifted left by the absolute shift value.
 2/27/09 Pg-1121

Waveform Functions
The waveform_bitwise_shift_right() function only operates correctly with
waveforms defined using the RLONG_WAVE one-part notation. When this rule is violated,
operation will be aborted, an error message will be displayed in the appropriate controller
window, and BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

Usage
waveform_bitwise_shift_right(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

void waveform_bitwise_shift_right(Waveform* out_wave,
Waveform* in_wave,
int shift DEFAULT_VALUE(1));

where:

out_wave contains the waveform resulting from the bitwise right shift operation.

in_wave1 represents the input waveform. Each sample value in_wave1 will be shifted
right the number of bit positions specified by the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be shifted
right the number of bit positions specified by shift.

in_wave2 contains sample values each of which specifies the number of bit positions that
the corresponding sample value of in_wave1 will be right shifted. See Description.

shift is optional, and if used specifies a single value which specifies the number of bit
positions that each sample value of in_wave will be right shifted. Default = 1. See
Description.

Example
???

3.27.22.6 waveform_bitwise_rotate_left()
See Waveform Overview, Waveform Bitwise Functions.
 2/27/09 Pg-1122

Waveform Functions
Description
The waveform_bitwise_rotate_left() function is used to perform a bitwise left rotate
operation on the sample values of a specified waveform. Two forms are available:

• Each sample value of the specified waveform is rotated left the number bit
positions specified by a corresponding sample value of a second specified
waveform. If the two waveforms differ in Size, the larger waveform will be truncated
to match the size of the smaller waveform.

• Each sample value of the specified waveform is rotated left the number of bit
positions specified by a scalar value.

Bits which rotate off the left end are appended to the right end of the sample value. If the
rotate value is negative, the input sample value is rotated right by the absolute rotate value.

The waveform_bitwise_rotate_left() function only operates correctly with
waveforms defined using the RLONG_WAVE one-part notation. When this rule is violated,
operation will be aborted, an error message will be displayed in the appropriate controller
window, and BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

Usage
void waveform_bitwise_rotate_left(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2,
int bitwidth);

void waveform_bitwise_rotate_left(Waveform* out_wave,
Waveform* in_wave,
int bitwidth,
int shift DEFAULT_VALUE(1));

where:

out_wave contains the waveform resulting from the left rotate operation.

in_wave1 represents the input waveform. Each sample value in_wave1 will be left rotated
the number of bit positions specified by the corresponding sample value of in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be left rotated
the number of bit positions specified by shift.
 2/27/09 Pg-1123

Waveform Functions
in_wave2 contains sample values each of which specifies the number of bit positions that
the corresponding sample value of in_wave1 will be left rotated. See Description.

bitwidth specifies the number of bits of the sample value to be rotated. Any bits outside of
the designated bitwidth are discarded and set to zero in the output waveform sample
value.

shift is optional, and if used specifies a single value which specifies the number of bit
positions that each sample value of in_wave will be left rotated. See Description.
Default = 1. If shift is larger than bitwidth, shift is reduced modulo bitwidth.

Example
???

3.27.22.7 waveform_bitwise_rotate_right()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_rotate_right() function is used to perform a bitwise right
rotate operation on the sample values of a specified waveform. Two forms are available:

• Each sample value of the specified waveform is rotated right the number bit
positions specified by a corresponding sample value of a second specified
waveform. If the two waveforms differ in Size, the larger waveform will be truncated
to match the size of the smaller waveform.

• Each sample value of the specified waveform is rotated right the number of bit
positions specified by a scalar value.

Bits which rotate off the right end are prepended to the left end of the sample value. If the
rotate value is negative, the input sample value is rotated left by the absolute rotate value.

The waveform_bitwise_rotate_right() function only operates correctly with
waveforms defined using the RLONG_WAVE one-part notation. When this rule is violated,
operation will be aborted, an error message will be displayed in the appropriate controller
window, and BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.
 2/27/09 Pg-1124

Waveform Functions
Usage
void waveform_bitwise_rotate_right(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2,
int bitwidth);

void waveform_bitwise_rotate_right(Waveform* out_wave,
Waveform* in_wave,
int bitwidth,
int shift DEFAULT_VALUE(1));

where:

out_wave contains the waveform resulting from the right rotate operation.

in_wave1 represents the input waveform. Each sample value in_wave1 will be right
rotated the number of bit positions specified by the corresponding sample value of
in_wave2.

in_wave represents the input waveform. Each sample value of in_wave will be right
rotated the number of bit positions specified by shift.

in_wave2 contains sample values each of which specifies the number of bit positions that
the corresponding sample value of in_wave1 will be right rotated. See Description.

bitwidth specifies the number of bits of the sample value to be rotated. Any bits outside of
the designated bitwidth are discarded and set to zero in the output waveform sample
value.

shift is optional, and if used specifies a single value which specifies the number of bit
positions that each sample value of in_wave will be right rotated. See Description.
Default = 1. If shift is larger than bitwidth, shift is reduced modulo bitwidth.

Example
???

3.27.22.8 waveform_bitwise_reverse()
See Waveform Overview, Waveform Bitwise Functions.
 2/27/09 Pg-1125

Waveform Functions
Description
The waveform_bitwise_reverse() function is used to perform a bitwise order reversal
on the sample values of a specified waveform. The LSB bit becomes the MSB bit, the
LSB+1 bit becomes the MSB-1 bit, etc.

Note: this function should not be confused with waveform_reverse() which
reverses the order of the sample values in a specified waveform.

The waveform_bitwise_reverse() function only operates correctly with waveforms
defined using the RLONG_WAVE one-part notation. When this rule is violated, operation will
be aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

Usage
waveform_bitwise_reverse(Waveform* out_wave,

Waveform* in_wave,
int bitwidth);

where:

out_wave contains the waveform resulting from the bitwise reverse operation.

in_wave represents the input waveform.

bitwidth specifies the number of bits of the sample value to reverse. Any bits outside of
the designated bitwidth are discarded and set to zero in the output waveform sample
value.

Example
???
 2/27/09 Pg-1126

Waveform Functions
3.27.22.9 waveform_bitwise_reorder()
See Waveform Overview, Waveform Bitwise Functions.

Description
The waveform_bitwise_reorder() function is used to reorder the bits of each sample
value of a specified waveform. Note the following:

• The specification for how bits are reordered is defined by a second waveform, called
the bit_indices waveform. Each output sample value is [re]ordered identically.

• Each output waveform sample value is formed by taking bits from one input
waveform sample value, in the order specified by values from the bit_indices
waveform. Bit positions are numbered from the LSB to the MSB starting with zero.

• The number of bits in each output waveform sample value is determined by the
number of values in the bit_indices waveform. It is not required that the
sample values of the output waveform have the same number of bits as the input
waveform.

• Input sample value bits may be duplicated in the output by having a given bit
position appear more than once in the bit_indices waveform.

• Bits from the input sample can be excluded from the output sample by omitting a
given bit position from the bit_indices waveform.

• It is possible to force output bit(s) to logic-0 zero or logic-1 using the following
values in the bit_indices waveform:

-1 : sets the output sample value bit to logic-0
-2 : sets the output sample value bit to logic-1

The waveform_bitwise_reorder() function only operates correctly with waveforms
defined using the RLONG_WAVE one-part notation. When this rule is violated, operation will
be aborted, an error message will be displayed in the appropriate controller window, and
BAD_WAVE will be returned in the out_wave argument.

Waveforms may contain nonnegative integers up to (2^53 -1) in value i.e. up to
9,007,199,254,740,991. Results of operations involving negative values are undefined.

To reorder the sample values see waveform_reorder().
 2/27/09 Pg-1127

Waveform Functions
Usage
void waveform_bitwise_reorder(Waveform* out_wave,

Waveform* in_wave,
Waveform* bit_indices);

where:

out_wave contains the waveform resulting from the reorder operation.

in_wave represents the input waveform.

bit_indices specifies the order bits are taken from each sample of in_wave and put into
out_wave. It also controls the number of bits in out_wave. See Description.

Examples

Example 1:
This example has the effect of swapping the two four-bit nibbles of the input waveform.
Any additional bits of the input waveform are discarded:

// Create a bit_indices waveform, containing 8 values.
// The first value specifies which bit from the input waveform will
// become the LSB bit in the output waveform, etc.
long nibble_swap[8] = { 4, 5, 6, 7, 0, 1, 2, 3 };

// Create a Waveform* container to store this
waveform_set_rlong(bit_indices, // waveform_set_rlong()

8,
nibble_swap,
SCALE_NOYUNITS,
0,
1,
SCALE_NOXUNITS);

waveform_bitwise_reorder(WFout, WFin, bit_indices);

Example 2:
This example does the following:

• Discard bits 3, 4, and 5 of the input sample
• Shift bits 0, 1, and 2 three places to the left
• Force output bit 1 to a logic-1
• Force the other vacated bits to logic-0
 2/27/09 Pg-1128

Waveform Functions
• Transfer the remaing bits of the ten bit input to the output in place.
// Create bit_indices waveform, containing 10 values
long bit_map[10] = {

-1, // Output bit 0: vacated, force to 0
-2, // Output bit 1: force to logic-1
-1, // Output bit 2: vacated, force to 0
0, // Output bit 3: take input bit 0 (shift left 3)
1, // Output bit 4: take input bit 1 (shift left 3)
2, // Output bit 5: take input bit 2 (shift left 3)
6, // Output bit 6: take bit 6 (no change)
7, // Output bit 7: take bit 7 (no change)
8, // Output bit 8: take bit 8 (no change)
9 // Output bit 9: take bit 9 (no change)

};

// Create a Waveform* container to store this
waveform_set_rlong(bit_indices, // waveform_set_rlong()

8,
bit_map,
SCALE_NOYUNITS,
0,
1,
SCALE_NOXUNITS);

waveform_bitwise_reorder(WFout, WFin, bit_indices);

3.27.23 Waveform Logrithmic Functions
See Waveform Overview.

• waveform_log(), waveform_log10()

• waveform_exp(), waveform_exp10()

• waveform_power()

3.27.23.1 waveform_log(), waveform_log10()
See Waveform Overview, Waveform Logrithmic Functions
 2/27/09 Pg-1129

Waveform Functions
Description

The waveform_log() function is used to return the natural log of each sample value in a
specified waveform. The returned values are in the form of a waveform where each output
waveform sample value is the log of the corresponding sample value of the input waveform.

The waveform_log10() function is used to return the common log of each sample value
in a specified waveform. The returned values are in the form of a waveform where each
output waveform sample value is the log10 of the corresponding sample value of the input
waveform.

The inverse functions are waveform_exp(), waveform_exp10().

Note the following:

• The input waveform may be specified using the RRECT_WAVE, RLONG_WAVE, or
CRECT_WAVE notations. See Waveform Sample Value Notations.

• It is an error to specify an input waveform specified using the POLAR_WAVE
notation.

• When the input waveform is specified in RRECT_WAVE, or RLONG_WAVE the output
will be RRECT_WAVE.

• When the input waveform is complex, i.e. specified in CRECT_WAVE notation, the
output will be CRECT_WAVE and the following equation applies:

Also note the following about the output waveform:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to match that of the input waveform
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_log(Waveform* out_wave, Waveform* in_wave);

void waveform_log10(Waveform* out_wave, Waveform* in_wave);

where:

x yi+()log x2 y2+()log
2

----------------------------- i y
x
--atan+=
 2/27/09 Pg-1130

Waveform Functions
out_wave identifies the output waveform.

in_wave identifies the input waveform.

Example
???

3.27.23.2 waveform_exp(), waveform_exp10()
See Waveform Overview, Waveform Logrithmic Functions

Description

These are the inverse functions to waveform_log(), waveform_log10().

Note the following:

• The input waveform may be specified using the RRECT_WAVE, RLONG_WAVE, or
CRECT_WAVE notations. See Waveform Sample Value Notations.

• It is an error to specify an input waveform with sample values defined
using the POLAR_WAVE notation.

• When the input waveform is specified in RRECT_WAVE, or RLONG_WAVE the output
will be RRECT_WAVE.

• When the input waveform is specified in CRECT_WAVE the output will be
CRECT_WAVE and the following equation applies:

Also note the following about the output waveform:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to match that of the input waveform
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

ex yi+ ex y()cos i y()sin+[]=
 2/27/09 Pg-1131

Waveform Functions
Usage
void waveform_exp(Waveform* out_wave, Waveform* in_wave);

void waveform_exp10(Waveform* out_wave, Waveform* in_wave);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

Example
???

3.27.23.3 waveform_power()
See Waveform Overview, Waveform Logrithmic Functions

Description
The waveform_power() function may be used to raise each sample value of a specified
waveform to a specified power. The returned values are in the form of a waveform where
each output waveform sample value is the the corresponding input waveform sample value
raised to the specified power.

Note the following:

• If the power argument is specified as an integer the power calculations are
made using interated multiplication.

• If the power argument is specified as an double the power calculations are made
according to the following calculation: . This allows fractional powers to
be computed, but only when the value to be raised is positive and nonzero. The
integer version can compute the powers of any value.

• The input waveform sample values may be specified using the RRECT_WAVE,
RLONG_WAVE, or CRECT_WAVE notations. See Waveform Sample Value Notations.

• When the waveform samples are RLONG_WAVE, the integer version of
waveform_power() returns RLONG_WAVE values, provided the power is positive,
otherwise the values will be RRECT_WAVE.

• The double version of waveform_power() always converts RLONG_WAVEs to
RRECT_WAVE.

epower x()ln×
 2/27/09 Pg-1132

Waveform Functions
Also note the following about the output waveform:

• Y_units is set to SCALE_VOLTS
• X_start is set to 0
• X_increment is set to match that of the input waveform
• X_units is set to SCALE_SECONDS

See Waveform Mathematical View and Waveform Units for descriptions of these
parameters.

Usage
void waveform_power(Waveform* out_wave,

Waveform* in_wave,
int power);

void waveform_power(Waveform* out_wave,
Waveform* in_wave,
double power);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

Example
???

3.27.24 Waveform Window Functions
See Waveform Overview.

When windowing is applied to a time domain waveform before an FFT is performed, the
signals and harmonics get spread into more than one FFT bin. The amount of spread is
determined by the windowing coefficients applied. The waveform functions which use the
FFT fundamental and harmonic bins (waveform_sinad(), waveform_snr(),
waveform_thd(), etc.) comprehend windowing and identify FFT bins correctly.

To apply window coefficients the following sequence is used:
 2/27/09 Pg-1133

Waveform Functions
• Window coefficients may only be applied to a time domain signaldefined in either
RRECT_WAVE or CRECT_WAVE notation. See Waveform Sample Value Notations.

• A coefficient waveform is created using one of the Waveform Windowing
Coefficient Functions. The supported windowing coefficients are represented by a
unique function for each coefficient type i.e.
waveform_triangle_window_coefficients(),
waveform_blackman_harris_window_coefficients(), etc.

• waveform_apply_window() uses the coefficient waveform to apply the
windowing.

For the curious...

The unit Bel is named after Alexander Graham Bell, for his work in the audio field. The Bel is
a logarithmic scale representing the power ratio between two elements. For example, given
two power measurements A and B, the ratio can be expressed in Bels as:

The unit Bel is too coarse for most applications, so decibels is used. There are 10 decibels
in a Bel, as indicated by the metric prefix (this is the reason dB is abbreviated with a lower
case d and a capital B). Thus the ratio above, in decibels, is:

When dealing with volts, the following expression is often seen:

This is because power is relative to volts squared. The correct power ratio is then calculated
as:

As a proof, using the following fundamental identities of logarithms...

...the above expression can be transformed into equivalent math expressions as follows:

This shows the the earlier expression is correct, and can be used as a shortcut.

10 A B⁄()log

10 10 A B⁄()log×

20 10 x y⁄()log×

10 10log× x2 y2⁄()

a b⁄() a()log b()log–=log

ab() b a()log×=log

10 10 x2()log 10 x2()log–[]×
10 2 10 x()log× 2 10 y()log×–[]×
10 2 10 x()log 10 y()log–[]×()×
10 2 10 x y⁄()log××
20 10 x y⁄()log×
 2/27/09 Pg-1134

Waveform Functions
When determining SNR (or THD, SINAD, etc.), if windowing is NOT used, the signal is the
value from a single FFT bin. For example, let s equal the value in the fundamental bin and n
represent the sum of the squares in the noise bins. s is in terms of voltage and n is in terms
of power, so they can't be directly compared. Two options are used (the 2nd being easier):

When windowing has been applied to the waveform prior to performing the FFT, the signal
component is contained in more than one FFT bin. In this situation, the total power of the
signal is found by summing the squares of the bins containing the signal. This explains why
the THD formula, for example, contains sum_of_squares(signal). Thus, any time the term
signal is used in the context of THD, SNR, SINAD, etc., it may consist of the sum of squares
of several FFT bins, and not just a single value.

3.27.24.1 waveform_apply_window()
See Waveform Overview, Waveform Window Functions.

Description
The waveform_apply_window() function is used to apply windowing to an existing
waveform. See Waveform Window Functions.

Usage
void waveform_apply_window(Waveform* out_wave,

Waveform* in_wave,
Waveform* window_coefficients);

where:

out_wave specifies the output waveform.

20 10 s
n

-------⎝ ⎠
⎛ ⎞log×

or

10 10 s2

n
----⎝ ⎠

⎛ ⎞log×
 2/27/09 Pg-1135

Waveform Functions
in_wave specifies the waveform to which windowing will be applied.

window_coefficients specifies a waveform containing the window coefficients to be
applied to in_wave. This waveform can be created using the Waveform Windowing
Coefficient Functions functions. See Waveform Window Functions.

Example
???

3.27.24.2 Waveform Windowing Coefficient Functions
See Waveform Overview, Waveform Window Functions.

Description
The functions documented here are used to create window coefficient waveforms. See
Waveform Window Functions for details of how a coefficient waveform is used to apply
windowing to an existing waveform.

The supported windowing coefficients are:

• Blackman
• Blackman-Harris (3rd order)
• Dolph-Chebyshev. See

waveform_dolph_chebyshev_window_coefficients() for additional
information about this option.

• Hamming
• Hanning
• Triangle

To properly create a windowing coefficient waveform the following are needed:

• Window type, specified by executing one of the functions below
• The Size of the waveform(s) to which the window coefficients will be applied
• A tuning parameter (for Dolph-Chebyshev and Kaiser only)

The coefficient waveforms can be created any time, in anticipation of using
waveform_apply_window() later.
 2/27/09 Pg-1136

Waveform Functions
Usage

void waveform_blackman_window_coefficients(
Waveform* out_wave,
int num_samples);

void waveform_blackman_harris_window_coefficients(
Waveform* out_wave,
int num_samples);

void waveform_dolph_chebyshev_window_coefficients(
Waveform* out_wave,
int num_samples,
double alpha);

void waveform_hamming_window_coefficients(
Waveform* out_wave,
int num_samples);

void waveform_hanning_window_coefficients(
Waveform* out_wave,
int num_samples);

void waveform_triangle_window_coefficients(
Waveform* out_wave,
int num_samples);

where:

out_wave specifies the output waveform which will store the coefficient samples.

num_samples specifies the desired number of sample values in the output waveform. The
number of samples must match the number of samples of the waveform targeted to have
windowing applied. See Waveform Window Functions.

alpha, see waveform_dolph_chebyshev_window_coefficients()

Example
???

3.27.24.3 waveform_dolph_chebyshev_window_coefficients()
See Waveform Windowing Coefficient Functions.
 2/27/09 Pg-1137

Waveform Functions
The waveform_dolph_chebyshev_window_coefficients() function is used to
generate coefficients for a Dolph-Chebyshev window.

The Dolph-Chebyshev window differs from other Nextest windows as it is tunable, using the
alpha parameter, which adjusts the relative levels of frequency sidelobes.

Care must be taken when specifying a value for the alpha parameter. If alpha is specified
too low, the resulting window's waveform will be spread too wide, and hit the left and right
side of the array before tapering off to zero. Even if the window appears correct when
viewed using MSWT, the user should check for a positive spike at location zero, which
indicates the alpha value is set too low.

If a complex FFT is performed on the generated coefficients, a main lobe appears with its
highest point in index location zero. This quickly tapers down to a very uniform sidelobe
level. It is the ratio of the main lobe level to the sidelobe level that defines the alpha
parameter (α):

Or in terms of dB, the side lobe level will be at:

When processing real time signals, a real FFT is used, and will result in the side lobes
appearing roughly 3dB higher. Therefore, when passing an ideal signal through a Dolph-
Chebyshev window of N points, one should not reasonably expect a measured signal-to-
noise ratio of better than approximately:

3.27.25 Waveform Convolution/Corrleation Functions
See Waveform Overview

10α MainLobeLevel
SideLobeLevel
---=

20α dB–

20α 10 10log– N 6–() dB
 2/27/09 Pg-1138

Waveform Functions
Note: the theory behind convolution and correlation is beyond the scope of this
manual. For reference see Theory and Application of Digital Signal Processing,
by Rabiner and Gold, Prentice-Hall, 1975.

• waveform_convolve_linear()
• waveform_convolve_partial()
• waveform_convolve_circular()
• waveform_correlate_linear()

• waveform_correlate_circular()

• waveform_autocorrelate_circular()
• waveform_covariance()

3.27.25.1 waveform_convolve_linear()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Description
The waveform_convolve_linear() function is used to ???.

Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation

• The output waveform will be defined using RRECT_WAVE notation.
• The output waveform is determined as follows:

int s1 = waveform_get_size(in_wave1); //waveform_get_size()
int s2 = waveform_get_size(in_wave2);

Note: the theory behind convolution and correlation is beyond the scope of this manual.
For reference see Theory and Application of Digital Signal Processing, by
Rabiner and Gold, Prentice-Hall, 1975.

out_wave i[] in_wave1 i j–[] in_wave2 j[]⋅()

j 0=

s2 1–

∑= 0 i s1 s2 1–+<≤
 2/27/09 Pg-1139

Waveform Functions
Usage
void waveform_convolve_linear(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.25.2 waveform_convolve_partial()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Description
The waveform_convolve_partial() function is used to ???

Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation

• The output waveform will be defined using RRECT_WAVE notation.
• The Size of in_wave1 must be greater than or equal to the Size of in_wave2.
• The output waveform is determined as follows:

int s1 = waveform_get_size(in_wave1); //waveform_get_size()
int s2 = waveform_get_size(in_wave2);

out_wave i[] in_wave1 i s2 1– j–+[] in_wave2 j[]⋅()

j 0=

s2 1–

∑= 0 i s1 s2– 1+<≤
 2/27/09 Pg-1140

Waveform Functions
Note: the theory behind convolution and correlation is beyond the scope of this manual.
For reference see Theory and Application of Digital Signal Processing, by
Rabiner and Gold, Prentice-Hall, 1975.

Usage
void waveform_convolve_partial(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.25.3 waveform_convolve_circular()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Description
The waveform_convolve_circular() function is used to implement Finite Impulse
filters (FIR) on periodic waveforms.

Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation.

• The output waveform will be defined using RRECT_WAVE notation.
• The output waveform takes units and scaling from the first input waveform.
• The number of sample values in the output waveform (Size) will be equal to the

larget of of in_wave1 or in_wave2. See waveform_get_size().
• The output waveform sample values are determined as follows:
 2/27/09 Pg-1141

Waveform Functions
int size = waveform_get_size(in_wave1);//waveform_get_size()

• Convolution in the time domain is equivalent to multiplication in the frequency
domain. Thus, waveform_convolve_circular() can be used on a time
domain waveform instead of the series of FFT/multiplication/IFFT operations on
the waveform in the frequency domain. However, the latter option may be faster
when the waveforms have > 128 sample values.

Note: the theory behind convolution and correlation is beyond the scope of this manual.
For reference see Theory and Application of Digital Signal Processing, by
Rabiner and Gold, Prentice-Hall, 1975.

Usage
void waveform_convolve_circular(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.25.4 waveform_correlate_linear()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Usage
The waveform_correlate_linear() function is used to ???

Note the following:

out_wave i[] in_wave1 i j– size+() mod size[] in_wave2 j[]⋅()

j 0=

size 1–

∑= 0 i size<≤
 2/27/09 Pg-1142

Waveform Functions
• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation.

• The output waveform will be defined using RRECT_WAVE notation.
• The number of sample values (Size) of in_wave1 must be greater than or equal

to in_wave2. See waveform_get_size().
• The output waveform sample values are determined as follows:

int s1 = waveform_get_size(in_wave1); //waveform_get_size()
int s2 = waveform_get_size(in_wave2);

Description
void waveform_correlate_linear(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.25.5 waveform_correlate_circular()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Usage
The waveform_correlate_circular() function is used to ???

Correlating two different waveforms is sometimes referred to as cross correlation.
Correlating a waveform to itself is called autocorrelation (see
waveform_autocorrelate_circular()).

out_wave i[] in_wave1 i j+[] in_wave2 j[]⋅()

j 0=

s2 1–

∑= 0 i s1 s2– 1+<≤
 2/27/09 Pg-1143

Waveform Functions
Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation.

• The output waveform will be defined using RRECT_WAVE notation.
• The Size of in_wave1 and in_wave2 must be the same.
• The output waveform sample values are determined as follows:

•

Description
void waveform_correlate_circular(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.25.6 waveform_autocorrelate_circular()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

Description
The waveform_autocorrelate_circular() function is used to ???

Correlating two different waveforms, sometimes referred to as cross correlation, is done
using waveform_correlate_circular(). Correlating a waveform to itself is known as
autocorrelation. If the same waveform is speciifed for both inputs to

out_wave i[] in_wave1 i j+() mod size[] in_wave2 j[]⋅()

j 0=

size 1–

∑= 0 i size<≤
 2/27/09 Pg-1144

Waveform Functions
waveform_correlate_circular() the results are the same as obtained using
waveform_autocorrelate_circular().

Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation

• The output waveform will be defined using RRECT_WAVE notation.
• The output waveform sample values are determined as follows:

• There is no function called waveform_autocorrelate_linear() since this
would reduce to just one value which is equal to the sum of the squares of the
input values.

Note: the theory behind convolution and correlation is beyond the scope of this manual.
For reference see Theory and Application of Digital Signal Processing, by
Rabiner and Gold, Prentice-Hall, 1975.

Usage
void waveform_autocorrelate_circular(Waveform* out_wave,

Waveform* in_wave);

where:

out_wave identifies the output waveform.

in_wave identify the input waveform. See Description.

Example
???

3.27.25.7 waveform_covariance()
See Waveform Overview, Waveform Convolution/Corrleation Functions.

out_wave i[] in_wave i j+() mod size[] in_wave j[]⋅()

j 0=

size 1–

∑= 0 i size<≤
 2/27/09 Pg-1145

Waveform Functions
Description
The waveform_covariance() function is used to ???

Covariance is the cross correlation of the input waveforms after their arithmetic means have
been subtracted.

Note the following:

• The input waveforms must be defined using RRECT_WAVE or RLONG_WAVE
notation.

• The output waveform will be defined using RRECT_WAVE notation.
The usage of convolution and correlation functions is usually restricted to small waveform
Sizes. Convolution in the time domain is equal to element-by-element multiplication in the
frequency domain. This means that when the number of elements in the input arrays grows
sufficiently large, it's faster to employ the following sequence to compute the equivalent of
waveform_convolve_circular():

waveform_real_fft(tmpWF, inWF1);
waveform_real_fft(outWF, inWF2);
waveform_multiply(outWF, outWF, tmpWF);
waveform_real_ifft(outWF, outWF);
double scale = (double) waveform_get_size(inWF1) / 2.0;
double offset = waveform_arithmetic_mean(inWF1);
waveform_multiply(outWF, outWF, scale);
waveform_subtract(outWF, outWF, offset);

The reason this can be faster is that the convolution and correlation functions have

execution times on the order of , whereas FFT function execution times are
 . The Size required before the alternative method above is faster is dependent

on the specifics of the CPU being employed, but in one experiment 128 samples (or larger)
was computed faster with the FFT method as opposed to the convolution method. And, for
non-radix-2 sized arrays, the arrays needed to be larger for the FFT method to be faster
since non-radix-2 FFTs take longer than radix-2 FFTs. Waveforms of about 500 samples
were therefore required before the FFT method was faster.

FFTs can be employed to implement waveform_convolve_linear() as well. The trick is
to first zero pad the input arrays such that the FFTs do not include any circular products. It is
necessary to at least double their size and it would be beneficial to round the resulting size
up to the next power of two.

O n2()
O n log n()
 2/27/09 Pg-1146

Waveform Functions
Usage
void waveform_covariance(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.26 Waveform Wierd Functions
See Waveform Overview

• vecmem_modify()

• waveform_enob()
• waveform_index_to_time()
• waveform_settling_time()

3.27.26.1 vecmem_modify()
See Waveform Overview.

Description
The vecmem_modify() function may be used to modify pattern data in a Logic Test
Pattern, replacing the existing (compiled-in) pattern data with sample values from a
specified waveform.

Note the following:

• Pattern data for one or more pin(s) can be modified. A pin list is specified to
identify which pins are modified. Every pin in the pin list is modified identically.
 2/27/09 Pg-1147

Waveform Functions
• The first vector to be modified in the test pattern is identified using the
vector_offset argument. Legal values are 1..n, where the last vector can be
identified using the addrs() function, one version of which returns the number of
vectors in a Logic Test Pattern.

• The vector_stride argument can be used to specify whether any vectors are to
be skipped. Legal values are 1..n where 1 = modify consecutive vectors.

• The number of vectors to be modified is determined by the number of samples in
the specified waveform. waveform_get_size() can be used to determine the
number of samples in a given waveform.

Note: the system software does not check whether the number of sample values in
the specified waveform will exceed the scope of the specified test pattern.
Careless usage can cause corruption of test patterns other than that specified.

• The sample values of the specified waveform must be integers (RLONG_WAVE).
The following table shows how VectorStates are mapped to integer values:

Usage
void vecmem_modify(Pattern *pattern,

int vector_offset,
PinList* pinlist,
Waveform* data,
int vector_stride DEFAULT_VALUE(1));

where:

pattern specifies the pattern to be modified.

vector_offset identifies the first vector to be modified. See Description.

pinlist identifies the pin(s) for which pattern data will be modified. See Description.

Sample Data Value VectorState Pattern Token

??? drive_lo 0

??? drive_hi 1

??? tristate X

??? strobe_lo L

??? strobe_hi H
 2/27/09 Pg-1148

Waveform Functions
data identifies the waveform from which the sample values are taken. See Description.

vector_stride is optional, and if used specifies the number of vectors to be skipped
between each vector which is modified. Default = 1 i.e. modify consecutive vectors.

Example
???

3.27.26.2 waveform_enob()
See Waveform Overview, Waveform Wierd Functions

Description

The waveform_enob() function is used to calculate the ENOB required in an ideal ADC to
have a specified signal-to-noise ratio (SNR).

The signal-to-noise ratio attainable by a perfect standard ADC is limited by the ADCs
quantization error, which is determined by the number of bits the ADC contains. The
expected quantization error (in decibels) from B bits is given by the equation:

which is more readily recognized from its popular approximation:

The waveform_enob() function allows us to relate a given SNR value to an ideal ADC. It
calculates the effective number of bits (ENOB) required in an ideal ADC to have the
specified signal-to-noise ratio. It does this by using the inverse of the above relation, as:

ENOB = effective number of bits

SNR 10 B log10× 4() log10
3
2
---⎝ ⎠

⎛ ⎞+=

SNR 6.02 B× 1.76+=

SNR

decibels
10

---------------------- log10
3
2
---⎝ ⎠

⎛ ⎞–

log10 4()
---=
 2/27/09 Pg-1149

Waveform Functions
Usage
double waveform_enob(double decibels);

where:

decibels specifies the signal-to-noise ratio in dB.

waveform_enob() returns the ENOB of the specified SNR (in dB).

Example
???

3.27.26.3 waveform_index_to_time()
See Waveform Overview, Waveform Wierd Functions

Description
The waveform_index_to_time() function is used to return the X axis time value of a
specified waveform sample value i.e. given an index into a waveform’s sample array, return
the corresponding X axis time value of that index location. Note the following:

• The waveform may be defined using any valid notation (see Waveform Sample
Value Notations).

• The time value returned takes into account the waveform's X_increment value and
X_start value (see Waveform* Attributes, Waveform Mathematical View). This is
effectively
(X_start + X_increment * index), scaled appropriately for the time units involved.

• If the waveform's X axis does not represent a recognized time scale, the value
returned will be calculated as if the X axis units were set to seconds.

Usage
MKSTime waveform_index_to_time(Waveform* in_wave, double index);

where:

in_wave specifies the input waveform.

index specified the sample value of interest.
 2/27/09 Pg-1150

Waveform Functions
waveform_index_to_time() returns the X axis time value of the indexth sample value.

Example
???

3.27.26.4 waveform_settling_time()
See Waveform Overview, Waveform Wierd Functions

Description
The waveform_settling_time() function determines the settling time for a time domain
waveform. Note the following:

• The input waveform must be defined using RRECT_WAVE or RLONG_WAVE notation
• The input waveform must have more than one sample value.
• The tolerance parameter must be positive and non-zero and represents how

close to the settled_value the waveform must come before being considered
settled. Both tolerance and settled_value must be specified in terms of
whatever scaling is being used for the Y axis.

• If the settled_value parameter is specified (not NULL), the computed settling
level is returned in that argument. It is computed on the fly starting at the end of
the waveform. The diagram below shows the relationships with an example
waveform:

• To give better accuracy, waveform_settling_time() uses linear interpolation
on the two sample values bounding the crossing of the tolerance line. The
interpolated index is then converted to a time value using
waveform_index_to_time().

tolerance
Settling Time

settled_value
 2/27/09 Pg-1151

Waveform Functions
Usage
MKSTime waveform_settling_time(Waveform* in_wave,

double tolerance,
double *settled_value DEFAULT_VALUE(NULL));

where:

in_wave specifies the input waveform.

tolerance how close to the settled value the waveform must come before being
considered settled.

settled_value is optional, and is a pointer to an existing double variable, used to return
the calculated settled value. See Description.

waveform_settling_time() returns the settling time value.

Example
???

3.27.27 Waveform Compression Functions
See Waveform Overview.

To encode a signal with Mu-law encoding or A-law encoding is to compress it logarithmically.
The resulting signal, when quantized and later expanded, yields a better signal-to-noise ratio
than a normally quantized signal would. This is a result of the relatively low levels of the
signal being amplified in relation to the larger levels. The relative quantization error is thus
reduced.

The following functions encode or decode a specified waveform:

• waveform_mu_law_encode()
• waveform_mu_law_decode()
• waveform_a_law_encode()
• waveform_a_law_decode()
 2/27/09 Pg-1152

Waveform Functions
3.27.27.1 waveform_mu_law_encode()
See Waveform Overview, Waveform Compression Functions

Description
The waveform_mu_law_encode() function is used to encode an input waveform using
the Mu-law compression method (see intro in Waveform Compression Functions), putting
the result into the output waveform. The waveform_mu_law_decode() function performs
the inverse of this function.

The waveform_mu_law_encode() function encodes the input waveform with Mu-law
(μ -law) compression. The value of mu (μ) varies the amount of the compression as shown
in the equation below. If not supplied, the most common value of 255 is used.

V = maximum magnitude of the input signal
x = value to be compressed
y = compressed value

Also note the following:

• V is assumed to be a value of one. The input waveform should therefore be scaled
to be in the range of -1 to +1 before being compressed. Values greater than one
will be silently clamped to one and values less than minus one will be silently
clamped to minus one.

• The output waveform will also be within the range of -1 to 1.
• The input waveform must be defined using RRECT_WAVE notation.
• The output waveform will be in RRECT_WAVE notation, and inherit all of the other

attributes of the input waveform.

Usage
void waveform_mu_law_encode(Waveform* out_wave,

Waveform* in_wave,
double mu DEFAULT_VALUE(255.0));

where:

y signum x()
V 1 μ x

V
-----+⎝ ⎠

⎛ ⎞ln⋅

1 μ+()ln
--------------------------------------=
 2/27/09 Pg-1153

Waveform Functions
out_wave specifies the encoded output waveform.

in_wave specifies the input waveform.

mu is optional, and if used specifies the amount of compression to be performed.
Default = 255.

Example
???

3.27.27.2 waveform_mu_law_decode()
See Waveform Overview, Waveform Compression Functions

Description
This is the inverse function of waveform_mu_law_encode() i.e. the
waveform_mu_law_decode() function decompresses a waveform previouslycompressed
using waveform_mu_law_encode() . The value of mu (μ) varies the amount of the
decompression as shown in the equation below. If not supplied, the most common value of
255 is used.

V = maximum magnitude of the input signal
x = uncompressed value
y = value being decompressed

Also note the following:

• V is assumed to be a value of one. The input waveform should therefore have
been compressed into the range of -1 to +1. Values greater than one will be
silently clamped to one and values less than minus one will be silently clamped to
minus one.

• The output waveform will also be within the range of -1 to 1.
• The input waveform must be defined using RRECT_WAVE notation.
• The output waveform will be in RRECT_WAVE notation, and inherit all of the other

attributes of the input waveform.

x signum y()V
μ
--- e

1 μ+()ln y
V

1–=
 2/27/09 Pg-1154

Waveform Functions
Usage
void waveform_mu_law_decode(Waveform* out_wave,

Waveform* in_wave,
double mu DEFAULT_VALUE(255.0));

where:

out_wave specifies the decompressed output waveform.

in_wave specifies the input waveform.

mu is optional, and if used specifies the amount of decompression to be performed.
Default = 255.

Example
???

3.27.27.3 waveform_a_law_encode()
See Waveform Overview, Waveform Compression Functions

Description
The waveform_a_law_encode() function is used to encode an input waveform using the
A-law compression method (see intro in Waveform Compression Functions), putting the
result into the output waveform. The waveform_a_law_decode() function performs the
inverse of this function.

The waveform_a_law_encode() function encodes the input waveform with A-law
compression. A-law compression is achieved differently depending on the range of the input
value. The value of A varies the amount of the compression as shown in the equation below.
If not supplied, the most common value of 87.6is used:

V = maximum magnitude of the input signal
x = value to be compressed
y = compressed value

Also note the following:
 2/27/09 Pg-1155

Waveform Functions
• V is assumed to be a value of one. The input waveform should therefore be scaled
to be in the range of -1 to +1 before being compressed. Values greater than one
will be silently clamped to one and values less than minus one will be silently
clamped to minus one.

• The output waveform will also be within the range of -1 to 1.
• The input waveform must be defined using RRECT_WAVE notation.
• The output waveform will be in RRECT_WAVE notation, and inherit all of the other

attributes of the input waveform.

Usage
void waveform_a_law_encode(Waveform* out_wave,

Waveform* in_wave,
double a DEFAULT_VALUE(87.6));

where:

out_wave specifies the encoded output waveform.

in_wave specifies the input waveform.

a is optional, and if used specifies the amount of compression to be performed.
Default = 87.6.

Example
???

3.27.27.4 waveform_a_law_decode()
See Waveform Overview, Waveform Compression Functions

y

Ax
1 Aln+
------------------ for V

A
---– x V

A
---≤ ≤

signum x()
V 1 A x

V
-----⎝ ⎠

⎛ ⎞ln+

1 Aln+
--------------------------------------- for VA

--- x V≤<⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

 2/27/09 Pg-1156

Waveform Functions
Description
This is the inverse function of waveform_a_law_encode() i.e. the
waveform_a_law_decode() function decompresses a waveform previously compressed
using waveform_a_law_encode(). The value of A varies the amount of the
decompression as shown in the equation below. If not supplied, the most common value of
87.6 is used.

V = maximum magnitude of the input signal
x = uncompressed value
y = value being decompressed

Also note the following:

• V is assumed to be a value of one. The input waveform should therefore have
been compressed into the range of -1 to +1. Values greater than one will be
silently clamped to one and values less than minus one will be silently clamped to
minus one.

• The output waveform will also be within the range of -1 to 1.
• The input waveform must be defined using RRECT_WAVE notation.
• The output waveform will be in RRECT_WAVE notation, and inherit all of the other

attributes of the input waveform.

Usage
void waveform_a_law_decode(Waveform* out_wave,

Waveform* in_wave,
double a DEFAULT_VALUE(87.6));

where:

out_wave specifies the decompressed output waveform.

in_wave specifies the input waveform.

mu is optional, and if used specifies the amount of decompression to be performed.
Default = 87.6.

y

y 1 Aln+()
A

-------------------------- for V
1 Aln+
------------------– y V

1 Aln+
------------------≤ ≤

signum y()V
A
---e

1 Aln+() y
V
----- 1–

 for V
1 Aln+
------------------ y V≤<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

 2/27/09 Pg-1157

Waveform Functions
Example
???

3.27.28 Waveform FFT Functions
See Waveform Overview

• waveform_complex_fft(), waveform_complex_ifft()
• waveform_real_fft(), waveform_real_ifft()
• waveform_real_ifft_even(), waveform_real_ifft_odd()
• waveform_set_odd_flag(), waveform_get_odd_flag()
• FFT Aliasing

3.27.28.1 waveform_complex_fft(), waveform_complex_ifft()
See Waveform Overview, Waveform FFT Functions.

Description

The waveform_complex_fft() function processes a specified input waveform and
creates an output waveform representing the discrete Fourier transform of the input. Note
the following:

• The input waveform may be defined using any notation (see Waveform Sample
Value Notations). However, waveform_complex_fft() only processes
CRECT_WAVE, thus if the input waveform is defined using any of the other notations
a conversion will be automatically performed.

• The FFT output waveform will be CRECT_WAVE, and will be the same Size as the
input waveform.

• The input waveform must contain at least eight sample values (Size >= 8). If the
input waveform Size is a power of two, a radix-2 FFT is performed, otherwise a
Chirp-Z FFT is performed.

• The output waveform X_units is set = ???, and the X scale set = ???.
waveform_complex_ifft() is the inverse of waveform_complex_fft():
 2/27/09 Pg-1158

Waveform Functions
• The input waveform Type must be CRECT_WAVE.
• The input waveform must contain at least eight sample values (Size >= 8). If the

input waveform Size is a power of two, a radix-2 FFT is performed, otherwise a
Chirp-Z FFT is performed.

• The FFT output waveform will be CRECT_WAVE, and will be sized as noted above.
• The output waveform X_units is set = ???, and the X scale set = ???.

Also see waveform_real_fft(), waveform_real_ifft().

Usage
void waveform_complex_fft(Waveform* out_wave, Waveform* in_wave);

void waveform_complex_ifft(Waveform* out_wave,
Waveform* in_wave);

where:

out_wave specifies the output waveform to contain the FFT or inverse FFT.

in_wave specifies the input waveform.

Example
???

3.27.28.2 waveform_real_fft(), waveform_real_ifft()
See Waveform Overview, Waveform FFT Functions.

Description

waveform_real_fft() is similar to waveform_complex_fft() except:

• When a real waveform is processed (i.e. sample values defined using
RRECT_WAVE or RLONG_WAVE), the resulting complex results may be found with
fewer calculations i.e the FFT is completed more quickly.

• The FFT output waveform will be CRECT_WAVE, and will be the Sized as follows. If
the input waveform is even length (even number of sample values) the output will
have one additional bin, called the Nyquist bin. Although a [sine] waveform at the
Nyquist frequency cannot be accurately captured, certain waveforms leave energy
in this FFT bin, thus if this bin is not maintained the inverse FFT does not
 2/27/09 Pg-1159

Waveform Functions
represent an exact inverse operation.
- A real FFT of a waveform of Size 2n returns a CRECT_WAVE of size n+1.
- A real FFT of a waveform of Size 2n+1 returns a CRECT_WAVE of size n+1.
Or stated differently, a real FFT of an input waveform of Size k returns a
CRECT_WAVE of size = floor(k/2)+1. Also see
waveform_real_ifft_even(), waveform_real_ifft_odd().

• The output waveform will be half the Size of the input waveform. Since the input
waveform has no imaginary components, the 2nd half of the complex FFT are not
returned (these are equal to the complex conjugate of the first half). If the number
of sample values in the input waveform is odd, the output waveform will be:

• The input waveform must contain at least eight sample values (Size >= 8). If the
input waveform size is a power of two, a radix-2 FFT is performed, otherwise a
Chirp-Z FFT is performed.

• The output waveform X_units is set = ???, and the X scale set = ???.
waveform_real_ifft() is the inverse of waveform_real_fft():

• The input waveform must be defined using CRECT_WAVE notation.
• The input waveform must contain at least four sample value (Size >= 4)
• The output waveform will be an RRECT_WAVE, twice the size of the input

waveform.
• The output waveform X_units is set = ???, and the X scale set = ???.

X_unitsUsage
void waveform_real_fft(Waveform* out_wave, Waveform* in_wave);

void waveform_real_ifft(Waveform* out_wave, Waveform* in_wave);

where:

out_wave specifies the output waveform to contain the FFT or inverse FFT.

in_wave specifies the input waveform.

size 1–
2

 2/27/09 Pg-1160

Waveform Functions
Example
???

3.27.28.3 waveform_real_ifft_even(), waveform_real_ifft_odd()
See Waveform Overview, Waveform FFT Functions.

Description
When performing a real inverse FFT on a CRECT_WAVE input waveform of any given Size,
waveform_real_ifft() will generate an RRECT_WAVE output waveform with either an
even or odd number of samples.

Instead, waveform_real_ifft_even() or waveform_real_ifft_odd() can be used
to explicitly make the choice.

The results of a real FFT operation are tagged with an indicator, the odd flag, of whether the
original real waveform had an even or odd Size. The odd flag = TRUE to indicate an odd
size. This flag is used as follows:

• waveform_real_ifft() examines the odd flag and calls either
waveform_real_ifft_even() or waveform_real_ifft_odd() as
appropriate.

• The flag is used to correctly sort out the aliasing of harmonics that surpassed the
Nyquist frequency in several functions, including waveform_snr(),
waveform_thd(), etc.

Also see waveform_set_odd_flag(), waveform_get_odd_flag().

Usage
void waveform_real_ifft_even(Waveform* out_wave,

Waveform* in_wave);

void waveform_real_ifft_odd(Waveform* out_wave,
Waveform* in_wave);

where:

out_wave specifies the output waveform to contain the FFT or inverse FFT.

in_wave specifies the input waveform.
 2/27/09 Pg-1161

Waveform Functions
Example
???

3.27.28.4 waveform_set_odd_flag(), waveform_get_odd_flag()
See Waveform Overview, Waveform FFT Functions.

Description
When performing a real inverse FFT on an input waveform of any given Size,
waveform_real_ifft() will generate an output waveform with either an even or odd
number of samples, and the odd flag is set accordingly.

The odd flag may be examined using waveform_get_odd_flag() or modified using
waveform_set_odd_flag().

Note: the user should not normally need to interact with the odd flag.

Usage
void waveform_set_odd_flag(Waveform* obj, BOOL odd_flag);

BOOL waveform_get_odd_flag(Waveform* obj);

where:

obj identifies the waveform of interest.

odd_flag specifies the desired state where TRUE = odd and FALSE = even.

waveform_get_odd_flag() returns TRUE if the odd flag is set, otherwise FALSE is
returned.

Example
???
 2/27/09 Pg-1162

Waveform Functions
3.27.28.5 FFT Aliasing
Given a 128 bin FFT with the fundamental signal value in bin-47, the 2nd harmonic will be in
bin-94 (2*47). However, since there are only 128 bins, the 3rd harmonic can’t be in bin-141
(3*47). The 3rd harmonic will be in bin-115 (128 - (141-128)). This is called harmonic folding
or aliasing.

The Waveform Analysis Functions functions which identify FFT harmonic bins
(waveform_sinad(), waveform_snr(), waveform_thd(), etc.) comprehend
windowing and identify those bins correctly.

3.27.29 Waveform Analysis Functions
See Waveform Overview

• waveform_average()

• waveform_arithmetic_mean()

• waveform_clip_upper(), waveform_clip_lower()

• waveform_deinterleave()

• waveform_eq()

• waveform_geometric_mean()

• waveform_histogram()

• waveform_interleave()

• waveform_linear_regression()

• waveform_magnitudes()

• waveform_median()

• waveform_min_max()

• waveform_quantize()

• waveform_rms()

• waveform_sfdr()

• waveform_signals_and_noise()

• waveform_sinad()

• waveform_snr()
 2/27/09 Pg-1163

Waveform Functions
• waveform_standard_deviation()

• waveform_sum_of_squares()

• waveform_thd()

• waveform_variance()

Also see INL & DNL Functions.

3.27.29.1 waveform_average()
See Waveform Overview, Waveform Analysis Functions.

Description
Consider a Waveform* which contains multiple repetitions of a signal; for example, 256
repetitions of a ramp waveform. The waveform_average() function can be used to return
a single repetition of that waveform, with each sample value being the average of the
corresponding sample values from the original repetitive waveform. Note the following:

• The input waveform may be defined using any notation (see Waveform Sample
Value Notations), however the input waveform Type is typically RRECT_WAVE.

• The input waveform should represent a signal that has been repeatedly sampled,
a known number of times. For example, if the input waveform consists of 8 copies
of a signal, and each copy consists of 256 sample values, the input waveform will
contain 2048 total sample values.

• The repetitions argument to waveform_average() specifies the number of
of copies of the signal in the input waveform (8 in the previous bullet).

• Given these values, the output waveform will consist of 256 sample values. The
first sample of the output waveform will be the average of input sample values 0,
256, 512, 768, 1024, 1280, 1536, and 1792. The second sample of the output
waveform will be the average of input sample values 1, 257, 513, 769, 1025,
1281, 1537, and 1793. Etc.

• The output waveform will use the same notation as the input waveform (see
Waveform Sample Value Notations) and have the same attributes.

Usage
void waveform_average(Waveform* out_wave,

Waveform* in_wave,
int repetitions);
 2/27/09 Pg-1164

Waveform Functions
where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

repetitions specifies the number of repetitions of the signal in in_wave. See
Description.

Example
???

3.27.29.2 waveform_arithmetic_mean()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_arithmetic_mean() is used to return arithmetic mean of all samples of
the specified waveform. Only waveforms defined using one-part notations (RRECT_WAVE,
RLONG_WAVE) are supported (see Waveform Sample Value Notations).

The waveform_arithmetic_mean() operation can be described mathamethically as:

return where:

Din = the sample set of the waveform
i = index into the set (array index)
n = number of samples.See Waveform Mathematical View and Waveform Units for
descriptions of these parameters.

Usage
double waveform_arithmetic_mean(Waveform* in_wave);

where:

in_wave specifies the waveform of interest.

Dini
i 0=

n 1–

∑
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

n

 2/27/09 Pg-1165

Waveform Functions
waveform_arithmetic_mean() returns the arithmetic mean of all samples of the
specified waveform.

Example
???

3.27.29.3 waveform_clip_upper(), waveform_clip_lower()
See Waveform Overview, Waveform Analysis Functions.

Description

The waveform_clip_upper() and waveform_clip_lower() functions are used to
modify waveform sample values. Note the following:

• Both functions process all sample values of a specified input waveform and put
the results into an output waveform of the same Size and defined using the same
notation (see Waveform Sample Value Notations).

• waveform_clip_lower() sets (clips) sample values which are less than a
specified minimum value (the min_value argument) to that minimum value.

• waveform_clip_upper() sets (clips) sample values which are greater than a
specified maximum value (the max_value argument) to that maximum value.

• The input waveform must be RRECT_WAVE or RLONG_WAVE.
• If the input waveform is RLONG_WAVE, the output waveform remains RLONG_WAVE

only if min_value is an integer, otherwise the output waveform becomes an
RRECT_WAVE.

Note that the sequence:

waveform_clip_lower(out, in, min_value);

wavefrom_clip_upper(out, out, max_value);

results in the same output as:

waveform_clamp(out, in, min_value, max_value);//waveform_clamp()
 2/27/09 Pg-1166

Waveform Functions
Usage
void waveform_clip_upper(Waveform* out_wave,

Waveform* in_wave,
double max_value);

void waveform_clip_lower(Waveform* out_wave,
Waveform* in_wave,
double min_value);

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform.

max_value identifies the clip value (maximum value) used by waveform_clip_upper().
See Description.

min_value identifies the clip value (minimum value) used by waveform_clip_lower().
See Description.

Example
???

3.27.29.4 waveform_deinterleave()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_deinterleave() function splits a specified input waveform into two
output waveforms, as follows:

• Each sample value of the first output waveform consists of every-other sample
value of the input waveform, beginning with the first sample.

• Each sample value of the second output waveform consists of every-other sample
value of the input waveform, beginning with the second sample.

• If there is an odd number of input waveform samples, the first output waveform will
contain one more sample value than the second output waveform.

• The input waveform may be defined using any notation (see Waveform Sample
Value Notations). The output waveforms will use the same notation.
 2/27/09 Pg-1167

Waveform Functions
Also see waveform_interleave().

Note that the waveform_decimate() function can also be used to deinterleave, but is
more versatile, since it can be used to deinterleave one waveform into to any number of
waveforms.

Usage
void waveform_deinterleave(Waveform* out_wave1,

Waveform* out_wave2,
Waveform* in_wave);

where:

out_wave1 and out_wave2 identify the two output waveforms. See Description.

in_wave identifies the input waveform.

Example
???

3.27.29.5 waveform_eq()
See Waveform Overview, Waveform Analysis Functions.

Description

Usage
BOOL waveform_eq(Waveform* in_wave,

double scalar,
double tolerance DEFAULT_VALUE(1.0e-7));

BOOL waveform_eq(Waveform* in_wave1,
Waveform* in_wave2,
double tolerance DEFAULT_VALUE(1.0e-7));

void waveform_eq(Waveform* out_wave,
Waveform* in_wave1,
Waveform* in_wave2,
double tolerance DEFAULT_VALUE(1.0e-7));
 2/27/09 Pg-1168

Waveform Functions
void waveform_eq(Waveform* out_wave,
Waveform* in_wave,
double scalar,
double tolerance);

where:

in_wave identifies an input waveform in which each sample value is compared against
scalar.

tolerance specifies ???

in_wave1 and in_wave2 specify two input waveforms from which corresponding samples
are compared.

out_wave identifies an output waveform in which each sample value represents the result
of comparing the corresponding sample value from the input waveform. When scalar is
used, the in_wave1 sample value is compared against scalar. When in_wave2 is used
the in_wave1 sample value is compared against the corresponding in_wave2 sample
value.

The versions of waveform_eq() which return BOOL will return TRUE when ???

Example
???

3.27.29.6 waveform_geometric_mean()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_geometric_mean() function is used to return the geometric mean of all
sample values in a specified waveform. Note the following:

• Supports sample values defined in RRECT_WAVE and RLONG_WAVE only. See
Waveform Sample Value Notations.

• If any sample value is negative or zero, zero is returned, otherwise the geometric
mean is returned.
 2/27/09 Pg-1169

Waveform Functions
• If the waveform contains n sample values (Size = n) the geometric mean is
defined to be the nth root of the product of all of the sample values. To reduce the
occurrence of numerical overflow this is calculated as:

Usage
double waveform_geometric_mean(Waveform* in_wave);

where:

in_wave identifies the input waveform.

See Description for the waveform_geometric_mean() return value.

Example
???

3.27.29.7 waveform_histogram()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_histogram() function analyzes the sample values of a specified input
waveform and returns an array of count values which can be used as histogram data.

The following input parameters are required:

• The input waveform, consisting of some number of sample values. Only
waveforms defined using a one-part notation (RRECT_WAVE or RLONG_WAVE) are
supported. See Waveform Sample Value Notations.

• Two limits: Low Bound and High Bound. These can be used to exclude values
from being counted. In the example below Low = 0.175 and High = 0.625.

• The number of count values (number of buckets) to return. This also determines
how the range of sample values between Low Bound and High Bound are divided
while being counted. In the example below number of buckets = 11.

waveform_histogram() returns the count of exceptions, which are those sample values
below the Low Bound and above the High Bound. The histogram data (counts in buckets) is
returned as a Waveform*, in the RLONG_WAVE notation.

arithmetic_mean sample_values()log()()exp
 2/27/09 Pg-1170

Waveform Functions
The diagram below shows how waveform_histogram() operates:

Figure-63: waveform_histogram() User Model
Note the following about the diagram above:

• The bucket width is calculated as shown. This determines where each input
sample value is counted. Note that a given bucket count can represent the count
of a range of input sample values. The example has a bucket width of 0.041.

• Each sample value of the input waveform is analyzed. If it is less than Low Bound
or greater than High Bound it is counted as an exception. Values which are NaN
(not a number) are also counted as exceptions. NaN values occur as a result of
calculations (sqrt -1, divide by zero, etc.).

• If the sample is not an exception, the analysis determines in which bucket the
sample should be counted. Given there are [i] buckets:

Bucket[i] = count of all input waveform sample values
>= low_bound + (i * bucket_width)

and
< high_bound + ((i + 1) * bucket_width)

Low Bound High Bound

Total range of values in Input WF

12 9 17 4 5 2 4611410 3216

Number of Buckets (11)

Count of values

Low Bound High Bound

Input
Waveform

(exaggerated for effect)

Bucket Width =

Sample Values between Low &
 High Bounds (count = 84)

Sample Values < Low
Bound (count = 16)

Sample Values > High
Bound (count = 32)

Sample
Values

Number of Buckets
(High Bound - Low Bound)

< Low Bound
Count of values
> High Bound

0.000 0.175 0.625 1.000

= 0.041Bucket contains 10 Sample values i.e. there
were 10 input WF samples with values between
Low Bound and (Low Bound + Bucket Width)
i.e. between 0.175 and 0.216 (0.175 + 0.041)

Output
Waveform

Sum of Counts (84)

waveform_histogram() returns 48 (16 + 32)
 2/27/09 Pg-1171

Waveform Functions
• When all samples are processed, the counts from each bucket are inserted into
the output Waveform*. The output waveform X-units is set to the input waveform’s
Y-units. The output waveform’s Y-units is set to counts (SCALE_COUNTS, see
Waveform Units).

• waveform_histogram() returns the count of exceptions.

Usage
int waveform_histogram(Waveform* out_wave,

Waveform* in_wave,
double low_bound,
double high_bound,
int num_buckets);

where:

out_wave specifies the destination for the histogram data. This must be a pointer to an
existing Waveform* variable. See Description.

in_wave specifies the input waveform to be evaluated. in_wave must be defined using a
one-part notation ((RRECT_WAVE or RLONG_WAVE, see Waveform Sample Value Notations).

low_bound and high_bound are used to exclude values. See Description.

num_buckets specifies how many values are to be returned in out_wave. See
Description.

waveform_histogram() returns a count of exception values i.e. a count of values which
were NaN (see Description), less than low_bound, or greater than high_bound.

Example
???

3.27.29.8 waveform_interleave()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_interleave() function combines two specified input waveforms into one
output waveform, as follows:
 2/27/09 Pg-1172

Waveform Functions
• The sample values of the output waveform will consist of alternating sample
values from the two input waveforms. The first sample value of the output
waveform is the first sample value of the first input waveform. The second sample
value of the output waveform is the first sample value of the second input
waveform. Etc.

• The two input waveforms must be defined using the same notation (see Waveform
Sample Value Notations). RRECT_WAVE and RLONG_WAVE are considered the
same.

• The two input waveforms must either contain the same number of sample values
(be the exact same Size), or the first waveform may have one sample value more
than the second input waveform.

Usage
void waveform_interleave(Waveform* out_wave,

Waveform* in_wave1,
Waveform* in_wave2);

where:

out_wave identifies the output waveform.

in_wave1 and in_wave2 identify the two input waveforms. See Description.

Example
???

3.27.29.9 waveform_linear_regression()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_linear_regression() function computes the linear regression
parameters of the input waveform using the least squares fit method. The least squares
method defines the best approximation as the line that produces the minimum sum of
squares of the deltas between the actual Y values and the computed Y values.

Note the following:
 2/27/09 Pg-1173

Waveform Functions
• The input waveform must be type RLONG_WAVE or RRECT_WAVE and must contain
at least two data points.

• The input waveform is not modified.
• The returned slope and intercept values are in terms of the input waveform's X

and Y scaling.

Usage
void waveform_linear_regression(Waveform* in_wave,

double *slope,
double *intercept);

where:

in_wave specifies the input waveform to be processed.

slope and intercept are pointers to two existing double variables used to return the
slope and intercept values from the analysis.

Example
???

3.27.29.10 waveform_magnitudes()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_magnitudes() function processes each sample value from an input
waveform and outputs the magnitude component into the corresponding sample value of the
output waveform. Note the following:

• waveform_magnitudes() returns a Waveform* equal in Size to the input
waveform.

• The input waveform may be defined using any notation (see Waveform Sample
Value Notations). See below for how each notation type is evaluated.

• The output waveform Type is always RRECT_WAVE.
Magnitude is calculated as follows:
 2/27/09 Pg-1174

Waveform Functions
• RRECT_WAVE each output sample value = the corresponding input waveform
sample value.

• RLONG_WAVE each output sample value = the corresponding input waveform
integer sample value converted to real.

• CRECT_WAVE: each output sample value = the absolute value of the corresponding
complex input waveform sample value. This is calculated:

• POLAR_WAVE: the magnitude portion is returned, the phase information is
discarded.

Usage
void waveform_magnitudes(Waveform* out_wave, Waveform* in_wave);

where:

out_wave specified the output waveform.

in_wave specified the input waveform to be processed.

Example
???

3.27.29.11 waveform_median()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_median() function is used to return the median value of the sample values
of a specified waveform.

For a large set of sample values which exhibit a good distribution, but which may contain
some wild outlier values, the median value is often a better quantifier than the mean value
(see waveform_geometric_mean()).

Note the following:

• Supports sample values defined using RRECT_WAVE and RLONG_WAVE only. See
Waveform Sample Value Notations.

x yi+ x2 y2+=
 2/27/09 Pg-1175

Waveform Functions
• If the waveform samples are numerically sorted, the median value is the value of
the middle element.

• If the waveform contains an even number of samples, the median value is
calculated to be the arithmetic mean of the middle two values.

Usage
double waveform_median(Waveform* in_wave);

where:

in_wave identifies the input waveform.

See Description for the waveform_median() return value.

Example
???

3.27.29.12 waveform_min_max()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_min_max() function is used to identify the minimum and maximum sample
values of a specified waveform. The input waveform Type must be RRECT_WAVE or
RLONG_WAVE.

There are two versions of the function.

• The first simply returns the minimum and maximum values.
• The second version also returns the zero-based location (index) of the values.

When a minimim and /or maximum value occurs more than once in the waveform,
the index points to the first occurrence.

Usage
void waveform_min_max(Waveform* in_wave,

double *min_value,
double *max_value);
 2/27/09 Pg-1176

Waveform Functions
void waveform_min_max(Waveform* in_wave,
double *min_value,
double *max_value,
int *min_index,
int *max_index);

where:

in_wave identifies the input waveform.

min_value and max_value are pointers to existing double variables used to return the
minimum and maximum sample values identified in in_wave.

min_index and max_index are pointers to existing int variables used to return the index
location of the minimum and maximum sample values identified in in_wave. See
Description.

Example
???

3.27.29.13 waveform_quantize()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_quantize() function is used to ???. Note the following:

• The input waveform must defined using the RRECT_WAVE notation.
• The output waveform will be defined using the RLONG_WAVE notation.
• All sample values of the input waveform must be greater than or equal to zero and

less than one.
• The bitwidth argument to waveform_quantize() specifies the number of bits

to be used in each sample value of the output waveform. Legal bitwidth values
must be between 1..54, inclusive.

• Each output sample value is an N-bit representation (N = bitwidth) of the
corresponding input sample value, specified as a rounded binary integer. For
instance, if the bitwidth was specified as 8, then each input sample value would
 2/27/09 Pg-1177

Waveform Functions
be multiplied by 2^8 (i.e. 256), and rounded to an integer. The rounding method
applied is specifed using the the rounding_method argument passed to
waveform_quantize(). See below.

• Each output sample value is clamped to the range:
0 .. (2^bitwidth) - 1

This means that the largest input sample value that avoids being clamped is:

i.e. not one (1).
The method used to round each output sample value to an integer is specified using the
rounding_method argument to waveform_quantize(). Legal values are specified
using the RoundingMethod enumerated type.

Usage
void waveform_quantize(Waveform* out_wave,

Waveform* in_wave,
int bitwidth,

RoundingMethod rounding_method DEFAULT_VALUE(t_round_to_nearest));

where:

out_wave identifies the output waveform.

in_wave identifies the input waveform to be processed.

bitwidth describes the number of bits in each output sample. See Description.

rounding_method is optional, and if used specifies the method used to round each output
sample value to an integer value. Default = t_round_to_nearest.

Example
???

(2^bitwidth - 1)

2^bitwidth
 2/27/09 Pg-1178

Waveform Functions
3.27.29.14 waveform_rms()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_rms() function is used to return the root mean square (RMS) of the sample
values of a specified waveform. This returns the square root of the arithmetic mean of the
squares of the waveform sample values.

Supports sample values defined using RRECT_WAVE and RLONG_WAVE only. See Waveform
Sample Value Notations.

Usage
double waveform_rms(Waveform* in_wave);

where:

in_wave identifies the input waveform.

See Description for the waveform_rms() return value.

Example
???

3.27.29.15 waveform_sfdr()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_sfdr() function is used to determine the spurious-free-dynamic-range
(SFDR) ratio of a waveform. This is the ratio of the signal to the largest single harmonic or
noise component.

Harmonic and noise components are treated identically. And, even though the largest
component usually ends up being a harmonic, the expressions below use the term noise in
reference to both noise and harmonic components.

Note the following:
 2/27/09 Pg-1179

Waveform Functions
• The waveform must be the result of an FFT having processed a single sine wave
of a coherent frequency (with the usual harmonics, noise, distortion, etc.). See
Waveform FFT Functions. Thus, the waveform processed by waveform_sfdr()
consists of set FFT bins. How these bins are processed to determine SFDR is
discussed below.

• The FFT waveform can be in the following notations: RRECT_WAVE, CRECT_WAVE,
and POLAR_WAVE, but not RLONG_WAVE. See Waveform Sample Value Notations.

waveform_sfdr() processes the FFT waveform (bins) as follows:

• The signal component of the SFDR analysis is the value in the FFT fundamental
bin. This bin may be specified as an argument (fundamental_bin) to
waveform_sfdr(). If not specified, or specified as -1, the largest non-DC bin is
assumed to be the fundamental. The value from the fundamental bin is refered to
as F below.

• Bin-0 is the FFT’s DC offset value and is ignored.
• All FFT bins which are not the fundamental or a DC bin are treated as noise bins.

This includes harmonic bins.
• The SFDR ratio is returned in dB, i.e.

where signal is the FFT fundamental bin value (F), and noise is the largest single
noise or harmonic FFT bin value, as noted above.

Aliasing and Windowing are handled correctly. See FFT Aliasing and Waveform Window
Functions.

Usage
double waveform_sfdr(Waveform* in_wave,

int fundamental_bin DEFAULT_VALUE(-1));

where:

in_wave is the input waveform to be analyzed. This must be the output of an FFT
operation, see Description.

fundamental_bin is optional, and if used identifies the FFT bin containing the
fundamental signal value. See Description for details and default operation.

waveform_sfdr() returns the SFDR, in DB.

SNR = 10 * log10
signal

noise
 2/27/09 Pg-1180

Waveform Functions
Example
???

3.27.29.16 waveform_signals_and_noise()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_signals_and_noise() function may be used to implement a custom
noise measurement. Note the following:

• The input waveform should be the result of an FFT. See Waveform FFT Functions.
• Aliasing and windowing are taken into account.

Usage
void waveform_signals_and_noise(Waveform* wave,

DoubleArray *harmonics,
double *noise,
double *spur,

int fundamental_bin DEFAULT_VALUE(-1),
int num_harmonics DEFAULT_VALUE(9));

where:

wave identifies the input waveform to be analyized.

harmonics is a DoubleArray used to return harmonic information as noted below. Values
are in volts peak squared. The array is automatically [re]sized based on the value specified
for num_harmonics:

harmonics[0] Signal strength of the DC offset
harmonics[1] Signal strength of the fundamental
harmonics[2] Signal strength of the 2nd harmonic
...
harmonics[num_harmonics + 1] Strength of the last harmonic

noise is a pointer to an existing double variable used to return the total noise strength.
This is the sum of squares of all FFT bins except DC, the fundamental, and all considered
harmonics.
 2/27/09 Pg-1181

Waveform Functions
spur is a pointer to an existing double variable used to return the the largest
non-harmonic noise component.

fundamental_bin is optional, and if specified is the FFT bin of the fundamental. If not
specified, or specified as -1, the largest non-DC bin is assumed to be the fundamental.
Default = -1.

num_harmonics is optional, and if specified is the represents the number of harmonics to
be found (in addition to the fundamental). Default = 9.

Example
???

3.27.29.17 waveform_sinad()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_sinad() function is used to determine the signal-to-noise-and-distortion
(SINAD) ratio of a waveform. Note the following:

• The waveform must be the result of an FFT having processed a single sine wave
of a coherent frequency (with the usual harmonics, noise, distortion, etc.). See
Waveform FFT Functions. Thus, the waveform processed by waveform_sinad()
consists of set FFT bins. How these bins are processed to determine SINAD is
discussed below.

• The FFT waveform can be in the following notations: RRECT_WAVE, CRECT_WAVE,
and POLAR_WAVE, but not RLONG_WAVE. See Waveform Sample Value Notations.

waveform_sinad() processes the FFT waveform (bins) as follows:

• The signal component of the SINAD analysis is the value in the FFT fundamental
bin. This bin may be specified as an argument (fundamental_bin) to
waveform_sinad(). If not specified, or specified as -1, the largest non-DC bin is
assumed to be the fundamental. The value from the fundamental bin is refered to
as F below.
 2/27/09 Pg-1182

Waveform Functions
• SINAD is a power ratio, but FFT bin values (magnitudes) are proportional to
voltage. Therefore, the SINAD noise and harmonic signal strengths are
determined by summing the squares of the appropriate FFT bins. However, as
noted below, not all bins in the FFT are included.

• Bin-0 is the FFT’s DC offset value and is ignored.
• The number of harmonic bins to include may be specified as an argument

(num_harmonics) to waveform_sinad(). If not specified, num_harmonics
defaults to 9. Then, bins (2 * F), (3 * F),... up to ((num_harmonics +1) * F) are
included.

• The remaining bins are considered noise. As noted, total noise is the sum of the
squares of the values in each of these bins.

• The SINAD ratio is returned in dB, i.e.

where signal is the FFT fundamental bin value (F), noise and harmonics are
calculated as noted above.

Aliasing and Windowing are handled correctly. See FFT Aliasing and Waveform Window
Functions.

Usage
double waveform_sinad(Waveform* in_wave,

int fundamental_bin DEFAULT_VALUE(-1));

where:

in_wave is the input waveform to be analyzed. This must be the output of an FFT
operation, see Description.

fundamental_bin is optional, and if used identifies the FFT bin containing the
fundamental signal value. See Description for details and default operation.

waveform_sinad() returns the SINAD, in DB.

Example
???

SINAD = 10 * log10
signal

noise + harmonics
 2/27/09 Pg-1183

Waveform Functions
3.27.29.18 waveform_snr()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_snr() function is used to determine the signal-to-noise (SNR) ratio of a
waveform. Note the following:

• The input waveform must be the result of an FFT having processed a single sine
wave of a coherent frequency (with the usual harmonics, noise, distortion, etc.).
See Waveform FFT Functions. Thus, the waveform processed by
waveform_snr() consists of set FFT bins. How these bins are processed to
determine SNR is discussed below.

• The FFT waveform can be in the following notations: RRECT_WAVE, CRECT_WAVE,
and POLAR_WAVE, but not RLONG_WAVE. See Waveform Sample Value Notations.

waveform_snr() processes the FFT waveform (bins) as follows:

• The signal component of the SNR analysis is the value in the FFT fundamental
bin. This bin may be specified as an argument (fundamental_bin) to
waveform_snr(). If not specified, or specified as -1, the largest non-DC bin is
assumed to be the fundamental. The value from the fundamental bin is refered to
as F below.

• SNR is a power ratio, but FFT bin values (magnitudes) are proportional to voltage.
Therefore, the SNR noise signal strengths are determined by summing the
squares of the appropriate FFT bins. However, as noted below, not all bins in the
FFT are included.

• Bin-0 is the FFT’s DC offset value and is ignored.
• Harmonic bins are not normally considered to be signal or noise and thus should

not be included. The number of harmonics to reject may be specified as an
argument (num_harmonics) to waveform_snr(). If not specified,
num_harmonics defaults to 9. Then, bins (2 * F), (3 * F),... up to
((num_harmonics +1) * F) are ignored.

• The remaining bins are considered noise. As noted, total noise is the sum of the
squares of the values in each of these bins.
 2/27/09 Pg-1184

Waveform Functions
• The SNR ratio is returned in dB, i.e.

where signal is the FFT fundamental bin value (F) and noise is calculated as
noted above.

• Aliasing and Windowing are handled correctly. See FFT Aliasing and Waveform
Window Functions.

Usage
double waveform_snr(Waveform* in_wave,

int fundamental_bin DEFAULT_VALUE(-1),
int num_harmonics DEFAULT_VALUE(9));

where:

in_wave is the input waveform to be analyzed. This must be the output of an FFT
operation, see Description.

fundamental_bin is optional, and if used identifies the FFT bin containing the
fundamental signal value. See Description for details and default operation.

num_harmonics is optional, and if used identifies the number of harmonic FFT bins to
ignore. See Description for details and default operation.

waveform_snr() returns the SNR, in DB.

Example
???

3.27.29.19 waveform_standard_deviation()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_standard_deviation() function is used to determine the standard
deviation of the sample values in a specified waveform.

SNR = 10 * log10
signal

noise
 2/27/09 Pg-1185

Waveform Functions
The standard deviation is simply the square root of the variance:

Also see waveform_variance().

Usage
double waveform_standard_deviation(

Waveform* in_wave,
int degrees_of_freedom DEFAULT_VALUE(1));

where:

in_wave identifies the input waveform.

degrees_of_freedom is optional, and default = 1. See Description.

See Description for the waveform_standard_deviation() return value.

Example
???

3.27.29.20 waveform_sum_of_squares()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_sum_of_squares() function is used to return the sum of the squares of
all sample values. Supports sample values defined using RRECT_WAVE and RLONG_WAVE
only. See Waveform Sample Value Notations.

Usage
double waveform_sum_of_squares(Waveform* in_wave);

where:

Variance σ2 1
N Df–
--------------- Xi X–()

2
∑= =

Mean X 1
N
---- Xi∑= =

StdDev σ Variance= =
 2/27/09 Pg-1186

Waveform Functions
in_wave identifies the input waveform.

Example
???

3.27.29.21 waveform_thd()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_thd() function is used to determine the total harmonic distortione (THD) of
a waveform. Note the following:

• The input waveform must be the result of an FFT having processed a single sine
wave of a coherent frequency (with the usual harmonics, noise, distortion, etc.).
See Waveform FFT Functions. Thus, the waveform processed by
waveform_thd() consists of set FFT bins. How these bins are processed to
determine THD is discussed below.

• The FFT waveform can be in the following notations: RRECT_WAVE, CRECT_WAVE,
and POLAR_WAVE, but not RLONG_WAVE. See Waveform Sample Value Notations.

waveform_thd() processes the FFT waveform (bins) as follows:

• The signal component of the THD analysis is the value in the FFT fundamental
bin. This bin may be specified as an argument (fundamental_bin) to
waveform_thd(). If not specified, or specified as -1, the largest non-DC bin is
assumed to be the fundamental. The value from the fundamental bin is refered to
as F below.

• THD is a power ratio, but FFT bin values (magnitudes) are proportional to voltage.
Therefore, the THD harmonics signal strengths are determined by summing the
squares of the appropriate FFT bins.

• Bin-0 is the FFT’s DC offset value and is ignored.
• The number of harmonics to include in the analysis may be specified as an

argument (num_harmonics) to waveform_thd(). If not specified,
num_harmonics defaults to 9. Then, bins (2 * F), (3 * F),... up to
((num_harmonics +1) * F) are included in the analysis.
 2/27/09 Pg-1187

Waveform Functions
• The THD ratio is returned in dB, i.e.

where signal is the FFT fundamental bin value (F) and harmonics is calculated as
noted above.

• Aliasing and Windowing are handled correctly. See FFT Aliasing and Waveform
Window Functions.

Usage
double waveform_thd(Waveform* in_wave,

int fundamental_bin DEFAULT_VALUE(-1),
int num_harmonics DEFAULT_VALUE(9));

where:

in_wave is the input waveform to be analyzed. This must be the output of an FFT
operation, see Description.

fundamental_bin is optional, and if used identifies the FFT bin containing the
fundamental signal value. See Description for details and default operation.

num_harmonics is optional, and if used identifies the number of harmonic FFT bins to
include in the analysis. See Description for details and default operation.

waveform_thd() returns the THD, in DB.

Example
???

3.27.29.22 waveform_variance()
See Waveform Overview, Waveform Analysis Functions.

Description
The waveform_variance() function is used to obtain the variance of the sample values
of a specified waveform.

The arithmetic mean (or average) value of a large group of numbers helps to quantify what
the values represent, but does not convey the distribution of the values. variance is a

THD 10= 10log× harmonics
signal

----------------------------⎝ ⎠
⎛ ⎞∑⎝ ⎠

⎛ ⎞
 2/27/09 Pg-1188

Waveform Functions
measure of the average deviation from the average, specifically, it is the average of the
deviations squared:

where Df refers to the degrees of freedom. There is a lot of statistical theory behind the
meaning of Df and how to choose its value. Since the average of the data upon which the
deviations are based comes from the data itself, setting Df = 1 is usually indicated. For other
applications, refer to a good statistical textbook.

Also see waveform_standard_deviation().

Usage
double waveform_variance(

Waveform* in_wave,
int degrees_of_freedom DEFAULT_VALUE(1));

where:

in_wave identifies the input waveform.

degrees_of_freedom is optional, and default = 1. See Description.

See Description for the waveform_variance() return value.

Example
???

3.27.30 INL & DNL Functions
See Waveform Functions, Waveform Analysis Functions.

INL and DNL are key performance specifications for ADCs and DACs, reporting linearity
performance as the device output changes from one value to another value, typically across
the entire output range of the device.

Variance σ2 1
N Df–
--------------- Xi X–()

2
∑= =

Mean X 1
N
---- Xi∑= =

StdDev σ Variance= =
 2/27/09 Pg-1189

Waveform Functions
For a perfect DAC, the transfer function from digital-code-in to analog-voltage-out (or vice
versa for an ADC) should be a straight line. For example, to test an eight bit DAC the digital
inputs are sequenced between codes 0 through 255, and the analog output is captured
using the external hardware. For a perfect DUT, if the sample values are plotted the result
will be a straight line, between 0-255. Any deviation from a perfectly straight line indicates
some degree of non-linearity. The purpose of the INL/DNL functions is to analyze a
histogram of a captured waveform’s sample data and report the linearity parameters noted
above.

The following functions are used to analyze and return integral and differential nonlinearity
information about a specified waveform (histogram):

• waveform_adc_ramp_inl_dnl()

• waveform_adc_sine_inl_dnl()

• waveform_dac_ramp_inl_dnl()

The following INL/DNL information is returned by the analysis:

• INL = Integral Non-Linearity. This is an array of sample values (stored as a
Waveform*) which represents the ILE for each code value.

• ILE = Integral Linearity Error. This is the maximum magnitude relative input-to-
output error.

• ILE index. This is the digital code at which the ILE error occured. Note: the value
returned is actually the index into the histogram, see below.

• DNL = Differential Non-Linearity. This is an array of sample values (stored as a
Waveform*) which represents the DLE for each code value.

• DLE = Differential Linearity Error. This is the largest voltage step error when
switching from one code to the next.

• DLE index. This is the digital code at which the DLE error occured. Note: the value
returned is actually the index into the histogram, see below.

ILE and DLE values are signed i.e. if just the error magnitudes are needed the
waveform_absolute_value() function must be applied.

The INL & DNL Functions provide several line fit options used when performing ILE
analysis:

• t_least_squares_fit causes a line to be fitted to the data using a standard
least squares algorithm. Such a line may not pass directly through the endpoints,
but will have the minimum sum of squared data point deviations. It will generate a
statistically better data fit than either the t_endpoint_fit or t_adjusted_fit
methods. This option is usable by waveform_dac_ramp_inl_dnl() only.
 2/27/09 Pg-1190

Waveform Functions
• t_endpoint_fit results in the maximum ILE being computed as the maximum
distance from a straight line intersecting the endpoints of the histogram data.

• t_adjusted_fit improves (reduces) the ILE by moving the Y intercept of the
endpoint line such that the line travels through a point midway between the most
positive error (point furthest above the line) and the most negative error (point
furthest below the line). The slope of the line is not changed. The adjusted line is
now equidistant from the most positive error and the most negative error. Of these
two points, the one that occurs first (i.e. earliest index in sample value array) is
returned as the ILE and ILE index:

Expected Usage
Testing an 8-bit ADC:

• The DUT is caused to repeatedly sample and convert a repetative ramp (or sine
wave) input signal generated by the external hardware.

• The DUT outputs the corresponding digital samples (codes) which are captured
using the Error Catch RAM (ECR).

• The digital output is normalize, using:
waveform_rescale(capturedWF, codesWF, 0, 255)

See waveform_rescale(). This is done to ???
• When testing ADC circuits, generate a histogram from the normalized output

waveform:
waveform_histogram(histoWF, codesWF, -0.5, 255.5, 256)

See waveform_histogram(). Because an 8-bit device is being tested, the
resulting histogram has 256 bins, each containing a count representing the
number of times each of the 256 potential codes showed up in the captured and
normalized sample data. For a perfect DUT, the count in each histogram bin
should match the number of ramps sampled. In this example, the histogram output
(waveform) is named histoWF.

• Execute the appropriate INL/DNL function to analyze the histogram and return the
linearity results. When testing an ADC the function name will include _adc_. For
example:

waveform_adc_ramp_inl_dnl(histoWF,
&dle, &ile,
&dle_index, &ile_index);

See waveform_adc_ramp_inl_dnl() or waveform_adc_sine_inl_dnl().
Testing an 8-bit DAC, the process is identical except

• The digital input (waveform) to the DUT comes from a Logic Test Pattern.
 2/27/09 Pg-1191

Waveform Functions
• The DUT output waveform is captured using external equipment.
• The waveform_dac_ramp_inl_dnl() function is used to perform the analysis.
• The output waveform is not converted into a histogram before being processed by

waveform_dac_ramp_inl_dnl().
• The t_least_squares_fit line fitting option is available.

3.27.30.1 waveform_adc_ramp_inl_dnl()
See Waveform Overview, Waveform Analysis Functions, INL & DNL Functions.

Description
The waveform_adc_ramp_inl_dnl() function is used to analyze and return INL/DNL
specifications about a linear ramp waveform (histogram) acquired while testing an ADC
circuit. Note the following:

• The input waveform to waveform_adc_ramp_inl_dnl() must be a histogram of
the waveform samples acquired by the capture instrument. See
waveform_histogram() and Expected Usage in INL & DNL Functions.

• The histogram waveform must be defined using a one-part notation i.e.
RLONG_WAVE or RRECT_WAVE (see Waveform Sample Value Notations).

• Only two of the line fitting options may be used: t_endpoint_fit and
t_adjusted_fit.

Regarding the transfer functions returned in the out_inl and out_dnl Waveform*s:

• Both the X_units and Y_units set to match the X_units value of in_wave.
• The X_increment value matches the in_wave.
• The output waveforms have 2 fewer samples than the input. The 2 missing values

correspond to the first and last samples of the input waveform. The X axis value
associated with the first sample of the output waveforms is eqaul to the X axis
value of the second sample of the input waveform, but the X increment value
remains the same.

More details are documented in INL & DNL Functions.
 2/27/09 Pg-1192

Waveform Functions
Usage
void waveform_adc_ramp_inl_dnl(Waveform* in_wave,

Waveform* out_inl,
Waveform* out_dnl,
double *ile,
double *dle,
int *ile_index,
int *dle_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

void waveform_adc_ramp_inl_dnl(Waveform* in_wave,
double *ile,
double *dle,
int *ile_index,
int *dle_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

where:

in_wave identifies the target waveform (histogram) to be analyzed.

out_inl specifies an output waveform used to return sample values, each representing
the ILE value for the corresponding input waveform sample value.

out_dnl specifies an output waveform used to return sample values, each representing
the DLE value for the corresponding input waveform sample value.

ile is a pointer to an existing double variable used to return the ILE value from the
analysis. The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.

dle is a pointer to an existing double variable used to return the DLE value from the
analysis. The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.

ile_index is a pointer to an existing int variable used to return the the digital code at
which the ILE error occured. ile_index is actually the zero-based index into the
histogram waveform.

dle_index is a pointer to an existing int variable used to return the the digital code at
which the DLE error occured. dle_index is actually the zero-based index into the
histogram waveform.

fit is optional, and if used specifies a line fitting option used during the analysis. fit only
affects the ILE determinations. Legal values are of the LineFitMethod enumerated type
 2/27/09 Pg-1193

Waveform Functions
but only t_adjusted_fit and t_endpoint_fit are valid for use with the
waveform_adc_ramp_inl_dnl() function (see INL & DNL Functions).
Default = t_adjusted_fit.

Example
???

3.27.30.2 waveform_adc_sine_inl_dnl()
See Waveform Overview, Waveform Analysis Functions, INL & DNL Functions.

Description
The waveform_adc_sine_inl_dnl() function is used to analyze and return INL/DNL
specifications about a sine wave waveform (histogram) acquired while testing an ADC
circuit. Note the following:

• The input waveform to waveform_adc_sine_inl_dnl() must be a histogram of
the waveform samples acquired by the capture instrument. See
waveform_histogram() and Expected Usage in INL & DNL Functions.

• The histogram waveform must be defined using a one-part notation i.e.
RLONG_WAVE or RRECT_WAVE (see Waveform Sample Value Notations).

• Only two of the line fitting options may be used: t_endpoint_fit and
t_adjusted_fit.

Regarding the transfer functions returned in the out_inl and out_dnl Waveform*s:

• Both the X_units and Y_units set to match the X_units value of in_wave.
• The X_increment value matches the in_wave.
• The output waveforms have 2 fewer samples than the input. The 2 missing values

correspond to the first and last samples of the input waveform. The X axis value
associated with the first sample of the output waveforms is eqaul to the X axis
value of the second sample of the input waveform, but the X increment value
remains the same.

More details are documented in INL & DNL Functions.
 2/27/09 Pg-1194

Waveform Functions
Usage
void waveform_adc_sine_inl_dnl(Waveform* in_wave,

Waveform* out_inl,
Waveform* out_dnl,
double *ile,
double *dle,
int *ile_index,
int *dle_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

void waveform_adc_sine_inl_dnl(Waveform* in_wave,
double *dle,
double *ile,
int *dle_index,
int *ile_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

where:

in_wave identifies the target waveform (histogram) to be analyzed.

out_inl specifies an output waveform used to return sample values, each representing
the ILE value for the corresponding input waveform sample value.

out_dnl specifies an output waveform used to return sample values, each representing
the DLE value for the corresponding input waveform sample value.

ile is a pointer to an existing double variable used to return the ILE value from the
analysis. The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.

dle is a pointer to an existing double variable used to return the DLE value from the
analysis. The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.

ile_index is a pointer to an existing int variable used to return the the digital code at
which the ILE error occured. ile_index is actually the zero-based index into the
histogram waveform.

dle_index is a pointer to an existing int variable used to return the the digital code at
which the DLE error occured. dle_index is actually the zero-based index into the
histogram waveform.

fit is optional, and if used specifies a line fitting option used during the analysis. fit only
affects the ILE determinations. Legal values are of the LineFitMethod enumerated type
 2/27/09 Pg-1195

Waveform Functions
but only t_adjusted_fit and t_endpoint_fit are valid for use with the
waveform_adc_sine_inl_dnl() function (see INL & DNL Functions).
Default = t_adjusted_fit.

Example
???

3.27.30.3 waveform_dac_ramp_inl_dnl()
See Waveform Overview, Waveform Analysis Functions, INL & DNL Functions.

Description
The waveform_dac_ramp_inl_dnl() function is used to analyze and return INL/DNL
specifications about a linear ramp waveform acquired when testing an DAC. Note the
following:

• The input waveform to waveform_dac_ramp_inl_dnl() should be a scaled
time domain waveform (i.e. X_units = SCALE_SECONDS and
Y_units = SCALE_VOLTS) or unscaled time domain waveform (i.e.
X_units = SCALE_SECONDS and Y_units = SCALE_CODES).

• The input waveform should be the normalized (see Expected Usage) and not a
histogram. This is a representation of the DAC transfer function, ideally a near
perfect ramp.

• The input waveform must be defined using a one-part notation i.e. RLONG_WAVE or
RRECT_WAVE (see Waveform Sample Value Notations).

• All three line fitting options may be used with waveform_dac_ramp_inl_dnl().
Regarding the transfer functions returned in the out_inl and out_dnl Waveform*s:

• Both the X_units and Y_units set to match the Y_units value of in_wave.
• The first X axis value of the output waveforms will be equal to the perceived Y axis

value of the first sample of the input waveform.
• The last X axis value of the output waveforms will be equal to the perceived Y axis

value of the last sample of the input waveform.
• Ideally, the ramp is linear, with uniform step sizes, so the output waveforms

X_increment value is set to the calculated uniform step. Therefore the input Y
range of values is mapped to the output X range of values.
 2/27/09 Pg-1196

Waveform Functions
• The term perceived is used to emphasize that an analysis is being performed,
which includes a line-fit option. Where the sample points are determined to be
depends on the straight line which is calculated through the data. And the straight
line which is calculated depends not only on the data, but on the calculation (line
fit) method. If t_endpoint_fit is used, then the first and last data points define
the data range. But if a different line fit method is used, those endpoints may get
shifted a bit. This will result in slightly different values along the X axes of the
output waveforms.

More details are documented in INL & DNL Functions.

Usage
void waveform_dac_ramp_inl_dnl(Waveform* in_wave,

Waveform* out_inl,
Waveform* out_dnl,
double *ile,
double *dle,
int *ile_index,
int *dle_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

void waveform_dac_ramp_inl_dnl(Waveform* in_wave,
double *ile,
double *dle,
int *ile_index,
int *dle_index,

LineFitMethod fit DEFAULT_VALUE(t_adjusted_fit));

where:

in_wave identifies the target waveform (histogram) to be analyzed.

out_inl specifies an output waveform used to return sample values, each representing
the ILE value for the corresponding input waveform sample value.

out_dnl specifies an output waveform used to return sample values, each representing
the DLE value for the corresponding input waveform sample value.

ile is a pointer to an existing double variable used to return the ILE value from the
analysis. The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.
 2/27/09 Pg-1197

Waveform Functions
dle is a pointer to an existing double variable used to return the DLE value from the
analysis.The value is signed, thus if just the error magnitude is desired, the test program
must apply an absolute operation.

ile_index is a pointer to an existing int variable used to return the the digital code at
which the ILE error occured. ile_index is actually the zero-based index into the
histogram waveform.

dle_index is a pointer to an existing int variable used to return the the digital code at
which the DLE error occured. dle_index is actually the zero-based index into the
histogram waveform.

fit is optional, and if used specifies a line fitting option used during the analysis. fit only
affects the ILE determinations. Legal values are of the LineFitMethod enumerated type
(see INL & DNL Functions). Default = t_adjusted_fit.

Example
???
 2/27/09 Pg-1198

Chapter 4 Test Pattern Programming
• Overview
• Magnum 1/2/2x Pattern Features

• Magnum 1/2/2x Memory Pattern Instructions
• Magnum 1/2/2x Logic Vector Instructions

• Adding a New Pattern File to the Project
• Automated Pattern File Processing (APFP)

- Overview
- APFP Dialog
- Build (Compile) Operation
- APFP Migrating from Older Versions

• Use of #include pattern.h file(s)
• Pattern Files and Folders/Directories

• Pattern Sub-directory Contents
• Compiling Test Patterns
• Pattern Loading

• Pattern Load PATH
• Pattern Sets

• Pattern Overview and Naming
• Pattern Attributes
• Pattern Instruction Identifier (%)
• Comments in Test Patterns
• Pattern Initial Conditions
• Pattern Labels
• Pattern #Include Files
• C Preprocessor Support
• Test Pattern Line Continuation Character
 2/27/09 Pg-1199

Test Pattern Programming
• MAR DONE and/or VAR DONE
• Pattern Subroutines
• Error Pipeline Requirements
• Algorithmic Pattern Generator (APG) Configuration

- Too many to list here.
• Memory Test Patterns

• Overview
• Memory Pattern Instruction Format
• Default Memory Pattern Instruction
• APG Instruction Execution
• APG Address Generator Overview
• YALU Instruction and XALU Instruction
• COUNT Instruction
• MAR Instruction
• CHIPS Instruction
• DATGEN Instruction
• UDATA Instruction
• PINFUNC Instruction
• USERRAM Instruction
• Minmax Pattern Example
• Adaptive Programming Pattern Example
• Over-programming Controls and Parallel Test

• Logic Test Patterns
• Overview
• Logic Vector Syntax

- Logic Vector Bit Codes
- 3-bits per Pin

• Magnum 1/2/2x Logic Pattern Rules
- LVM Branch/Label Limitations

• VECDEF Compiler Directive
• VEC Pattern Instruction
• RPT Pattern Instruction
• Optional VEC/RPT Instruction Parameters
 2/27/09 Pg-1200

Test Pattern Programming Overview
• STARTLOOP / ENDLOOP Logic Vector Instructions
• VAR Instruction
• VCOUNT Instruction
• VPINFUNC Instruction
• VUDATA Instruction
• Sync Loops

• Scan Test Patterns
• Mixed Memory/Logic Patterns
• Controlling PE Levels from the Test Pattern

- Controlling Magnum 1 Levels from the Test Pattern

4.1 Overview
See Test Pattern Programming.

The main purpose of a test pattern is to:

• Supply logic state information (the 1’s and 0’s) needed to functionally exercise the
DUT.

• Control when pins are strobed and not strobed. Only strobed pins can cause the
test pattern to fail and will log errors into the Error Catch RAM (ECR).

• Control the cycle-by-cycle I/O state of each pin.
• Make the cycle-by-cycle Time-sets (TSET).
• Make the cycle-by-cycle Pin Scramble Map selection.
• Make the cycle-by-cycle VIHH Map selection.
 2/27/09 Pg-1201

Test Pattern Programming Overview
The Magnum 1 hardware provides 2 sources of pattern state information:

During test pattern executioneach pin-pair’s (see Functional Pin-pairs) data source is
selected cycle-by-cycle using a Pin Scramble Map. Note that within a given test pattern
these data sources can be used individually (see Logic Test Patterns, Memory Test
Patterns, Scan Test Patterns), or combined to generate Mixed Memory/Logic Patterns, to
test devices containing both memory and/or logic and/or scan logic.

Table 4.1.0.0-1 Test Pattern Data Sources

Source Comments

APG For testing memory devices. Algorithmically generate logic
state information in the form of X/Y Addresses, read/write
data, and chip selects. The APG also has a Data Buffer
Memory (DBM) for storing random read/write data while
generating algorithmic addresses and chip selects.

The combined Logic
Vector Memory (LVM) /
Scan Vector Memory

(SVM)

Magnum 1/2/2x use the same memory to store both Logic
Test Patterns and Scan Test Patterns.
 2/27/09 Pg-1202

Test Pattern Programming Overview
In addition to supplying drive/expect pattern data the test pattern also provides the following
controls:

Table 4.1.0.0-2 Test Pattern Control Applications

Control Comment

Strobe Control Per-pin, per-cycle strobe enable/disable. Memory
Test Patterns use MAR READ, READUDATA, READV,
READZ or NOREAD. Logic Test Patterns and Scan
Test Patterns use Logic Vector Bit Codes.

I/O Control Per-pin, per-cycle drive/tri-state control. Memory
Test Patterns use PINFUNC ADHIZ. Logic Test
Patterns and Scan Test Patterns use Logic Vector
Bit Codes.

Test Pattern
Execution Sequence Control

Controls the test pattern execution engine(s).
All Maverick-I test patterns are controlled using
MAR instructions. Otherwise...
Memory Test Patterns are controlled using MAR
instructions. Logic Test Patterns are controlled
using using VEC/RPT and VAR instructions. Mixed
Memory/Logic Patterns may used both methods.

Time-set Selection
(TSET#)

Per-cycle selection of cycle period and per-pin
Timing Formats and edge times.

VIHH Map Selection
(VIHH#)

Per-cycle selection of which pins are driven to
the VIHH level.

Pin Scramble Map Selection
(PS#)

Per-pin/per-cycle selection of pattern data
source.

Trigger DC Comparators and
Error Logic and DC A/D Converter

Per-cycle. Using the MAR VCOMP instruction
(Memory Test Patterns) or VEC VCOMP, VAR
VCOMP, or VPINFUNC VCOMP instructions (Logic
Test Patterns), the test pattern can trigger DC Go/
NoGo tests or measurements.
 2/27/09 Pg-1203

Test Pattern Programming Overview
Test patterns are used when performing the following types of tests:

Set or modify (tweak)
most PE levels

See Controlling PE Levels from the Test Pattern.

Set or modify (tweak)
PMU voltages and currents

See Controlling PE Levels from the Test Pattern.

Set or modify (tweak)
DPS DC levels

The test pattern can cause the DPS to switch
between 2 previously programmed voltages (see
dps() and dps_vpulse()). And, DPS primary
voltage and vpulse voltages can be modified.
DPS current high/low test limits have limited
support. See Controlling PE Levels from the Test
Pattern.

Table 4.1.0.0-3 Test Pattern Applications

Test Type Test Pattern Purpose

funtest() Validate the logic functionality of the DUT.
Validate the AC performance of the DUT under specified
DC conditions.
Functionally program programmable DUTs.
Set up the DUT’s logic state prior to executing other tests
(PMU, DPS current, mixed signal, etc.).

ac_partest() Perform a dynamic PMU test; i.e. while concurrently
executing a functional test pattern. Optionally, trigger the
DC comparators from the pattern, possibly multiple times.

Table 4.1.0.0-2 Test Pattern Control Applications (Continued)

Control Comment
 2/27/09 Pg-1204

Test Pattern Programming Magnum 1/2/2x Pattern Features
Test pattern source files are written using a proprietary pattern language, documented in
Test Pattern Programming, which is divided into three sections, corresponding to the pattern
data sources noted above:

• Memory Test Patterns
• Logic Test Patterns
• Scan Test Patterns

4.2 Magnum 1/2/2x Pattern Features
See Test Pattern Programming.

Note: this section includes information about memory pattern instructions which were
first added for Maverick-II and which are also supported on Magnum 1/2/2x.
This section does not include new instructions added just for Magnum 1 and/or
Magnum 2 and/or Magnum 2x.

See Test Pattern Programming.

The Magnum 1/2/2x test pattern hardware design enables several test pattern features not
available using Maverick-I:

ac_test_supply() Perform a dynamic DPS current test; i.e. while
concurrently executing a functional test pattern. Optionally,
trigger the DC comparators from the pattern, possibly
multiple times.

hv_ac_test_supply() Perform a dynamic HV voltage or current test; i.e. while
concurrently executing a functional test pattern. Optionally,
trigger the DC comparators or DC A/D Converter from the
pattern, possibly multiple times.

start_pattern(),
stop_pattern(),

restart()

Supports pattern looping while user code continues to
execute.

Table 4.1.0.0-3 Test Pattern Applications (Continued)

Test Type Test Pattern Purpose
 2/27/09 Pg-1205

Test Pattern Programming Magnum 1/2/2x Pattern Features
• The APG design includes a logic vector execution control engine (VAR Engine),
and associated instruction memory (vRAM). This allows execution of logic
instructions to be controlled independently of memory pattern instructions (which
are controlled by the MAR Engine). And, unlike on Maverick-I, Logic Test Pattern
instructions are not stored in MAR Engine instruction memory. The VAR pattern
instruction (Logic Test Patterns) controls logic pattern execution, even in Mixed
Memory/Logic Patterns. See Magnum 1/2/2x Logic Vector Instructions.

• In Mixed Memory/Logic Patterns, logic instruction selection of Time-set, Pin
Scramble Map, and VIHH Map may take precedence over memory instruction
selection: the memory vs. logic instruction precedence is independently selectable
for each parameter, per-instruction, using the PINFUNC Instruction.

• Similarly logic instructions can take precedence in controlling NOLATCH, RESET,
OVER, VCOMP, VPULSE. See Magnum 1/2/2x Logic Vector Instructions.

• Four logic vector hardware counters, controlled using the VCOUNT pattern
instruction, are used to control loops (RPT and STARTLOOP/ENDLOOP). They may
also be used for conditional branch, and Pattern Subroutine call/return operations,
independent of the MAR Engine. See Magnum 1/2/2x Logic Vector Instructions.

• The VUDATA instruction supports UDATA-like operations for logic vectors
independent of memory instructions.

• Additional keywords are available for both Magnum 1/2/2x Memory Pattern
Instructions and Magnum 1/2/2x Logic Vector Instructions to support these features.

• A 4K APG User RAM is available to save or modify values in various APG
registers or to copy values between various APG registers. See APG User RAM.

4.2.1 Magnum 1/2/2x Memory Pattern Instructions
See Magnum 1/2/2x Pattern Features.

Note: this section includes memory pattern instructions which were newly added for
Maverick-II and which are also supported on Magnum 1/2/2x. This section does
not include new instructions added just for Magnum 1 and/or Magnum 2 and/or
Magnum 2xI.

Also see Magnum 1/2/2x Pattern Features and Magnum 1/2/2x Logic Vector Instructions:

MAR VCNTR
PINFUNC VPS, VTSET, VVIHH, VVPULSE, VVCOMP, VLATCHRESET, VOVER
 2/27/09 Pg-1206

Test Pattern Programming Magnum 1/2/2x Pattern Features
where:

MAR VCNTR is used to specify that a MAR Engine conditional branch decision is to be based
on the value in one of the 4 VAR Engine counters, instead of using one of the 60 MAR
Engine counters. This allows memory pattern execution to branch based upon the specified
VAR Engine counter value, (see VCOUNT). The MAR Engine cannot control the VAR Engine
counters, but does receive a signal when the counter selected in the current instruction
reaches zero. Using this feature does consume vRAM, to identify the VAR Engine counter,
but the pattern must be a Mixed Memory/Logic Patterns for this to be useful anyway. For
example:

% VCOUNT COUNT2
MAR VCNTR, CJMPNZ, some_label

In this example, the MAR instruction will jump to some_label if the VAR Engine counter
COUNT2 is not zero. Note that the logic vector instruction which causes COUNT2 to reach
zero may not be in the same pattern source statement as the MAR instruction which
evaluates VAR Engine counter COUNT2 ≠ 0.

PINFUNC VVCOMP selects the VAR Engine as the source of the enable signal to the PMU/
DPS comparators, for the current instruction. Effectively disables the MAR VCOMP signal for
the current instruction. Default is MAR Engine signal is selected.

PINFUNC VLATCHRESET selects the VAR Engine as the source of both the error flag reset
signal and the latch/nolatch signal, for the current instruction. See Error Flag vs. Error Latch.
Effectively disables the MAR Engine RESET signal and MAR Engine NOLATCH signal for the
current instruction. Default is to select the MAR Engine signals.

PINFUNC VOVER selects the VAR Engine as the source of the over programming inhibit
signal, for the current instruction. See Over-programming Controls and Parallel Test.
Effectively disables the MAR Engine OVER signal for the current instruction. Default is to
select the MAR Engine signal.

PINFUNC VPS selects the VAR Engine as the source of the pin scramble selection (PS#) for
the current instruction. See Pin Scramble Map. Effectively disables the MAR Engine
PINFUNC pin scramble selection (PS#) for the current instruction. Default is to select the
MAR Engine signal.

PINFUNC VTSET selects the VAR Engine as the source of the time-set selection (TS#) for
the current instruction. See Time-sets (TSET). Effectively disables the MAR Engine
PINFUNC time-set selection (TSET#) for the current instruction. Default is to select the MAR
Engine signal.

PINFUNC VVIHH selects the VAR Engine as the source of the VIHH Map selection (VIHH#)
for the current instruction. See VIHH Maps. Effectively disables the MAR Engine PINFUNC
 2/27/09 Pg-1207

Test Pattern Programming Magnum 1/2/2x Pattern Features
VIHH Map selection (VIHH#) for the current instruction. Default is to select the MAR Engine
signal.

PINFUNC VVPULSE selects the VAR Engine as the source of the signal used to switch one
or more DUT Power Supply(s) to their 2nd voltage level (see dps_vpulse()). Effectively
disables the MAR Engine PINFUNC VPULSE signal for the current instruction. Default is to
select the MAR Engine signal.

4.2.2 Magnum 1/2/2x Logic Vector Instructions
See Magnum 1/2/2x Pattern Features.

Note: this section includes logic pattern instructions which were newly added for
Maverick-II and which are also supported on Magnum 1/2/2x. This section does
not include new instructions added just for Magnum 1 and/or Magnum 2 and/or
Magnum 2x.

This is a summary of logic pattern instructions unique to Maverick-II and Magnum 1/2/2x; i.e.
not usable with Maverick-I. Also see Magnum 1/2/2x Pattern Features and Magnum 1/2/2x
Memory Pattern Instructions.

The Maverick-II and Magnum 1/2/2x have independent hardware test pattern execution
control engines for the memory pattern (MAR Engine) and the logic pattern (VAR Engine).
For logic patterns, the associated logic pattern instruction and option keywords are listed
below. These are stored in the VAR Engine vRAM (not MAR Engine uRAM). Except for the
VEC and RPT instructions, these instructions are not usable in Maverick-I test patterns. The
VEC and RPT instructions are usable on all system types, however, six of optional
parameters are not usable on Maverick-I (VPULSE, VCOMP, RESET, LATCH, NOLATCH,
OVER).

VEC HL10X..X01LH TSET#, PS#, VIHH#, VPULSE, VCOMP, RESET,
LATCH, NOLATCH, OVER

RPT 10 HL10X..X01LH TSET#, PS#, VIHH#, VPULSE, VCOMP, RESET,
LATCH, NOLATCH, OVER

VAR CSUB{E, NE, A, NA, T, NT, Z, NZ},

CJMP{E, NE, A, NA, T, NT, Z, NZ},

CRET{E, NE, A, NA, T, NT, Z, NZ},

GOSUB, PAUSE, JUMP, INC,
 2/27/09 Pg-1208

Test Pattern Programming Magnum 1/2/2x Pattern Features
DONE, PAUSE, MCNTR

VPULSE, VCOMP, RESET, LATCH, NOLATCH, OVER, DEFAULT

VCOUNT COUNT#, INCR, DECR, DEC2, COUNTVUDATA

VUDATA value

VPINFUNC TSET#, PS#, VIHH#, VPULSE, VCOMP, RESET, LATCH,
NOLATCH, OVER

where:

The VEC and RPT logic pattern instructions, in addition to specifying the HL10X pattern data,
may also specify the optional parameters noted above. Unlike Maverick-I logic patterns, the
VEC and RPT instructions in a Maverick-II and Magnum 1/2/2x logic pattern can also specify
the optional parameters previously only controllable using memory pattern instructions; i.e.
PINFUNC VPULSE, MAR VCOMP, RESET, LATCH, NOLATCH, and OVER. Special rules apply,
see Optional VEC/RPT Instruction Parameters. Note that these options can also be
specified using the VAR and VPINFUNC instructions (but duplicate definitions in the same
instruction are illegal).

The VAR instructions control the VAR Engine similar to how the MAR instruction is used in
memory patterns to control execution of the MAR Engine.

In Mixed Memory/Logic Patterns, in cases where the test pattern specifies the same option
for the MAR Engine and the VAR Engine, the MAR instruction control is used by default. To
select the VAR Engine option requires using specific PINFUNC options (operands), one for
each parameter controlled by the VPINFUNC instruction (which are also available to VEC and
RPT). The rules are documented in Optional VEC/RPT Instruction Parameters. Also see
Magnum 1/2/2x Memory Pattern Instructions.

VAR MCNTR is used to specify that a VAR conditional branch decision is to be based on the
value in one of the 60 MAR counters instead of using one of the 4 VAR Engine counters.
This allows logic vector execution control to branch based on a specified MAR Engine
counter value.

VCOUNT selects and controls one of the 4 VAR Engine counters.

VUDATA is the logic vector equivalent of memory pattern UDATA. Like the UDATA field,
VUDATA is used both explicitly and implicitly (see VUDATA Instruction), and thus must not
contain user values in some instructions.

VPINFUNC is the logic vector equivalent of of memory pattern PINFUNC. It can be used in
logic patterns to select TSET#, PS#, VIHH#, VPULSE, VCOMP, RESET, LATCH, NOLATCH,
OVER. For convenience, these same parameters can also be controlled from the VEC/RPT
and VAR instructions. As noted above, in Mixed Memory/Logic Patterns, the MAR Engine
 2/27/09 Pg-1209

Test Pattern Programming Adding a New Pattern File to the Project
PINFUNC selections take precidence, and additional MAR PINFUNC operands are required
to enable each of the VPINFUNC selections. See Optional VEC/RPT Instruction Parameters
and Magnum 1/2/2x Memory Pattern Instructions.

The following APG memory instruction options (operands) do NOT have logic vector
equivalents:

LBDATA, READ, READUDATA, TIMEN, RSTTMR

4.3 Adding a New Pattern File to the Project
See Test Pattern Programming.

Note: this topic and related methods have evolved along with the Nextest software. In
software release h2.3.xx/h1.3.xx, a 2nd generation Automated Pattern File
Processing (APFP) was introduced, replacing the previous implementation of
APFP. The earlier documentation on this topic was deleted, included details of
the first generation APFP and the even older methods used before APFP was
added.

A test pattern .pat file is added to a project using the same method as when adding a C-code
.cpp, using Project->Add to Project->Files.... The following browser is
presented:
 2/27/09 Pg-1210

Test Pattern Programming Adding a New Pattern File to the Project
Note that initially, files with the .pat extension are not visible in the browser. In the Files of
type menu, select All Files(*) to include .pat files in the display.

The Automated Pattern File Processing (APFP) software and APFP Dialog provide
additonal controls for setting options related to compiling test patterns. Once these options
are set, APFP manages the pattern build details.

4.3.1 Automated Pattern File Processing (APFP)
See Adding a New Pattern File to the Project.

Note: the APFP implementation changed in software release h2.2.xx/h1.2.xx.

This section includes:

• Overview
• APFP Dialog

- APFP Button Missing
• Build (Compile) Operation
• APFP Migrating from Older Versions

- Migrating Programs to h2.3.xx/h1.3.xx
- Switching Back to Software Prior to h2.3.xx/h1.3.xx

4.3.1.1 Overview
See Adding a New Pattern File to the Project, Automated Pattern File Processing (APFP).

Automated Pattern File Processing (APFP) is the name given to the mechanism which
automates many of the details of compiling Magnum 1/2/2x test patterns in a Visual Studio
project. In addition, the APFP Dialog contains several tools (buttons) used to perform
common tasks related to test patterns.

For the most part, the user adds test pattern source files (.pat files) to the test program (to
the Visual Studio project), the same as done with C-code .cpp files. When the program is
compiled (built) the test patterns are compiled too.

In software release h2.2.xx/h1.2.xx APFP was re-implemented (generation two), with the
following improvements and features:
 2/27/09 Pg-1211

Test Pattern Programming Adding a New Pattern File to the Project
APFP was re-implemented (generation two), with the following improvements and features:

• Tighter integration with Visual Studio, including:
• The Visual Studio build facilities now process pattern files much the same as

.cpp files. For example, Build->Rebuild->All recompiles all test patterns
too, Build->Build performs an incremental build, etc.

• The first-generation APFP tool-bar is replaced by a single button which,
once docked to the Visual Studio tool-bar, remains docked. Clicking this button
displays the APFP Dialog, which provides controls for various options and
utilities.

• The APFP Dialog contains a new utility (button) which removes test pattern .cpp
and .h files from the project. These are the files which are automatically added to
the Visual Studio project by the APFP facility.

• The APFP Dialog contains a new utility (button) which will delete from disk all of
the files and folders generated by the pattern compiler.

• Support for #include statements in test patterns. Important: see APFP Utilities,
specifically Clear all Custom Build Steps and Scan Patterns for Dependencies.

The new APFP Dialog does not contain several buttons/features seen in the earlier,
first-generation, APFP’s four-button tool-bar:

• Compile All Patterns is now handled by Visual Studio’s build facilities; i.e.
Build->Build (F7).

• Recompile All Patterns is now handled by Visual Studio’s build facilities,
performing an incremental compile invoked using Build->Rebuild->All.

• Clean All Patterns is replaced by the Clean Pattern Binaries utility.

Note: APFP expects that the file name of test program executable file
(i.e. .../Debug/myProg.exe) matches the file name of the Visual Studio project
file (i.e. .../myProg.dsp). If these file names do not match, APFP execution will
enter an end-less loop, continuously compiling test patterns in stub mode.
 2/27/09 Pg-1212

Test Pattern Programming Adding a New Pattern File to the Project
Note: the Visual Studio’s build facility does not detect when folders created by the
pattern compiler are deleted from disk (which some users do routinely when
archiving a test program). When a given test pattern file (*.pat) contains logic/
scan patterns the folder created by the pattern compiler contains files which
must be present in order for the patterns to be usable in the hardware. When
these folders are deleted but the corresponding *.cpp file still exists the project
build will succeed, with no errors, but the pattern won’t load because the
required folder contents are gone. To recover, use APFP’s Clean Pattern
Binaries button before compiling.

Note: Developer Studio service-pack 6 must be installed beginning with software
release h2.2.xx/h1.2.xx to address limitations when compiling Logic Test
Patterns.

4.3.1.2 APFP Dialog
See Adding a New Pattern File to the Project, Automated Pattern File Processing (APFP).

The APFP dialog is invoked using the button, added to Visual Studio when UseRel is
executed. See APFP Button Missing if this button is not automatically displayed.

The APFP Dialog provides access to various controls and utilities which affect the operation
of test pattern compilation. The dialog display changes slightly, depending on which
software release is being used, to indicate the target hardware platform (Maverick-I/-II vs.
Magnum 1, 2, 2x, etc.). This also reflects the contents of the generated test pattern .cpp
files, which are different for each hardware platform.
 2/27/09 Pg-1213

Test Pattern Programming Adding a New Pattern File to the Project
The following image shows the APFP dialog displayed when using a Magnum 1 software
release.

Figure-64: APFP Dialog for Magnum 1
The APFP dialog includes the following controls, in three groups:

• Patcom Options. Affects test pattern compile options. Changes may invoke one or
more APFP Utilities.

• APFP Utilities.
• Misc Controls (controls not part of the two previous groups).

Patcom Options
:Magnum Test System: indicates that the .cpp files

generated by Patcom are for Magnum 1 test systems (only). If the selections are
changed and the dialog terminated using the OK button, the Clean Project File
operation is automatically performed, which causes Visual Studio to present the
following dialog and reload the project from disk:

Click Yes, to complete the process.

Compile Patterns For
 2/27/09 Pg-1214

Test Pattern Programming Adding a New Pattern File to the Project
• : causes the C preprocessor to be used to evaluate
#define (etc.) statements in test pattern files. If this option is not enabled, the
preprocessor facility built into the pattern compiler is used, which is limited in the
types of statements which can be used. Note that enabling this feature may cause
fatal compiler problems when compiling large Logic Test Patterns (contact Nextest
Applications).

• : only applies when a Magnum 1/2/2x Logic Test
Pattern contains both Pattern Labels and branch instructions. This enables
additional rule checks (rarely needed) related to the use of Pattern Labels relative
to logic pattern instructions. See LVM Branch/Label Limitations.

• : select this when the test
program does not contain any Logic, Mixed, or MixedSync test patterns. This
allows the pattern compile process to skip several steps, reducing the time
necessary to compile the test program and patterns. See Patcom Options. Note
that if this option is enabled and the program does contain a logic pattern which
contains a VECDEF directive the pattern compiler will generate an error similar to
the following:

pat.pat(2): error: VECDEF but no pin assignments (-p option
missing?)

• Additional Pattern Compiler Command-line Options: for advanced
applications where pattern compile options are managed explicitly. This is rarely
used.

APFP Utilities
These APFP dialog buttons invoke specialized utility functions:

• . MUST BE manually invoked, by the user, any
time any test pattern in the project has had an external dependency file
(#include statement) added to, modified, or deleted from the pattern. This is the
only method which clears the prior record of these dependencies. In most
situations, the Scan Patterns for Dependencies must be invoked next, to
reestablish any remaining external dependencies. This utility is automatically
invoked if any options in the Patcom Options are changed and OK is selected.

• . Causes all test patterns (.pat files) in the
project to be scanned to identify external dependencies; i.e. #include
statements. Then, a custom build step will be added to any .pat file which contains
a #include statement. Note that this action must be manually performed, by the
user, any time a #include statement is added to, modified, or deleted from a test
pattern file in the project. The user should consider invoking this utility after using

Use C Preprocessor

Check for LVM Branch/Label

This Program Contains Only Memory Patterns

Clear all Custom Build Steps

Scan Patterns for Dependencies
 2/27/09 Pg-1215

Test Pattern Programming Adding a New Pattern File to the Project
the Clear all Custom Build Steps utility (which is used to delete custom build steps
added previously). This utility is automatically invoked if the target tester type (for
example, Maverick1 vs. Magnum2) is changed in the Patcom Options section of
the dialog are changed and OK is selected.

• . Deletes the test pattern .cpp and .h files from the test
program project. Does not remove test pattern .pat files or delete any files from
disk. Only the files for the currently selected test system type are affected. This
utility is automatically invoked if any options in the Patcom Options section of
the dialog are changed and OK is selected.

• . Deletes from the disk, the files and folders
generated by the pattern compiler. Only the files generated for the selected test
system type are affected.

Misc Controls
These APFP controls are not part of the two previous groups:

• Automatically Clear Custom Build Steps if Patcom Options Change:
default = enabled. Note: only advanced users should disable this. When enabled
(highly recommended) causes APFP to update the custom build steps for ALL test
patterns when any changes are made to selections in the Patcom Options area
of the dialog. If disabled, and a Patcom option is changed, the change will not be
reflected in any existing custom build steps and a warning will be displayed when
the dialog is closed (OK button). Any new patterns added to the project after the
Patcom Options are changed will get the new build settings.

• : when checked, disables the
APFP facility but does not clear any existing custom build steps previously added.
This is for users who compile test patterns using user defined methods. Even
though this option is checked, if invoked, the Clear all Custom Build Steps utility
will perform the actions described. Note that the other APFP Utilities continue to
operate as documented. To completely disable APFP and it's effects do the
following:
• Click the Disable Automated Pattern File Processor and ensure the

option is checked.
• Click Clear all Custom Build Steps.
• Click Clean Project File. Note this may prevent pattern compiling until the user

defines their own custom built steps for .pat files and adds the necessary pattern
.cpp files to the project.

Clean Project File

Clean Pattern Binaries

Disable Automated Pattern File Processor
 2/27/09 Pg-1216

Test Pattern Programming Adding a New Pattern File to the Project
The minimal application of APFP would Scan Patterns for Dependencies then
disable APFP (Disable Automated Pattern File Processor). Scanning will insert the
appropriate custom build steps and add the pattern .cpp files to the project. Then,
with APFP disabled, if any pattern stub files are created the 2nd pass build must
be invoked/controlled using methods developed by the user because APFP
normally does this.

APFP Button Missing
See Automated Pattern File Processing (APFP).

The following procedure describes how to display the button which invokes the APFP
Dialog. This will be necessary when the button is terminated by clicking the X in the upper-
right corner of the button, which is only possible when the APFP dialog button is not docked
to a Visual Studio tool-bar:

1. In Visual Studio select Tools->Customize...., to display the following dialog:

2. In the Customize dialog, de-select the Automated Pattern File Processor option
and click Close.

3. Open this same dialog again, select the Automated Pattern File Processor
option again and click Close again.

De-select
 2/27/09 Pg-1217

Test Pattern Programming Adding a New Pattern File to the Project
4.3.1.3 Build (Compile) Operation
See Adding a New Pattern File to the Project, Automated Pattern File Processing (APFP).

The information below reflects the re-implementation of the Automated Pattern File
Processing (APFP) which first shipped in software release h2.2.xx/h1.2.xx.

As compared to the first-generation APFP (see Note:), the test pattern/program build
(compile) sequence has changed, generating a different series of compile-time messages
and changing how errors and warnings are handled. A one-pass or two-pass build sequence
may be used, depending on two options; there are four build scenarios based on whether
the This Program Contains Only Memory Patterns option is enabled in the APFP
Dialog and whether an incremental build is invoked (i.e. whether Build->Build (F7)) or
Build->Rebuild All is invoked:

• Memory Patterns Only: Build->Rebuild All
• Memory Patterns Only: Build->Build (F7)
• Program Contains a Logic Pattern: Build->Rebuild All
• Program Contains a Logic Pattern: Build->Build (F7)

Table 4.3.1.3-1 Memory Patterns Only: Build->Rebuild All

Pass Step
Performed

By Description

n/a 1 Visual
Studio

Rebuild->Rebuild All invokes Build->Clean which
deletes C-compiler-generated files (.exe, .obj, etc.) and
the test pattern .cpp files generated by a previous pattern
compile, if any.
 2/27/09 Pg-1218

Test Pattern Programming Adding a New Pattern File to the Project
1

2

APFP

If no .pat files in project, skip to step 7.

3 The APFP.ini file is read or created. The APFP Dialog
may be displayed, prompting for options.

4 Test pattern .cpp files are added to the project.

5 Custom Build Steps for each .pat file are added to the
project.

6
Visual
Studio

Patcom fully compiles all test pattern (.pat) files to
generate the corresponding .cpp file.

7 All .cpp files are compiled.

8 Link and generate test program .exe.

 No pass-2 is required.

Table 4.3.1.3-2 Memory Patterns Only: Build->Build (F7)

Pass Step
Performed

By Description

1

1
APFP

If no .pat files in project, skip to step 4.

2 Custom Build Steps for any newly added .pat file are
added to the project.

3

Visual
Studio

Patcom compiles any pattern .pat files which have
changed since the last build and generates the
corresponding .cpp file.

4 Any .cpp files which have changed since last build are
compiled.

5 Link and generate test program .exe.

Note that this operation presumes that only incremental changes were made to a test
program previously compiled with APFP (custom build steps were previously added,
etc.). No pass-2 is required.

Table 4.3.1.3-1 Memory Patterns Only: Build->Rebuild All (Continued)

Pass Step
Performed

By Description
 2/27/09 Pg-1219

Test Pattern Programming Adding a New Pattern File to the Project
Table 4.3.1.3-3 Program Contains a Logic Pattern: Build->Rebuild All

Pass Step
Performed

By Description

n/a 1 Visual
Studio

Rebuild->Rebuild All invokes Build->Clean which
deletes C-compiler-generated files (.exe, .obj, etc.) and
the test pattern .cpp files generated by a previous pattern
compile, if any.

1

2

APFP

The APFP.ini file is read or created. The APFP Dialog
may be displayed, prompting for options.

3 Test pattern .cpp files are added to the project.

4 Custom Build Steps for each .pat file are added to the
project.

5
Visual
Studio

Since the testprog.exe file was deleted, Patcom compiles
all patterns in stub mode, which generates stub .cpp files
set to an older date than the .pat files (see below).

6 All .cpp files are compiled, including stub .cpp files.

7 Link and generate test program .exe.

8

APFP

IF pass-1 generated any ERRORs, stop.

2

9 Since all pattern .cpp files are now older than their .pat
files a pass-2 build is required.

10 IF pass-1 generated any WARNINGs, display APFP
Warning Dialog and Stop if user’s response = Stop.

11

Visual
Studio

Patcom fully compiles all pattern .pat files, generates new
.cpp files.

12 Visual Studio builds all pattern .cpp files (other .cpp files
were built in pass-1).

13 Link and generate test program .exe.
 2/27/09 Pg-1220

Test Pattern Programming Adding a New Pattern File to the Project
When the test program contains logic patterns it is necessary to obtain information from the
Pin Assignment Table, to allow the pattern compiler to resolve VECDEF Compiler Directive
declarations. This information becomes available after the pass-1 build completes with no
errors. Fatal errors must be corrected before the build process can proceed, however,
warnings are not fatal and may be ignored (not recommended). Since warnings generated

Table 4.3.1.3-4 Program Contains a Logic Pattern: Build->Build (F7)

Pass Step
Performed

By Description

1

1 APFP Custom Build Steps for any newly added .pat file are
added to the project.

2

Visual
Studio

Patcom compiles any pattern .pat files which have
changed since last build and generates the corresponding
.cpp file.

3 All .cpp files which have changed since last build are
compiled.

4 Link and generate test program .exe file.

5

APFP

IF pass-1 generated any ERRORs, stop.

2

6 If the Pin Assignment Table has not changed since the
last build a pass-2 build is not needed, stop (done).

7 Otherwise, IF pass-1 generated any WARNINGs, display
APFP Warning Dialog and Stop if user’s response = stop.

8

Visual
Studio

Because the Pin Assignment Table changed, Patcom fully
compiles all pattern .pat files, generates .cpp files.

9 Visual Studio compiles all pattern .cpp files (other .cpp
files were built in pass-1 if necessary).

10 Link and generate test program .exe file.

Note that operation presumes that only incremental changes were made to a test
program previously compiled with APFP (custom build steps were previously added,
etc.).
 2/27/09 Pg-1221

Test Pattern Programming Adding a New Pattern File to the Project
during pass-1 are cleared once pass-2 begins the following dialog is displayed, allowing the
user to decide whether to terminate the build, to address the warnings, or to continue:

Figure-65: APFP Warning Dialog
Note that if Continue is selected the pass-1 warnings will not be seen again until a full build
is performed, using Build->Rebuild All.

Note: APFP expects that the file name of test program executable file (i.e. .../Debug/
myProg.exe) matches the file name of the Visual Studio project file (i.e. .../
myProg.dsp). If these file names do not match, APFP execution will enter an end-
less loop, continuously compiling test patterns in stub mode.

Note: the Visual Studio’s build facility does not detect when folders created by the
pattern compiler are deleted from disk (which some users do routinely when
archiving a test program). When a given test pattern file (*.pat) contains logic/
scan patterns the folder created by the pattern compiler contains files which must
be present in order for the patterns to be usable in the hardware. When these
folders are deleted but the corresponding *.cpp file still exists the project build will
succeed, with no errors, but the pattern won’t load because the required folder
contents are gone. To recover, use APFP’s Clean Pattern Binaries button before
compiling.

4.3.1.4 APFP Migrating from Older Versions
See Adding a New Pattern File to the Project, Automated Pattern File Processing (APFP).
 2/27/09 Pg-1222

Test Pattern Programming Adding a New Pattern File to the Project
This section covers the following topics:

• Migrating Programs to h2.3.xx/h1.3.xx
• Switching Back to Software Prior to h2.3.xx/h1.3.xx

Migrating Programs to h2.3.xx/h1.3.xx
The following procedure assumes that the user is migrating a test program from a Nextest
software release prior to h2.3.xx/h1.3.xx which used the first-generation APFP
implementation AND that APFP was actually used to control test pattern compilation (the
normal case). For those [rare] situations in which the user manually controlled pattern
compiling, using manually edited Custom Build Settings, that process does not change.

The second-generation APFP implementation consists of three components:

• A new APFP.dll, which replaces the previous version (this file is part of the
software release).

• Custom build settings for each test pattern source file (.pat file). These are
automatically added to each test pattern .pat file by the APFP facility when the
Scan Patterns for Dependencies button is clicked.

• The APFP Dialog and button, which replaces the first-generation
four-button tool-bar.

The following steps document how to migrate to use the second-generation APFP:

1. Close Visual Studio.

2. Install Nextest software revision h2.3.xx/h1.3.xx or later.

3. Execute UseRel from this software release.

4. Start Visual Studio and confirm the new APFP button is displayed, if not refer to APFP
Button Missing. The button will initially be un-docked but can be dragged to dock to a
Visual Studio tool-bar. Note that unlike the previous four-button tool-bar this button will
remain docked (until UseRel is executed again to change to a different software release).
The images below show how the button appears in both situations:

5. For each test program being migrated to h2.3.xx/h1.3.xx or later open the project in
Visual Studio.

Un-docked

Docked

Note: if the un-docked button is terminated, by
clicking the X in the upper-right corner, it can be
re-displayed using the procedure documented in
APFP Button Missing.
 2/27/09 Pg-1223

Test Pattern Programming Adding a New Pattern File to the Project
• If the project contains the Pattern Processor sub-project deleted this sub-project.
Also delete the Pattern Processor folder from the disk (if it exists).

• Display the APFP Dialog and ensure the desired options are selected, in particular
make sure the target tester type is correct; i.e. Compile Patterns For Maverick vs.
Magnum 1.

• If any test patterns include #include statements, in the APFP Dialog click on the
Clear all Custom Build Steps utility button. It is safe to always do this provided
Scan Patterns for Dependencies is invoked as directed below.

• In the APFP Dialog click on the Clean Project File utility button.
• In the APFP Dialog click on the Scan Patterns for Dependencies utility button. This

adds the required custom build steps to each .pat file in the project.
• Build the project using Build->Rebuild All.

Switching Back to Software Prior to h2.3.xx/h1.3.xx
Once Nextest software release h2.3.xx/h1.3.xx or later has been used, any test patterns
compiled in that release will have custom build steps added by APFP. These are not
compatible with older software releases and must be removed from every test pattern in
every program to be migrated backwards. This can be done manually (not documented), but
the controls in the APFP Dialog available in the software release h2.3.xx/h1.3.xx or later
reduces both the complexity and potential for errors. Use the following procedure. Note that
this procedure assumes that the target earlier release contains the first-generation APFP
which contains the four-button tool-bar:

1. Before switching to the older software release (before executing UseRel of the older
release) identify those test programs which are to be migrated backwards. Then for each
of these programs:

• Open the project in Visual Studio.
• In the APFP Dialog click the Clear all Custom Build Steps utility button.
• In the APFP Dialog click the Clean Project File utility button.
• In the APFP Dialog click the Clean Pattern Binaries utility button.
• Terminate the APFP Dialog using the OK button.
• In Visual Studio invoke File->Save All.
• In Visual Studio invoke File->Save Workspace.
• Close the project workspace: File->Close Workspace.
 2/27/09 Pg-1224

Test Pattern Programming Use of #include pattern.h file(s)
2. The target older software release DOES require access to files in the h2.3.xx/h1.3.xx or
later software release. Do NOT delete this newer release until the switch to the older
release has been completed and confirmed as noted below.

3. Close Visual Studio.

4. Execute UseRel from the older Nextest software (prior to h2.3.xx/h1.3.xx).

5. Start Visual Studio and confirm that the first-generation APFP four-button tool-bar

appears: . This confirms that the switch to the APFP methods used in the

older release was successful.

6. For each of the programs being migrated backwards:

• Open the project in Visual Studio.
• In the four-button APFP tool-bar, click the left-most button to display the APFP

Options dialog. Confirm that the desired target system type (Maverick vs.
Magnum) is selected. Click OK.

• Build the project.

4.4 Use of #include pattern.h file(s)
See Test Pattern Programming.

The general requirement is that an external declaration of each referenced test pattern must
exist in any C-code files which reference the test pattern. For example:

extern Pattern *patname;
funtest(patname, finish);

Two common methods are used:

• A #include statement of a .h file which contains one or more extern Pattern*
declarations. For example, the test program created by the test program wizard
contains the patterns.h file, which is #include into the tester.h file, which is itself
included in all other test program files. This works correctly in most applications.

• It is also possible to be more selective, to #include the pattern.h file(s) only in
the source file(s) which reference the external test pattern. This can cause a small
improvement in compile time.
 2/27/09 Pg-1225

Test Pattern Programming Pattern Files and Folders/Directories
4.5 Pattern Files and Folders/Directories
See Test Pattern Programming.

4.5.1 Pattern Sub-directory Contents
See Pattern Files and Folders/Directories.

Given a pattern file named Example.pat compiling will create a folder named
Example_MAG/. Then, depending on the type of vectors found in Example.pat this folder
may contain:

Table 4.5.0.0-1 Pattern Files and Directories

Name Comments

xxx.pat Test pattern source file, where xxx is user-defined. File name
must use the extension .pat, and must reside in the same
folder (directory) as the other test program source files (.cpp
files). The file can contain one or more test patterns.

xxx_MAG.cpp Pattern C source file, created by the Patcom compiler. Do NOT
edit. Edits are not useful and will be lost when the pattern is
next compiled.

xxx_MAG/* Folder containing various pattern compiler output files.
Depending on the features used in the pattern being compiled,
this folder will have different contents. See Pattern Sub-
directory Contents. Do NOT edit. Edits are not useful and will
be lost when the pattern is next compiled.
May be deleted - recompiling the test pattern will recreate the
folder and contents.

xxx_MAG.h Pattern external declarations. Created when the pattern is
compiled. Do NOT edit. Edits are not useful and will be lost
when the pattern is next compiled.

test_program.exe Memory Test Patterns are combined with executable C Code
when creating the test program executable.
 2/27/09 Pg-1226

Test Pattern Programming Compiling Test Patterns
• *.svc containing any scan pattern load information.
• *.lvc files, one for each pin assignment table in the test program, containing logic

vector pattern load information
• Files containing file information used in the build process.

4.6 Compiling Test Patterns
See Test Pattern Programming.

Assuming that the test pattern build settings are properly set up (see Adding a New Pattern
File to the Project), pattern compiling will occur automatically, as part of compiling the test
program.

The pattern compiler is named Patcom, which is not normally important to the user - Patcom
is automatically controlled by the test program compile process. The information below is to
help understand the compile process.

When the test pattern does not use VECDEF or SCANDEF directives pattern compiling is a
two step process:

• Patcom reads and processes each .pat file and creates a corresponding .cpp for
each .pat file processed.

• The C compiler compiles the .cpp file, along with the other program .cpp files, to
create the binary pattern file loaded into the test hardware.

A sub-folder (see Pattern Sub-directory Contents) and an external declarations file (xxx.h)
are also created. Do NOT edit these created files; edits are not useful and will be lost when
the pattern is next compiled.

When the test pattern does use VECDEF or SCANDEF directives pattern compiling is more
complex, but still occurs as part of compiling the rest of the test program files:

• Any .cpp file which contains any of the following macros is compiled using the C
compiler: PIN_ASSIGNMENTS(), PIN_SCRAMBLE(), DUT_PIN. This is done
before any pattern files are processed.
 2/27/09 Pg-1227

Test Pattern Programming Pattern Loading
Note: PIN_ASSIGNMENTS() and PIN_SCRAMBLE() definitions (code) should be
located in source files which contain little other code. The files created by the
test program Wizard do this; the user should follow this model when test
patterns contain VECDEF or SCANDEF compiler directives.

• Patcom then reads and processes each .pat file and creates a corresponding
.cpp file for each .pat file processed. If a given .pat file uses VECDEF or
SCANDEF the pin assignments and pin scramble .cpp file(s) compiled in the
previous step are executed to obtain information required to resolve the VECDEF
and/or SCANDEF directives.

• The C compiler compiles the .cpp file to create the binary pattern file loaded into
the test hardware.

4.7 Pattern Loading
See Test Pattern Programming.

By default, compiled test pattern files are loaded automatically as the test program loads. All
test patterns compiled into the program will be loaded. See Program Loading and Execution
Order.

Optionally, if Pattern Sets are used, the currently defined pattern set controls which memory
patterns are loaded. And, defining a new pattern set causes new memory patterns to load,
over-writing any previously loaded patterns. See Pattern Sets.

As test pattern files are loaded they automatically go through a relocation process. Neither
the test program nor the test patterns explicitly specify pattern load addresses. All
programmatic references to a test pattern are made via the name specified in the PATTERN
statement or to specific instructions identified using a Pattern Label or Pattern Label + offset.

As each test pattern is loaded, any Pattern Initial Conditions instructions are saved in
computer memory, and linked to the test pattern using a software pointer. Then, when the
pattern is executed (funtest(), ac_partest(), ac_test_supply(), etc.) the system
software executes the initial conditions code before starting the pattern generator. Note that
the initial conditions are only executed for the main pattern; i.e initial conditions defined in
Pattern Subroutiness are not executed.
 2/27/09 Pg-1228

Test Pattern Programming Pattern Loading
4.7.1 Pattern Load PATH
See Pattern Loading.

Test patterns are loaded automatically along with the test program.

Memory Test Patterns are compiled into the test program executable file and always load
automatically. Logic Test Patterns and Scan Test Patterns are treated differently. Since Logic
Test Patterns and Scan Test Patterns are treated the same the remainder of this section will
refer to logic patterns only.

For each logic pattern file the pattern compiler generates a sub-directory (folder), containing
several files. The directory is named after the pattern source file. For example, given the
source file:

D:\myPath\myProg\myPat1.pat

the pattern compiler will create a directory named:

D:\myPath\myProg\myPat1_MAG\

and store the compiler generated files in that directory. Note that the compiler always puts
these sub-directories in the same location as the pattern source file. The information below
anticipates that the user may subsequently move these directories to a different location.

The pattern loader looks for each compiled Logic Test Pattern in the directory of the same
name as the pattern source file, in the locations noted below, in the order listed. The last
option is the default location:

1. The current directory; i.e. the location of the test program .exe file. Using the example
above:

D:\myPath\myProg\Debug\myPat1_MAG\

2. In each location defined by the PATTERN_PATH environment variable. The syntax and
format of PATTERN_PATH is the same format as the Window’s PATH environment
variable. PATTERN_PATH can be set in a variety of ways, see Environmental Variables.
For example, if the PATTERN_PATH contains the following:

D:\somePath

The logic pattern could be located at:

D:\somePath\myPat1_MAG\

3. In a sub-directory named after the program executable and located at the same place as
the program executable. For example, if the program executable is located at:
 2/27/09 Pg-1229

Test Pattern Programming Pattern Loading
...anywhere\myProg.exe

The patterns for the program can be located at:

...anywhere\myProg\myPat1_MAG\

This allows multiple test programs to reside in one location, with each program having a
separate sub-directory for its patterns, with that the sub-directory named after the
program executable.

4. In the default pattern directory. Using the example above:

D:\myPath\myProg\Debug\..\myPat1_MAG\

This is the normal Developer Studio default case.

4.7.2 Pattern Sets
See Pattern Loading.

Pattern sets were created to provide programmatic control over which Memory Test Patterns
are loaded into APG uRAM. This control is provided to allow a given test program to contain
more patterns than will fit into 64K uRAM at one time. Using pattern sets, the test program
can define and compile more test patterns than will physically fit into APG uRAM and select
which ones are loaded during program execution.

Note the following:

• All Memory Test Patterns, Logic Test Patterns, Scan Test Patterns and Mixed
Memory/Logic Patterns to be executed in a given test program are compiled along
with the test program. This is done automatically presuming that the methods
documented in Adding a New Pattern File to the Project are followed. This is a
requirement regardless whether or not a given test pattern is subsequently loaded
into the hardware.

• When a test program is loaded into the system hardware, by default, all of its test
patterns are also loaded. The pattern sets methods documented below may be
used to explicitly select which Memory Test Patterns are loaded into the APG’s
uRAM.

• All Logic Test Patterns in the program are always loaded into Logic Vector Memory
(LVM). However, if pattern sets are used any logic patterns to be executed must
be included in the pattern set definition too.
 2/27/09 Pg-1230

Test Pattern Programming Pattern Loading
Note: when a pattern set includes a logic test pattern from a given .pat file then all
patterns in that .pat file must be included in the pattern set. This is required
even when some patterns in the file are not subsequently used or executed.
Proper pattern operation may not occur if this rule is violated.

• When pattern sets are used, any test patterns which are not included in a given
pattern set cannot be executed. Any attempt to execute a pattern which is not
currently loaded will generate a warning message and the pattern execution will
FAIL.

• User-code can determine if a specified pattern is currently loaded using:
BOOL loaded = addrs(myPat, 0); // See addrs()

The following rules apply:

• Only one pattern set can be loaded at a time, using the load() function.
• Executing the load() function first clears all previously loaded memory patterns

(except the builtin_xxx patterns) from the APG’s uRAM. It then loads the
uRAM with the patterns in the specified pattern set.

• Executing load() also clears the list of loaded logic patterns (but they remain
loaded). Thus, any logic patterns to be executed must be included in the pattern
set definition.

• Using the Resource Find Functions and specifying S_Pattern will only display
patterns that are currently loaded.

• If user code executes resource_deallocate() with S_Pattern all patterns
known to the test program become visible and a new pattern set must be loaded
before executing any functional tests.

• Given the name of a pattern set, the PatternSet_find() function can be used
to get a pointer to that pattern set.

Note: as noted above, any attempt to use a pattern not currently loaded will generate
a runtime warning and the pattern execution will FAIL.

Usage

PATTERN_SET(ps_name)

ADD_PATTERN(pattern_name)

INCLUDE_PATTERN_SET(ps_name)
 2/27/09 Pg-1231

Test Pattern Programming Pattern Loading
EXTERN_PATTERN_SET(ps_name)

BOOL load(PatternSet *obj);

void add(PatternSet *obj, Pattern *pattern);

where:

PATTERN_SET is a Test System Macro used to create a new pattern set. It can only be
called globally; i.e. not part of a function or other macro body-code. This creates an
S_PatternSet resource.

ps_name is the name of the pattern set being created. This becomes a PatternSet*,
suitable for use as the obj argument to load() and add().

ADD_PATTERN is a Test System Macro used to add a pattern to a pattern set. It can only be
called from within the PATTERN_SET macro body code.

pattern_name is the name used in the test pattern’s PATTERN statement.

INCLUDE_PATTERN_SET is a Test System Macro which allows a previously defined pattern
set to be used as a component of a new pattern set. It can only be called from within the
PATTERN_SET macro body code.

EXTERN_PATTERN_SET is a Test System Macro used to make an external pattern set
declaration. It can only be called globally; i.e. not part of a function or other macro.

obj is a pointer to a pattern set. As used by load(), it specifies the pattern set to load. As
used by add() it specifies the pattern set which is being modified.

pattern is a pointer to the pattern being added to obj.

Example
This example is somewhat large, and includes code examples from several source files. It
demonstrates how pattern sets are created, loaded, and used. Intentional errors are also
demonstrated. The information below includes (in order):

• Pattern Sets Code: use the various methods to create pattern sets plus two print
routines. Note: one of the print routines changes the currently loaded pattern set!

• Sequence and Binning Table Code: controls how example test blocks execute and
thus the order of Runtime Output Messages.

• Test Block Code: load pattern sets and execute tests, some of which intentionally
generate warning messages. Also calls the print routines created in Pattern Sets
Code.

• The Runtime Output Messages seen in UI’s SITE output window.
 2/27/09 Pg-1232

Test Pattern Programming Pattern Loading
Additional key information is noted for each of these topics below.

Pattern Sets Code
Note the following:

• The various pattern set related macros are used to create several pattern sets.
• One pattern set, PSet3, contains no patterns. This has the effect of unloading any

currently loaded memory patterns.
• One pattern set, PSetAdd, is dynamically created using the add() function.
• At the end, two print functions are included which are called from the example Test

Block Code. Note that PatternSetAll_print() sequentially loads every pattern
set, and leaves the last one loaded.

#include "tester.h"

PATTERN_SET(PSet1) {
output ("Creating pattern set => PSet1");
ADD_PATTERN(P1_1)
ADD_PATTERN(P1_2)
ADD_PATTERN(P1_3)

}

PATTERN_SET(PSet2) {
output ("Creating pattern set => PSet2");
ADD_PATTERN(P2_1)
ADD_PATTERN(P2_2)
ADD_PATTERN(P2_3)

}

PATTERN_SET(PSet3) {
output ("Creating pattern set => PSet3 = no patterns");

}

PATTERN_SET(PSetAll) {
output ("Creating pattern set => PSetAll");
INCLUDE_PATTERN_SET(PSet1)
INCLUDE_PATTERN_SET(PSet2)
INCLUDE_PATTERN_SET(PSet3)
ADD_PATTERN(P4_1)
ADD_PATTERN(P4_2)
ADD_PATTERN(P4_3)

}

 2/27/09 Pg-1233

Test Pattern Programming Pattern Loading
PATTERN_SET(PSetAdd) {
output ("Creating pattern set => PSetAdd");
// Make all patterns visible. Also clears user patterns from uRAM
resource_deallocate (S_Pattern) ;

// Define the pattern set. Only include all patterns that contain
// '2' in the name
CStringArray names;
int count = resource_all_names (S_Pattern, &names);
for(int i = 0; i < count; ++i){

output(" Adding pattern => %s", names[i]);
if (names[i].Find ('2') >= 0)

add (PSetAdd, Pattern_find (names[i]));
}

}

//===

// The following user-code will print only the Patterns in the
// currently loaded pattern set
void PatternLoad_print(void) {

CStringArray pat_names;
int count = resource_all_names(S_Pattern, &pat_names);
output("\nPatternLoad_print");
output("Name MAR Length");
output("----- --- ------");
for (int i = 0; i < count; ++i) {

DWORD mar, var, mlen;
addrs(Pattern_find(pat_names[i]), &mar, &var, &mlen);
output(" %s: %d %d", pat_names[i], mar, mlen);

}
}

// The following code prints all of the patterns in all
// PATTERN_SETs. Note:during this process, each pattern set is
// sequentially loaded, and the last one loaded remains loaded !!!
void PatternSetAll_print(void){

CStringArray set_names;
int count = resource_all_names(S_PatternSet, &set_names);
output("\nPatternSetAll_print");
output("Name MAR Length");
output("----- --- ------");
for (int i = 0; i < count; ++i) {
 2/27/09 Pg-1234

Test Pattern Programming Pattern Loading
output ("Loading Pattern Set => %s", set_names[i]);
load(PatternSet_find(set_names[i]));
CStringArray pat_names;
int count1 = resource_all_names(S_Pattern, &pat_names);
for (int j = 0; j < count1; ++j) {

DWORD mar, var, mlen;
addrs(Pattern_find(pat_names[j]), &mar, &var, &mlen);
output(" %s: %d %d", pat_names[j], mar, mlen);

}
}

}

Sequence and Binning Table Code
This code controls the order the test blocks execute, and thus the order of Runtime Output
Messages below.

#include "tester.h"
SEQUENCE_TABLE(SeqTab1) {

SEQUENCE_TABLE_INIT
TEST(TB0, NEXT, STOP)
TEST(TBPSet1, NEXT, STOP)
TEST(TBPSet2, NEXT, STOP)
TEST(TBPSet3, NEXT, STOP)
TEST(TBPSetAll, STOP, STOP)
TEST(TBPSetAdd, STOP, STOP)

}

Test Block Code
This code has several features warranting special notice:

• For convenience, the test block names are based on the pattern set names used
in each test block.

• The PATTERN_SET() macro is used to advise the compiler that the associated
pattern sets are external; i.e. in another source file. These statements could be
moved to the tester.h file and deleted here.

• Test block TB0 calls two user-written print routines included in the Pattern Sets
Code above (PatternLoad_print(), and PatternSetAll_print()). Note
that PatternSetAll_print() changes the currently loaded pattern set.
 2/27/09 Pg-1235

Test Pattern Programming Pattern Loading
• The load() function is used to load a specific pattern set in several test blocks.
Then PatternLoad_print() is called to print a list of the patterns in the pattern
set.

• In both test block TBPset1 and TBPset2 the funtest() function is called twice;
once with a pattern argument which is not currently loaded. This generates the
warning messages seen in the Runtime Output Messages.

#include "tester.h"
EXTERN_PATTERN_SET(PSet1)
EXTERN_PATTERN_SET(PSet2)
EXTERN_PATTERN_SET(PSet3)
EXTERN_PATTERN_SET(PSetAll)
EXTERN_PATTERN_SET(PSetAdd)

TEST_BLOCK(TB0) {
output("\n===");
output(" Executing Test Block => TB0");
PatternSetAll_print();
PatternLoad_print();
return PASS;

}

TEST_BLOCK(TBPSet1) {
output("\n===");
output(" Executing Test Block => TBPSet1 ");
load (PSet1);
PatternLoad_print();
// Next funtest() generates an error message
output(" Executing Pattern: P2_1 => \\");
if (funtest(P2_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
output(" Executing Pattern: P1_1 => \\");
if (funtest(P1_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
return PASS;

}

TEST_BLOCK(TBPSet2) {
output("\n===");
output(" Executing Test Block => TBPSet2 ");
load (PSet2);
 2/27/09 Pg-1236

Test Pattern Programming Pattern Loading
PatternLoad_print();
output(" Executing Pattern: P2_1 => \\");
if (funtest(P2_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
// Next funtest() generates an error message
output(" Executing Pattern: P1_1 => \\");
if (funtest(P1_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
return PASS;

}

TEST_BLOCK(TBPSet3) {
output("\n===");
output(" Executing Test Block => TBPSet3");
load (PSet3);
PatternLoad_print();
return PASS;

}

TEST_BLOCK(TBPSetAll) {
output("\n===");
output("Executing Test Block => TBPSetAll");
load (PSetAll);
PatternLoad_print();
output(" Executing Pattern: P2_1 => \\");
if (funtest(P2_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
output(" Executing Pattern: P1_1 => \\");
if (funtest(P1_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
return PASS;

}

TEST_BLOCK(TBPSetAdd) {
output("\n===");
output(" Executing Test Block => TBPSetAdd ");
load (PSetAdd);
PatternLoad_print();
output(" Executing Pattern: P2_1 => \\");
 2/27/09 Pg-1237

Test Pattern Programming Pattern Loading
if (funtest(P2_1, error) == FALSE)
 output (" FAILED");

else output (" Passed");
output(" Executing Pattern: P1_1 => \\");
if (funtest(P1_1, error) == FALSE)

 output (" FAILED");
else output (" Passed");
return PASS;

}

Runtime Output Messages
Note the following:

• The “Creating...” and “Adding pattern...” messages are generated from Pattern
Sets Code.

• Two warning messages are intentionally generated. See introduction to Test Block
Code.

• The other output messages are generated by calling the two print routines
(PatternLoad_print(), and PatternSetAll_print()) which are coded in
the Pattern Sets Code and called from Test Block Code.

• The output in test block TBPSet3 shows no patterns were loaded.
• The order of messages caused from test block execution is controlled by the

Sequence and Binning Table Code. The Sequence & Binning Tablee was executed
once.

Creating pattern set => PSet1
Creating pattern set => PSet2
Creating pattern set => PSet3
Creating pattern set => PSetAll
Creating pattern set => PSet1
Creating pattern set => PSet2
Creating pattern set => PSet3
Creating pattern set => PSetAdd
 Adding pattern => P2_1
 Adding pattern => P2_2
 Adding pattern => P2_3
 Adding pattern => P1_2
 Adding pattern => P4_2
 Adding pattern => P3_2
The test program is loaded
 2/27/09 Pg-1238

Test Pattern Programming Pattern Loading
TestStarted(1)...
==
Executing Test Block => TB0
PatternSetAll_print
Name MAR Length
----- --- ------
Loading Pattern Set => PSet1
 P1_1: 74 1
 P1_2: 75 1
 P1_3: 76 1
Loading Pattern Set => PSet2
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
Loading Pattern Set => PSet3
Loading Pattern Set => PSetAll
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
 P1_1: 77 1
 P1_2: 78 1
 P1_3: 79 1
 P4_1: 80 1
 P4_2: 81 1
 P4_3: 82 1
 P3_1: 83 1
 P3_2: 84 1
 P3_3: 85 1
Loading Pattern Set => PSetAdd
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
 P1_2: 77 1
 P4_2: 78 1
 P3_2: 79 1
PatternLoad_print
Name MAR Length
----- --- ------
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
 2/27/09 Pg-1239

Test Pattern Programming Pattern Loading
 P1_2: 77 1
 P4_2: 78 1
 P3_2: 79 1
==
Executing Test Block => TBPSet1
PatternLoad_print
Name MAR Length
----- --- ------
 P1_1: 74 1
 P1_2: 75 1
 P1_3: 76 1
Executing Pattern: P2_1 => Warning: Pattern P2_1 has been ignored,
and therefore will not execute properly
Passed

Executing Pattern: P1_1 => Passed
==
Executing Test Block => TBPSet2
PatternLoad_print
Name MAR Length
----- --- ------
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
Executing Pattern: P2_1 => Passed
Executing Pattern: P1_1 => Warning: Pattern P1_1 has been ignored,
and therefore will not execute properly
Passed
==
Executing Test Block => TBPSet3
PatternLoad_print
Name MAR Length
----- --- ------
==
Executing Test Block => TBPSetAll
PatternLoad_print
Name MAR Length
----- --- ------
 P2_1: 74 1
 P2_2: 75 1
 P2_3: 76 1
 2/27/09 Pg-1240

Test Pattern Programming Pattern Overview and Naming
 P1_1: 77 1
 P1_2: 78 1
 P1_3: 79 1
 P4_1: 80 1
 P4_2: 81 1
 P4_3: 82 1
 P3_1: 83 1
 P3_2: 84 1
 P3_3: 85 1
Executing Pattern: P2_1 => Passed
Executing Pattern: P1_1 => Passed
TestDone...bin = builtin_Pass

4.8 Pattern Overview and Naming
See Test Pattern Programming.

Test patterns are stored in source files that are separate from the C-code portion of a test
program.

The information below applies to Memory Test Patterns, Logic Test Patterns and Mixed
Memory/Logic Patterns (Scan Test Patterns are documented separately).

Logic Test Patterns, Memory Test Patterns and Mixed Memory/Logic Patterns have the
following main components:

• A PATTERN() statement, which specifies the test pattern’s name and optional
Pattern Attributes. All references to a given test pattern use the name specified in
the PATTERN statement.

• Pattern Initial Conditions (optional).
• Memory pattern instruction(s) and/or logic pattern instructions (test vectors),

including Pattern Labels and Comments in Test Patterns.
The PATTERN statement identifies the beginning and name of a test pattern or Pattern
Subroutine. The pattern statement has the following form:

PATTERN(pattern_name, pattern_attributes)

where:
 2/27/09 Pg-1241

Test Pattern Programming Pattern Overview and Naming
pattern_name specifies the pattern name. This is the pattern name (Pattern*) passed to
funtest(), ac_partest() or ac_test_supply() and various other Nextest functions
which require that a specific pattern be identified.

pattern_attributes are optional, and specify various options. See Pattern Attributes.

If multiple patterns are included in one file, a new PATTERN() statement identifies the start
of each new pattern. The pattern compiler (Patcom) reads the PATTERN() statement and
treats everything between it and the next PATTERN() statement (or end of file) as one
pattern with the specified name.

The PATTERN() statement also can be used to define a Pattern Subroutine which appears
identical to a stand-alone test pattern.

Details of Pattern Attributes, Pattern Initial Conditions, Memory Test Patterns, and Logic
Test Patterns are described separately.

4.8.1 Pattern Attributes
See Pattern Overview and Naming.

Pattern attributes are the mechanism allowing the user to advise the pattern compiler about
various pattern options.

Note: the pattern compiler must generate different output for Maverick-I/-II vs.
Magnum 1 vs. Magnum 2 vs. Magnum 2x. This is controlled by using the APFP
Dialog available via Automated Pattern File Processing (APFP) i.e. not using
pattern attributes.

Pattern attributes are optional in all test patterns, but are required to enable various features,
some of which are not supported on all Nextest system types, as described below.

There are three pattern attribute types:

• Pattern System Attributes. When compiling patterns for Magnum 1, Magnum 2 or
Magnum 2xthe Pattern System Attributes are ignored; i.e. the VAR Engine is
always used to execute logic instructions and Double Data Rate (DDR) Mode is
solely controlled by the Pattern Rate Attributes.

• Pattern Rate Attributes specify whether the pattern is single data rate (SDR,
default) or Double Data Rate (DDR) Mode.
 2/27/09 Pg-1242

Test Pattern Programming Pattern Overview and Naming
• Pattern Type Attributes specify whether the pattern contains memory pattern
instructions only, logic pattern instructions only, or both. Using Magnum 1/2/2x, the
mixedsync attribute is used in Mixed Memory/Logic Patterns, to ensure lockstep
execution. Important rules apply, see Mixed Memory/Logic Patterns.

Pattern attributes may be set using three methods:

• No attributes are specified; i.e. default values are used.
• Setting Attributes Directly, as parameters in the PATTERN statement in the pattern

source file. See Pattern Overview and Naming.
• Setting Attribute Defaults, using command-line option flags when invoking the

pattern compiler (Patcom) from the command line or from a batch file.
When the methods are mixed, the PATTERN statement takes precedence.

The tables below summarize the combinations of Pattern System Attributes, Pattern Rate
Attributes and Pattern Type Attributes and how they are interpreted by the pattern compiler
(Patcom). Each attribute type is documented in detail in subsequent sections:

Note: the attributes of a given test pattern and all dependent Pattern Subroutines must
be identical. This cannot be enforced by the pattern compiler (Patcom).

Pattern Attributes Compile Execution Mode

System Type Rate Option Result
System
Type Mode

[none]
mav1
mav2

[none]
[none]
single

[none]
Maverick

OK

Mav1 Mixed,
non-DDRMav2

Magnum 1 Magnum 1

Memory
non-DDR

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x
 2/27/09 Pg-1243

Test Pattern Programming Pattern Overview and Naming
[none]
mav1
mav2

memory
[none]
single

[none]
Maverick

OK

Mav1

Memory,
non-DDR

Mav2

Magnum 1 Magnum 1

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

none
mav1

logic
[none]
single

[none]
Maverick

Error
Mav1

Compile
fails

Mav2
Compile
fails

Magnum 1

OK

Magnum 1

Logic,
non-DDR

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

mav2 logic
[none]
single

[none]
Maverick

OK

Mav1
Illegal
@ Mav-I

Mav2

Logic,
non-DDR

Magnum 1 Magnum 1

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

Pattern Attributes Compile Execution Mode

System Type Rate Option Result
System
Type Mode
 2/27/09 Pg-1244

Test Pattern Programming Pattern Overview and Naming
none
mav1

mixed
[none]
single

[none]
Maverick

Error
Mav1

Compile
fails

Mav2
Compile
fails

Magnum 1

OK

Magnum 1

Mixed,
non-DDR

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

mav2 mixed
[none]
single

[none]
Maverick

OK

Mav1
Illegal
@ Mav-I

Mav2

Mixed,
non-DDR

Magnum 1 Magnum 1

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

none
mav1

[none]
memory
logic
mixed

double

[none]
Maverick

Error
Mav1

Compile
fails

Mav2
Compile
fails

Magnum 1

OK

Magnum 1 DDR.
Memory,
Logic or
Mixed
(based
on Type)

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

Pattern Attributes Compile Execution Mode

System Type Rate Option Result
System
Type Mode
 2/27/09 Pg-1245

Test Pattern Programming Pattern Overview and Naming
4.8.1.1 Pattern System Attributes
See Pattern Overview and Naming, Pattern Attributes.

mav2

[none]
memory
logic
mixed

double

[none]
Maverick

OK

Mav1
Illegal
@ Mav-I

Mav2 DDR.
Memory,
Logic or
Mixed
(based
on
Type).

Magnum 1 Magnum 1

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

none
mav1
mav2

mixedsync
single
double

[none]
Maverick

Error
Mav1

Compile
fails

Mav2
Compile
fails

Magnum 1

OK

Magnum 1 See
Mixed
Memory/
Logic
Patterns
. DDR or
non-DDR
based on
Rate.

Magnum 2 Magnum 2

Magnum
2x

Magnum
2x

Pattern Attributes Compile Execution Mode

System Type Rate Option Result
System
Type Mode
 2/27/09 Pg-1246

Test Pattern Programming Pattern Overview and Naming
Pattern System attributes specify the system type on which a pattern is intended to be
executed. Legal values are:

Note: when compiling a test pattern for Magnum 1/2/2x (see APFP Dialog) the Pattern
System Attributes are ignored. The VAR Engine is always used when the pattern
contains logic instructions and Double Data Rate (DDR) Mode is solely
controlled by the Pattern Rate Attributes.

Note: the attributes of a given test pattern and all dependent Pattern Subroutines must
be identical. This cannot be enforced by the pattern compiler (Patcom).

4.8.1.2 Pattern Rate Attributes
The Pattern Rate attribute is required to advise the pattern compiler (Patcom) when a test
pattern is a Double Data Rate (DDR) Mode pattern . Note the following:

• The Double Data Rate (DDR) Mode rate attribute is used primarily in logic and
scan patterns, to advise Patcom that two sets of pattern data are supplied per
pattern instruction, one for the DDR A-cycle, one for the DDR B-cycle. Memory
patterns do not directly support DDR, however it is possible to use DDR with
memory patterns: see DDR Memory Patterns.

Table 4.8.1.1-1 Pattern System Attributes

Token

None Equivalent to mav1

mav1 Maverick-I

mav2 Maverick-II
 2/27/09 Pg-1247

Test Pattern Programming Pattern Overview and Naming
The following Rate attribute options are supported:

Note: the attributes of a given test pattern and all dependent Pattern Subroutines must
be identical. This cannot be enforced by the pattern compiler (Patcom).

Table 4.8.1.2-1 Pattern Rate Attributes

Attribut
e Description

[none] Same as single

single Patcom treats the pattern as a single data rate pattern (i.e. non-DDR).
Each input logic/scan vector contains one token per-DutPin specified in
the VECDEF/SCANDEF statement. In Multi-DUT Test Programs, for each
input token Patcom generates one output bit for each pin-pair represented
by each DutPin specified in the VECDEF statement. In non-Multi-DUT Test
Programs Patcom generates one output bit for each DutPin specified in
the VECDEF statement. For example:

%% VECDEF p1, pin_t, Cs, Clk, p5 ...
PATTERN (pat_name, single) // Same as no attribute
% VEC 00001 ... etc ...

double Patcom treats the pattern as a Double Data Rate (DDR) Mode pattern.
Each input logic/scan vector contains two tokens per-DutPin specified in
the VECDEF/SCANDEF statement. In Multi-DUT Test Programs, for each
token in the input pattern Patcom generates two output bits for each pin-
pair represented by each DutPin specified in the VECDEF/SCANDEF
statement (one bit for the DDR A-cycle and one for the B-cycle). In non-
Multi-DUT Test Programs Patcom generates two output bits for each
DutPin specified in the VECDEF/SCANDEF statement. See DDR Logic
Vectors and DDR Scan Vectors. For example:

%% VECDEF p1, pin_t, Cs, Clk, p5 ...
PATTERN (pat_name, double, logic)
% VEC 00001 ... etc ... \

00010 ... etc ...
 2/27/09 Pg-1248

Test Pattern Programming Pattern Overview and Naming
4.8.1.3 Pattern Type Attributes
See Pattern Overview and Naming, Pattern Attributes.

Pattern Type attributes are used by the pattern compiler to:

• Determine the memory pattern instructions which are legal for each system type.
• The types of pattern compiler error checks performed.

The following pattern Type attributes are supported:

When no Type attribute is specified Patcom considers the pattern to be a mixed pattern.

When the memory Type attribute is set, Patcom treats the pattern as a pure memory pattern;
i.e. it does not allow use of the logic pattern or scan pattern instructions. See Magnum 1/2/2x
Logic Vector Instructions.

When the logic Type attribute is set, Patcom treats the pattern as pure logic pattern. Error
messages are generated if any memory instructions are detected.

In Magnum 1/2/2x patterns, when the mixed Type attribute is set, Patcom allows the pattern
to use both memory and logic pattern instructions. The VAR Engine controls logic vector
execution and the MAR Engine controls memory instruction execution. In a mixed pattern
any required synchronization between memory pattern and logic pattern execution is entirely
the responsibility of the user’s test pattern (which can be very challenging and difficult to
validate or debug). See Mixed Memory/Logic Patterns.

In Magnum 1/2/2x patterns, when the mixedsync Type attribute is set, Patcom enforces
rules which ensure both the memory and logic portions of each pattern instruction execute
concurrently (in lockstep). This mode also allows the user to specify default memory and/or

Table 4.8.1.3-1 Pattern Type Attributes

Token

None Equivalent to memory

memory

More below.logic

mixed

mixedsync Magnum 1/2/2x only
 2/27/09 Pg-1249

Test Pattern Programming Pattern Overview and Naming
logic instructions, which are applied to any pattern instruction which doesn’t explicitly include
a memory and/or logic instruction. See Mixed Memory/Logic Patterns.

Note: the attributes of a given test pattern and all dependent Pattern Subroutines must
be identical. This cannot be enforced by the pattern compiler (Patcom).

4.8.1.4 Setting Attributes Directly
See Pattern Overview and Naming, Pattern Attributes.

Normally, Pattern Attributes are specified as arguments to the PATTERN statement (see
Pattern Overview and Naming). Only one each of the Pattern System Attributes, Pattern
Rate Attributes, and Pattern Type Attributes can be specified in a PATTERN statement. The
pattern name must be specified first. The other attribute arguments can be listed in any
order.

Setting attributes in the PATTERN statement takes precedence over the command line
methods documented in Setting Attribute Defaults.

For example:

PATTERN (my_pattern_name, mav2, double, logic)

This example sets the mav2 Pattern System Attributes, the double Pattern Rate Attributes,
and the logic Pattern Type Attributes.

4.8.1.5 Setting Attribute Defaults
See Pattern Overview and Naming, Pattern Attributes.

Note: using command-line test pattern compilation methods is rarely needed and not
documented.

Default pattern attribute values can be specified using Patcom command line option flags.

When used, these defaults apply to all patterns in the source file, or files, listed on the
Patcom command line. These flags are overridden by any pattern attributes specified in a
PATTERN statement (see Setting Attributes Directly).
 2/27/09 Pg-1250

Test Pattern Programming Pattern Overview and Naming
Attribute flag values are the same as the options documented in Pattern System Attributes,
Pattern Rate Attributes, and Pattern Type Attributes. They are case sensitive when used on
the command line, i.e., –MAV2 and –Mav2 are not legal flags.

The attribute value must be prefixed by a dash (‘-’) character. Multiple flags may be set in a
command line, each preceded by a dash, and separated by white space.

For example:

patcom –mav2 -logic -single myPatterns.pat

4.8.2 Pattern Instruction Identifier (%)
See Pattern Overview and Naming.

Each new test pattern instruction starts with a percent sign (%) token.

The % token acts as a delimiter between pattern instructions to let the pattern compiler
detect when a new instruction begins. This is especially important because each pattern
instruction can span multiple lines and contain multiple sub-instructions. Thus, a series of
pattern generator instructions might look like the following:

PATTERN(pattern_name, pattern_attributes)

% First pattern generator instruction
Sub-instruction
Sub-instruction

% Second pattern generator instruction

% Third pattern generator instruction
Sub-instruction

% etc.

4.8.3 Comments in Test Patterns
See Pattern Overview and Naming.

Three forms of test pattern comments are supported:

/* Comment */
 2/27/09 Pg-1251

Test Pattern Programming Pattern Overview and Naming
// Comment

; Comment

Using method 1, the comment text goes between the /* and the */ and may span multiple
lines. Any characters between the /* and */ are treated as comment text (even carriage
returns).

Using method 2, anything on a line to the right of the double slash (//) and before a carriage
return is considered comment text. If a comment spans multiple lines, each line requires a
//.

Note: the pattern compiler has a known limitation relating to using comments on the
same line as a #define statement. Until this limitation is corrected DO NOT
use a comment on the same line as a #define.

Using method 3, anything on a line to the right of the semicolon (;) and before a carriage
return is considered comment text. If a comment spans multiple lines, each line requires a
semicolon. This method is included for backward compatibility to legacy test patterns, but is
discouraged when writing new patterns.

4.8.4 Pattern Initial Conditions
See Test Pattern Programming.

There are three methods used to set the initial value of an APG register:

• Execute the appropriate C function(s) in Test Block code.
• Execute the appropriate C function(s) as pattern initial conditions code.
• Use an appropriate pattern instruction/operand to load a specified register from

UDATA (Memory Test Patterns) or VUDATA (Logic Test Patterns) of that instruction.
There are several advantages to executing C function(s) as pattern initial conditions code:

• When looping on a test pattern (see Breakpoint Monitor) the initial conditions code
executes for each loop iteration. While this can slow the loop execution speed, it is
often necessary for proper pattern operation. C Code in Test Blocks does not
execute when looping on a test pattern.

• Initialization code does not consume APG micro RAM (uRAM) leaving more room
for other pattern instructions.
 2/27/09 Pg-1252

Test Pattern Programming Pattern Overview and Naming
Execution of pattern initial conditions code occurs while the pattern is being set up by
system software. Execution sequence details are documented in funtest() and
start_pattern(). Note that initial conditions C code is not executed when a given
pattern is executed as a Pattern Subroutine from another pattern.

Pattern initial conditions C Code is delimited using the @{ and @} tokens. See Example. The
pattern compiler (Patcom) passes any code between @{ and @} directly to the C compiler,
allowing arbitrary C Code as well as pattern oriented functions to be executed as initial
conditions.

The pattern compiler (Patcom) does not support C external function declarations in .pat
files. Thus, to properly declare a user-written C function such that it can be executed in
pattern initial conditions requires that it be declared in the standard tester.h file (or a file
included there).

The following Nextest functions are commonly found in pattern initial conditions:

APG Register Function

YMAIN ymain()

XMAIN xmain()

YBASE ybase()

XBASE xbase()

YFIELD yfield()

XFIELD xfield()

AMAIN amain()

ABASE abase()

AFIELD afield()

COUNT# (# = 1 TO 60) count()

RELOAD# (# = 1 TO 60) reload()

JAMREG jamreg()

DATREG dmain(), dbase()

YINDEX yindex()

BCKFUN bckfen()

INTADR intadr()

TIMER timer()
 2/27/09 Pg-1253

Test Pattern Programming Pattern Overview and Naming
A number of other functions are commonly used with the previous functions to set initial
condition values based on the size of the address fields: numx(), numy(), xmax(),
ymax(), amax(), etc. These functions, when used in pattern initial conditions code, are
evaluated just prior to pattern execution to allow APG configurations to track the current size
of the X/Y address fields.

If the timer() function is used in Pattern Initial Conditions it must be the last function
specified.

Example
PATTERN (my_pattern_name)
@{ // Initial conditions start here

ymain(0); // Set ymain register to 0
count(1, amax()); // Load counter #1 = maximum address value
other_C_code(); // Call user-written C function(s)

@} // End of initial conditions
% MAR INC // Pattern instructions start here
% ...

4.8.5 Pattern Labels
See Pattern Overview and Naming.

Labels in a test pattern have the following applications:

• A label can be the destination target for all pattern branching instructions. No
absolute addressing (i.e. specifying a physical MAR/VAR address value) is
supported.

• A test pattern Pattern Subroutine may be identified using a pattern label, provided
the subroutine is in the same source file as the calling instruction. Note that a test
pattern, identified using its PATTERN name, can also be treated as a subroutine.
This method is required when the subroutine is in a different source file than the
calling instruction.

• Pattern labels are printed in UI’s controller output window when a pattern is
stepped using PatternDebugTool. Having a label on each instruction can improve
debugging efficiency using this tool.

• A pattern label must be specified by the various C functions which access pattern
attributes (set_tset(), get_udata(), set_vihh(), etc.).
 2/27/09 Pg-1254

Test Pattern Programming Pattern Overview and Naming
Pattern Labels rules:
1. Labels must be a valid C identifier.

2. Labels are not case sensitive (to be consistent with the rest of the pattern language).

3. Labels always end with a colon (:).

4. Labels cannot be reserved words (words predefined in the test programming languages
used).

5. Only one label can be used on a given pattern instruction or logic vector.

6. Each label is scoped to the pattern (PATTERN) in which it appears.

7. It is illegal to have the same label multiply defined in the same pattern.

8. When a label is used with a pattern instruction, it is required to be the first token
immediately following the Pattern Instruction Identifier (%). It is permissible to have other
instructions on the same line as the label.

9. The MAR JUMP and VAR JUMP instructions can only reference a label in the same pattern.

10.The MAR/VAR conditional branch instructions (CJMPZ, CJMPNE, etc.) can only reference a
label in the same pattern.

11. A label cannot be used on a logic RPT vector. See RPT Pattern Instruction.

12.A label can be the same name as the PATTERN name (but this is very poor programming
practice).

13.A Magnum 1/2/2x pattern Pattern Subroutine which contains only scan vectors must be
defined as a PATTERN(); i.e. a pattern label cannot be used as a reference to the
subroutine. See Scan Test Patterns.

14.Additional rules apply when a Magnum 1/2/2x Logic Test Pattern contains both pattern
label(s) and branch instructions. See LVM Branch/Label Limitations and Check for LVM
Branch/Label Violations.

Usage
% label_x:

// Other pattern instruction tokens

where:

label_x: is the label associated with the pattern instruction shown. This label can be used
as a jump target, Pattern Subroutine name, or it may not be otherwise used.
 2/27/09 Pg-1255

Test Pattern Programming Pattern Overview and Naming
Example
The following example shows a pattern label on a memory pattern instruction. In this
example, execution loops on this instruction as long as counter 1 (COUNT1) is not zero. This
is specified in the MAR instruction with CJMPNZ (conditional jump not zero) to the label
Jump_loop.

% Here:
COUNT COUNT1, DECR, AON
MAR CJMPNZ, Here

The following example shows a pattern label on a logic instruction. Note that the label could
be on the same line as the VEC instruction if desired:

% Label_1:
VEC HLXXX1010 XX110101LLL

4.8.6 Pattern #Include Files
See Pattern Overview and Naming.

#include statements can be used in test pattern source files just like in standard C programs.

The #include syntax is identical in usage to standard C. A typical application is to share
Pattern Subroutines (identified using a Pattern Label but not a PATTERN statement) among
many patterns or a family of devices.

Usage
#include <myPat.pat>

This includes the pattern in the file named myPat.pat in the current pattern file.

4.8.7 C Preprocessor Support
See Pattern Overview and Naming.

The pattern compiler, Patcom, can optionally use the C preprocessor to support full
C-style preprocessor directives. This enables such features as:

• #define, #ifdef, etc.
 2/27/09 Pg-1256

Test Pattern Programming Pattern Overview and Naming
• Arguments to macro definitions in test patterns.
Two options are provided:

• Enable the predefined preprocessor, using the following command which is
executed before Patcom is invoked:

cl /nologo /E /C /X patfilename.pat > .\patfilename.pat.~tmp~

• Enable a completely user-defined preprocessor command (more below)
Several methods are available to enable the predefined preprocessor command:

• Select (enable) the Use C Preprocessor option in the APFP Dialog.
• Set the following environment variable:

PATCOM_PREPROCESS = 1

• Pass the -E or /E argument when executing Patcom from a command line.
These features are enabled as an option because:

• They increase the time required to compile a test pattern.
• They generate a transient test pattern source file (./patfilename.pat.~tmp~),

which requires additional disk space.
• The results from the built-in macro and #include file processing may differ from

that obtained using the C preprocessor, especially in the case of #include.
Compatibility between the two methods is not guaranteed.

To enable a fully custom preprocessor command set the
PATCOM_CUSTOM_PREPROCESSOR environment variable to define the command (without
including the patfilename components). For example, to invoke the same command as the
predefined preprocessor command shown above:

PATCOM_CUSTOM_PREPROCESSOR = cl /nologo /E /C /X

Note: at the time C preprocessor support was added, Patcom was NOT enhanced to
detect new errors, including any bad syntax, from an optional preprocessor
step. To debug complicated macros, execute the preprocessor command
manually (from a command line), redirect the result into a text file, and examine
that file to observe the output from the preprocessor. The output from a
preprocessor step must be syntactically valid pattern instructions.
 2/27/09 Pg-1257

Test Pattern Programming Pattern Overview and Naming
4.8.7.1 #define
See C Preprocessor Support.

The #define compiler directive is used to specify a string substitution to be made by the
pattern compiler, providing a similar capability as is available in C code.

Note: the #define compiler directive has always been supported by Patcom. The
optional C Preprocessor Support uses a different method for processing
compiler directives. See C Preprocessor Support.

Note: do NOT put comments at the end of a #define statement. Due to Patcom
compiler limitations, side effects may occur. For example:
 #define MYTERM myval // Do NOT use comments like this.

Usage
#define string1 string2

where:

#define is a compiler directive used to perform a string substitution similar to the capability
in C.

string1 is a string that appears in the test pattern.

string2 is the string that replaces string1 wherever it appears in the pattern.

Examples
In the following logic pattern example, user names are given to TSET3, TEST4, and VIHH2
to improve the readability of the pattern. These same #define statements may appear in
the test program itself so that the same names can be referenced there. When the pattern
compiler interprets the vectors, it first substitutes TSET3 for ReadTiming, TEST4 for
WriteTiming, and VIHH2 for ProgramVoltage:

#define ReadTiming TSET3
#define WriteTiming TSET4
#define ProgramVoltage VIHH2
 2/27/09 Pg-1258

Test Pattern Programming Pattern Overview and Naming
% VEC 00000000 XXXXXXXX
% VEC 00001111 HHHHLLLL, ReadTiming
% VEC 00000000 XXXXXXXX
% VEC 10101010 XXXXXXXX, WriteTiming, ProgramVoltage

In the following example, the default syntax for specifying CHIPS operands (CS1PT, CS2F,
etc.) are replaced with more meaningful tokens: OE_pulse_true, WE_false, CS_true,
making the pattern more readable:

#define OE_pulse_true CS1T
#define OE_false CS1F
#define WE_pulse_true CS2PT
#define WE_false CS2F
#define CS_true CS3T

PATTERN (some_pat)

% MAR INC, NOREAD // Write data
CHIPS OE_false, WE_pulse_true, CS_true

% MAR INC, READ // Read data
CHIPS OE_pulse_true, WE_false, CS_true
PINFUNC ADHIZ

4.8.7.2 Newline in Test Pattern Macros
See C Preprocessor Support.

It is possible to embed the newline character (\n) in test pattern macros. For example:

#define myMacro % COUNT COUNT4, INCR, AON, \n MAR CJMPNZ label

The embedded newline does function correctly with the Test Pattern Line Continuation
Character (‘ \’). For example:

#define myMacro(op, val) % MAR op \n \
UDATA val

This feature does not require using the new C Preprocessor Support unless required by
other features of the macro, as seen in the 2nd example above, which passes two arguments
to the macro.
 2/27/09 Pg-1259

Test Pattern Programming MAR DONE and/or VAR DONE
4.8.8 Test Pattern Line Continuation Character
See Pattern Overview and Naming.

he line continuation character “ \” is targeted at splitting long logic vectors across multiple
source file text lines. See Logic Vector Syntax.

Note the following:

• C Preprocessor Support requires that the line continuation character be preceded
by a space. While this is not required by Patcom’s pre-processor it is highly
recommended that ALL usage of the line continuation character include a leading
space.

• The line continuation character can not be used in a VECDEF Compiler Directive
because a VECDEF Compiler Directive can span multiple source file lines without
any special syntax. See VECDEF Compiler Directive

• An embedded newline (\n \) does function correctly with the line continuation
character. See Newline in Test Pattern Macros.

4.9 MAR DONE and/or VAR DONE
See Test Pattern Programming.

Note: this section intentionally contains information about Maverick-I/-II and
Magnum 1/2/2x.

The Maverick-I has a single pattern control engine, thus the end of a test pattern is always
specified using the MAR DONE instruction (even when the pattern otherwise contains only
logic pattern instructions). The rest of this section documents Maverick-II and Magnum 1/2/
2x operation.

The Maverick-II and Magnum 1/2/2x APGs have two pattern execution control engines:

• The MAR Engine, always used.
• The VAR Engine, used when executing any pattern containing logic instructions.

Thus in Maverick-II and Magnum 1/2/2x, both the MAR Engine and the VAR Engine have
the capability to halt pattern execution. This section documents the functionality and rules for
 2/27/09 Pg-1260

Test Pattern Programming MAR DONE and/or VAR DONE
using MAR DONE (Memory Test Patterns and Mixed Memory/Logic Patterns) and/or VAR
DONE (Logic Test Patterns and Mixed Memory/Logic Patterns) to end the test pattern, for
Maverick-II and Magnum 1/2/2x.

In Maverick-II and Magnum 1/2/2x, from a hardware perspective, the signal path for the
pattern DONE signal passes through a MUX (see Done MUX in the VAR Engine), which can
select either the VAR DONE signal or the MAR DONE signal, but not both. Pattern execution
stops when the pattern instruction generating the DONE signal reaches the DUT. The
following rules apply:

• A pattern containing only logic instructions: the Done MUX selects DONE from the
VAR Engine; i.e. VAR DONE. This represents pure Logic Test Patterns.

• A pattern containing any memory instructions: the Done MUX selects DONE from
the MAR Engine; i.e. MAR DONE. This represents both Memory Test Patterns and
Mixed Memory/Logic Patterns.

As indicated, for Mixed Memory/Logic Patterns the MAR Engine’s DONE signal is always
selected. The rest of the information below discusses what occurs when the logic portion of
a Mixed Memory/Logic Patterns generates more or less cycles than the memory portion of
the pattern.

• If the logic pattern VAR DONE is reached before the memory pattern MAR DONE the
last logic vector is repeated until the pattern is halted by the MAR DONE. The active
Pin Scramble Map, Time-set and VIHH Map will continue to determine what occurs
at the DUT.

• If the memory pattern MAR DONE is reached before the logic pattern VAR DONE
pattern execution will stop before all the logic vectors have executed. This is
probably bad!

• If the logic portion of the pattern does not include VAR DONE and, in addition,
generates fewer cycles than the memory pattern, the t_lvm outputs will be
determined by vector memory contents beyond the end of the current logic
pattern. This occurs because the default VAR Instruction is INC will point to the
VAR address past the last defined vector in the pattern. The vector at this address
may be part of some other pattern, or may simply be the residue from system
power up. This is always bad! Proper operation requires that VAR DONE always be
included in all Mixed Memory/Logic Patterns and Logic Test Patterns.

One other important difference exists between Maverick-I vs. Maverick-II and Magnum 1/2/
2x logic pattern operation.

• In Maverick-I patterns, the vector address (VAR) is incremented before a VEC
instruction executes. In Maverick-II logic patterns and using Magnum 1/2/2x, the
VAR Engine increments the vector address (VAR) in preparation for the next
 2/27/09 Pg-1261

Test Pattern Programming MAR DONE and/or VAR DONE
instruction; i.e. after the VEC instruction executes. In most cases the user does not
care about this - patterns operate as desired. However, this difference is important
at the end of the pattern. At the end of the pattern the control engine in use (MAR
or VAR engine) actually causes the last instruction to repeat several times while
flushing any failures in the error pipelines back to the APG.

• In Maverick-I, if the last instruction contains both VEC and MAR DONE the vector
address will increment several times, while the pipelines are flushed, causing the
next few logic vectors in LVM to be executed. These will not be visible in the
pattern source file and may be part of some other pattern, or may simply be the
residue from system power up. This is always bad! Conversely, when the last
instruction does not contain VEC; i.e. only MAR DONE, the vector address is not
incremented during the error flush cycles, causing the last VEC instruction of the
test pattern to be repeated. This is good because the user can control it but this
last vector must not generate any strobes.

• Using Maverick-II and Magnum 1/2/2x, the default VAR Instruction is INC. Thus, if
the last instruction does not contain VEC (i.e. only VAR DONE) during the error
pipeline flush cycles the vector address is incremented, and the next few logic
vectors in LVM will be executed. As above, these will not be visible in the pattern
source file and may be part of some other pattern, or may simply be the residue
from system power up. This is always bad! Conversely, if the last instruction
contains both VEC and VAR DONE the vector visible in the pattern file will be
repeated during the pipeline flush cycles. This is good because the user can
control it but this last vector must not generate any strobes.

• The error pipeline flush cycles may generate timed edges at the DUT. The
information above can help explain datalogging anomalies and falsely reported
errors which can occur when the last vector generates active strobes.

In summary, the correct end of pattern instructions should be:

The pattern compiler detects and reports certain errors and warnings related to how MAR
DONE and VAR DONE are used vs. a pattern’s attributes. Each example below starts with a

Memory Logic Mixed

Maverick-I % MAR DONE % VEC ...
% MAR DONE

% VEC ...
% MAR DONE

Maverick-II
Magnum 1
Magnum 2
Magnum 2x

% MAR DONE % VEC ...
 VAR DONE

% VEC ...
 VAR DONE
 MAR DONE
 2/27/09 Pg-1262

Test Pattern Programming MAR DONE and/or VAR DONE
simple description, followed by a simple pattern containing the problem (labeled Incorrect).
Next is the corresponding compiler error message (only the first line of the error message is
shown). Last is the correct pattern usage, when appropriate.

1. WARNING: MAR DONE in same instruction as VEC in a Maverick-I pattern:

Incorrect:

PATTERN(mav1_mixed2) // Mixed and logic
% VEC X

MAR DONE

LogicPat1.pat(20): warning: MAR DONE within a VEC instruction in
mav1 mode is likely to cause problems

Correct:

PATTERN(mav1_mixed2) // Mixed and logic
% VEC X
% MAR DONE

2. ERROR: logic is only usable in Maverick-II and Magnum 1/2/2x patterns

Incorrect:

PATTERN(mav1_logic3, mav1, logic)

LogicPat1.pat(44): error: logic mode incompatible with mav1

3. ERROR: VAR DONE is only usable in Maverick-II and Magnum 1/2/2x patterns

Incorrect:

PATTERN(mav1_logic3, mav1, mixed)
% VEC X
% VAR DONE

LogicPat1.pat(52): error: using APG2 feature while not in APG2
mode: DONE

Correct:

PATTERN(mav1_logic3, mav1, mixed)
% VEC X
% MAR DONE

4. ERROR: VAR DONE requires VEC in Maverick-II and Magnum 1/2/2x patterns

Incorrect:
 2/27/09 Pg-1263

Test Pattern Programming Pattern Subroutines
PATTERN(mav2_logic1, mav2)
% VEC X
% MAR DONE

VAR DONE

LogicPat1.pat(66): error: need a VEC bit pattern

Correct:

PATTERN(mav2_logic1, mav2)
% VEC X

MAR DONE
VAR DONE

5. ERROR: MAR DONE not usable in Maverick-II and Magnum 1/2/2x pure logic patterns

Incorrect:

PATTERN(mav2_logic6, mav2, logic) // Logic
% VEC X

MAR DONE
VAR DONE

LogicPat1.pat(97): error: uRAM bits defined in logic mode: DONE

Correct:

PATTERN(mav2_logic6, mav2, logic) // Logic
% VEC X

VAR DONE

4.10 Pattern Subroutines
See Test Pattern Programming.

Much like a computer programming language, pattern subroutines provide for reuse of one
or more pattern instructions.

Except for the various subroutine return instructions (MAR RETURN, CRETNZ, etc. in Memory
Test Patterns and VAR RETURN, CRETNT, etc. in Magnum 1/2/2x Logic Test Patterns) pattern
subroutines use the same instructions and syntax used in the main test pattern.

Pattern subroutines can be executed unconditionally, using the MAR GOSUB instruction
(Memory Test Patterns) and VAR GOSUB instruction (Magnum 1/2/2x Logic Test Patterns), or
 2/27/09 Pg-1264

Test Pattern Programming Pattern Subroutines
can be executed conditionally using MAR Conditional Branch-condition Operands (Memory
Test Patterns), VAR Multi-DUT Branch-condition Operands and VAR Conditional Branch-
condition Operands (Magnum 1/2/2x Logic Test Patterns).

A pattern subroutine may also be called as an interrupt routine when the APG Interrupt
Timer count reaches 0.

Note: a subroutine may be identified using a Pattern Label if the subroutine is within the
same pattern, or by referring to another PATTERN. The destination of a test
pattern jump/branch instruction can only reference a Pattern Label within the
same pattern.

A return from a pattern subroutine can be executed unconditionally using the MAR RETURN
instruction (Memory Test Patterns) and VAR RETURN instruction (Magnum 1/2/2x Logic Test
Patterns), or can be executed conditionally using MAR Conditional Branch-condition
Operands (Memory Test Patterns), VAR Multi-DUT Branch-condition Operands and VAR
Conditional Branch-condition Operands (Magnum 1/2/2x Logic Test Patterns).

Test patterns which execute subroutines follow the execution sequence outlined below. Note
that the MAR GOSUB/RETURN instructions are used here for example purposes:

• The APG instruction containing the MAR GOSUB instruction executes first.
• The first subroutine instruction executes next.
• The other subroutine instructions, if any, execute.
• The subroutine instruction with the RETURN executes.
• The instruction after the original MAR GOSUB instruction executes.

Note that the previous sequence description is somewhat simplified, see APG Instruction
Execution.

Pattern subroutines can be identified two ways:

• Within the same test pattern, any instruction with a Pattern Label can be called as
a subroutine.

• Any pattern (defined using PATTERN), can be called as a subroutine.
Also note the following:

• A subroutine cannot be called in the last pattern instruction.
• Subroutines can be nested to 3 levels.
• Calling back-to-back pattern subroutines is legal.
 2/27/09 Pg-1265

Test Pattern Programming Pattern Subroutines
• Calling a subroutine which does not return has no side effects; i.e. pattern
execution can end within a subroutine due to a DONE instruction (see MAR DONE
and/or VAR DONE) or due to stop-on-error with no side effects.

• Pattern subroutine recursion is limited to 3 levels. Go beyond this and an endless
loop situation is created (this is always BAD).

Note: if a test pattern containing Pattern Initial Conditions code is called as a
subroutine the initial conditions code DOES NOT EXECUTE.

• Logic pattern subroutines of < 24 execution counts will be loaded into SRAM (see
Logic Vector Memory (LVM)). The SRAM can store up to 8K vectors per-pattern.
This means a given Logic Test Pattern can define at least 340 unique subroutines
which are < 24 execution counts, each consisting of 24 discrete VEC instructions
(RPT instructions can decrease the amount of SRAM used). SRAM based
subroutines are not subject to the restrictions on pattern branching noted in
Magnum 1/2/2x Logic Pattern Rules.

• A Magnum 1/2/2x subroutine which contains pure scan vectors must be defined as
a PATTERN() because a Pattern Label is not allowed on a pure scan instruction.
See Scan Test Patterns.

Example

Example 1:
This example shows the two different methods for defining a subroutine. This example has
four parts:

• Pattern File: shows both methods for defining a subroutine.
• Test Block Code: to show how several APG counters were initialized and used to

generated the Example Output.
• Example Output: shows the values of the APG counters after pattern execution.

Note: COUNT1 is not modified by the initial conditions code seen in two of the
pattern subroutines.

Pattern File
PATTERN(main_pattern1)

% label_1:
COUNT COUNT1, INCR
MAR GOSUB, local_subr1 // Subr = Label in same pattern
 2/27/09 Pg-1266

Test Pattern Programming Pattern Subroutines
% label_2:
COUNT COUNT2, INCR
MAR GOSUB, pat_subr1 // Subr = PATTERN

% label_3:
COUNT COUNT3, INCR
MAR GOSUB, pat_subr1

% label_4:
MAR DONE

% local_subr1:
COUNT COUNT4, INCR
MAR RETURN

PATTERN(pat_subr1)
@{ // Initial conditions in subroutines do NOT execute

count(1, 999); // This does NOT execute
@}

% pat_subr1_label_1:
COUNT COUNT5, INCR
MAR RETURN

Test Block Code
The purpose of this is to show how the APG counters are initialized before the pattern
executes, and then how the Example Output was generated:

count(1, 0); count(2, 0); count(3, 0);
count(4, 0); count(5, 0);

funtest (main_pattern1 , finish);

output(" count 1 => %d (SB=1)", count(1)); // Should be = 1
output(" count 2 => %d (SB=1)", count(2)); // Should be = 1
output(" count 3 => %d (SB=1)", count(3)); // Should be = 1
output(" count 4 => %d (SB=1)", count(4)); // Should be = 1
output(" count 5 => %d (SB=2)", count(5)); // Should be = 2
 2/27/09 Pg-1267

Test Pattern Programming Error Pipeline Requirements
Example Output
count 1 => 1 (SB=1)
count 2 => 1 (SB=1)
count 3 => 1 (SB=1)
count 4 => 1 (SB=1)
count 5 => 2 (SB=2)

Example 2:
This example shows a Magnum 1/2/2x logic pattern calling the same pattern subroutine 3
times:

% VEC XXXX XXXX // First vector
VAR GOSUB, sub_pattern // Execute subroutine next

% VEC 1111 XXXX // Subroutine returns. Execute
VAR GOSUB, sub_pattern // this instruction then

 // execute the subroutine again

% VEC 1111 XXXX // Subroutine returns to here. Execute
VAR GOSUB, sub_pattern // this instruction then execute

 // the next instruction

% VEC 1111 XXXX
VAR DONE

PATTERN (sub_pattern)
% VEC 0000 HHHH
% RPT 5 0000 XXXX
% VEC 0000 XXXX
% VEC 0000 XXXX
% VEC 0000 XXXX

VAR RETURN

4.11 Error Pipeline Requirements
See APG Controller Engine, MAR Branch Condition Operands.

During test pattern execution, the instruction execution sequence can be conditional, based
on whether an error exists; i.e. have any strobes have failed. This is commonly called
branch-on-error (or no-error).
 2/27/09 Pg-1268

Test Pattern Programming Error Pipeline Requirements
A related branch-on-abort (or no-abort) capability allows conditional pattern branching
based on whether a fail exists for every DUT being tested in parallel; i.e. branch if all DUTs
are bad. The abort signal is derived from the error latch signals, not error flags (more below).

Note: using Magnum 1/2/2x, proper operation of the Abort signal requires that all DUTs
be enabled; i.e. all DUTs must be in the Active DUTs Set (ADS). The Abort signal
will NOT go active if any DUT(s) are disabled.

In hardware, conditional branch operations can test the state of the error flag signal or abort
signal. See PE Error Flag vs. Error Latch Diagram and Error Flag OR Logic. Using Magnum
1/2/2x, conditional branches can also be controlled by ECR Error Counters. As shown in
these various diagrams, the error flag signal is the logical OR of the error flags of each pin
channel plus all DC Error Flags in all DC Comparators and Error Logic. The error flag signal
will be TRUE if any one or more of these other error flags signals is TRUE. The abort signal
is TRUE when at least one error latch from every group of 8 pins is TRUE.

When using the ECR Error Counters, the branch signal will be TRUE if the associated
counter is greater than its comparator value, previously programmed using
ecr_compare_reg_set().

Proper test pattern branch-on-error (or no error, on abort, etc.) operation requires that the
hardware branch signal be propagated from its source to the APG branch logic. This
requires time, specified as a minimum number of pattern cycles (pipeline cycles) executed
between the pattern instruction generating the branch signal and the instruction performing
the conditional branch operation.

Using Magnum 1/2/2x, the number of required pipeline cycles depends on several factors:

• The cycle period of the pattern instructions used to pipeline the branch signal.
• Does the pattern use the Data Buffer Memory (DBM), in any way; i.e. additional

pipeline cycles are required if the test pattern selects the DBM as a data source to
be output to the DUT (i.e. DATGEN BUFBUF, DATBUF, etc.) and/or when using the
DBM to acquire generated data (i.e. DATGEN DBMWR).

• Does the pattern use the Logic Vector Memory (LVM).
• The source of the branch signal; i.e. branch-on-error or branch based on ECR

Error Counters (Total Error Counters, Col Error Counters or Row Error Counters,,
see MAR Error-choice Operands.

• How many Sites-per-Controller are specified in the Pin Assignment Table.
 2/27/09 Pg-1269

Test Pattern Programming Error Pipeline Requirements
The following table shows the minimum number of pipeline cycles required for proper
branch operation:

Note the following:

• These are minimum error pipeline cycle requirement values, required for reliable
branch operation. No additional cycles are required for cycle periods greater than
shown.

• The number of pipeline cycles specified assumes that all error pipeline cycles are
set to a cycle period of at least the lenth specified.

• The added cycles for LVM and/or DBM are required in any pattern which uses the
option in any way, regardless of whether the instructions related to the branch
have any direct involverment or not.

Table 4.11.0.0-1 Magnum 1 Branch-on-error Pipeline Cycle Requirements

Cycle
Period

Branch-
on-
error

Pipeline
Cycles

Branch-
on-
TEC

Pipeline
Cycles

Branch-
on-

REC or CEC
Pipeline
Cycles

LVM
Used?

DBM
Used?

SITES_PER_CONTROLLER
> 1?

20nS 27 30 32

Add
12

Add
12

Add 1 for each
additional

site

30nS 21 28 29

40nS 18

27
28

50nS 17

60nS
16

2770nS

26

80nS
14

90nS

26

100nS 13

140nS
12

190nS

25
230nS

11
270nS

25
670nS 10

Both used
add 24
 2/27/09 Pg-1270

Test Pattern Programming Error Pipeline Requirements
• When using Logic Vector Memory (LVM) (i.e. in Logic Test Patterns or Mixed
Memory/Logic Patterns), all error pipeline cycles must be executed using a single
instruction which executes immediately prior to the branch instruction. This rule
was added 9/8/2008.

• Branch-on-abort has the same pipeline requirements as branch-on-error.

Note: using Magnum 1/2/2x, proper operation of the Abort signal requires that all DUTs
be enabled; i.e. all DUTs must be in the Active DUTs Set (ADS). The Abort signal
will NOT go active if any DUT(s) are disabled.

• The counter used to control an error pipeline loop can be set to the required cycle
count value -1. For example, a simple branch-on-error operation (i.e. 20nS cycle
period, no DBM, no LVM, single-site) requires 27 pipeline cycles thus, to use the
following example, the COUNT1 counter would be initialized to (27 - 1 = 26):

% MAR READ
PINFUNC ADHIZ

% here:
COUNT COUNT1, DECR, AON
MAR CJMPNZ, here

% MAR CJMPNE, there

• The values in the table above do account for strobes delayed into the 2nd cycle.
Do NOT reduce the pipeline count when delayed strobes are not used, the
situation is not that simple.

• The MAR Error-choice Operands selection also has additional pipeline-related
requirements. See Note:.

• Some specific MAR branch-on-error options also have additional pipeline-related
requirements. See MAR BOE Type Operands selection.

Note: the following information was added 4/8/2008. It applies to Magnum 1,
Magnum 2 and Magnum 2x.

In Magnum 1/2/2x Logic Test Patterns (or mixed patterns) additional rules apply if/when a
2nd (or more) branch logic instruction is based on an error flag which has already been
pipelined.

For reference, the most common branch-on-error scenario works as already documented.
This can be described as:
 2/27/09 Pg-1271

Test Pattern Programming Error Pipeline Requirements
% VEC or RPT with a strobe
% RPT error pipeline wait loop (conventional)
% VEC Branch-on-error (CJMPE, CJMPNE, CSUBE, etc.)

However, the following variation will not work as might be expected. Note the 2nd
branch-on-error instruction is using the same pipelined strobe result as the 1st:

% VEC/RPT with a strobe
% VEC/RPT error pipeline wait loop (as described above)
% VEC with Branch-on-error // Branches correctly

// Any number of VEC/RPT instructions without strobes, see Note:
% VEC with Branch-on-error // Won't work as desired, more below

Note: this can be 0 or more VEC/RPT instructions, including instructions which branch
on things other than error. As described further below, the 2nd branch-on-error
above will only operate correctly if immediately preceded by a single-instruction
repeat (RPT), of adequate length.

To operate correctly, the 2nd branch in the previous example requires another pipeline loop,
called the LVM error pipeline wait loop below, as the instruction which executes immediately
before the branch instruction, and it MUST be a single instruction loop (RPT or CJMPNZ to
same instruction). The minimum loop count value is the value added to the standard error
pipeline loop when using LVM:

• 12 cycles for Magnum 1.
For example:

% VEC/RPT with a strobe
% VEC/RPT error pipeline wait loop (as described above)
% VEC with Branch-on-error // Branches correctly

// Any number of VEC/RPT instructions without strobes, see Note:
% RPT 12 LVM error pipeline wait loop // Required before next BOE
% VEC with Branch-on-error

When using a mixedsync pattern, to change the branch Error-choice and/or BOE-type
requires a MAR instruction and the LVM error pipeline wait loop instruction must also select
the Error-choice and/or BOE-type used in the following branch instruction:

% VEC or RPT with a strobe
% VEC/RPT error pipeline wait loop (as described above)

MAR select Error-choice and/or BOE-type (or default)
% VEC with Branch-on-error // Branches correctly

MAR same Error-choice and BOE-type
 2/27/09 Pg-1272

Test Pattern Programming Error Pipeline Requirements
// Any number of VEC/RPT instructions without strobes, see Note:
% RPT 12 LVM error pipeline wait loop // Required before next BOE

MAR new Error-choice and/or BOE-type
% VEC with Branch-on-error

MAR same Error-choice and BOE-type

Finally, the LVM error pipeline wait loop must be added for each subsequent branch-on-error
instruction based on the original strobe results. Below a sequence of 4 branch-on-error
instructions requires 3 additional LVM error pipeline wait loops:

% VEC/RPT with a strobe
% VEC/RPT error pipeline wait loop (as described above)
% VEC with Branch-on-error // Branches correctly

// Any number of VEC/RPT instructions without strobes, see Note:
% RPT 12 LVM error pipeline wait loop // Required before next BOE
% VEC with Branch-on-error

// Any number of VEC/RPT instructions without strobes, see Note:
% RPT 12 LVM error pipeline wait loop // Required before next BOE
% VEC with Branch-on-error

// Any number of VEC/RPT instructions without strobes, see Note:
% RPT 12 LVM error pipeline wait loop // Required before next BOE
% VEC with Branch-on-error
// Etc.

 2/27/09 Pg-1273

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
4.12 Algorithmic Pattern Generator (APG) Configuration
See Test Pattern Programming, Algorithmic Pattern Generator (APG).

The APG is used to generate an algorithmic test pattern, commonly used to test memory
devices. This section documents the functions used to configured key APG features before
executing a Memory Test Pattern which uses that feature. This section includes the
following:

• Types, Enums, etc.
• APG Address Mask Functions
• YMAX, XMAX, and AMAX
• Fast Address Axis
• APG Chip Select Polarity Control Function
• APG Chip Select Drive/Strobe Polarity Functions
• APG Data Generator I/O Control Function
• APG Drive/Expect Data Latency Functions
• PE Channel Forced I/O State
• APG Data Register Width Selection Function
• APG JAM Logic Configuration Functions

• apg_jam_mode_set(), apg_jam_mode_get()
• apg_jam_ram_set(), apg_jam_ram_get()
• apg_jam_ram_address_set(), apg_jam_ram_address_get()

• APG User RAM Functions
• apg_userram_value_set(), apg_userram_value_get()
• apg_user_ram_address_set(), apg_user_ram_address_get()

• APG Data Buffer Memory Configuration
• APG Data Inversion Enable Functions
• APG Data Inversion Bank Select Functions
• APG Background Data Inversion Function
• APG Bit-2 Data Inversion Function
• APG Background Bank-A, Bank-B Inversion
• APG Data Topological Inversion (DTOPO) Function
 2/27/09 Pg-1274

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• APG Data TOPO RAM Load Functions
• Logical vs. Physical, vs. Electrical Addresses
• APG Address Topo RAM Load Functions
• APG Timer Functions

4.12.1 Types, Enums, etc.
See Algorithmic Pattern Generator (APG) Configuration.

Description
The following enumerated types are used in support of various Algorithmic Pattern
Generator (APG) Configuration functions.

Usage
The ChanType enumerated type is used as an argument to the adhiz() function:

enum ChanType { RECEIVE, DRIVE, BIDIR };

The BckOperation enumerated types are used as arguments to the bckfen() function,
to select an inversion operation:

enum BckOperation { force, xeven, xodd, yeven, yodd,
xyeven, xyodd, xeven_yodd, xodd_yeven, bit_1,
and, or, xor };

The TesterBGFunc enumerated types are used as arguments to the bckfen() function,
to identify the complement of an individual X/Y address bit:

enum TesterBGFunc { t_x0_bar, t_x1_bar, t_x2_bar, t_x3_bar,
t_x4_bar, t_x5_bar, t_x6_bar, t_x7_bar,
t_x8_bar, t_x9_bar, t_x10_bar, t_x11_bar,
t_x12_bar, t_x13_bar, t_x14_bar, t_x15_bar,
t_x16_bar, t_x17_bar,
t_y0_bar, t_y1_bar, t_y2_bar, t_y3_bar,
t_y4_bar, t_y5_bar, t_y6_bar, t_y7_bar,
t_y8_bar, t_y9_bar, t_y10_bar, t_y11_bar,
t_y12_bar, t_y13_bar, t_y14_bar, t_y15_bar,
t_bg_on, t_bg_off, t_bgf_na };
 2/27/09 Pg-1275

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The DTopoFunc enumerated types are used as arguments to the dtopo() function, to
specify a topological inversion function:

enum DTopoFunc { xdtopo, ydtopo, xd_and_yd, xd_or_yd, xd_xor_yd };

The APGStaticErrorModes enumerated types are used to select the APG’s static error
mode (see Static Error Choice Functions, Branch-on-error and MAR Error-choice
Operands):

enum APGStaticErrorModes { t_errmode1 = 0,
t_errmode2 = 1,
t_errmode3 = 2,
t_errmode4 = 3 };

The DataInvControls enumerated type is used to select which Data Inversion Logic
inputs are enabled. See APG Data Inversion Enable Functions.

enum DataInvControls {
PAT_INV_EN = 0x0001,
BIT2_INV_EN = 0x0002,
DTOPO_INV_EN = 0x0004,
BCKFN_INV_EN = 0x0008,
EQFN_INV_EN = 0x0010,
BCK_A_INV_EN = 0x0020,
BCK_A_BIT1_INV_EN = 0x0040,
BCK_A_BIT2_INV_EN = 0x0080,
BCK_B_INV_EN = 0x0100,
BCK_B_BIT1_INV_EN = 0x0200,
BCK_B_BIT2_INV_EN = 0x0400,

};

The ApgJamMode enumerated type is used to set and get the APG Data Generator’s JAM
Register mode. See apg_jam_mode_set(), apg_jam_mode_get():

enum ApgJamMode{ t_jam_mode_reg, t_jam_mode_ram };

4.12.2 APG Address Mask Functions
See Algorithmic Pattern Generator (APG) Configuration, APG Address Generator.
 2/27/09 Pg-1276

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Description

The numx() and numy() functions are used to set or get the APG X/Y address masks.

The term address mask is used here to refer to the number of APG Address Generator bits
enabled on a given axis:

• The X address mask, set using numx(), determines the number of enabled X
address bits.

• The Y address mask, set using numy(), determines the number of enabled Y
address bits.

As indicated, the APG’s X and Y address generators can be independently configured to a
specific size; i.e. a specific number of address bits are enabled on each axis. This size is
typically determined by the number of X and Y address inputs required to correctly test the
DUT. During pattern execution, when an X and/or Y address is incremented, it will roll-over
to 0x0 when the address reaches the maximum size.

The numx() and numy() setter functions configure the APG’s X and Y address generator
hardware, and advise the system software as to how many X/Y addresses are being used.

The numx() and numy() getter functions return the currently programmed value.

The maximum number of X address bits = 18*.

The maximum number of Y address bits = 16*.

* the total number of X addresses plus Y addresses cannot exceed 32, thus:

• If numx() = 17, numy() cannot exceed 15
• If numx() = 18, numy() cannot exceed 14

This provides for testing devices which up to 18 address bits in one axis with less in the
other axis.

During initial program load both numx() and numy() are set to 0. They are not otherwise
set by the system software.

numx() and numy() are commonly executed in the Site Begin Block, because it is rare that
the number of X/Y addresses will change when testing a given DUT.

During pattern execution, the APG Address Generator outputs which are above those
enabled using numx() and numy() will remain at logic-0. It is possible to pin scramble (see
Pin Scramble Functions & Macros) these higher addresses to tester channels if a constant
logic-0 is useful.
 2/27/09 Pg-1277

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
By making numx() and numy() software programmable, it is possible to create test
patterns with address schemes which work correctly for almost any DUT address size. And,
when debugging test pattern address generation, it is possible to temporarily reduce the X/Y
address size (to very small numbers) and single-step the pattern just a few times, typically to
evaluate boundary transitions, rather than having to step millions of times.

When the Data Buffer Memory (DBM) is used, the DBM Address Masks are not updated by
numx() and numy(). Therefore, any time numx() and numy() are executed the DBM
must be reconfigurd (see dbm_config_set()) and reloaded.

Usage
The following functions enable the specified number of X and Y APG Address Generator
outputs:

void numx(int xbits);

void numy(int ybits);

The following functions return the number of address bits currently enabled for the X and Y
address generators:

int numx();

int numy();

where:

xbits specifies the number of X address bits to be enabled. Legal values are 0 to 18. See
Description.

ybits specifies the number of Y address bits to be enabled. Legal values are 0 to 16. See
Description.

The getter versions of numx() and numy() will return the currently programmed value.

Examples
In this example, Y APG Address Generator outputs Y0 (t_y0) through Y8 (t_y8) are
enabled. Outputs Y9 and higher are disabled and will remain at logic-0:

numy(9);

In this example, X address generator outputs X0 (t_x0) through X11 (t_x11) are enabled.
Outputs X12 and higher are disabled and will remain at logic-0:

numx(12);
 2/27/09 Pg-1278

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
In this example, APG counter 5 (COUNT5) is loaded with the value returned by numx(); i.e.
the number of currently enabled X address generator outputs:

count(5, numx());

4.12.3 YMAX, XMAX, and AMAX
See Algorithmic Pattern Generator (APG) Configuration, APG Address Generator.

Description
The X and Y APG Address Generators can be independently configured to enable a specific
number of address bits. This is done using the numx() and numy() functions, with the size
typically determined by the number of X and Y address inputs required to correctly test the
DUT.

The xmax() function can be used to determine the number of unique addresses which can
be generated by the APG’s X address generator, as currently configured by numx(). The

value returned will be .

The ymax() function can be used to determine the number of unique addresses which can
be generated by the APG’s Y address generator, as currently configured by numy(). The

value returned will be .

The amax() function can be used to determine the number of unique addresses which can
be generated by the combined X and Y address generators, as currently configured by

numx() and numy(). The value returned will be .

Memory Test Pattern address generation is typically controlled using APGCounters which,
for example, count the number of times an address is modified (incremented, decremented,
etc.). If these counter(s) are initialized using xmax(), ymax(), and/or amax(), the pattern
will continue to function correctly when the number of used X and/or Y addresses is
changed using numx() and/or numy().

Usage
int ymax();

int xmax();

2numx() 1–

2numy() 1–

2 numx()+numy()() 1–
 2/27/09 Pg-1279

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
UINT amax();

where:

xmax() returns a value between 0 and 218 (262,143), as determined by the currently set
numx().

ymax() returns a value between 0 and 2216 (65,535), as determined by the currently set
numy().

amax() returns a value between 0 and 232, as determined by the combination of the
currently set numx() and numy(). See Description. Even though numx() can be up to 18
(218) the total combined X + Y addresses is limited to 32 (232). See APG Address Mask
Functions.

Example
The following example uses ymax() to load APG counter 5 (COUNT5) with the maximum
number of Y addresses which can be generated as last set using numy():

count(5, ymax());

4.12.4 Fast Address Axis
See Algorithmic Pattern Generator (APG) Configuration, APG Address Generator.

Description

The x_fast_axis() function is used to advise the system software of which APG Address
Generator (X or Y) will be generating the address on the fast axis; i.e. the LSB address bits.

Note: x_fast_axis() has no effect on actual test pattern operation: only the test
pattern instruction(s) determine whether the X or Y address generator will
generate the LSB address bits (fast address axis). Useful results from some
Nextest functions requires that the fast axis specified using x_fast_axis(), to
match the operation of test patterns.

When manipulating the APG Address Generators, the X or Y address can be treated as the
least significant, or fastest changing, address field. In other words, the address at the DUT
can be represented as XY, where Y is least significant, or YX, where X is least significant.
 2/27/09 Pg-1280

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Another way to think of the fast, or least significant, axis is that it is the address field (X or Y)
that changes fastest in a minmax pattern. This affects the following:

• The operation of the set_address() function.
• System software display of APG addresses during execution trace.
• The operation of some Data Buffer Memory (DBM) functions.

The initial program load sets x_fast_axis(TRUE); i.e. the X-axis is fast. The system
software does not otherwise modify this value.

When x_fast_axis() is used to change the fast axis if the is being used it must be
[re]configured (see dbm_config_set()) and reloaded. This is required because
dbm_config_set() records the state returned by x_fast_axis(), and this state affects
both the DBM hardware configuration and subsequent DBM operation.

Usage
void x_fast_axis(BOOL State);

BOOL x_fast_axis();

where:

State specifies whether the APG X-axis is fast (TRUE) or the Y-axis is fast (FALSE).

The getter version of x_fast_axis() returns the currently programmed value.

Example
x_fast_axis(TRUE);
output("%s is the fast axis", x_fast_axis() ? "X" : "Y");

4.12.5 APG Chip Select Polarity Control Function
See Algorithmic Pattern Generator (APG) Configuration, APG Chip Select Drive/Strobe
Polarity Functions, APG Chip Selects.

Note: these functions are not supported on Maverick-I/-II
 2/27/09 Pg-1281

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Description

The cs_polarity_set() function is used to set the active polarity for one specified chip
select; i.e. active = logic-1 or logic-0. The polarity of the other chip selects remain
unchanged.

The cs_polarity_get() function may be used to get the current active chip select
polarity for a specified chip select.

The APG has 8 APG Chip Selects, used when testing memory devices, typically on pins
which are not address inputs and not data pins; i.e. write enable (WE), output enable (OE),
chip select (CS), etc.

During pattern execution, in each tester cycle, each chip select can be independently set to
be active or inactive, using the test pattern CHIPS Chip-select-control Operands. All 8 chip
selects can generate drive states. t_cs1 and t_cs2 can also tri-state and strobe.

The pattern compiler always generates output which assumes all that 8 chip selects are
active-low:

• For drive states this means TRUE (CSnT, CSnPT) = logic-0 = VIL and FALSE
(CSnF, CSnPF) = logic-1 = VIH.

• For strobes states (t_cs1 and t_cs2 only) this means strobe TRUE (CHIPS
CSmRDT) = strobe for logic-0 < VOL and strobe FALSE (CHIPS CSmRDF) = strobe
for logic-1 > VOH.

There is only one active state for each chip select thus, with regard to t_cs1 and t_cs2,
the active polarity is always the same for both drive and strobe.

Usage
void cs_polarity_set(TesterFunc chip_select,

BOOL active_high DEFAULT_VALUE(TRUE));

BOOL cs_polarity_get(TesterFunc chip_select);

where:

chip_select specifies one chip select to be set. Legal values are of the TesterFunc
enumerated type but only the chip select values are legal (t_cs1..t_cs8).

active_high is optional and, if used, specifies whether the active state is active-high
(TRUE, default) or active-low (FALSE).

cs_polarity_get() returns the current active state for a specified chip select.
TRUE = active-high, FALSE = active-low.
 2/27/09 Pg-1282

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Example
In the following example, chip selects 2, 4, and 6 are set active-high:

cs_polarity_set(t_cs2, TRUE); // Same as cs_polarity_set(t_cs2);
cs_polarity_set(t_cs4);
cs_polarity_set(t_cs6);

In the following example, the current active polarity for chip select 1 is retrieved:

BOOL active_high = cs_polarity_set(t_cs1);

4.12.6 APG Chip Select Drive/Strobe Polarity Functions
See Algorithmic Pattern Generator (APG) Configuration, APG Chip Select Polarity Control
Function, APG Chip Selects.

Description

Note: using Magnum 1/2/2x, an improved method for setting the chip select active
polarity is available. See APG Chip Select Polarity Control Function.

The APG has 8 APG Chip Selects, used when testing memory devices, typically on pins
which are not address inputs and not data pins; i.e. write enable (WE), output enable (OE),
chip select (CS), etc.

During pattern execution, in each cycle, each chip select can be independently set to be
active or inactive, using the test pattern CHIPS Chip-select-control Operands. All 8 chip
selects can generate drive states. t_cs1 and t_cs2 can also strobe.

The pattern compiler always generates output which assumes all that 8 chip selects are
active-low:

• For drive states this means TRUE (active) = logic-0 = VIL (CHIPS CSnT, CSnPT)
and FALSE (inactive) = logic-1 = VIH (CSnF, CSnPF).

• For strobes states (t_cs1 and t_cs2 only) this means strobe TRUE = strobe for
logic-0 < VOL (CHIPS CSmRDT) or strobe FALSE = strobe for logic-1 > VOH
(CHIPS CSmRDF).

The cs_active_high() function or the cs_read_high() function (for t_cs1 or t_cs2)
may be used to invert this operation; i.e. active = logic-1.
 2/27/09 Pg-1283

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Note the following:

• cs_active_high() allows any or all of the 8 chip selects to be set to active-high
with a single function execution. cs_read_high() only allows t_cs1 and t_cs2
to be set.

• There is only one active state for each chip select thus, with regard to t_cs1 and
t_cs2, executing either cs_active_high() or cs_read_high() will set the
active state for both drive and strobe for the specified chip selects.

• Using either function, any chip selects not explicitly listed are set to (or left) active-
low. Thus, executing cs_read_high() always affects 8 chip selects, even
though t_cs3 through t_cs8 cannot strobe and cannot be set using
cs_read_high(). See APG Chip Select Polarity Control Function.

• Executing cs_active_high() and/or cs_read_high() sets a hardware
register which causes the control bits for the selected chip select(s) to be high.
Any chip select not specified will be set to active-low.

Usage
void cs_active_high(TesterFunc Func1 = t_tf_na,

TesterFunc Func2 = t_tf_na,
TesterFunc Func3 = t_tf_na,
TesterFunc Func4 = t_tf_na,

 TesterFunc Func5 = t_tf_na,
TesterFunc Func6 = t_tf_na,
TesterFunc Func7 = t_tf_na,
TesterFunc Func8 = t_tf_na);

void cs_read_high(TesterFunc Func1);

void cs_read_high(TesterFunc Func1, TesterFunc Func2);

where:

Func1 though Func8 are used to specify which of the 8 chip selects are active-high. Legal
values are of the TesterFunc enumerated type. Using cs_active_high() any of the 8
chip select values (t_cs1..t_cs8) may be specified, in any order. Using cs_read_high()
one or two values may be specified and are limited to t_cs1 and t_cs2. Any chip select(s)
not specified are set active-low.

Example
In the following example, chip selects 2, 4, and 6 are set active-high. All other chip selects
remain active-low:
 2/27/09 Pg-1284

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
cs_active_high(t_cs2, t_cs4, t_cs6);

In the following, only chip select 1 (t_cs1) is set active-high, for both drive and strobe. All
other chip selects remain active-low. Since t_cs2 is not listed in the 2nd function it is set to
active-low:

cs_read_high(t_cs2);
cs_active_high(t_cs1);

4.12.7 APG Data Generator I/O Control Function
See Algorithmic Pattern Generator (APG) Configuration, APG Data Generator .

Description

The adhiz() function is optionally used to invert the functionality of the test pattern
PINFUNC ADHIZ operation.

Note: this function is not supported using Magnum 1, Magnum 2 or Magnum 2x.

4.12.8 APG Drive/Expect Data Latency Functions
See Algorithmic Pattern Generator (APG) Configuration, APG Data Generator .

Description

The expect_delay() function is used to configure expect-data/strobe latency.

Note: Magnum 1 does not support drive-data latency. This section includes some
information which applies to Magnum 2/2x also.

Note: as of 2/1/2008, hardware support for expect-data/strobe latency was not
implemented in Magnum 1. This note will be removed if/when support is added.
 2/27/09 Pg-1285

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
When testing memory devices which have an input data latch and/or output data latch, there
may be some latency between when the DUT receives a new address and when the data to
be written to that address is actually needed at the DUT or when the data read from that
address must be strobed. Here this is called data latency.

When designing a memory test pattern it is very desirable that, for a given address, both the
address generated in a given cycle and the data to be used at that address be controlled by
the same pattern instruction. This requires additional APG hardware to provide for the
required data latency. The APG Data Generator hardware can delay the expect-data/strobe
generated in a given cycle relative to the address generated in that same cycle. The
functions documented here are used to configure this hardware.

By default, no expect-data/strobe latency is enabled; i.e. latency = 0. expect_delay()
may be used to specify a non-zero expect-data/strobe latency value. When this is done,
during pattern execution the APG Data Generator will delay both the expect-data and
strobes by up to 7 cycles (Magnum 1), relative to the address and chip selects generated in
the same cycle. More below.

Note the following:

• As indicated, during the initial program load, the system software sets expect-data/
strobe latency = 0. The system software does not otherwise modify this.

• Any required latency must be configured prior to executing any related test
patterns.

• When using expect-data/strobe latency only outputs from the APG Data Generator
are delayed. This can only affect pins which are pin scrambled to data generator
outputs (i.e. t_d0 to t_d35) (see Pin Scramble Map). These pins should remain
continuously scrambled to these data sources to ensure predictable operation.

• Latency values are specified in tester cycle counts, using:
• The Delay argument to expect_delay() for expect-data/strobe latency only.

• Expect-data/strobe latency is applied in cycles which are controlled by pattern
instructions which do contain MAR READ, READUDATA READV and READZ.
• If expect-data/strobe latency = 0, the APG does not delay data, strobe enable or

tri-state signals relative to the address or chip-select data.
• If expect-data/strobe latency > 0, the APG delays the data generated by the APG

Data Generator (including all data inversions), the strobe enable signals for this
data and the tri-state signal (PINFUNC ADHIZ) the specified number of cycles
relative to the address or chip-select data generated in the same cycle. The
delay occurs between the APG and the Pin Scramble MUX.

Also note:
 2/27/09 Pg-1286

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• Per-cycle time-set selection is not delayed. In effect, the time-set selected in the
cycle in which the delayed data/strobe is actually issued determines the timing/
format applied to the DUT.

• Per-cycle pin scramble selection is not delayed. Thus, when using latency, in a
given cycle, pins which are scrambled to an APG data generator output will
receive the delayed data from n-cycles earlier, where n is the programmed expect-
data/strobe latency. The user is responsible for coordinating all test pattern pin
scramble selections to obtain the desired delayed data operation.

• When using latency, since there is only one path from the APG Data Generator‘s
outputs to the Pin Scramble MUX, as a test pattern transitions from strobe cycles
to drive cycles there is an n-cycle overlap of delayed expect-data/strobe and drive-
data, where n is the number of cycles of expect-data/strobe latency. When
switching from strobe cycles to drive cycles, the delayed expect data takes
precedence over the drive data (i.e. the drive data is not used). This usually
means that there must be n don’t care data cycles between the last strobing cycle
and the first important drive cycle.

• When using expect-data/strobe latency, the APG Data Generator’s I/O control
signals are also affected.MAR LATCH/NOLATCH and RESET are delayed the
expect-data/strobe latency value.

• When using expect-data/strobe latency, any strobe(s) on pins scrambled to APG
data generator outputs which are generated in instructions closer to MAR DONE
than the latency value are discarded (i.e. can’t fail). For example, given:

expect_delay(3);
funtest(myPat, finish);

The following pattern will use strobes as noted in the comments. Note this example
will generate strobes in the MAR DONE cycle but that these only occur once (never use
any strobe instructions with a MAR DONE instruction):

PATTERN(myPat, memory)
% MAR READ // Strobes are used, 3 cycles later

PINFUNC ADHIZ
% MAR READ // Strobes discarded, READ can’t fail

PINFUNC ADHIZ
% MAR READ // Strobes discarded, READ can’t fail

PINFUNC ADHIZ
% MAR DONE // Strobes from 3 cycles earlier, 1 time

• When using expect-data/strobe latency, since APG addresses and expect data are
both pipe-lined, errors logged to the Error Catch RAM (ECR) are correctly aligned
with addresses.
 2/27/09 Pg-1287

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Usage
The following programs the expect-data/strobe latency value:

void expect_delay(int Delay);

The following returns the currently programmed expect-data/strobe latency value:

BYTE expect_delay();

where:

Delay and delay specify the number of cycles latency. Legal values are 0 to 7.

The version of expect_delay() which returns a BYTE value returns the currently
programmed expect-data/strobe latency value.

Example
The following example specifies 3 cycles of expect-data/strobe latency:

expect_delay(3);

4.12.9 PE Channel Forced I/O State
See Algorithmic Pattern Generator (APG) Configuration.

Description
It is sometimes convenient to statically set the I/O state of the PE driver on selected pins.
For example, when testing a ROM, which can only output data, it may be convenient to
specify that the tester pins connected to the ROM outputs always be tri-stated.

The tri_state() function forces the specified pins to tri-state.

The drive_only() function forces the specified pins to drive.

The io_enable() function restores normal I/O operation for the specified pins.

Normal I/O operation is enabled during the initial program load, but is not otherwise changed
by the system software.
 2/27/09 Pg-1288

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Note: these functions directly set hardware registers which control the I/O state of the
specified pins. These registers take precedence over the I/O signals from the
test pattern.

Note: the tri_state() function causes the PE Driver to tri-state. The currently set
Magnum PE Driver Modes will determine whether the pin(s) are set to VZ, VTT,
or open-circuit.

Note: the drive_only() function also prevent pins from responding to the VIHH
signal from the test pattern; i.e. drive-only pins cannot be set to the VIHH drive
level.

Usage
void tri_state(PinList* pPinList);

void drive_only(PinList* pPinList);

void io_enable(PinList* pPinList);

where:

pPinList specifies the pins to be programmed.

Example
The following example sets all pins identified in the pin list named rom_data_bus_pins to
tri-state:

tri_state(rom_data_bus_pins);

4.12.10 APG Data Register Width Selection Function
See Algorithmic Pattern Generator (APG) Configuration, APG Data Generator.
 2/27/09 Pg-1289

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Description

The data_reg_width() function is used to set or get the data width of the APG data
registers (DMAIN, DBASE), which can be configured as one 36-bit wide register or as two
18-bit wide registers.

APG Data Generator shift, rotate, increment and decrement operations operate on either a
single 36-bit register or two 18-bit registers, based on how the data register is configured. In
18-bit configuration, the two register halves perform identical operations.

All data registers are set to 36-bits wide at program initialization but is not otherwise
modified by system software.

Note: proper Data Buffer Memory (DBM) operation does NOT require that the width
configuration of the DBM (set using dbm_config_set()) match that of the
data register (set using data_reg_width() or by default). However, the user
is responsible for detailed understanding DBM operation when these widths are
different. See DBM Data Widths.

Usage
The following function sets the width of the data register:

void data_reg_width(int Width);

The following function gets the currently programmed data register width:

int data_reg_width();

where Width specifies the desired APG Data Generator width. Legal values are 18 or 36.

data_reg_width() returns the currently configured data register width.

Example
The following example configures the APG Data Generator to 18-bit wide configuration.
Then retrieves and prints the current value.

data_reg_width(18);
output(" Width => %d", data_reg_width());
 2/27/09 Pg-1290

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
4.12.11 APG JAM Logic Configuration Functions
See Algorithmic Pattern Generator (APG) Configuration, JAM Logic.

This section contains the following:

• apg_jam_mode_set(), apg_jam_mode_get()
• apg_jam_ram_set(), apg_jam_ram_get()
• apg_jam_ram_address_set(), apg_jam_ram_address_get()

Also see DATGEN Dataout Operand.

4.12.11.1 apg_jam_mode_set(), apg_jam_mode_get()
See APG JAM Logic Configuration Functions, JAM Logic.

Note: first available in software release h1.1.23.

Description

The apg_jam_mode_set() function is used to configure the APG Data Generator’s JAM
Logic, specifically to configure the JAM Select MUX This is called the JAM mode. The
apg_jam_mode_get() function is used to get the currently set JAM mode.

Note the following:

• apg_jam_mode_set() sets a single global mode, shared by all APGs in the
system. This configures the JAM Select MUX identically for all APGs.

• The default JAM mode is set during the initial program load and selects the JAM
Register. This matches the original JAM register operation. The mode is not
otherwise changed by the system software.

• The alternate mode selects the JAM RAM; i.e. t_jam_mode_ram. This must be
done before executing any test pattern which depends on JAM RAM content.

Usage
The following function configures the APG Data Generator’s JAM Select MUX for all boards
in the system:
 2/27/09 Pg-1291

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
void apg_jam_mode_set(
ApgJamMode mode DEFAULT_VALUE(t_jam_mode_reg));

ApgJamMode apg_jam_mode_get();

where:

mode is optional and, if used, specifies the desired mode. Legal values are of the
ApgJamMode enumerated type. Default = t_jam_mode_reg, selecting the original JAM
Register.

apg_jam_mode_get() returns the currently set mode.

Example
apg_jam_mode_set(t_jam_mode_ram);
ApgJamMode mode = apg_jam_mode_get();

4.12.11.2 apg_jam_ram_set(), apg_jam_ram_get()
See APG JAM Logic Configuration Functions, JAM Logic.

Note: first available in software release h1.1.23.

Description

The apg_jam_ram_set() function is used to write values to the APG Data Generator’s
JAM RAM. The apg_jam_ram_get() function is used to read values from the JAM RAM.

Note the following:

• The JAM RAM can be accessed regardless of the currently set JAM mode (set
using apg_jam_mode_set()).

Usage
The following function writes a single value to the JAM RAM on all boards in the system:

void apg_jam_ram_set(int addr, __int64 data);

The following function writes one or more values to the JAM RAM on all boards in the
system:
 2/27/09 Pg-1292

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
void apg_jam_ram_set(int addr,
Int64Array vals,
int count DEFAULT_VALUE(-1));

The following function writes a single value to the JAM RAM on one specified board. This
may be used when Sites-per-Controller > 1:

void apg_jam_ram_set(HSBBoard Board, int addr, __int64 data);

The following function writes one or more values to the JAM RAM on one specified board.
This may be used when Sites-per-Controller > 1:

void apg_jam_ram_set(HSBBoard Board,
int addr,
Int64Array vals,
int count DEFAULT_VALUE(-1));

The following function reads one value from the JAM RAM:

__int64 void apg_jam_ram_get(int addr);

The following function reads one or more values from the JAM RAM:

void apg_jam_ram_get(int addr,
Int64Array &vals,
int count DEFAULT_VALUE(-1));

The following function reads one value from the JAM RAM on a specified board:

__int64 void apg_jam_ram_get(HSBBoard Board, int addr);

The following function reads one or more values from the JAM RAM on a specified board::

void apg_jam_ram_get(HSBBoard Board,
int addr,
Int64Array &vals,
int count DEFAULT_VALUE(-1));

where:

addr specifies the first (or only) JAM RAM address to be written or read. Legal values are
0x0 to 0x3FFF (214 -1).

data specifies one value to be written to the JAM RAM at addr. Only the low 36 bits are
used.

vals is a previously initialized Int64Array from which count values are written to the
JAM RAM beginning at addr. count is optional and defaults to -1 = all values in vals are
written to the JAM RAM. Only the low 36 bits of each value are used. Any error related to the
 2/27/09 Pg-1293

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
size of the JAM RAM vs. addr and count values causes a warning to be issued and
apg_jam_ram_set() to return without completing the operation.

Board identifiies a specific board to be accessed. This may be used when Sites-per-
Controller > 1:

The versions of apg_jam_ram_get() which return __int64 return the value read from
addr.

Example
Int64Array vals = {0xA5695A960, 0x5A96A569F };
apg_jam_ram_set(0, vals);
apg_jam_ram_get(0, &vals);
if(int c = vals.GetSize())

for(int i = 0; i < c; ++i)
output(" Val[%d] = %I64d", i, vals.GetAt(i));

4.12.11.3 apg_jam_ram_address_set(), apg_jam_ram_address_get()
See APG JAM Logic Configuration Functions, JAM Logic.

Note: first available in software release h1.1.23.

Description

The apg_jam_ram_address_set() function is used to set an initial value in the JAM
RAM Address Counter. The apg_jam_ram_address_get() function is used to read the
current value from the JAM RAM Address Counter.

Note the following:

• apg_jam_ram_address_set() sets a single global value, written to all APGs in
use.

• During the initial program load the JAM RAM Address Counter value is set = 0.
The address is not otherwise changed by the system software.

• Proper operation of the JAM RAM requires the JAM RAM Address Counter be set
before executing any test pattern which depends on JAM RAM content.
 2/27/09 Pg-1294

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• During pattern execution, the JAM RAM Address Counter is incremented,
decremented or not modified (hold) by the DATGEN Dataout Operands. The JAM
RAM Address Counter is affected in the cycle controlled by a given instruction. For
example, if the initial JAM RAM address is set = 0 and the first DATGEN instruction
increments the JAM RAM address then the first set of data will be from address 1,
not 0.

• During pattern execution, the JAM RAM Address Counter will roll-over (or under)
when the maximum (or minimum) value is reached.

• The JAM RAM Address Counter can be accessed regardless of the currently set
JAM mode (set using apg_jam_mode_set()).

Usage
The following function sets the JAM RAM Address Counter on all boards in the system:

void apg_jam_ram_address_set(int address);

The following functions gets the current JAM RAM Address Counter:

int apg_jam_ram_address_get();

where:

address is the value to be written to the JAM RAM Address Counter. Legal values are 0x0
to 0x3FFF (214 -1).

apg_jam_ram_address_get() returns the address read from the JAM RAM Address
Counter.

Example
apg_jam_ram_address_set(0);
int addr = apg_jam_ram_address_get();

4.12.12 APG User RAM Functions
See Algorithmic Pattern Generator (APG) Configuration, APG User RAM.

This section includes:

• apg_userram_value_set(), apg_userram_value_get()
• apg_user_ram_address_set(), apg_user_ram_address_get()
 2/27/09 Pg-1295

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
4.12.12.1 apg_userram_value_set(), apg_userram_value_get()
See APG User RAM Functions, APG User RAM.

Description

The apg_userram_value_set() function is used to set (write) one or more values in the
APG User RAM.

The apg_userram_value_get() function is used to get one or more values from the
APG User RAM.

Note the following:

• When multiple values are being accessed two parameters are specified:
• data_array is a user defined array containing multiple values to be written to

the APG User RAM or to return multiple values read from the APG User RAM.
• count specifies the number of values to be read into the array or written from

the array.
When using apg_userram_value_set() and apg_userram_value_get(),
the combination of starting address, the size of the data array and the count
value should be consistent vs. the size of the APG User RAM. The system
software silently ignores any related errors; i.e. get/set operations silently stop if/
when any errors are detected.

Usage
The following function sets a single URAM address to the specified value:

void apg_userram_value_set(int addr, __int64 data);

The following function will sequentially load values from the specified array into the URAM,
starting at URAM address 1:

void apg_userram_value_set(Int64Array &data_array);

The following function will load count URAM locations, starting at the specified address,
with values from the specified array:

void apg_userram_value_set(int addr,
Int64Array &data_array,
int count);

The following function returns the value from the specified URAM address:
 2/27/09 Pg-1296

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
__int64 apg_userram_value_get(int addr);

The following function will return count values, beginning at the specified address, in the
specified data array:

void apg_userram_value_get(int addr,
Int64Array &data_array,
int count);

where:

addr specifies the (first) APG User RAM location to be accessed. Legal values range from
1-4096.

data specifies one value to be written to the APG User RAM.

data_array is an existing Int64Array used in two contexts:

• In setter functions, data_array contains the data to be written to the APG User
RAM. The array should contain at least count values, if not, some addresses will
not be changed.

• In getter functions, data_array is used to return data read from the APG User
RAM. The array is automatically resized by the system software as needed. Any
prior contents are lost. The size and individual elements in the data_array can
be obtained using standard CArray member functions.

count specifies the number of values to be written (set) or read (get) to/from the APG User
RAM. Legal values are 1-4096.

apg_userram_value_get() which returns an __int64 value returns the value read
from the specified address.

Example
The following example writes 13 to the first APG User RAM location (address 1):

apg_userram_value_set(0x1, 13);

The following example creates an array containing 6 values then writes those values to
sequential APG User RAM addresses beginning at location address 199:

Int64Array vals;
vals.Add(1);
vals.Add(3);
vals.Add(5);
vals.Add(7);
 2/27/09 Pg-1297

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
vals.Add(11);
vals.Add(13);
apg_userram_value_set(199, vals, vals.GetSize());

The following example reads and returns the value from APG User RAM address 999:

__int64 value = apg_userram_value_get(999);

The following example reads and returns the value from 10 sequential APG User RAM
addresses starting address 29. Any prior values in the getvals array are lost:

Int64Array getvals;
apg_userram_value_get(29, getvals, 10);

4.12.12.2 apg_user_ram_address_set(), apg_user_ram_address_get()
See APG User RAM Functions, APG User RAM.

Description

The apg_user_ram_address_set() function is used to write an address into the User
RAM Address Index Register.

The apg_user_ram_address_set() function is used to retrieve the current address from
the User RAM Address Index Register.

Usage
The following function writes an address into the User RAM Address Index Register:

void apg_user_ram_address_set(int address);

int apg_user_ram_address_get();

where:

address specifies the address to be written. Legal values range from 0-4095.

Note: test pattern instructions uses explicit tokens to identify a User RAM address. In
the pattern language, URAM1 is equivalent to the address value 0 when using
apg_user_ram_address_set().
 2/27/09 Pg-1298

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
apg_user_ram_address_get() returns the valuer read from the User RAM Address
Index Register.

Example
apg_user_ram_address_set(0x0);
int addr = apg_user_ram_address_get();

4.12.13 APG Data Buffer Memory Configuration
See Algorithmic Pattern Generator (APG) Configuration.

Prior to use, the Data Buffer Memory (DBM) must be confgured, as documented in Data
Buffer Memory Software (DBM).

4.12.14 APG Data Inversion Enable Functions
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.

Description

The apg_datainv_A_enable_set() and apg_datainv_B_enable_set() functions
are used to setup the individual data inversion enable bits for the two banks of Data
Inversion Logic in the APG Data Generator.

The apg_datainv_A_enable_get() and apg_datainv_B_enable_get() functions
are used to retrieve the current data inversion enable bits configuration for the two banks of
Data Inversion Logic.

Note the following:

• As shown in the APG Data Inversion Block Diagram, the Data Inversion Logic
contains two independent banks of inversion logic, identified as Data Inversion
Bank-A and Data Inversion Bank-B.
 2/27/09 Pg-1299

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• Each bank has a separate set of enable bits, one bit for each of the available data
inversions. apg_datainv_A_enable_set() and
apg_datainv_A_enable_get() access the enable bits for the Data Inversion
Bank-A. apg_datainv_B_enable_set() and apg_datainv_B_enable_get()
access the enable bits for the Data Inversion Bank-B.

• A single bit-wise value is used to configure the enable bits for each bank. User code
logically OR’s the desired enable bits to set any combination of data inversions. The
DataInvControls enumerated type is available to help program these enables,
see Example.

• The enable bits must be setup before executing a test pattern which utilizes data
inversions; i.e. the enable bits are not controlled from the test pattern.

• The final level of data inversion, controlled by UDATA bits and the DATGEN XORINV
pattern instruction, do not have an equivalent enable bit and thus are not affected by
these functions.

• For backwards compatibility, during the initial program load most data inversion
enable bits are set to the enabled state and the Data Inversion AB Select MUXs are
set to route the Data Inversion Bank-A output to all 36 data generator outputs (see
APG Data Inversion Bank Select Functions). However, the enables for the
Background Bank-A and Background Bank-B data inversions are set to the disable
state (the Maverick-I/-II do not include this logic). The system software does not
otherwise change the state of these enables.

• In Multi-DUT Test Programs the operation of these functions is not affected by
Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Description
The following functions are used to set the data inversion enable bits:

void apg_datainv_A_enable_set(int value);

void apg_datainv_B_enable_set(int value);

The following functions are used in multi-site per controller situations to set the data
inversion enable bit configuration for a specified Site Assembly Board (when Sites-per-
Controller = 1 (default) these functions are equivalent to the two previous versions):

void apg_datainv_A_enable_set(HSBBoard Board, int value);

void apg_datainv_B_enable_set(HSBBoard Board, int value);

The following functions are used to get the current enable bit configuration for Data
Inversion Bank-A or Data Inversion Bank-B:

int apg_datainv_A_enable_get();
 2/27/09 Pg-1300

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
int apg_datainv_B_enable_get();

The following functions are used in multi-site per controller situations to get the current
enable bit configuration for Data Inversion Bank-A or Data Inversion Bank-B for a specified
Site Assembly Board. Note that when Sites-per-Controller = 1 (default) these functions are
equivalent to the two previous versions):

int apg_datainv_A_enable_get(HSBBoard Board);

int apg_datainv_B_enable_get(HSBBoard Board);

where:

value is a bit-wise value which specifies which data inversions are enabled. The
DataInvControls enumerated type is available to help program these enables, see
Example.

Board is used when Sites-per-Controller > 1 to identify a specific Site Assembly Board to be
accessed.

apg_datainv_A_enable_get() returns a bit-wise value representing the current data
inversion enable bit configuration. A logic-1 means the corresponding inversion is enabled.
Only the low 5 bits are valid.

apg_datainv_B_enable_get() returns a bit-wise value representing the current data
inversion enable bits for Data Inversion Logic bank B. A logic-1 means the corresponding
inversion is enabled. Only the low 11 bits are valid (see DataInvControls).

Example
The following example enables Background data inversion (see APG Background Data
Inversion Function) and data topological inversion (see APG Data Topological Inversion
(DTOPO) Function) for Data Inversion Bank-B and sets data generator outputs D8..D15 to
receive data from Data Inversion Bank-B:

apg_datainv_B_enable_set(BCKFN_INV_EN | DTOPO_INV_EN);
apg_datainv_AB_select_set(0xFF00); // apg_datainv_AB_select_set()

4.12.15 APG Data Inversion Bank Select Functions
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.
 2/27/09 Pg-1301

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Description

The apg_datainv_AB_select_set() function is used to setup the Data Inversion AB
Select MUXs in the APG Data Inversion Logic. This determines which bank (A vs. B) of data
inversion is routed each of the 36 APG Data Generator outputs.

The apg_datainv_AB_select_get() function is used to retrieve the current Data
Inversion AB Select MUXs configuration.

Note the following:

• As shown in the APG Data Inversion Block Diagram, the data generator’s Data
Inversion Logic contains two independent banks of inversion logic, identified as Data
Inversion Bank-A and Data Inversion Bank-B. The Data Inversion AB Select MUXs
determine which bank of inversion logic is routed to each of the 36 data generator
outputs.

• A single bit-wise value is used to configure these MUXs. See Usage.
• The MUXs must be setup before executing the test pattern; i.e. they are not

controlled from the test pattern.
• The final level of data inversion, controlled by UDATA bits and the DATGEN XORINV

pattern instruction, are not affected by these MUXs.
• For backwards compatibility, during the initial program load the Data Inversion AB

Select MUXs are set to route data from Data Inversion Bank-A to all 36 data
generator outputs (see APG Data Inversion Enable Functions). The system software
does not otherwise modify the configuration of these MUXs.

• In Multi-DUT Test Programs the operation of these functions is not affected by
Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Description
The following function is used to set the 36 Data Inversion AB Select MUXs:

void apg_datainv_AB_select_set(__int64 value);

The following function is used in multi-site per controller situations to set the Data Inversion
AB Select MUXs configuration for a specified Site Assembly Board (when Sites-per-
Controller = 1 (default) this function is equivalent to the previous version):

void apg_datainv_AB_select_set(HSBBoard Board, __int64 value);

The following function is used to get the current Data Inversion AB Select MUXs
configuration:
 2/27/09 Pg-1302

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
__int64 apg_datainv_AB_select_get();

The following function is used in multi-site per controller situations to get the Data Inversion
AB Select MUXs configuration for a specified Site Assembly Board. Note that when Sites-
per-Controller = 1 (default) this function is equivalent to the previous version:

__int64 apg_datainv_AB_select_get(HSBBoard Board);

where:

value is a bit-wise value which specifies which data generator outputs (D35..D0) are routed
to the Data Inversion Bank-A vs. Data Inversion Bank-B. A logic-1 selects Data Inversion
Bank-B for the corresponding APG data generator output. The LSB represents D0, LSB+1
represents D1, etc. Only the low 36 bits are used. See Example.

Board is used when Sites-per-Controller > 1 to identify a specific Site Assembly Board to be
accessed.

apg_datainv_AB_select_get() returns a bit-wise value representing which data
generator outputs (D35..D0) are routed to the Data Inversion Bank-A vs. Data Inversion
Bank-B. See value above.

Example
See Example.

4.12.16 APG Background Data Inversion Function
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.

Description

The bckfen() function is used to configure the Background Inversion logic in the APG
Data Generator’s Data Inversion Logic. A typical application of the background inversion
logic is to generate various checkerboard data patterns.

Note the following:

• bckfen() must be executed, to configure the underlying hardware, before
executing a test pattern which uses DATGEN Background Function Operands.
 2/27/09 Pg-1303

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• The Background Inversion logic is used to conditionally invert data as a function of
the X and/or Y address generated by the APG Address Generator. The bckfen()
function defines a desired inversion logic operation and selects which APG X/Y
address bit(s), or their complements, will affect the operation (more below).

• The Background Inversion logic generates a single invert bit which will either invert
or not-invert selected data generator outputs, if enabled using the APG Data
Inversion Enable Functions.

• When the bit2fen() function is used to select a bit2 inversion input this also
changes the 2nd bit used by the background inversion. Similarly, the bit2
argument to bckfen() selects the input used for bit2 inversion.

• In Multi-DUT Test Programs the operation of these functions is not affected by
Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

The bckfen() function has two basic forms:

• Invert based on X/Y address parity. See Background Function Selection: parity
options below.

• Invert based on the relative states of two specified X/Y address bits. See
Background Function Selection: Address Bit Options below.

The following table describes the data inversion options based on X/Y address parity:

The following table describes the data inversion options which consider individual X/Y
address bits, which are identified with separate arguments using TesterFunc and/or

Table 4.12.16.0-1 Background Function Selection: parity options

BckOperation Description of Inversion Performed

force Unconditionally force a data inversion (default)

xeven Invert data on X address parity = even

xodd Invert data on X address parity = odd

yeven Invert data on Y address parity = even

yodd Invert data on Y address parity = odd

xyeven Invert data on XY address parity = even

xyodd Invert data on XY address parity = odd

xeven_yodd Invert data on X address parity = even AND Y address parity = odd

xodd_yeven Invert data on X address parity = odd AND Y address parity = even
 2/27/09 Pg-1304

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
TesterBGFunc values. The latter provides for selecting the complement of a specified
address bit:

Usage
The following function inverts data based on a specified operation. Only operations listed in
Background Function Selection: parity options are valid for this version of bckfen():

void bckfen(BckOperation Operation);

The following functions invert data based on a specified operation and two specified X/Y
address bit(s). Only operations listed in Background Function Selection: Address Bit Options
are valid for these versions of bckfen():

void bckfen(BckOperation Operation, TesterFunc bit1);

void bckfen(BckOperation Operation, TesterBGFunc bit1);

void bckfen(BckOperation Operation,
TesterFunc bit1,
TesterFunc bit2);

void bckfen(BckOperation Operation,
TesterBGFunc bit1,
TesterFunc bit2);

void bckfen(BckOperation Operation,
TesterFunc bit1,
TesterBGFunc bit2);

void bckfen(BckOperation Operation,
TesterBGFunc bit1,
TesterBGFunc bit2);

where:

Table 4.12.16.0-2 Background Function Selection: Address Bit Options

BckOperation Description of Inversion Performed

and Invert data on address bit1 logically AND’ed with address bit2

or Invert data on address bit1 logically OR’ed with address bit2

xor Invert data on address bit1logically XOR’ed with address bit2
 2/27/09 Pg-1305

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Operation specifies the desired data inversion background operation. Legal values are of
the BckOperation enumerated type. As indicated above, only certain BckOperation
values are valid for each version (overload) of bckfen().

bit1 and bit2 each identify one X or Y address bit (or its complement) to control inversion.
See Background Function Selection: Address Bit Options. Legal values must be of the
TesterFunc and/or TesterBGFunc enumerated types. Using TesterFunc only APG
address values are legal (t_x0, t_y0, etc.). Inversion on a single address bit can be
accomplished using the and operation with the same input specified for bit1 and bit2.
See Example 3 below.

Examples
The following example inverts data generator outputs in any cycle in which APG Y address
t_y12 AND’ed with the complement of X address t_x4 = TRUE:

bckfen(and, t_y12, t_x4_bar);

The following example inverts data generator outputs in any cycle in which the APG X
address parity = even:

bckfen(xeven);

The following example inverts the data register generator in any cycle in which the Y
address t_y7 is TRUE (logic-1):

bckfen(and, t_y7, t_y7);

4.12.17 APG Bit-2 Data Inversion Function
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.

Description

The bit2fen() function is used to select one X or Y address bit (or its complement) which,
when logically TRUE, will invert the output of the APG Data Generator (see Data Inversion
Logic). Bit2 inversion generates a single invert bit which will either invert or not-invert
selected data generator outputs, if enabled using APG Data Inversion Enable Functions.

Note the following:

• bit2fen() must be executed before executing a test pattern, to configure the
underlying hardware.
 2/27/09 Pg-1306

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• Any value specified using bit2fen() also affects the operation of the Background
data inversion (see APG Background Data Inversion Function), programmed using
bckfen(). Similarly, any bit2 argument speciifed using bckfen() selects the
bit2 X/Y address (or complement) the same as if using bit2fen().

• t_bg_off is used to disable bit2 data inversion. Or, set the appropriate value with
the APG Data Inversion Enable Functions.

• In Multi-DUT Test Programs the operation of these functions is not affected by
Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Usage
The following function selects the input address used for bit2 data inversion:

void bit2fen(TesterFunc bit2);

void bit2fen(TesterBGFunc bit2);

where:

bit2 identifies one X or Y address bit (or its complement) to control inversion. Legal values
must be of the TesterFunc or TesterBGFunc enumerated types. Using TesterFunc
only APG address values are legal (t_x0, t_y2, etc.).

Examples
bit2fen(t_x0);
bit2fen(t_y0_bar);

4.12.18 APG Background Bank-A, Bank-B Inversion
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.

Note: as of 1/12/2005, this function and related hardware is under development and
subject to change. This note will be deleted when the related features are
complete.

Description

The apg_datainv_A_func_set() and apg_datainv_B_func_set() functions are
used to configure the input addess selections and the logic operation performed by
Background Bank-A and Background Bank-B data inversions (see Data Inversion Logic).
 2/27/09 Pg-1307

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The output of the main Background data inversion logic is common to both banks (A/B) of
Data Inversion Logic. However, Magnum 1/2/2x have two other sets of similar logic, called
Background Bank-A and Background Bank-B, which operate much like main Background
data inversion but are each constrained to a single data inversion bank. Note the following:

• These functions must be executed before executing a test pattern. There are no test
pattern enable bits which affect these data inversion signals.

• Both the Background Bank-A logic and Background Bank-B logic have two inputs,
which are selectable from any APG X/Y address or address complement (see Data
Inversion Logic). The Background Bank-A input selections are independent of the
Background Bank-B inputs.

• Background Bank-A outputs are routed to Data Inversion Bank-A only. Similarly,
Background Bank-B outputs are routed to Data Inversion Bank-B only. The selection
of which bank of data inversion is routed to each data generator output is specified
using APG Data Inversion Bank Select Functions.

• The two X/Y address inputs selected for Background Bank-A may be used directly
as inversion control bits for Data Inversion Bank-A. Each bit has an independent
enable (see APG Data Inversion Enable Functions). These two inputs are also
routed to the Background Bank-A function logic which can perform logical AND, OR
or XOR operations on the two inputs to generate a 3rd inversion input to Data
Inversion Bank-A, which also has its own enable signal.

• Similarly, The two X/Y address inputs selected for Background Bank-B may be used
directly as inversion control bits for Data Inversion Bank-B. Each bit has an
independent enable. These two inputs are also routed to the Background Bank-B
function logic which can perform logical AND, OR or XOR operations on the two
inputs to generate a 3rd inversion input to the Background Bank-B, which also has
its own enable signal.

• The APG Bit-2 Data Inversion Function portion of the Background data inversion
logic is not duplicated for Background Bank-A or Background Bank-B. Instead, as
indicated above, both inputs to the Background Bank-A and Background Bank-B
logic are available as direct data inversion controls.

• As indicated above, each of the outputs from Background Bank-A and Background
Bank-B have independent enables. During the initial program load these are set to
the disable state, for compatibility with the Maverick-I/-II which do not include this
logic. The system software does not otherwise change the state of these enables.
See APG Data Inversion Enable Functions.
 2/27/09 Pg-1308

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• For compatibility with the legacy APG Background Data Inversion Functions
(bckfen()) and bit2fen()) the X/Y address input selection argument values use
two enumerated types: TesterFunc (X/Y address selection) and TesterBGFunc
(X/Y address complement selection). This results in four permutations of the
functions below, to allow any combination of both data types.

• The BckOperation enumerated type is used to specify the desired logic operation
to be performed using the two selected inputs. The functions below can only use the
and, or, xor values or t_bg_off to disable the logic operation (which is more
properly done using the APG Data Inversion Enable Functions).

• The versions of the functions below which include the Board argument are only
useful when Sites-per-Controller > 1.

• In Multi-DUT Test Programs the operation of these functions is not affected by
Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Usage
The following functions select the two inputs for the Background Bank-A and specify the
logic operation to be performed.

void apg_datainv_A_func_set(BckOperation Operation,
TesterFunc bit1,
TesterFunc bit2);

void apg_datainv_A_func_set(BckOperation Operation,
TesterFunc bit1,
TesterBGFunc bit2);

void apg_datainv_A_func_set(BckOperation Operation,
TesterBGFunc bit1,
TesterFunc bit2);

void apg_datainv_A_func_set(BckOperation Operation,
TesterBGFunc bit1,
TesterBGFunc bit2);

The following functions select the two inputs for the Background Bank-B and specify the
logic operation to be performed:

void apg_datainv_B_func_set(BckOperation Operation,
TesterFunc bit1,
TesterFunc bit2);
 2/27/09 Pg-1309

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
void apg_datainv_B_func_set(BckOperation Operation,
TesterFunc bit1,
TesterBGFunc bit2);

void apg_datainv_B_func_set(BckOperation Operation,
TesterBGFunc bit1,
TesterFunc bit2);

void apg_datainv_B_func_set(BckOperation Operation,
TesterBGFunc bit1,
TesterBGFunc bit2);

The following functions select the two inputs for the Background Bank-A and specify the
logic operation to be performed. These are only useful when Sites-per-Controller > 1:

void apg_datainv_A_func_set(HSBBoard Board,
BckOperation Operation,
TesterFunc bit1,
TesterFunc bit2);

void apg_datainv_A_func_set(HSBBoard Board,
BckOperation Operation,
TesterFunc bit1,
TesterBGFunc bit2);

void apg_datainv_A_func_set(HSBBoard Board,
BckOperation Operation,
TesterBGFunc bit1,
TesterFunc bit2);

void apg_datainv_A_func_set(HSBBoard Board,
BckOperation Operation,
TesterBGFunc bit1,
TesterBGFunc bit2);

The following functions select the two inputs for the Background Bank-B and specify the
logic operation to be performed. These are only useful when Sites-per-Controller > 1:

void apg_datainv_B_func_set(HSBBoard Board,
BckOperation Operation,
TesterFunc bit1,
TesterFunc bit2);

void apg_datainv_B_func_set(HSBBoard Board,
BckOperation Operation,
TesterFunc bit1,
TesterBGFunc bit2);
 2/27/09 Pg-1310

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
void apg_datainv_B_func_set(HSBBoard Board,
BckOperation Operation,
TesterBGFunc bit1,
TesterFunc bit2);

void apg_datainv_B_func_set(HSBBoard Board,
BckOperation Operation,
TesterBGFunc bit1,
TesterBGFunc bit2);

where:

Operation specifies the desired logic operation to be performed using the two selected
inputs. Legal values are of the BckOperation enumerated type but only and, or, xor are
valid for these functions.

bit1 and bit2 identify the two inputs, which also become two of the three outputs. Legal
values are of the TesterFunc and TesterBGFunc enumerated types (any combination).
Using TesterFunc only APG address values are legal (t_x0, t_y2, etc.).

Board is used when Sites-per-Controller > 1 to identify a specific Site Assembly Board
(HSB) to be accessed.

Example
apg_datainv_A_func_set(and, t_x0, t_y0_bar);

4.12.19 APG Data Topological Inversion (DTOPO) Function
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration.

Description

The dtopo() function is used to configure APG Data Generator topological data inversion
options before executing a test pattern which uses the DATGEN DTOPO instruction (see
DATGEN Background Function Operands).
 2/27/09 Pg-1311

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The APG Data Generator’s DTOPO RAM is used to conditionally invert data as a function of
the X/Y address:

The X DTOPO RAM is 256Kx1 and the Y DTOP RAM is 64Kx1, each storing one bit for
each unique X and Y address. In use, the effective size of each DTOPO RAM is determined
by the number of enabled X and Y address bits, set using numx() and numy().

During initial program load, both DTOPO RAMs are initialzed to 0; i.e. no DTOPO inversion
can occur, regardless of which dtopo() operation is selected, and regardless whether the
pattern uses the DATGEN DTOPO operand or not. The system software does not otherwise
modify the DTOPO RAM.

The DTOPO RAMs are loaded via user C code, see APG Data TOPO RAM Load Functions.
Then, as the test pattern executes, in any pattern instruction containing the DATGEN DTOPO
instruction, for each unique X and/or Y address the output of the corresponding DTOPO
RAM will be either logic-0 or logic-1. These are the inputs to the DTOPO function block
shown above.

The APG Data Inversion Enable Functions and APG Data Inversion Bank Select Functions
do affect the use and operation of DTOPO inversion.

In hardware, the DTOPO functional block provides a selectable logic operation, set using the
dtopo() function. The following table describes the available inversion operations:

Table 4.12.19.0-1 DTOPO Logical Operation Options

DTopoFunc Description

xdtopo Invert data when the X-DTOPO output is logic-1. The Y-DTOPO RAM
output has no effect.

ydtopo Invert data when the Y-DTOPO output is logic-1. The X-DTOPO RAM
output has no effect.

1 = invertf
X-Address

Y-Address

1 or 0

1 or 0

X-DTOPO
RAM

0 = don’t invert
Y-DTOPO

RAM
The number of X/Y addresses used is based on
values set using numx() and numy()
 2/27/09 Pg-1312

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The output of the DTOPO logic is a single invert bit: a logic-1 causes the data to be inverted,
logic-0 does not invert data. APG Data Generator outputs are affected. The Data Inversion
Logic is as part of the APG Data Generator.

In Multi-DUT Test Programs the operation of these functions is not affected by Active DUTs
Set (ADS) or Ignored DUTs Set (IDS).

Usage
void dtopo(DTopoFunc Function);

where:

Function specifies the desired DTOPO logic operation. Legal values are of the
DTopoFunc enumerated type. See DTOPO Logical Operation Options above.

Example
The following example sets the DTOPO logic function to output a logic-1 (i.e. invert APG
data) when the output of the X-DTOPO XOR’ed with the output of the Y-DTOPO is a logic-1.

dtopo(xd_xor_yd);

Also see Example.

4.12.20 APG Data TOPO RAM Load Functions
See Data Inversion Logic, Algorithmic Pattern Generator (APG) Configuration, APG Data
Topological Inversion (DTOPO) Function.

xd_and_yd Invert data when the logical AND of the X-DTOPO output with the
Y-DTOPO output is logic-1.

xd_or_yd Invert data when the logical OR of the X-DTOPO output with the
Y-DTOPO output is logic-1.

xd_xor_yd Invert data when the logical XOR (exclusive OR) of the X-DTOPO output
with the Y-DTOPO output is logic-1.

Table 4.12.19.0-1 DTOPO Logical Operation Options (Continued)

DTopoFunc Description
 2/27/09 Pg-1313

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
Description

The x_dtopo(), y_dtopo() and xy_dtopo() functions are used to load data into the
APG’s X-DTOPO RAM and/or Y-DTOPO RAM. See APG Data Topological Inversion
(DTOPO) Function. Note the following:

• During initial program load, both DTOPO RAMs are initialzed to 0; i.e. no DTOPO
inversion can occur, regardless of which function is selected using the functions
below, and regardless whether the pattern uses DATGEN DTOPO or not. The
system software does not otherwise modify the DTOPO RAM.

• Each function execution writes one location of the X-DTOPO RAM, Y-DTOPO
RAM, or both. It is common to use these functions in a loop to load the TOPO
memory based on an algorithm.

• Only the LSB (1 bit) of each data value is actually used.
• In Multi-DUT Test Programs the operation of these functions is not affected by

Active DUTs Set (ADS) or Ignored DUTs Set (IDS).

Usage
The following function writes XData to the X-DTOPO RAM and YDATA to the Y-DTOPO
RAM:

void xy_dtopo(int Addr, int XData, int YData);

The following function writes Data only to the X-DTOPO RAM:

void x_dtopo(int Addr, int Data);

The following function writes Data only to the Y-DTOPO RAM:

void y_dtopo(int Addr, int Data);

where:

Addr is the DTOPO RAM address to be written. This corresponds to the X/Y address which
accesses the DTOPO RAM during pattern execution.

XData and YData are the data to be written to that location. Only the LSB (1 bit) is actually
used.

Example
The following code loads the X/Y DTOPO RAMs to create the example shown below the
code:

int data;
 2/27/09 Pg-1314

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
// Load X-DTOPO RAM
for (int xaddr= 0; xaddr < xmax(); xaddr++) {

if (xaddr %2) data = 0;
else data = 1;
if((xaddr / 4) %2) data = ~data & 0x1;
if((xaddr / 8) %2) data = ~data & 0x1;
x_dtopo(xaddr, data);

}

// Load Y-DTOPO
for(int yaddr = 0; yaddr < ymax(); yaddr++) {

if(yaddr %2) y_dtopo(yaddr, 1);
else y_dtopo(yaddr, 0);

}

The diagram below shows how this example might operate, given the following
configuration:

• numx() = 10. This sets the X-DTOPO sized to 210; i.e. 0x3FF max.
• The code above initializes the X-DTOPO such that odd X-addresses will output a

logic-1.
• numy() = 8. This sets the Y-DTOPO sized to 28; i.e. 0xFF max.
• The code above initializes the Y-DTOPO such that even Y-addresses will output a

logic-1.
• The DTOPO function is set to xd_xor_yd.
 2/27/09 Pg-1315

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
• The cells at the intersection of each X/Y address indicate the resulting inversion
states, where the character C is used to indicate inversion (i.e. complement the
data) and T is used to indicate no inversion (i.e. true data):

4.12.21 Logical vs. Physical, vs. Electrical Addresses
See Algorithmic Pattern Generator (APG) Configuration, Address TOPO RAM.

The terminology used when discussing memory testing has several decades of tradition.
However, the terminology sometimes gets confused when discussing the details of
addresses in the context of memory testing.

Before going into all the details, the good news is that the system software and hardware
consistently use only logical addresses, with any physical address manipulations performed
by the Address TOPO RAM(see APG Address Topo RAM Load Functions). This means
that, except during the actual hardware’s access of the DUT, all discussion of addressing is
consistent. If the reasoning behind this is already understood, the rest of this section can be
skipped.

X-Address

C = Complement Data = Invert

0

X DTOPO RAM

Y DTOPO RAM

1
0
1
0
1
0
1

0
1

1 0 1 0 1 0 1 0
0
1
2
3
4
5
6
7

xmax() = 1023
1022

1 0
0 1 2 3 4 5

2
5 = ymax()
5

2
5
46 7

Y-Address

TC TC TC TC TC
CT CT CT CT CT
TC TC TC TC TC
CT CT CT CT CT
TC TC TC TC TC
CT CT T CT CT
TC TC TC TC TC
CT CT CT CT CT

TC TC TC TC TC
CT CT CT CT CT

T = True Data = don’t invertC

Example:
X = 5, Y = 5 Complement the data
 2/27/09 Pg-1316

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The rest of this section discusses the distinction between the three commonly used terms:
logical address, physical address, and electrical address.

Note: the term topological address is not defined here. It is inherently ambiguous and
not used in this document

Table 4.12.21.0-1 Address Terminology

Term Description

Logical Address Symbolic addresses used to simplify pattern creation, ECR and
DBM access, redundancy analysis, etc. Logical address
row-0/column-0 symbolically represents the memory cell at the
upper-left corner of the DUT die, with row addresses
incrementing linearly downwards, and column addresses
incrementing linearly to the right. However, by device design,
applying row-0/column-0 addresses to the DUT pins may NOT
access the physical upper-left corner of the die, and
incrementing row/column address signals at the DUT may not
linearly access adjacent physical memory elements within the
DUT. Topological address scrambling hardware is used to
convert logical addresses into physical addresses (see APG
Address Topo RAM Load Functions).

Physical Address The actual address of a given memory element relative to the
physical layout of the die. To access the memory element
physically at the upper-left corner of the die (physical row-0/
column-0, as seen under a microscope) may require applying an
address other than row-0/column-0 at the DUT pins. And, to
access adjacent physical addresses may require applying
non-adjacent logical row and/or column addresses to the DUT
pins.

Electrical Address A single address value (for example 0x5AF9) representing a
single memory element. Consistent with the device data sheet’s
An..A0 context. To convert an electrical address to logical or
physical address requires identifying which electrical address
bits are mapped to each row and column address bit. Not
commonly used in testing, although failure analysis (FA) of
customer returns often requires conversion to logical or physical
address.
 2/27/09 Pg-1317

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The X/Y (row/column) addresses generated by the APG Address Generator (prior to
entering the Address TOPO RAM) are logical addresses. This makes it practical to write
very complex test patterns without worrying about physical address conversion - let the
Address Topological RAM do the conversions.

The failing address information logged to the ECR is also logical addresses. And since the
redundancy repair analysis software uses ECR information it is also dealing only with logical
address values.

During functional testing, it is critical to correctly convert logical addresses to physical
addresses. Without this conversion, the desired fault detection expected from standard
Memory Test Patterns will not occur. Logical to physical address conversion is performed in
hardware, using the Address TOPO RAM. Properly configured (see APG Address Topo
RAM Load Functions), the address TOPO RAM allows the user to view test patterns, DBM
addresses, ECR failing address data, and redundancy repair information consistently, using
the logical address view. Then, during testing, as the pattern executes, the TOPO RAM
automatically maps the logical pattern addresses to physical device addresses, to obtain the
desired fault detection.

When performing the actual on-line redundancy repair, proper operation requires that the
correct physical addresses be applied to the device. After all, it is the replacement of a
physically defective memory element (row, column, etc.) with a spare element which repairs
the device. Thus, when redundancy repair is performed on the test system, the user must

APG X-address X-topo

DUT

Redundancy
ECR

Generator

Y-address
Generator

Analysis
Software

Failing
Logical

Physical
Addresses

Addresses

RAM

Y-topo
RAM

DBM
 2/27/09 Pg-1318

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
confirm that the address topological scrambling used to test the device is also correct to
repair the device. And, if not, must correctly configure the Address TOPO RAM for each
application.

4.12.22 APG Address Topo RAM Load Functions
See Algorithmic Pattern Generator (APG) Configuration.

Description

The xtopo(), ytopo() and xytopo() functions are used to load the Address TOPO
RAMs on the X and/or Y APG Address Generator(s).

Address TOPO RAMs provide address topological scrambling; i.e. the translation of logical
address values, as generated by the APG, into the topological addresses needed to
correctly test the DUT.

Each function execution writes one location of the X-TOPO RAM, Y-TOPO RAM, or both. It
is common to use these functions in a loop to load the TOPO memory based on an
algorithm.

Only the addresses enabled by numx() and numy() are written, regardless of the input
addresses specified. For example:

numx(16);
xtopo(0x0, 0xFFFF);
output(" XTopo @ Address 0 => 0x%x", xtopo(0x0));

This outputs 0xffff. Then...

numx(10);
xtopo(0x0, 0x0);
output(" XTopo @ Address 0 => 0x%x", xtopo(0x0));

This outputs 0xfc00. Note that only the low 10 address bits were modified.

Usage
The following function writes one value to both the X and Y Address TOPO RAMs:
 2/27/09 Pg-1319

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
void xytopo(int in_xaddr,
int in_yaddr,
int out_xaddr,
int out_yaddr);

The following function writes one value to the X Address TOPO RAM:

void xtopo(int in_addr, int out_addr);

The following function writes one value to the Y Address TOPO RAM:

void ytopo(int in_addr, int out_addr);

The following functions writes one or more values to the X or Y Address TOPO RAM:

void xtopo(int addr, int len, int* values);

void ytopo(int addr, int len, int* values);

The following function returns the topologically scrambled address for the specified input
address.:

int xtopo(int in_addr);

int ytopo(int in_addr);

The following functions are used to get one or more value(s) from the X or Y Address TOPO
RAM:

BOOL xtopo(int addr, int len, int* values, int* count);

BOOL ytopo(int addr, int len, int* values, int* count);

where:

in_xaddr and in_yaddr are TOPO RAM address to be accessed.

out_xaddr and out_yaddr specify the data to be written to in_xaddr or in_yaddr.

addr specifies the first address to be written or read.

len specifies the number of values to be written or read.

values is used in two contexts:

• In the setter function, values is an array of len values to be written to the X or Y
Address TOPO RAM, starting at addr.

• In the getter function, values is a pointer to an existing int array, of len or
greater size, used to return len values from the X or Y Address TOPO RAM,
starting from addr.

count is a pointer to an existing int variable used to return the number of valid values.
 2/27/09 Pg-1320

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
The versions of xtopo() and xtopo() which return an int, return the value read from the
Xor Y Address TOPO RAM.

The versions of xtopo() and xtopo() which return a BOOL, return FALSE if an error is
detected, otherwise TRUE is returned.

Example
The following example loads both the X and Y Address TOPO RAMs with a simple mapping
that inverts the address; i.e. logical 0 = topological 65535, 1 = 65534, etc. The example
assumes there are 16 X and 16 Y addresses; most devices will use smaller values, and will
have more complex scrambling algorithms.

for (i = 0 ; i < 65536; i++)
xtopo(i, 65535 - i);

for (i = 0 ; i < 65536; i++)
ytopo(i, 65535 - i);

4.12.23 APG Timer Functions
See Algorithmic Pattern Generator (APG) Configuration, APG Interrupt Timer.

Description

The timer() function is used to program the APG Interrupt Timer.

Due to the APG pipeline architecture, the effective timer value is less than the programmed
value by:

• The sum of the 8 cycle periods executed prior to any pattern instruction containing
the MAR TIMEN (Data Buffer Memory (DBM) not used).

• The sum of the 20 cycle periods executed prior to any pattern instruction
containing the MAR TIMEN (DBM used).

This reduction can be addressed by increasing the programmed timer value by the
appropriate amount.

The interrupt timer is set to 10uS during initial program load but not otherwise modified by
the system software.

If the timer() function is used in Pattern Initial Conditions it must be the last function
specified. For example:
 2/27/09 Pg-1321

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
@{
ymain(0);
count(1, amax());
// Etc.
timer(value); // Must be last

@}

Usage
void timer(double Value);

where:

Value specifies the desired interrupt timer value. Units are supported, see Specifying Units.
Legal values range from 100nS to 1.6 seconds. Resolution is 100nS. Values which are not
in increments of 100nS are silently rounded up to the next higher 100nS value.

Examples
Set the APG Interrupt Timer to 10 mS:

timer(10 MS);

Set the APG Interrupt Timer to 4 uS:

timer(4 US);

This sets the APG Interrupt Timer to 200 nS. The value is rounded up from 140nS to 200nS
as noted above:

timer(140 NS);
 2/27/09 Pg-1322

Test Pattern Programming Algorithmic Pattern Generator (APG) Configuration
 2/27/09 Pg-1323

Memory Test Patterns
4.13 Memory Test Patterns
See Test Pattern Programming.

This section includes the following:

• Overview
• Memory Pattern Instruction Format
• Default Memory Pattern Instruction
• APG Instruction Execution
• APG Address Generator Overview
• YALU Instruction and XALU Instruction

- YALU/XALU SourceA/SourceB Operands
- YALU/XALU Carry/Borrow Operands
- YALU/XALU Function Operands
- YALU/XALU Destination Operands
- YALU/XALU Addressout Operands

• COUNT Instruction
- COUNT Counter Operands
- COUNT Function Operands
- COUNT Autoreload Operands

• MAR Instruction
- MAR Default Pattern Instruction
- MAR Branch Condition Operands
- Error Pipeline Requirements
- MAR Address Operand
- MAR Strobe Control Operands
- MAR Interrupt Operands
- MAR Timer Operands
- MAR Misc Operands
- MAR BOE Type Operands
- MAR Error-choice Operands
- Static Error Choice Functions, Branch-on-error
- DUT-pin to Tester-pin Connection Requirements

• CHIPS Instruction
- CHIPS Chip-select-control Operands
- CHIPS Misc Operands
 2/27/09 Pg-1324

Memory Test Patterns
• DATGEN Instruction
- DATGEN Source Operands
- DATGEN Dest Operand
- DATGEN Drfunc Operand
- DATGEN Yindex Operands
- DATGEN Equality Function Operands
- DATGEN Background Function Operands
- DATGEN Invert Sense Operand
- DATGEN Dataout Operand
- DATGEN Udatajam Operands
- DATGEN Dbmwr Operand

• UDATA Instruction
• PINFUNC Instruction
• USERRAM Instruction
• Minmax Pattern Example
• Adaptive Programming Pattern Example
• Over-programming Controls and Parallel Test

4.13.1 Overview
See Memory Test Patterns.

The Magnum 1 test system contains two sources of test pattern data:

• Algorithmic Pattern Generator (APG) when executing Memory Test Patterns.
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored

Logic Test Patterns and Scan Test Patterns.
 2/27/09 Pg-1325

Memory Test Patterns
The diagram below shows key Magnum 1 architecture features:

Figure-66: Test Pattern Data Source Hardware Architecture
Using the Pin Scramble MUX, the source of pattern data for each timing channel can be
selected on a per-channel/per-cycle basis, at full tester speed. In other words, for any given
pin-pair, the source of pattern data can be selected on a per-cycle basis from any APG
address, data, or chip select data bit, or one LVM/SVM data bit (2 bits in Double Data Rate
(DDR) Mode). This section discusses Memory Test Patterns, also see Logic Test Patterns
and Mixed Memory/Logic Patterns.

4.13.2 Memory Pattern Instruction Format
See Memory Test Patterns.

A Memory Test Pattern consists of one or more pattern instructions, written by the user, to
control the Algorithmic Pattern Generator (APG), which is the tester hardware which

Pin b_64

Pin a_64

Pin b_1

Pin a_1
Chan-1

Timing &
Formatting

Chan-64
Timing &

Formatting

*LVM &
SVM

Sub-site B

Sub-site B

Sub-site A

Sub-site A

*Optional

Pattern Data
Strobe & I/O
Control (6 bits
per pin)

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

36 Data
8 Chip Selects

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

Drive
Strobe

I/O

VAR

 2/27/09 Pg-1326

Memory Test Patterns
algorithmically generates binary pattern data repesenting X/Y addresses, data, and chip
selects (clocks, enables, etc.) used to functionally test memory devices.

Memory pattern instructions are written using a proprietary language which consists of a set
of one or more sub-instructions and associated operand values. Each sub-instruction
controls a specific section of the APG hardware.

A sample APG instruction is shown below.

Note: on 5/2/03, terminology was changed and standardized, to use the terms:
- APG instruction, to refer to all statements between two % (see
 Pattern Instruction Identifier (%)).
- Instruction, to refer to each line (sub-instruction) within an APG instruction
 (i.e. YALU, CHIPS, UDATA, etc.).
- Operand to refer to the parameters specified for each instruction.
And, the use of the term microinstruction was eliminated.

Every APG instruction starts with a percent sign (%). See Pattern Instruction Identifier (%).
Then, on each line, the first token (YALU, XALU, etc.) identifies a sub-section of the APG to
be programmed by that portion of the APG instruction. The token(s) to the right of the first
are the operand values that control the sub-section of that hardware.

Example

This example encodes the Default Memory Pattern Instruction. Each APG instruction may
contain any or all of the sub-instructions (YALU, XALU, COUNT, MAR, CHIPS, DATGEN,

% Label_X:// Optional Pattern Label
YALU XCARE, XCARE, COFF, HOLD, NODEST, OYMAIN
XALU XCARE, XCARE, COFF, HOLD, NODEST, OXMAIN
COUNT NOCOUNT, NOCOUNT, AOFF
MAR INC, NOREAD, NOINT, RSTTMR
CHIPS NOCLKS
DATGEN HOLDDR, HOLDYN, EQFDIS, BCKFDIS, NOTINV, DATDAT
UDATA 0
PINFUNC TSET1, PS1, VIHH1

One APG Pattern Instruction

DATGEN instruction and 6 operands

PINFUNC instruction and 3 operands
 2/27/09 Pg-1327

Memory Test Patterns
UDATA, and PINFUNC) and they may occur in any order. Only one sub-instruction per line is
allowed. The pattern compiler will apply values from the Default Memory Pattern Instruction
for any sub-instructions or operands that are omitted.

4.13.3 Default Memory Pattern Instruction
See Memory Test Patterns.

The default memory pattern instruction is a complete APG instruction which explicitly sets
the default operands as shown below:

% YALU XCARE, XCARE, COFF, HOLD, NODEST, OYMAIN
XALU XCARE, XCARE, COFF, HOLD, NODEST, OXMAIN
COUNT NOCOUNT, NOCOUNT, AOFF
MAR INC, NOREAD, NOINT, RSTTMR
CHIPS NOCLKS
DATGEN HOLDDR, HOLDYN, EQFDIS, BCKFDIS, NOTINV, DATDAT
UDATA 0
PINFUNC TSET1, PS1, VIHH1

These operands are implicitly added in any APG instruction which does not explicitly include
a corresponding value. This allows a given APG instruction to only include those
instructions/operands which differ from the default values. For example, the following
instruction causes the same result as the default example above:

% MAR INC

Using Magnum 1/2/2x, the following operands are NOT enabled by default:

MAR VCNTR
PINFUNC VPS, VTSET, VVIHH, VVPULSE, VVCOMP,

VLATCHRESET, VOVER

4.13.4 APG Instruction Execution
See Memory Test Patterns.

The APG is a digital-logic state machine, controlled using the pattern language documented
in this section. The following rules specify how APG instructions execute:
 2/27/09 Pg-1328

Memory Test Patterns
1. Address generator (XALU, YALU), data generator (DATGEN), chip select (CHIPS), counter
(COUNT), PINFUNC, UDATA and MAR instructions affect the tester cycle executing the
instruction.

2. APG counter auto-reload operation is described in COUNT Counter Operands.

3. Pattern instruction execution sequence control has three levels of execution priority,
based on the MAR instruction operands used in a given instruction. Listed from highest to
lowest priority:

• Subroutine call (GOSUB), including conditional subroutine calls (CSUBE, CSUBNE,
CSUBT, etc.) when the specified condition = TRUE.

• Interrupt (INTEN, INTENADR), if an APG Interrupt Timer interrupt is pending at the
start of the instruction. Other, including INC, JUMP, RETURN, DONE, PAUSE and all
conditional jump/return options (CJMPE, CJMPNZ, CRETNE, CRETZ, etc.).

Regarding 3., the following rules apply:

• The higher priority option takes precedence. This rule only makes sense in
instructions which contain both an interrupt enable (INTEN, INTENADR) plus
another branch option (since all other options are all mutually exclusive).

• If an instruction contains both a [conditional] subroutine call and an interrupt
enable and the subroutine does execute the interrupt is ignored until a later
instruction which contains INTEN or INTENADR without a subroutine call.

• In an instruction which includes both an interrupt enable and another jump/return
option, if execution does call the interrupt subroutine execution will return to the
target of the other jump/return instruction. When the other jump option is
conditional, the target is the result of the conditional evaluation.

For example, given the following pattern:

PATTERN(myPat, memory)

% L1:
MAR INC, INTADR // Interrupt address setup
UDATA L5

% L2: MAR INC, TIMEN // Enable timer
COUNT COUNT1, COUNTUDATA // Load UDATA into Counter-1
UDATA 1

% L3:
COUNT COUNT1, DECR
MAR INTEN, TIMEN, CJMPNZ, L3 // Enable timer and interrupt

% L4: MAR DONE
 2/27/09 Pg-1329

Memory Test Patterns
% L5: MAR RETURN

Below, the instruction labels are used to describe execution order. The execution order
depends upon whether a timer interrupt is set in instruction L3:

• No interrupt: L1, L2, L3, L3, L4
• Timer Interrupt is set most of a tester cycle prior to the first execution of L3 so an

interrupt is pending at the start of L3:
L1, L2, L3, L5, L3, L4

• Timer Interrupt is set most of a tester cycle before the end of the first execution of
L3 so an interrupt is pending at the start of the 2nd execution of L3:

L1, L2, L3, L3, L5, L4
• Timer Interrupt is set during the second execution of L3 so no interrupt is pending

during this instruction:
L1, L2, L3, L3, L4

In each case the interrupt return address is the instruction that would have been executed
next if the interrupt hadn't happened. And in each case L3 is executed twice and Counter-1
is decremented twice.

Examining the 2rd case in more detail, at the start of the first execution of L3 Counter-1 = 1
thus CJMPNZ is TRUE and the tentative next instruction is L3. However, most of a tester
cycle before the the first execution of L3 the interrupt timer reaches 0, thus before the start
of execution of L3 since the interrupt is TRUE the interrupt subroutine (L5) will execute next.
The interrupt subroutine returns to L3 because it was the next instruction identified before
the interrupt subroutine executed. So, L3 executes a second time and since Counter-1 is
now = 0 (decremented from 1 to 0 in the first L3) the CJMPNZ = FALSE and execution
increments to L4. Note that Counter-1 is decremented to -1 after it is tested by the CJMPNZ.

4.13.5 APG Address Generator Overview
See Algorithmic Pattern Generator (APG), Memory Test Patterns.

To test memory devices, an APG must be able to generate complex address sequences.

The APG has two independent but interconnected APG Address Generators:

• X address generator; i.e. typically row addresses
• Y address generator; i.e. typically column addresses
 2/27/09 Pg-1330

Memory Test Patterns
In use, the intersection of a row address and a column address determines which DUT
memory cell(s) will be read or written. The dual X/Y address generation architecture
provides flexibility in writing Memory Test Patterns.

The heart of each APG Address Generator is an Arithmetic Logic Unit, or ALUALU. In each
memory pattern cycle, the ALU takes one or two inputs, identified as SourceA and
SourceB, selected from 3 16-bit address register(s) called MAIN, BASE and FIELD, or from
UDATA (an arbitrary value for each instruction stored in the APG’s uRAM), as well as one
Carry/Borrow input from the other ALU (X carries to Y, Y carries to X). In each testeer
cycle the ALU operates on these inputs performing a user specified function. The result of
the ALU’s operation is passed through a mask and then placed back in one or more of the 3
address registers. In each pattern cycle, the output of one X address register and one Y
address register is selected as the address output from the APG to the DUT in the current
cycle. All of these operations are controlled from the test pattern using the YALU Instruction
(YALU) and XALU Instruction (XALU). The XALU instruction controls the X address
generator, and the YALU instruction controls the Y address generator.

4.13.6 YALU Instruction

See APG Address Generator, Memory Test Patterns, Memory Pattern Instruction Format.

Description
The YALU instruction is used to control the APG’s Y address generator. All operand options
are summarized in YALU Instruction Operands.

The YALU instruction takes the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

Rules:

• The YALU instruction may either be completely omitted (the Default Memory
Pattern Instruction for YALU is applied) or the first four fields must all be specified;
i.e. SourceA, SourceB, Carry/Borrow, and Function. The last two fields
(Destination(s) and Addressout), are optional.

• Each YALU instruction specifying the first four operands must include exactly one
value for each of the first four operand fields (SourceA, SourceB,
Carry/Borrow, and Function)
 2/27/09 Pg-1331

Memory Test Patterns
• Up to three Destination operand values may be specified, identifying any
combination of MAIN (DYMAIN), BASE (DYBASE), and/or FIELD (DYFIELD)
address registers to be updated with the ALU output.

• If no operand for the Destination field is specified, the default is NODEST, which
has the effect of discarding any operation performed by the ALU, and making the
values specified in the first four fields insignificant.

• It is not legal to mix NODEST with any other Destination operand value.
• If no operand for the Addressout field is specified, the default destination is the

Y MAIN register (OYMAIN).
• When the Function field contains a single-source instruction; i.e. ALL1S, COMP,

DECREMENT, DOUBLE, HOLD, INCREMENT, ZERO, the SourceB field must be
XCARE.

The default YALU instruction is:

YALU XCARE, XCARE, COFF, HOLD, NODEST, OYMAIN

Usage
YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

where:

YALU identifes that the Y Address Generator is being programmed.

SourceA specifies the primary input source to the ALU. See YALU/XALU SourceA/SourceB
Operands. Default = XCARE.

SourceB specifies the secondary input source to the ALU. See YALU/XALU SourceA/
SourceB Operands. Default = XCARE.

Carry/Borrow specifies the carry/borrow option. The state of the carry/borrow bit affects
some YALU function operations, see YALU/XALU Carry/Borrow Operands and YALU/XALU
Function Operands. Default = COFF.

Function specifies the operation the ALU will perform in the current instruction. See YALU/
XALU Function Operands. Default = HOLD.

Destination(s) specifies one or more destination register(s) to be updated (written) with
the ALU output in the current instruction. Multiple destinations must be separated by
commas. See YALU/XALU Destination(s) Operands. Default = NODEST.
 2/27/09 Pg-1332

Memory Test Patterns
Addressout specifies which Y address register is output as the Y address to the pin
scramble MUX in the current instruction. See YALU/XALU Addressout Operands.
Default = OYMAIN.

The table below summarizes the operands for each field of the YALU instruction. Default
values are indicated using (D).

Table 4.13.6.0-1 YALU Instruction Operands

SourceA SourceB
Carry
Borrow Function Destination(s) Addressout

XCARE(D)
YBASE
YFIELD
YMAIN
YUDATA

XCARE(D)
YBASE
YFIELD
YMAIN
YUDATA

BBEQMAX
BBEQMIN
BBNEMAX
BBNEMIN
BFEQMAX
BFEQMIN
BFNEMAX
BFNEMIN
BMEQMAX
BMEQMIN
BMNEMAX
BMNEMIN
BOFF
BON

CBEQMAX
CBEQMIN
CBNEMAX
CBNEMIN
CMEQMAX
CFEQMAX
CFEQMIN
CFNEMIN
CMNEMAX
CFNEMAX
CMEQMIN
CMNEMIN
COFF(D)
CON

AANDBBAR
AND
ADD

ALL1S
ANANDBBAR
ANORBBAR
AORBBAR
COMP

DECREMENT
DOUBLE
HOLD(D)

INCREMENT
NAND
NOR
OR

SUBTRACT
XNOR
XOR
ZERO

DYBASE
DYFIELD
DYMAIN

NODEST(D)

OYBASE
OYFIELD
OYMAIN(D)

 2/27/09 Pg-1333

Memory Test Patterns
4.13.7 XALU Instruction

See APG Address Generator, Memory Test Patterns, Memory Pattern Instruction Format.

Description
The XALU instruction is used to control the APG X address generator. All operand options
are summarized in XALU Instruction Operands.

Rules:

• The XALU instruction may either be completely omitted (the Default Memory
Pattern Instruction for XALU are applied) or the first four fields must be specified;
i.e. SourceA, SourceB, Carry/Borrow, and Function. The last two fields
(Destination(s) and Addressout), are optional.

• Each XALU instruction specifying the first four operands must include exactly one
value for each of the first four operand fields (SourceA, SourceB,
Carry/Borrow, and Function)

• Up to three Destination operand values may be specified, identifying any
combination of MAIN (DXMAIN), BASE (DXBASE), and/or FIELD (DXFIELD)
address registers to be updated with the ALU output.

• If no operand for the Destination field is specified, the default is NODEST, which
has the effect of discarding any operation performed by the ALU, and making the
values specified in the first four fields insignificant.

• It is not legal to mix NODEST with any other Destination operand value.
• If no operand for the Addressout field is specified, the default destination is the

X MAIN register (OXMAIN).
• When the Function field contains a single-source instruction; i.e. ALL1S, COMP,

DECREMENT, DOUBLE, HOLD, INCREMENT, ZERO, the SourceB field must be
XCARE.

The default XALU instruction is:

XALU XCARE, XCARE, COFF, HOLD, NODEST, OXMAIN

Usage
XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

where:
 2/27/09 Pg-1334

Memory Test Patterns
XALU identifes that the X Address Generator is being programmed.

SourceA specifies the primary input source to the ALU. See YALU/XALU SourceA/SourceB
Operands. Default = XCARE.

SourceB specifies the secondary input source to the ALU. See YALU/XALU SourceA/
SourceB Operands. Default = XCARE.

Carry/Borrow specifies the carry/borrow option. The state of the carry/borrow bit affects
some YALU function operations, see YALU/XALU Carry/Borrow Operands and YALU/XALU
Function Operands. Default = COFF.

Function specifies the operation the ALU will perform in the current instruction. See
YALU/XALU Function Operands. Default = HOLD.

Destination(s) specifies one or more destination register(s) to be updated (written) with
the ALU output in the current instruction. Multiple destinations must be separated by
commas. See YALU/XALU Destination(s) Operands. Default = NODEST.

Addressout specifies which X address register (MAIN, BASE, or FIELD) is output as the
X address to the pin scramble MUX in the current instruction. See YALU/XALU Addressout
Operands. Default = OYMAIN.
 2/27/09 Pg-1335

Memory Test Patterns
The table below summarizes the operands for each field of the XALU instruction. Default
values are indicated using (D):

Table 4.13.7.0-1 XALU Instruction Operands

SourceA SourceB
Carry
Borrow Function Destination(s) Addressout

XBASE
XFIELD
XMAIN

XCARE(D)
XUDATA

XBASE
XFIELD
XMAIN

XCARE(D)
XUDATA

BBEQMAX
BBEQMIN
BBNEMAX
BBNEMIN
BFEQMAX
BFEQMIN
BFNEMAX
BFNEMIN
BMEQMAX
BMEQMIN
BMNEMAX
BMNEMIN
BOFF
BON

CBEQMAX
CBEQMIN
CBNEMAX
CBNEMIN
CMEQMAX
CFEQMAX
CFEQMIN
CFNEMIN
CMNEMAX
CFNEMAX
CMEQMIN
CMNEMIN
COFF(D)
CON

AANDBBAR
AND
ADD

ALL1S
ANANDBBAR
ANORBBAR
AORBBAR
COMP

DECREMENT
DOUBLE
HOLD(D)
INCREMENT

NAND
NOR
OR

SUBTRACT
XNOR
XOR
ZERO

DXBASE
DXFIELD
DXMAIN

NODEST(D)

OXBASE
OXFIELD
OXMAIN(D)

 2/27/09 Pg-1336

Memory Test Patterns
4.13.7.1 YALU/XALU SourceA/SourceB Operands
See APG Address Generator, Memory Test Patterns, XALU Instruction, YALU Instruction.

Description
The YALU and XALU instructions take the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

The SourceA and SourceB operands select the input(s) to the ALU of the X or Y Address
Generator in the current instruction.

Rules:

• When the Function field contains a single source instruction; i.e. ALL1S, COMP,
DECREMENT, DOUBLE, HOLD, INCREMENT, ZERO, the SourceB field must be
XCARE.

The table below describes the options available for SourceA and SourceB operands to
XALU and YALU:

Table 4.13.7.1-1 Y-address Generator SourceA & SourceB Operands

Operand Purpose

YBASE Select the BASE address register as input to the Y ALU.

YFIELD Select the FIELD address register as input to the Y ALU.

YMAIN Select the MAIN address register as input to the Y ALU.

XCARE No Y ALU input is selected (default).

YUDATA Select bits 0-15 of the UDATA value as input to the Y ALU.
 2/27/09 Pg-1337

Memory Test Patterns
Note: the XCARE operand is used in both XALU and YALU instructions. The “X” means
don’t (as in don’t care); i.e. it does not refer to the X or Y address generator.

Example
In the following example, the SourceA input for the Y ALU is the Y MAIN address register.
The SourceB input for the Y ALU is the first 16 bits of UDATA (.15). The two inputs to the
ALU are ADD’ed and the result is placed into the Y FIELD register (DYFIELD). The contents
of the Y MAIN register remain unchanged and are output as the APG Y address.

% YALU YMAIN, YUDATA, COFF, ADD, DYFIELD, OYMAIN
XALU XFIELD, XCARE, COFF, HOLD, NODEST, OXFIELD
UDATA .15 // Same as 0x15

The SourceA input for the X ALU is the X FIELD address register, and there is no SourceB
specified (XCARE). The contents of the X FIELD register remain unchanged and are output
as the APG X address. Since the ALU function is HOLD, the ALU outputs the SourceA input
without modification. The address output from the X address generator comes from the
FIELD register (OXFIELD).

Note: the dot notation used in the UDATA value above (.15) can be used to specify a
hexadecimal value. So .15 equals the hex value 0x15. The 0x syntax is also
legal (and preferred).

Table 4.13.7.1-2 X-address Generator SourceA & SourceB Operands

Operand Purpose

XBASE Select the BASE address register as input to the X ALU.

XFIELD Select the FIELD address register as input to the X ALU.

XMAIN Select the MAIN address register as input to the X ALU.

XCARE No X input is selected (default).

XUDATA Select bits 16-31 of the UDATA value as input to the X ALU.
 2/27/09 Pg-1338

Memory Test Patterns
4.13.7.2 YALU/XALU Carry/Borrow Operands
See APG Address Generator, Memory Test Patterns, XALU Instruction, YALU Instruction.

Description
The YALU and XALU instructions take the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

The Carry/Borrow operand determines how the carry (or borrow) input to an address
generator’s ALU is used.

The operation of the YALU/XALU INCREMENT and DECREMENT functions depends upon
whether the carry or borrow input is TRUE or FALSE. For example, the INCREMENT function
is defined as:

INCREMENT : ALU Output = (SourceA + Carry)

DECREMENT : ALU Output = (SourceA - Carry)

The DECREMENT function will subtract 1 from the SourceA input if the carry input is FALSE.
To simplify things, the borrow input is defined to be TRUE when the carry input is FALSE.
Thus, DECREMENT can also be defined as:

DECREMENT : ALU Output = (SourceA - Borrow)

Some of the Carry/Borrow operands refer to a specific address register. For example,
CMEQMAX means set the carry bit TRUE if the other address generator’s register is equal to
its maximum value.
 2/27/09 Pg-1339

Memory Test Patterns
The table below describes the options available for the Carry/Borrow operand to XALU
and YALU:

Table 4.13.7.2-1 YALU/XALU Carry/Borrow Operands

Operand Purpose

CON Carry On
Carry input to ALU is forced TRUE

BON Borrow On
Borrow input to ALU is forced TRUE

COFF Carry Off
Carry input to ALU is forced FALSE (default)

BOFF Borrow Off
Borrow input to ALU is forced FALSE

CMEQMAX Carry Main Equal Max
Carry = TRUE if the other1 address generator’s MAIN register is equal to its
maximum value (set using xmax(), ymax() or amax())

BMEQMAX Borrow Main Equal Max
Borrow = TRUE if the other1 address generator’s MAIN register is equal to
its maximum value (set using xmax(), ymax() or amax())

CFEQMAX Carry Field Equal Max
Carry = TRUE if the other1 address generator’s FIELD register is equal to
its maximum value (set using xmax(), ymax() or amax())

BFEQMAX Borrow Field Equal Max
Borrow = TRUE if the other1 address generator’s FIELD register is equal to
its maximum value (set using xmax(), ymax() or amax())

CBEQMAX Carry Base Equal Max
Carry = TRUE if the other1 address generator’s BASE register is equal to
its maximum value (set using xmax(), ymax() or amax())

BBEQMAX Borrow Base Equal Max
Borrow = TRUE if the other1 address generator’s BASE register is equal to
its maximum value (set using xmax(), ymax() or amax())

Note-1: when used in a YALU instruction, the term other in the descriptions
above refers to X address registers. When used in an XALU instruction, other
refers to the Y address registers.
 2/27/09 Pg-1340

Memory Test Patterns
CMNEMAX Carry Main Not Equal Max
Carry = TRUE if the other1 address generator’s MAIN register is not equal
to its maximum value (set using xmax(), ymax() or amax())

BMNEMAX Borrow Main Not Equal Max
Borrow = TRUE if the other1 address generator’s MAIN register is not equal
to its maximum value (set using xmax(), ymax() or amax())

CFNEMAX Carry Field Not Equal Max
Carry = TRUE if the other1 address generator’s FIELD register is not equal
to its maximum value (set using xmax(), ymax() or amax())

BFNEMAX Borrow Field Not Equal Max
Borrow = TRUE if the other1 address generator’s FIELD register is not
equal to its maximum value (set using xmax(), ymax() or amax())

CBNEMAX Carry Base Not Equal Max
Carry = TRUE if the other1 address generator’s BASE register is not equal
to its maximum value (set using xmax(), ymax() or amax())

BBNEMAX Borrow Base Not Equal Max
Borrow = TRUE if the other1 address generator’s BASE register is not
equal to its maximum value (set using xmax(), ymax() or amax())

CMEQMIN Carry Main Equal Min
Carry = TRUE if the other1 MAIN register is equal to minimum (always 0)

BMEQMIN Borrow Main Equal Min
Borrow = TRUE if the other1 MAIN register is equal to minimum (always 0)

CFEQMIN Carry Field Equal Min
Carry = TRUE if the other1 FIELD register is equal to minimum (always 0)

BFEQMIN Borrow Field Equal Min
Borrow = TRUE if the other1 FIELD register is equal to minimum (always 0)

CBEQMIN Carry Base Equal Min
Carry = TRUE if the other1 BASE register is equal to minimum (always 0)

BBEQMIN Borrow Base Equal Min
Borrow = TRUE if the other1 BASE register is equal to minimum (always 0)

Table 4.13.7.2-1 YALU/XALU Carry/Borrow Operands (Continued)

Operand Purpose

Note-1: when used in a YALU instruction, the term other in the descriptions
above refers to X address registers. When used in an XALU instruction, other
refers to the Y address registers.
 2/27/09 Pg-1341

Memory Test Patterns
Example
% YALU YMAIN, XCARE, CMEQMAX, INCREMENT, DYMAIN, OYMAIN

XALU XMAIN, XCARE, CON, INCREMENT, DXMAIN, OXMAIN

This example does the following:

• The ALU of the X address generator unconditionally (CON) increments the value in
the X MAIN register (XMAIN), storing the result back into the X MAIN register
(DXMAIN). And, the X address is output from X MAIN register (OXMAIN).

• The ALU of the Y address generator only increments the value in the Y MAIN
register (YMAIN) when the MAIN register of the X address generator reaches max
(CMEQMAX). The Y ALU output is stored back into the Y MAIN register (DYMAIN).
And, the Y address is output from Y MAIN register (OYMAIN).

CMNEMIN Carry Main Not Equal Min
Carry = TRUE if the other1 MAIN register is not equal to minimum (always
0)

BMNEMIN Borrow Main Not Equal Min
Borrow = TRUE if the other1 MAIN register is not equal to minimum (always
0)

CFNEMIN Carry Field Not Equal Min
Carry = TRUE if the other1 FIELD register is not equal to minimum (always
0)

BFNEMIN Borrow Field Not Equal Min
Borrow = TRUE if the other1 FIELD register is not equal to minimum
(always 0)

CBNEMIN Carry Base Not Equal Min
Carry = TRUE if the other1 BASE register is not equal to minimum (always
0)

BBNEMIN Borrow Base Not Equal Min
Borrow = TRUE if the other1 BASE register is not equal to minimum
(always 0)

Table 4.13.7.2-1 YALU/XALU Carry/Borrow Operands (Continued)

Operand Purpose

Note-1: when used in a YALU instruction, the term other in the descriptions
above refers to X address registers. When used in an XALU instruction, other
refers to the Y address registers.
 2/27/09 Pg-1342

Memory Test Patterns
In operation, this means the X address will increment fast (every cycle), and the Y address
will increment only when the X address reaches the maximum. In both cases, incrementing
past the maximum value sets the corresponding register back to 0.

4.13.7.3 YALU/XALU Function Operands
See APG Address Generator, Memory Test Patterns, XALU Instruction, YALU Instruction.

Description
The YALU and XALU instructions take the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

The Function operand specifies the desired ALU operation.

There are two basic forms:

• Single-source instruction; i.e. ALL1S, COMP, DECREMENT, DOUBLE, HOLD,
INCREMENT, ZERO.

• Dual-source instructions; i.e. the rest.
When a single source instruction is specified, the SourceB field must be XCARE.

The table below describes the options available for the Function operand to XALU and
YALU:

Table 4.13.7.3-1 YALU/XALU Function Operands

Operand Purpose

AANDBBAR Logically AND SourceA input with inverted SourceB input

ADD Add SourceA input to SourceB input plus Carry

ALL1S All ones = force ALU output to maximum (set using xmax(), ymax() or
amax()). Ignores both source inputs.

ANANDBBAR Logically NAND SourceA input with the inverted SourceB input

AND Logically AND SourceA input with SourceB input

(A • B)

(A + B + Carry)

(A • B)

(A • B)
 2/27/09 Pg-1343

Memory Test Patterns
Example
In the following example, the Y ALU adds (ADD) the value in the Y MAIN register (YMAIN) to
the value in the Y BASE register (YBASE) with Carry forced ON (CON). The output is then put
in both the Y BASE (DYBASE) and Y MAIN (DYMAIN) registers. Assuming Y MAIN and Y
BASE have an initial value of 0, a 1 will be deposited in both the first time this instruction is
executed. The second execution adds 1 + 1 + Carry = 3. The third execution adds 3 + 3 +
Carry = 7, etc. The Y BASE (OYBASE) register is selected as the Y address output.

% YALU YMAIN, YBASE, CON, ADD, DYMAIN, DYBASE, OYBASE

4.13.7.4 YALU/XALU Destination Operands
See APG Address Generator, Memory Test Patterns, XALU Instruction, YALU Instruction.

ANORBBAR Logically NOR SourceA with the inverted SourceB input

AORBBAR Logically OR SourceA with the inverted SourceB input

COMP Complement SourceA input

DECREMENT Subtract Borrow from SourceA input

DOUBLE Double SourceA input

HOLD Take no action; i.e. ALU output = SourceA (default)

INCREMENT Add the Carry to SourceA input

NAND Logically NAND SourceA input with SourceB input

NOR Logically NOR SourceA with SourceB input

XOR Exclusively OR SourceA input with SourceB input

XNOR Exclusively NOR SourceA input with SourceB input

OR Logically OR SourceA with SourceB input

SUBTRACT Subtract SourceB input from SourceA input

ZERO Force ALU output to zero. Ignores both source inputs.

Table 4.13.7.3-1 YALU/XALU Function Operands (Continued)

Operand Purpose

(A + B)
(A + B)

(A)

(A - Borrow)

(2 * A)

(A + Carry)

(A • B)

(A + B)

(A + B)

(A + B)

(A + B)

(A - B - Barrow)
 2/27/09 Pg-1344

Memory Test Patterns
Description
The YALU and XALU instructions take the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

The Destination(s) operand(s) specify which of the 3 address register(s) are updated
with the ALU output.

Rules:

• If no operand for the Destination(s) field is specified, the default is NODEST,
which has the effect of discarding any operation performed by the ALU.

• Any combination of the three address registers can be used as destination registers,
with multiple destinations separated by commas.

• It is not legal to mix NODEST with any other Destination option.
The table below describes the options available for the Destination(s) operand(s) to
XALU and YALU:

Example
See Example

Table 4.13.7.4-1 YALU/XALU Destination(s) Operands

Operand Purpose

DYBASE Writes Y ALU output to the Y BASE register (YALU instruction only)

DYFIELD Writes Y ALU output to the Y FIELD register (YALU instruction only)

DYMAIN Writes Y ALU output to the Y MAIN register (YALU instruction only)

DXBASE Writes X ALU output to the X BASE register (XALU instruction only)

DXFIELD Writes X ALU output to the X FIELD register (XALU instruction only)

DXMAIN Writes X ALU output to the X MAIN register (XALU instruction only)

NODEST No ALU output destination is enabled (default). In effect, this discards the
result of any operation performed by the ALU. Usable in both XALU and
YALU instructions.
 2/27/09 Pg-1345

Memory Test Patterns
4.13.7.5 YALU/XALU Addressout Operands
See APG Address Generator, Memory Test Patterns, XALU Instruction, YALU Instruction.

Description
The YALU and XALU instructions take the following form:

YALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

XALU SourceA, SourceB, Carry/Borrow, Function, Destination(s),
Addressout

The Addressout operand specifies which address register is selected as the output from
the X or Y address generator. This is the address routed to the DUT via the Pin Scramble
MUX.

Rules:

• Using the XALU instruction, if no operand for the Addressout field is specified,
the X MAIN register (OXMAIN) is selected.

• Using the YALU instruction, if no operand for the Addressout field is specified,
the Y MAIN register (OYMAIN) is selected.

The table below describes the options available for the Addressout operand to XALU and
YALU:

Table 4.13.7.5-1 YALU/XALU Addressout Operands

Operand Purpose

OYBASE Y address source is Y BASE register

OYFIELD Y address source is Y FIELD register

OYMAIN Y address source is Y MAIN register (default)

OXBASE X address source is X BASE register

OXFIELD X address source is X FIELD register

OXMAIN X address source is X MAIN register (default)
 2/27/09 Pg-1346

Memory Test Patterns
Example
See Example

4.13.8 COUNT Instruction

See Algorithmic Pattern Generator (APG), Memory Test Patterns Memory Pattern
Instruction Format.

Description
The APG has 64 hardware Counters (60 are user accessible). Typical applications
include:

• Pattern execution loop counters, to control pattern execution conditional branch
operations.

• Use as an execution trace flag. A specified counter is incremented or
decremented each time the associated instruction executes. After the pattern
ends, the counter is read (more below) to determine whether or how many times a
given instruction executed.

The test pattern COUNT instruction is used to control counter operations.

Note the following:

• Each counter is 32 bits; i.e. 232 = 4,294,967,296 counts.
• Counters are identified as COUNT1 through COUNT60.
• The entire COUNT instruction is optional. When omitted, no counters are modified

and COUNT1 is selected for any MAR Instructions which test a counter value.
• When a COUNT instruction is specified the Counter operand must be specified,

identifying one counter (COUNT1 through COUNT60). This counter is the target of the
Function operand and is the counter evaluated by any MAR Instruction which
tests a counter value in the current instruction.

• The Function operand is optional and, if specified, identifies the operation
performed on the counter identified in the Counter field. If not specified the
NOCOUNT instruction is used.
 2/27/09 Pg-1347

Memory Test Patterns
• Each counter is backed by a 32-bit reload register. During pattern execution, a
reload register may be used to auto-reload its associated counter when the
counter’s value equals 0. Automatic reload is optional, enabled using the AON
operand in the Autoreload field. Note: counter reload operation is described in
COUNT Counter Operands, read this!

• Counter values and/or reload register values can be initialized in a pattern
instruction using COUNTUDATA plus the UDATA value. See COUNT Function
Operands. The RELOAD# operand will also load the reload register with the UDATA
value.

• Counter values and reload register values can also be initialized in user C code or in
Pattern Initial Conditions, using the count() and reload() functions. Executing
count() also loads a given counter’s reload register with the same value. The
reload() function can be used to load a reload register without setting the
associated counter.

• After a pattern is executed, the value of a given counter can be read using the
count() function. A given reload register can be read using reload().

The default COUNT instruction is:

COUNT NOCOUNT, NOCOUNT, AOFF

Usage
COUNT Counter, Function, Autoreload

where:

Counter specifies which APG counter is selected in the current instruction. Legal values
are COUNT1 through COUNT60. See COUNT Counter Operands.

Function specifies the operation to perform on Counter, in the current instruction. See
COUNT Function Operands.

Autoreload controls automatic reloading of the counter when that counter = 0. Operation
is described in COUNT Counter Operands. See COUNT Autoreload Operands.
 2/27/09 Pg-1348

Memory Test Patterns
The table below summarizes the operands for each field of the COUNT instruction. Default
values are indicated using (D):

Example
In the following example, APG counter 1 (COUNT1) is decremented (DECR) each time this
instruction executes. The MAR CJMPNZ instruction causes execution to repeat this instruction
(jump to label_X) until COUNT1 decrements to 0. Any time this instruction is executed with
COUNT1 = 0 BEFORE COUNT1 is decremented it will be reloaded (AON) to the value in
counter 1’s reload register (see COUNT Counter Operands):

% labelX:
COUNT COUNT1, DECR, AON
MAR CJMPNZ, label_X

4.13.8.1 COUNT Counter Operands
See Algorithmic Pattern Generator (APG), Memory Test Patterns, COUNT Instruction.

Description
The COUNT instruction takes the following form:

COUNT Counter, Function, Autoreload

Table 4.13.8.0-1 COUNT Instruction Operands

Counter Function Autoreload

COUNT#
NOCOUNT(D)
RELOAD#

COUNTUDATA
DEC2
DECR
INCR

NOCOUNT(D)

AOFF(D)
AON

where # = 1 to 60
 2/27/09 Pg-1349

Memory Test Patterns
The following diagram is used to describe APG counter operation:

In each COUNT instruction an APG counter is selected, either explicitly, using the COUNT# or
RELOAD# operands, or counter-1 (COUNT1) is selected by default (the same as NOCOUNT).
The counter selected becomes the target of the current COUNT instruction and is the counter
evaluated by any MAR Instruction which tests a counter value in the current instruction.

In each COUNT instruction, if AON is specified (see COUNT Autoreload Operands) and if, at
the start of instruction execution, the target counter = 0, the counter function (see the
COUNT Function Operands) is ignored and the target counter is reloaded (auto-reload) from
its associated reload register. Otherwise (i.e. either AON is not specified and/or the target
counter != 0) the auto-reload does not occur and the counter function is executed, with the
target counter receiving the result of the operation.

If a RELOAD# operand is used the target counter’s reload register is loaded with the UDATA
value specified in the current instruction (default = 0). However, when AON is specified and
auto-reload does occur the value reloaded into the target counter is different when using
Maverick-I/-II and Magnum 1 vs. Magnum 2/2x:

• Using Maverick-I/-II and Magnum 1, if auto-reload does occur, the reload register is
copied to the target counter after the UDATA value is transferred to the RELOAD#
register.

• Using Magnum 2/2x, if auto-reload does occur, the reload register is copied to the
target counter before the UDATA value is transferred to the RELOAD# register.

Note: beginning in software release v2.12.4, using Maverick-II and Magnum 1 some
behavior above can be modified using the apg_reload_register_mode_set() function
(this function is not usable on Magnum 2/2x but similar functionality can be obtained using
the User RAM facility). On Maverick-II this requires APG revision APGMS8 or higher (use
boardrevs.exe to check). The alternate behavior occurs only when using:

COUNT RELOAD#, any_counter_func, AON

RELOAD#COUNT# Note-1: auto-reload occurs only if AON is specified
and if, at the start of the current instruction,
COUNT# = 0.

Using Maverick-II and Magnum 1 this behaviour can
be modified, more below.

UDATA

APG Counter

AON1
 2/27/09 Pg-1350

Memory Test Patterns
In the alternate mode, AON is ignored (no auto-reload will occur regardless of the initial value
in the target counter), the counter function is performed and the result is put into both the
target counter and its reload register.

The table below summarizes the Counter operands to COUNT:

Example
The following example decrements APG counter #2 (COUNT2). If, before counter #2 is
decremented, its value = 0, counter #2 will be auto-reload’ed (AON) from its reload register;
i.e. reload register #2 (see Description):

% COUNT COUNT2, DECR, AON

The following example loads both counter #4 and reload register #4 with 10:

% COUNT RELOAD4, COUNTUDATA, AOFF
 UDATA 10

The following example increments APG counter #2 (COUNT2) and loads reload register #2
with 10. If, before counter #2 is incremented, its value = 0, counter #2 will be auto-reload’ed
(AON) from its reload register; i.e. reload register #2. The actual value loaded may be
different using Maverick-I/-II and Magnum 1 vs. Magnum 2/2x, see Description:

% COUNT RELOAD2, INCR, AON
 UDATA 10

4.13.8.2 COUNT Function Operands
See Algorithmic Pattern Generator (APG), Memory Test Patterns, COUNT Instruction.

Table 4.13.8.1-1 COUNT Counter Operands

Operand Purpose

COUNT# Legal values are COUNT1 through COUNT60. Selects the target counter.

NOCOUNT COUNT1 is the default target counter.

RELOAD#
Legal values are RELOAD1 through RELOAD60. Selects the target counter
and affects other COUNT instruction operations, see Description.
 2/27/09 Pg-1351

Memory Test Patterns
Description
The COUNT instruction takes the following form:

COUNT Counter, Function, Autoreload

The Function operand specifies the counter operation to be performed on the Counter
selected in the current instruction. See COUNT Counter Operands for additional details.

The table below describes the options available for the Function operand to COUNT:

Example
The following example decrements APG counter #2 (COUNT2). If, before counter #2 is
decremented, its value = 0, counter #2 will be reloaded (AON) from its reload register, see
COUNT Counter Operands:

% COUNT COUNT2, DECR, AON

Also see Example, and Example.

4.13.8.3 COUNT Autoreload Operands
See Algorithmic Pattern Generator (APG), Memory Test Patterns, COUNT Instruction.

Table 4.13.8.2-1 COUNT Function Operands

Operand Purpose

COUNTUDATA Loads the UDATA value into the counter specified in the Counter
operand. If Counter = RELOAD#, loads both COUNT# and RELOAD#
with the UDATA value. See COUNT Counter Operands for additional
details.

DECR Decrements by 1 the counter specified in the Counter operand

DEC2 Decrements by 2 the counter specified in the Counter operand

INCR Increments by 1 the counter specified in the Counter operand

NOCOUNT No counter function is performed; i.e. the counter specified in the
Counter operand holds its current value (default).
 2/27/09 Pg-1352

Memory Test Patterns
Description
The COUNT instruction takes the following form:

COUNT Counter, Function, Autoreload

The Autoreload operand is optional and, if specified, determines whether the target
Counter will be reloaded from its associated reload register.

Each APG counter is backed by a 32 bit reload register. During pattern execution, APG
counter auto-reload occurs when:

• At the start of the current instruction (i.e. before any counter modifications occurs
in the current instruction), the value in the counter selected in the current
instruction equals 0. And...

• COUNT AON is specified in the current instruction.

Note: important additional information related to auto-reload operation is documented
in COUNT Counter Operands.

The table below describes the options available for the Autoreload operand to COUNT:

Example
The following example decrements APG counter #2 (COUNT2). If, before counter #2 is
decremented, its value = 0, counter #2 will be auto-reload’ed (AON) from its reload register;
i.e. reload register #2 (see COUNT Counter Operands for additional details):

% COUNT COUNT2, DECR, AON

In the following example, assuming the first instruction causes counter #2 to decrement to 0,
counter #2 will be reloaded as indicated. Note that reloading would occur as noted if
counter #2 = 0 regardless of how it reached that value:

Table 4.13.8.3-1 COUNT Autoreload Operands

Operand Purpose

AOFF Disables Auto-reload (default)

AON Enables Auto-reload
 2/27/09 Pg-1353

Memory Test Patterns
% COUNT COUNT2, DECR, AON // Reloaded here if =0 before DECR
% COUNT COUNT2, any_function, AOFF // NOT reloaded here
% COUNT COUNT2, any_function, AOFF // NOT reloaded here
% COUNT COUNT2, any_function, AON // Reload occurs here if =0

4.13.9 MAR Instruction

See Algorithmic Pattern Generator (APG), Memory Test Patterns, Memory Pattern
Instruction Format.

Description
During pattern execution, APG operation is controlled by the hardware APG Controller
Engine (also called the MAR engine), as directed by the MAR instruction in each APG pattern
instruction. This instruction also controls various other miscellaneous features (more below).

The term MAR originally referred to the APG’s MicroRAM Address Register. In this
documentation, the term MAR is also used:

• To represent the pattern instruction which controls memory pattern execution
sequence; i.e. MAR instruction.

• When referring to the hardware engine which controls all memory pattern
execution; i.e. MAR Engine.

• The value in the APG MAR register. This is the address of the current pattern
instruction being executed. Note that, in this context, user code cannot access
literal MAR values; all references to specific pattern instructions is done using a
Pattern Label, label + offset, or pattern name.

The purposes of the MAR instruction are:

• Control the APG pattern instruction execution sequence (Branch-condition,
Address).

• Enable/disable strobes from the APG Data Generator (Strobe-control).
• Control the programmable APG Interrupt Timer (Interrupt, Timer).
• Control miscellaneous features (Misc).
• Control the branch-on-error error type selection (BOE-type).
• Control the error source selection (Error-choice).

The default MAR instruction is:
 2/27/09 Pg-1354

Memory Test Patterns
MAR INC, NOREAD, NOINT, RSTTMR, ERRSRC1

Usage
MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,

Misc, BOE-type, Error-choice

where:

Branch-condition specifies how the next instruction to be executed is determined. This
can be as simple as incrementing the MAR address to the next instruction (INC), or a
conditional or unconditional branch to an arbitrary instruction, or a conditional or
unconditional subroutine call or return. Conditional operations can be based on an APG
counter value, or the PASS/FAIL status of an error flag. See MAR Branch Condition
Operands.

Note: in Magnum 1/2/2x test patterns, many conditional branch operations are
affected by a static setup (see Static Error Choice Functions, Branch-on-error)
and the MAR Error-choice Operands.

Address identifies the instruction to be executed when Branch-condition is not INC,
PAUSE, RETURN, or DONE. An address is specified using a Pattern Label or the name of
another test pattern. Rules apply, see MAR Address Operand.

Strobe-control enables\disables strobes pin pins which are scrambled (see Pin
Scramble) to APG Data Generator outputs in the current instruction. Either all strobes are
disabled (NOREAD), enabled (READ), or a bit-mask can be specified to control strobes
individually on each APG Data Generator output (READUDATA + UDATA). The
data_strobe() function also affects these same strobes. See MAR Strobe Control
Operands.

Interrupt allows the real time programmable APG Interrupt Timer to generate an interrupt
in the current instruction. See MAR Interrupt Operands.

Timer allows the APG Interrupt Timer to count in the current instruction. See MAR Timer
Operands.

Misc controls several unrelated features. Any combination of the following can be used in a
given pattern instruction, in any order. See MAR Misc Operands:

• RESET = reset all error flags (see Error Flag vs. Error Latch).
• NOLATCH/LATCH = controls whether a failing strobe in the current cycle will set an

error latch (see Error Flag vs. Error Latch). Default = LATCH.
 2/27/09 Pg-1355

Memory Test Patterns
• VCOMP = generates a trigger to strobe the DC Comparators and Error Logic or DC
A/D Converter in the DC Test and Measure System. See Dynamic DC Tests.

• OVER = enable the over-programming logic in the current instruction.
See Over-programming Controls and Parallel Test.

• CLEARERR: unconditionally clears all Total Error Counters, Row Error Counters and
Col Error Counters and IOC Error Counters (see MAR Error-choice Operands).
CLEARERR does not clear the PE Error Flags.

BOE-type selects the type of signal used by branch-on-error operation in the next
instruction executed. This operand is required for some, but not all, MAR branch-on-error
operations. See MAR BOE Type Operands.

Error-choice selects between 4 sets of error signals (in 3 groups), increasing test pattern
branch options as compared to Maverick-I/-II. See MAR Error-choice Operands

The table below summarizes the operands for each field of the MAR instruction. For Magnum
1/2/2x, there are 2 tables; additional Branch-condition and new Error-choice
 2/27/09 Pg-1356

Memory Test Patterns
operands, which only apply to Magnum 1/2/2x, are listed separately, in the 2nd table.
Default values are indicated using (D):

Table 4.13.9.0-1 MAR Instruction Operands

Branch
Condition3 Address

Strobe
Control Interrupt Timer Misc

INC(D)
DONE
GOSUB
JUMP
PAUSE
RETURN
CJMPA
CJMPNA
CJMPE
CJMPNE
CJMPT
CJMPNT
CJMPZ
CJMPNZ
CRETE
CRETNE
CRETT
CRETNT
CRETZ
CRETNZ
CSUBE
CSUBNE
CSUBT
CSUBNT
CSUBZ
CSUBNZ

Pattern
Label

(none)(D)

NOREAD(D)
READ

READUDATA
READV
READZ

INTADR
INTEN

INTENADR
NOINT(D)

RSTTMR(D)
TIMEN

NOLATCH
RESET
OVER
VCOMP
VCNTR1

CLEARERR
DEFAULT2

(none)(D)

Notes:
1) Not usable in Maverick-I (only).
2) Usable in Magnum 1/2/2x mixedsync test patterns only.
3) Additional Branch Condition and Error Choice operands are listed in
 the following table.
 2/27/09 Pg-1357

Memory Test Patterns
Table 4.13.9.0-2 Magnum 1/2/2x Only MAR Instruction Operands1

Branch
Condition

Error
Choice

CSUBNE_ANOTB
CSUBNE_BNOTA
CSUBNE_ALL
CSUBNE_DUT1
...thru...
CSUBNE_DUT8
CSUBE_ANOTB
CSUBE_BNOTA
CSUBE_ALL
CSUBE_DUT1
...thru...
CSUBE_DUT8
CJMPNE_ANOTB
CJMPNE_BNOTA
CJMPNE_ALL
CJMPNE_DUT1
...thru...
CJMPNE_DUT8

ERRSRC1(D)
ERRSRC2
ERRSRC3
ERRSRC4

Note-1: only usable in Magnum 1/2/2x test
patterns. Several other Magnum 1/2/2x only
operands appear in the previous table
 2/27/09 Pg-1358

Memory Test Patterns
4.13.9.1 MAR Default Pattern Instruction
See Memory Test Patterns, MAR Instruction, Logic Test Patterns, VAR Instruction.

Using Magnum 1/2/2x, Mixed Memory/Logic Patterns are always controlled by independent
hardware engines: the MAR Engine for memory instructions and the VAR Engine for logic
instructions.

In mixed patterns, all synchronization required between the two engines is normally
accomplished using explicit pattern instructions, typically requiring careful attention to details

CJMPE_ANOTB
CJMPE_BNOTA
CJMPE_ALL
CJMPE_DUT1
...thru...
CJMPE_DUT8
CRETNE_ANOTB
CRETNE_BNOTA
CRETNE_ALL
CRETNE_DUT1
...thru...
CRETNE_DUT8
CRETE_ANOTB
CRETE_BNOTA
CRETE_ALL
CRETE_DUT1
...thru...
CRETE_DUT8

Table 4.13.9.0-2 Magnum 1/2/2x Only MAR Instruction Operands1 (Continued)

Branch
Condition

Error
Choice

Note-1: only usable in Magnum 1/2/2x test
patterns. Several other Magnum 1/2/2x only
operands appear in the previous table
 2/27/09 Pg-1359

Memory Test Patterns
and ensuring that appropriate memory AND logic instructions are always supplied to both
engines in all pattern instructions.

However, default instructions are defined for both the memory engine (see Default Memory
Pattern Instruction) and logic engine (VAR INC). Any/all Mixed Memory/Logic Patterns
instruction(s) which don’t include explicit memory instruction(s) and/or a logic instruction will
use the default instruction for the missing instruction.

In test patterns with the mixedsync Pattern Attributes, the DEFAULT operand can be used to
redefine the default memory and/or logic instruction.

Note the following:

• Use of the DEFAULT operand is optional, for both MAR and VAR instructions.
• The DEFAULT operand is purely a compile-time operation.
• MAR DEFAULT records the current memory instruction as the new default memory

instruction. The default memory instruction is then implicitly added to any
subsequent pattern instruction which does not contain an explicit memory
instruction.

• VAR DEFAULT records the current logic instruction as the new default logic
instruction. The default logic instruction is then implicitly added to any subsequent
pattern instruction which does not contain an explicit logic instruction.

• MAR DEFAULT and VAR DEFAULT can be used in the same pattern instruction.
• Either default instruction can be redefined as desired.

4.13.9.2 MAR Branch Condition Operands
See Algorithmic Pattern Generator (APG), Memory Test Patterns, MAR Instruction.

Description
MAR Branch-condition operands are used to control pattern execution sequence. The
MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

There are several types of MAR branch condition operands:

• Unconditional, no Address required: INC, DONE, RETURN, PAUSE. See MAR
Unconditional Branch-condition Operands.
 2/27/09 Pg-1360

Memory Test Patterns
• Unconditional, Address required: JUMP, GOSUB. See MAR Unconditional Branch-
condition Operands.

• Conditional, no Address required: CRETNZ, CRETNE, etc., more below.
• Conditional, Address required: CSUBNE, CSUBNT etc., more below.

There are 3 basic conditional operations:

• Conditional jump (CJMPE, CJMPNZ, etc.)
• Conditional subroutine call (CSUBNE, CSUBNT, etc.)
• Conditional subroutine return (CRETNZ, CRETNE, etc.)

In all 3 cases, the MAR Address operand specifies which instruction is executed next if the
condition being evaluated is TRUE (more below). The Address operand is specified as a
Pattern Label or a PATTERN name (rules apply, see Note below).

Note: a subroutine may be identified using a Pattern Label if the subroutine is within
the same pattern, or by referring to another PATTERN. The destination of a test
pattern jump/branch instruction can only reference a Pattern Label within the
same pattern.

MAR conditional operations can test a variety of parameters, one per instruction. The
parameter to test is identified by the name of the MAR Branch-condition operand. See
MAR Conditional Branch-condition Operands and MAR Multi-DUT Branch-condition
Operands.

The MAR Multi-DUT Branch-condition Operands provide per-DUT branch options targeted
for use in Multi-DUT Test Programs. These options require that the DUT board design
adhere to specific DUT-pin to Tester-pin Connection Requirements.

The MAR Multi-DUT Branch-condition Operands provide options which require that the user
understand some hardware details and choose between several error source selection
options. See MAR Error-choice Operands and MAR BOE Type Operands.

Note: the term error is used consistently, even when the selected branch signal
represents the output of ECR Counter Comparators. See MAR Error-choice
Operands.

As indicated, using conditional operations, pattern execution will branch to the specified
Address, or call/return from a subroutine if the condition is TRUE, otherwise execution will
continue with the next instruction. If a conditional subroutine call or return is specified and
 2/27/09 Pg-1361

Memory Test Patterns
the condition is TRUE, execution is the same as an unconditional subroutine call or return;
i.e. complete the current instruction then call or return.

Several tables below describe the unconditional and conditional options available for the
MAR Branch-condition operands. A separate table lists MAR Multi-DUT Branch-
condition Operands which only apply to Magnum 1/2/2x:

Table 4.13.9.2-1 MAR Unconditional Branch-condition Operands

Operand Purpose

DONE Halts the APG MAR Engine; i.e. stops pattern execution. This sends a
done signal to the site controller (default). Any specified Address is
ignored. See MAR DONE and/or VAR DONE.

GOSUB Calls the subroutine at the specified address (see Note:). See Pattern
Subroutines.

INC Execution proceeds to the next instruction. Any specified Address is
ignored.
 2/27/09 Pg-1362

Memory Test Patterns
JUMP Execution will unconditionally jump to the specified address (see Note:).

PAUSE Stops the APG MAR Engine (pauses the pattern) when the instruction
containing the PAUSE reaches the DUT. The pattern can be restarted
using the restart() function. The restarted pattern will continue
execution at the instruction immediately following the instruction
containing the PAUSE. Restriction: two consecutive pattern instructions
containing PAUSE are not allowed. Any specified Address is ignored.

Note: the pattern generator uses a pipe-line architecture. This means
that during the time a test pattern is paused that user-code must
not:

• Write any APG hardware registers, including Address Generator, Data
Generator, Chip-selects, Counters, JAM register, User RAM, UDATA,
etc. Register read is OK.

• Modify any cycle period values.

The details of the pattern generator pipe-line architecture are not
documented, because:
• The architecture is variable, based on which hardware options are
 used in any given test program and/or test pattern.
• The architecture is subject to change without notice, as needed to add
 new features, fix problems, etc.

RETURN Execution returns from a subroutine or interrupt timer routine to the
address popped off the stack. Any specified address is ignored. See
Pattern Subroutines.

Table 4.13.9.2-1 MAR Unconditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1363

Memory Test Patterns
Table 4.13.9.2-2 MAR Conditional Branch-condition Operands

Operand Purpose

CJMPA Conditional JuMP on Abort
Execution will jump to the specified address (see Note:) if the Abort signal is
TRUE at the start of the current instruction. The Abort signal comes from the
PE error latches, not error flags, see Error Flag vs. Error Latch. If the Abort
signal is FALSE, the next instruction will execute. The Abort signal will be
TRUE when all DUTs in a site have one or more set error latches. See Error
Pipeline Requirements. The Abort signal is useful when testing multiple
DUTs; the Abort signal will be TRUE when all DUTs have failed. Using
Magnum 1/2/2x, the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and which MAR
Error-choice Operands are used in the same instruction. See APG
Instruction Execution.

Note: using Magnum 1/2/2x, proper operation of the Abort signal
requires that all DUTs be enabled; i.e. all DUTs must be in the
Active DUTs Set (ADS). The Abort signal will NOT go active if any
DUT(s) are disabled.
 2/27/09 Pg-1364

Memory Test Patterns
CJMPNA Conditional JuMP on Not Abort
Execution will jump to the specified address (see Note:) if the Abort signal is
FALSE at the start of the current instruction. The Abort signal comes from
the PE error latches, not error flags, see Error Flag vs. Error Latch. If the
Abort signal is TRUE, the next instruction will execute. The Abort signal will
be FALSE when any one or more DUT(s) in a site do not have a set error
latch. See Error Pipeline Requirements. The Abort signal is useful when
testing multiple DUTs; the Abort signal will be TRUE when all DUTs have
failed. Using Magnum 1/2/2x, the operation of this operand is affected/
changed by a static setup (see Static Error Choice Functions, Branch-on-
error) and which MAR Error-choice Operands are used in the same
instruction. See APG Instruction Execution.

Note: using Magnum 1/2/2x, proper operation of the Abort signal
requires that all DUTs be enabled; i.e. all DUTs must be in the
Active DUTs Set (ADS). The Abort signal will NOT go active if any
DUT(s) are disabled.

CJMPE Conditional JuMP on Error
Execution will jump to the specified address (see Note:) if the error signal is
TRUE at the start of the current instruction. If the error signal is FALSE, the
next instruction will execute. The Error signal will be TRUE if any error flag(s)
are set (see Error Flag vs. Error Latch). See Error Pipeline Requirements.
Using Magnum 1/2/2x, the operation of this operand is affected/changed by
a static setup (see Static Error Choice Functions, Branch-on-error) and
which MAR Error-choice Operands are used in the same instruction. See
APG Instruction Execution.

Table 4.13.9.2-2 MAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1365

Memory Test Patterns
CJMPNE Conditional JuMP on No Error
Execution will jump to the specified address (see Note:) if the Error signal is
FALSE at the start of the current instruction. If the Error signal is TRUE, the
next instruction will execute. The Error signal will be FALSE when no error
flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CJMPT Conditional JuMP on Timer = 0
Execution will jump to the specified address (see Note:) if the APG Interrupt
Timer = 0 at the start of the current instruction. If the interrupt timer is not
zero, the next instruction will execute. See Note:. See APG Instruction
Execution.

CJMPNT Conditional JuMP on Timer Not = 0
Execution will jump to the specified address (see Note:) if the APG Interrupt
Timer is not zero at the start of the current instruction. If the interrupt timer is
zero, the next instruction will execute. See Note:. See APG Instruction
Execution.

CJMPZ Conditional JuMP on Zero
Execution will jump to the specified address (see Note:) if the counter
specified in the COUNT instruction is zero at the start of the current
instruction. If the counter is not zero the next pattern instruction will execute.
See APG Instruction Execution.

CJMPNZ Conditional JuMP on Not Zero
Execution will jump to the specified address (see Note:) if the counter
specified in the COUNT instruction is not zero at the start of the current
instruction. If the counter is zero the next instruction will execute. See APG
Instruction Execution.

Table 4.13.9.2-2 MAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1366

Memory Test Patterns
CRETE Conditional RETurn on Error
Execution returns to the instruction address popped off the stack if the error
signal is TRUE at the start of the current instruction. If the Error signal is
FALSE, the next instruction will execute. The Error signal will be TRUE if any
error flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements and Pattern Subroutines. Using Magnum 1/2/2x, the
operation of this operand is affected/changed by a static setup (see Static
Error Choice Functions, Branch-on-error) and which MAR Error-choice
Operands are used in the same instruction. See APG Instruction Execution.

CRETNE Conditional RETurn on No Error
Execution returns to the instruction address popped off the stack if the error
signal is FALSE at the start of the current instruction. If the Error signal is
TRUE, the next instruction will execute. The Error signal will be FALSE when
no error flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements and Pattern Subroutines. Using Magnum 1/2/2x, the
operation of this operand is affected/changed by a static setup (see Static
Error Choice Functions, Branch-on-error) and which MAR Error-choice
Operands are used in the same instruction. See APG Instruction Execution.

CRETT Conditional RETurn on Timer = 0
Execution returns to the instruction address popped off the stack if the APG
Interrupt Timer = 0 at the start of the current pattern instruction. If the
interrupt timer is not zero, the next instruction will execute. See Pattern
Subroutines. See Note:. See APG Instruction Execution.

CRETNT Conditional RETurn on Timer Not = 0
Execution returns to the instruction address popped off the stack if the APG
Interrupt Timer is not zero at the start of the current pattern instruction. If
the interrupt timer is zero, the next instruction will execute. See Pattern
Subroutines. See Note:. See APG Instruction Execution.

CRETZ Conditional RETurn on Zero
Execution returns to the instruction address popped off the stack if the
counter specified in the COUNT instruction is zero at the start of the current
pattern instruction. If the counter is not zero, the next instruction will execute.
See Pattern Subroutines and APG Instruction Execution.

Table 4.13.9.2-2 MAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1367

Memory Test Patterns
CRETNZ Conditional RETurn on Not Zero
Execution returns to the instruction address popped off the stack if the
counter specified in the COUNT instruction is not zero at the start of the
current pattern instruction. If the counter is zero, the next instruction will
execute. See Pattern Subroutines and APG Instruction Execution.

CSUBE Conditional SUBroutine call on Error
If the error signal is TRUE at the start of the current instruction, calls the
specified pattern subroutine (see Note:) and pushes the subroutine return
address on the execution stack. If the Error signal is FALSE, the next
instruction will execute. The Error signal will be TRUE if any error flag(s) are
set (see Error Flag vs. Error Latch). See Error Pipeline Requirements and
Pattern Subroutines. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CSUBNE Conditional SUBroutine call on No Error
If the error signal is FALSE at the start of the current instruction, calls the
specified pattern subroutine (see Note:) and pushes the subroutine return
address on the execution stack. If the Error signal is TRUE, the next
instruction will execute. The Error signal will be FALSE if no error flags are
set (see Error Flag vs. Error Latch). See Error Pipeline Requirements and
Pattern Subroutines. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CSUBT Conditional SUBroutine call on Timer = 0)
Calls the specified subroutine (see Note:) if the APG Interrupt Timer = 0 at
the start of the current pattern instruction. The subroutine return address is
pushed on the execution stack. If the interrupt timer is not 0, the next
instruction will execute. See Pattern Subroutines. See Note:. See APG
Instruction Execution.

Table 4.13.9.2-2 MAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1368

Memory Test Patterns
Note: it is illegal to use INTEN or INTADR in the same pattern instruction with a MAR
conditional branch based on the APG Interrupt Timer (MAR CJMPT, CRETT, etc.).
This rule is enforced by the pattern compiler.

The following conditional options are targeted for use in Magnum 1/2/2x Multi-DUT Test
Programs. To properly use these options requires the user consider both the static error

CSUBNT Conditional SUBroutine call on Timer Not = 0
Calls the specified subroutine (see Note:) if the APG Interrupt Timer is not 0
at the start of the current pattern instruction. The subroutine return address
is pushed on the execution stack. If the timer = 0, the next instruction will
execute. See Pattern Subroutines. See Note:. See APG Instruction
Execution.

CSUBZ Conditional SUBroutine call on Zero
Calls the specified subroutine (see Note:) if the counter specified in the
COUNT instruction is zero at the start of the current pattern instruction. The
subroutine return address is pushed on the execution stack. If the counter is
not zero, the next instruction will execute. See Pattern Subroutines and APG
Instruction Execution.

CSUBNZ Conditional SUBroutine call on Not Zero
Calls the specified subroutine (see Note:) if the counter specified in the
COUNT instruction is not zero at the start of the current pattern instruction.
The subroutine return address is pushed on the execution stack. If the
counter is zero, the next instruction will execute. See Pattern Subroutines
and APG Instruction Execution.

Table 4.13.9.2-2 MAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1369

Memory Test Patterns
choice setup (see Static Error Choice Functions, Branch-on-error) and the MAR Error-
choice Operands:

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands

Operand Purpose

CSUBE_ALL Conditional SUBroutine Call Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn) (see Note below)
The subroutine will be called if every DUT on every Sub-site; i.e. all
DUTs fail. SeeError Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CSUBNE_ALL Conditional SUBroutine Call No Error ALL
(A1 + A2 + An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CSUBE_ALL i.e. the subroutine will be called if
any DUT on any Sub-site doesn’t have an error; i.e. all DUTs must
have an error to NOT branch. SeeError Pipeline Requirements and
Pattern Subroutines. Note: the operation of this operand is affected/
changed by a static setup (see Static Error Choice Functions, Branch-
on-error) and by the MAR Error-choice Operands selection.

CSUBE_ANOTB Conditional SUBroutine Call Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn) (see Note below)
The subroutine will be called if any DUT on Sub-site-A has an error
AND no DUTs on Sub-site-B have an error. SeeError Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1370

Memory Test Patterns
CSUBNE_ANOTB Conditional SUBroutine Call No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CSUBE_ANOTB i.e. the subroutine will be called if
no DUTs on Sub-site-A have an error OR any DUT on Sub-site-B has
an error. SeeError Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CSUBE_BNOTA Conditional SUBroutine Call Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn) (see Note below)
The subroutine will be called if no DUTs on Sub-site-A have an error
AND any DUT on Sub-site-B has an error. SeeError Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

CSUBNE_BNOTA Conditional SUBroutine Call No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn) (see Note below)
This is the inverse of CSUBE_BNOTA i.e. the subroutine will be called if
any DUT on Sub-site-A has an error OR no DUTs on Sub-site-B have
an error. SeeError Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CSUBE_DUT1
thru

CSUBE_DUT8
See Note:

Conditional SUBroutine Call Error DUT-1 thru DUT-8
Subroutine will be called if the specified DUT has an error. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1371

Memory Test Patterns
CSUBNE_DUT1
thru

CSUBNE_DUT8
See Note:

Conditional SUBroutine Call No Error DUT-1 thru DUT-8
Subroutine will be called if the specified DUT has no errors. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CRETE_ALL Conditional Return Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn) (see Note below)
The subroutine will return if every DUT on every Sub-site has an error;
i.e. all DUTs fail. SeeError Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

CRETNE_ALL Conditional Return No Error ALL
(A1 + A2 + An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CRETE_ALL i.e. the subroutine will return if any
DUT on Sub-site-A doesn’t have an error OR any DUT on Sub-site-B
doesn’t have an error i.e. all DUTs must have an error to NOT return.
SeeError Pipeline Requirements and Pattern Subroutines. Note: the
operation of this operand is affected/changed by a static setup (see
Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CRETE_ANOTB Conditional Return Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn) (see Note below)
The subroutine will return if any DUT on Sub-site-A has an error AND
no DUTs on Sub-site-B have an error. SeeError Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1372

Memory Test Patterns
CRETNE_ANOTB Conditional Return No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CRETE_ANOTB i.e. the subroutine will return if no
DUTs on Sub-site-A have an error OR any DUT on Sub-site-B has an
error. SeeError Pipeline Requirements and Pattern Subroutines. Note:
the operation of this operand is affected/changed by a static setup
(see Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CRETE_BNOTA Conditional Jump Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn) (see Note below)
The subroutine will return if no DUTs on Sub-site-A have an error
AND any DUT on Sub-site-B has an error. SeeError Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

CRETNE_BNOTA Conditional Jump No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn) (see Note below)
This is the inverse of CRETE_BNOTA i.e. the subroutine will return if
any DUT on Sub-site-A has an error OR no DUTs on Sub-site-B have
an error. SeeError Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CRETE_DUT1
thru

CRETE_DUT8
See Note:

Conditional Return Error DUT-1 thru DUT-8
Subroutine will return if the specified DUT has an error. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1373

Memory Test Patterns
CRETNE_DUT1
thru

CRETNE_DUT8
See Note:

Conditional Return No Error DUT-1 thru DUT-8
Subroutine will return if the specified DUT has no errors. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CJMPE_ALL Conditional Jump Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn) (see Note below)
The jump will occur if every DUT on every Sub-site has an error i.e. all
DUTs fail. SeeError Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CJMPNE_ALL Conditional Jump No Error ALL DUTs
(A1 + A2 + An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CJMPE_ALL i.e. the jump will occur if any DUT
on any Sub-site doesn’t have an error; i.e. all DUTs must have an
error to NOT branch. SeeError Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

CJMPE_ANOTB Conditional Jump Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn) (see Note below)
The jump will occur if any DUT on Sub-site-A has an error AND no
DUTs on Sub-site-B have an error. SeeError Pipeline Requirements
and Pattern Subroutines. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1374

Memory Test Patterns
CJMPNE_ANOTB Conditional Jump No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn) (see Note below)
This is the inverse of CJMPE_ANOTB i.e. the jump will occur if no
DUTs on Sub-site-A have an error OR any DUT on Sub-site-B has an
error. SeeError Pipeline Requirements and Pattern Subroutines. Note:
the operation of this operand is affected/changed by a static setup
(see Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CJMPE_BNOTA Conditional Jump Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn) (see Note below)
The jump will occur if no DUTs on Sub-site-A have an error AND any
DUT on Sub-site-B has an error. SeeError Pipeline Requirements and
Pattern Subroutines. Note: the operation of this operand is affected/
changed by a static setup (see Static Error Choice Functions, Branch-
on-error) and by the MAR Error-choice Operands selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1375

Memory Test Patterns
Note: to aid readability in Multi-DUT Test Programs, a second set of operands are
available when testing >8 DUTs in static Mode-2 (t_errmode2) and Mode-3
(t_errmode3). For example:
- CRETE_DUT9 is equivalent to CRETE_DUT1
- CJMPE_DUT10 is equivalent to CJMPE_DUT2
- Etc.
This allows the test pattern to reflect that _DUT1 also represents _DUT9 in these
static modes, with the MAR Error-choice Operands determining which DUT is
actually being tested. See MAR Error-choice Operands and Static Error Choice
Functions, Branch-on-error.

CJMPNE_BNOTA Conditional Jump No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn) (see Note below)
This is the inverse of CJMPE_BNOTA i.e. the jump will occur if any
DUT on Sub-site-A has an error OR no DUTs on Sub-site-B have an
error. SeeError Pipeline Requirements and Pattern Subroutines. Note:
the operation of this operand is affected/changed by a static setup
(see Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CJMPE_DUT1
thru

CJMPE_DUT8
See Note:

Conditional Jump Error DUT-1 thru DUT-8
Jump will occur if the specified DUT has an error. Errors associated
with other DUTs have no effect. See Error Pipeline Requirements,
Pattern Subroutines and Note:. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

CJMPNE_DUT1
thru

CJMPNE_DUT8
See Note:

Conditional Jump No Error DUT-1 thru DUT-8
Jump will occur if the specified DUT has no errors. Errors associated
with other DUTs have no effect. See Error Pipeline Requirements,
Pattern Subroutines and Note:. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

Table 4.13.9.2-3 MAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

In these descriptions the term error is used consistently, even when the
signal represents the output of ECR Counter Comparators.

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1376

Memory Test Patterns
4.13.9.3 MAR Address Operand
See APG Controller Engine, Memory Test Patterns, MAR Instruction.

Description
The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

The MAR instruction Address operand identifies a pattern instruction as the target for a
conditional or unconditional branch operation. Note the following:

• An Address is specified using a Pattern Label or a PATTERN name, but not all
Branch-condition operations can use both.

• A subroutine address (GOSUB, CSUBE, etc.) can be specified as a Pattern Label in
the same pattern or as a PATTERN name.

• A jump address (JUMP, CJMPZ, etc.) can only be specified as a Pattern Label in
the same pattern, i.e. not as a PATTERN name.

• The MAR address operand may be omitted for instructions that do not require a
target address; i.e. INC, DONE, RETURN, PAUSE. With all other jump and
subroutine operands (CSUBE, CJMPZ, JUMP, GOSUB, etc.) if the address is omitted,
the default address is the first instruction of the current test pattern.

4.13.9.4 MAR Strobe Control Operands
See APG Controller Engine, Memory Test Patterns, MAR Instruction.

Description
The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

all pins scrambled to
The MAR Strobe-control operand is used to enable or disable strobes on pins scrambled
to the APG Data Generator outputs in the current instruction (see Pin Scramble MUX and
Pin Scramble Functions & Macros).
 2/27/09 Pg-1377

Memory Test Patterns
Note: the data_strobe() function must also enable strobes on appropriate APG
Data Generator outputs, prior to executing the test pattern.

The Strobe-control operand has no effect on strobes controlled by APG Chip Selects
(see CHIPS CSmRDT, CSmRDV, CSmRDZ and CSmRDF).

Note: the last instruction of a pattern (MAR DONE) must not generate any strobes; i.e.
do NOT use any of READ, READV, READV, READUDATA, CSmRDT, CSmRDV,
CSmRDZ and CSmRDF in the last instruction of a test pattern.

Several Strobe-control operand options are available as noted in the table below:

Table 4.13.9.4-1 MAR Strobe-control Operands

Operand Purpose

READ Enables strobes on all pins scrambled to APG Data Generator
outputs in the current instruction. Pins must have been previously
enabled using the data_strobe() function. Do NOT use READ in
the last instruction of a pattern (MAR DONE).

READUDATA Enables/disables strobes on all pins scrambled to APG Data
Generator outputs in the current instruction. Pins must have been
previously enabled using the data_strobe() function. The UDATA
value in the current instruction is used as a bit-mask, with a logic-1
enabling a strobe and a logic-0 disabling a strobe. UDATA bits 0
through 35 correspond to data generator outputs D0 through D35.
This allows strobe control, on a per APG Data Generator output, on
a cycle-by-cycle basis. Do NOT use READUDATA to enable strobes
in the last instruction of a pattern (MAR DONE).
 2/27/09 Pg-1378

Memory Test Patterns
Example
In the following example, only data generator outputs D4-D7 and D12-D15 have strobes
enabled, as controlled using READUDATA plus the UDATA value 0xF0F0 (bits 4-7 and 12-15
= logic-1). Desired operation also assumes that data_strobe() was used to enable
strobes for (at least) D4-D7 and D12-D15 prior to executing the test pattern.

% MAR INC, READUDATA
DATGEN DATDAT
UDATA 0xF0F0
PINFUNC ADHIZ

4.13.9.5 MAR Interrupt Operands
See APG Controller Engine, Memory Test Patterns, MAR Instruction.

Description
The APG contains a real-time interrupt timer. See APG Interrupt Timer for important details
about timer operation.

The MAR instruction takes the following form:

READV Strobes for data valid (the DUT output voltage is either above
voh() or below vol() on all pins scrambled to APG Data
Generator outputs in the current instruction. Pins must have been
previously enabled using the data_strobe() function.
Do NOT use READV in the last instruction of a pattern (MAR DONE).

READZ Strobes for tri-state (the DUT output voltage is either between
voh() and vol()) on all pins scrambled to APG Data Generator
outputs in the current instruction. Pins must have been previously
enabled using the data_strobe() function.
Do NOT use READZ in the last instruction of a pattern (MAR DONE).

NOREAD Disables strobes on pins scrambled to APG Data Generator outputs
in the current instruction. (default)

Table 4.13.9.4-1 MAR Strobe-control Operands

Operand Purpose
 2/27/09 Pg-1379

Memory Test Patterns
MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

The table below describes the options available for the MAR Interrupt operands:

Note: it is illegal to use INTEN or INTENADR in the same pattern instruction with a
MAR conditional branch based on the timer (MAR CJMPT, CRETT, etc.). This rule
is enforced by the pattern compiler.

Example
// Set the interrupt subroutine address
% MAR INTADR

UDATA Interrupt_routine

Table 4.13.9.5-1 MAR Interrupt Operands

Operand Purpose

INTEN If a timer interrupt is pending at the start of an instruction containing this
operand, the interrupt subroutine, previously specified using INTADR or
INTENADR, will be executed instead of executing the next instruction,
which is pushed on the stack as the return address from the subroutine.

NOINT Default. At the start of an instruction containing this operand, the
interrupt subroutine will NOT be called, even if an interrupt is pending.

INTADR Loads the address of the interrupt subroutine, specified in UDATA, into
the interrupt address register. The UDATA field may not be used for other
purposes in any instruction containing this operand (explicitly or
implicitly, see UDATA). At the start of an instruction containing this
operand, the interrupt subroutine will NOT be called, even if an interrupt
is pending.

INTENADR Loads the address of the interrupt subroutine, specified in UDATA, into
the interrupt address register. The UDATA field may not be used for other
purposes in any instruction containing this operand (explicitly or
implicitly, see UDATA). If an interrupt is pending at the start of an
instruction containing this operand the specified interrupt subroutine will
be called instead of executing the next instruction, which is pushed on
the stack as the return address from the subroutine.
 2/27/09 Pg-1380

Memory Test Patterns
% Loop1: // Enable timer, loop waiting for interrupt
COUNT COUNT1, DECR, AON
MAR CJMPNZ, Loop1, TIMEN, INTEN

% MAR DONE

// Start of interrupt subroutine
% Interrupt_routine:
% MAR INC
// ... more instructions as needed
% MAR RETURN

4.13.9.6 MAR Timer Operands
See APG Controller Engine, Memory Test Patterns, MAR Instruction.

Description
The APG contains a real-time interrupt timer. See APG Interrupt Timer.

The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

The table below describes the options available for the MAR Timer operands:

Table 4.13.9.6-1 MAR Timer Operands

Operand Purpose

TIMEN Allows the interrupt timer to count down. If the timer counts-down to 0, an
interrupt will be set (pending). See APG Interrupt Timer.
Note: this operand must not be used in the first 8 pattern cycles (DBM not
used) or 20 pattern cycles (DBM used) of a test pattern. This does not
mean 20 pattern instructions, it means 20 tester cycles.
Using Magnum 1/2/2x, this operand has an identical effect on VAR Engine
interrupt operation. See APG Interrupt Timer. Also review APG Instruction
Execution.

RSTTMR Default. Resets the timer to the value last programmed using the timer()
function.
 2/27/09 Pg-1381

Memory Test Patterns
Note: the RSTTMR default resets the timer. The timer has only two conditions,
counting down (TIMEN) and reset (RSTTMR or no TIMEN).

4.13.9.7 MAR Misc Operands
See APG Controller Engine, Memory Test Patterns, MAR Instruction.

Description
The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

The Misc operand is used to control several independent features, thus multiple tokens are
allowed in this field:

• Error flag operations (RESET, LATCH, NOLATCH). This requires understanding the
two error signal types generated by the hardware. See Error Flag vs. Error Latch.

• Over-programming control (OVER). Used when the test pattern incrementally
programs more than one DUT in parallel. See Over-programming Controls and
Parallel Test.

• Dynamic DC test pattern trigger(s) (VCOMP). This option triggers the DC
Comparators and Error Logic or DC A/D Converter, during Dynamic DC Tests.

• Using Magnum 1/2/2x, specify that a VAR Engine counter is to be tested to
determine branch operation (VCNTR).

• Using Magnum 1/2/2x, clear the error source (CLEARERR) specified by the Error-
choice operand (see MAR Error-choice Operands).

Note: as noted below, the RESET operand clears the PE error flags and the DC Error
Flags in the DC Comparators and Error Logic. The PE error flags have no effect
on overall PASS/FAIL result of a functional test. However, the DC Error Flags do
effect the overall PASS/FAIL result of Dynamic DC Tests. See Error Flag vs. Error
Latch.
 2/27/09 Pg-1382

Memory Test Patterns
The tables below describes the options available for the MAR Misc operands:

Table 4.13.9.7-1 MAR Misc Operands

Operands Purpose

RESET Clears all PE error flags, and DC Error Flags. See Error Flag vs. Error
Latch. In Magnum 1/2/2x Mixed Memory/Logic Patterns MAR RESET is
effectively disabled by PINFUNC VLATCHRESET.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET and
VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: RESET may be used in the MAR, VEC/RPT, VAR, VPINFUNC,
and CHIPS instruction.

LATCH Complement of NOLATCH. Any failing strobe(s) generated by an
instruction which does not contain an explicit MAR NOLATCH or an
explicit VEC/RPT NOLATCH, VAR NOLATCH, or VPINFUNC NOLATCH will
set the corresponding PE error latch(es) and cause the test to fail. See
Error Flag vs. Error Latch. In Magnum 1/2/2x Mixed Memory/Logic
Patterns MAR LATCH is effectively disabled by PINFUNC
VLATCHRESET.

NOLATCH Complement of LATCH. Inhibits failing strobes from setting PE error
latches, see Error Flag vs. Error Latch. Also inhibits capturing errors
into the Error Catch RAM (ECR). Has no effect on error flags, which
controls branch-on-error and stop-on-error decisions. For normal PASS/
FAIL testing, the NOLATCH operand is not used, allowing any failing
strobes to set the error latches and cause the test to fail. In Magnum 1/
2/2x Mixed Memory/Logic Patterns MAR NOLATCH is effectively disabled
by PINFUNC VLATCHRESET.

Note: NOLATCH may be used in the MAR, VEC/RPT, VAR, and
VPINFUNC instructions.
 2/27/09 Pg-1383

Memory Test Patterns
VCOMP During Dynamic DC Tests, sends a one trigger to the DC Comparators
and Error Logic or DC A/D Converter.
Desired operation also requires specifying the CompCond argument to
the test function (ac_test_supply(), hv_ac_test_supply(),
ac_partest()). In Magnum 1/2/2x Mixed Memory/Logic Patterns MAR
VCOMP is effectively disabled by PINFUNC VVCOMP.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: VCOMP may be used in the MAR, VEC/RPT, VAR, and
VPINFUNC instruction.

OVER See Over-programming Controls and Parallel Test. This operand
enables special circuitry to inhibit programming stimulus on DUT(s) that
have successfully programmed while allowing other DUTs on the same
test site to continue programming. In other words, it prevents over-
programming. The over_inhibit() function is used to select the
programming mechanism that is disabled when the OVER operand is
specified. In Magnum 1/2/2x Mixed Memory/Logic Patterns
MAR OVER is effectively disabled by PINFUNC VOVER.

Note: OVER may be used in the MAR, VEC/RPT, VAR, and
VPINFUNC instruction.

VCNTR In mixed Magnum 1/2/2x patterns, causes a MAR branch decision in
the current instruction to test a VAR Engine counter instead of a MAR
Engine counter. See Magnum 1/2/2x Memory Pattern Instructions.

CLEARERR Unconditionally clears all Total Error Counters, Row Error Counters, Col
Error Counters and IOC Error Counters. This has the effect of clearing
any error signals from these counters. See MAR Error-choice
Operands. Does not clear the PE Error Flags.

Table 4.13.9.7-1 MAR Misc Operands (Continued)

Operands Purpose
 2/27/09 Pg-1384

Memory Test Patterns
Example
The following example resets the PE error flags and DC Error Flags:

% MAR RESET

In the following instruction, one trigger is sent to the DC Comparators and Error Logic:

% MAR INC, VCOMP

4.13.9.8 MAR BOE Type Operands
See Algorithmic Pattern Generator (APG), Memory Test Patterns, MAR Instruction.

Note: this section was added in software release h2.0.9.

Description
MAR

MAR BOE Type operands are used to select the type of signal used by a branch-on-error
operation in the next instruction executed. This is required when using some, but not all, of
the MAR branch-on-error options (more below).

The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

The rules are as follows:

DEFAULT Valid only in Mixed Memory/Logic Patterns with the mixedsync attribute
(see Pattern Type Attributes). Identifies the current instruction as the
default memory instruction to be applied in any subsequent instructions
which do not include any explicit memory instructions. See Mixed
Memory/Logic Patterns.

Table 4.13.9.7-1 MAR Misc Operands (Continued)

Operands Purpose
 2/27/09 Pg-1385

Memory Test Patterns
• Any pattern instruction which performs a branch-on-error operation (i.e. a
conditional branch based on errors/failing strobes) must have the appropriate error
type selected in the instruction which executes immediately preceding the branch
instruction. This value changes to 13 instructions when using Logic Test Patterns
or Mixed Memory/Logic Patterns. This is done using a MAR BOE-type operand.

• The default APG instruction automatically selects the BOE-type used by the
mainstream branch-on-error options (see table below); i.e. the most commonly
used branch-on-error operations do not require an explicit BOE-type selection in
the prior instruction executed.

• For the other branch-on-error options, the test pattern instruction which executes
immediately before the branch instruction must include the appropriate MAR
BOE-type selection operand (see table below).

• With regard to BOE-type selection, the branch-on-error instructions can be
grouped into error types, as shown in the following table:

Table 4.13.9.8-1 MAR BOE Type Operands

BOE Error
Type

Selection
Operand

MAR
Branch-on-error

Operand

None
(default)

CJMPNE CJMPE
CRETNE CRETE
CSUBNE CSUBE

ERR_ABORT CJMPNA CJMPA

ERR_ANOTB
CSUBNE_ANOTB CSUBE_ANOTB
CJMPNE_ANOTB CJMPE_ANOTB
CRETNE_ANOTB CRETE_ANOTB

ERR_BNOTA
CSUBNE_BNOTA CSUBE_BNOTA
CJMPNE_BNOTA CJMPE_BNOTA
CRETNE_BNOTA CRETE_BNOTA

ERR_ALL
CSUBNE_ALL CSUBE_ALL
CJMPNE_ALL CJMPE_ALL
CRETNE_ALL CRETE_ALL
 2/27/09 Pg-1386

Memory Test Patterns
• An explicit BOE-type selection in a given pattern instruction directly affects the
branch operation of the instruction that executes next, provided that instruction is
using a branch-on-error operand. Proper operation requires the correct BOE-type
selection based on the branch-on-error option executed in the next instruction.
The pattern compiler can not check or enforce this rule; i.e. it is the user’s
responsibility:
The following is OK because CJMPNE uses default BOE-type

% MAR xxx
% MAR CJMPNE, myLabel

The following is OK because ERR_DUT1 matches CJMPNE_DUT1
% MAR xxx, ERR_DUT1
% MAR CJMPNE_DUT1, myLabel

The following is BAD because CJMPE_ALL needs ERR_ALL
% MAR xxx, ERR_DUT1
% MAR CJMPE_ALL, myLabel

The following is BAD because CSUBNE_DUT1 needs ERR_DUT1

ERR_DUT1

CSUBNE_DUT1
CJMPNE_DUT1
CRETNE_DUT1
CSUBE_DUT1
CJMPE_DUT1
CRETE_DUT1

...through... ...through...

ERR_DUT8

CSUBNE_DUT8
CJMPNE_DUT8
CRETNE_DUT8
CSUBE_DUT8
CJMPE_DUT8
CRETE_DUT8

Table 4.13.9.8-1 MAR BOE Type Operands

BOE Error
Type

Selection
Operand

MAR
Branch-on-error

Operand
 2/27/09 Pg-1387

Memory Test Patterns
% MAR xxx
% MAR CSUBNE_DUT1, myLabel

The following is BAD because CJMPNE needs default
% MAR xxx, ERR_DUT1
% MAR CJMPNE, myLabel

• There are no side effects if a BOE-type selection is repeated for more cycles that
are required prior to the instruction which actually performs the branch-on-error;
i.e. it is OK to put the BOE-type selection in the error pipeline cycle(s) prior to the
branch instruction. For example:

% here:
COUNT COUNT13, DECR
MAR CJMPNZ, here, ERR_DUT1 //OK to use/repeat ERR_DUT1

% MAR CSUBNE_DUT1, there

• It is not legal to include a BOE-type selection operand in an instruction which
includes any of the branch-on-error operands:

% MAR CSUBNE_DUT1, myLabel, ERR_DUT1 // BAD

• There are no side effects if a BOE-type selection is made in the instruction prior
to a branch instruction which is not based on error; i.e. branch on counter values,
timer state or unconditional execution control operands ignore any prior BOE-type
selection.

• The following example shows the minimum requirement for changing BOE-type.
This example changes from DUT1 to DUT2:

% MAR CJMPE_DUT1, ...
% MAR ERR_DUT2
% MAR CJMPE_DUT2, ...

4.13.9.9 MAR Error-choice Operands

See Branch-on-error Logic, MAR Multi-DUT Branch-condition Operands, VAR Multi-DUT
Branch-condition Operands.

Description
Using Magnum 1/2/2x, many (most) conditional branch operations of both Memory Test
Patterns and Logic Test Patterns depend on:
 2/27/09 Pg-1388

Memory Test Patterns
• A static setup, set using the mar_error_choice_set() function, executed from
user C-code prior to executing the test pattern. See Static Error Choice Functions,
Branch-on-error.

• In Memory Test Patterns (and in the memory instructions of Mixed Memory/Logic
Patterns) the MAR Branch-condition selection (if used) in each pattern
instruction. See MAR Conditional Branch-condition Operands and MAR Multi-DUT
Branch-condition Operands.

• In Logic Test Patterns (and in the logic instructions of Mixed Memory/Logic Patterns)
the VAR Branch-condition selection (if used) in each pattern instruction. See
VAR Branch-condition Operands.

• The MAR Error-choice selection (explicit or default) in each pattern instruction.
In pure Logic Test Patterns the default MAR Error-choice value is always
selected, more below.

• The MAR BOE-type operand selection (explicit or default) in the instructions which
executes prior to branch-on-error instruction. This is required when using some,
but not all, branch-on-error options, See MAR BOE Type Operands.

The MAR instruction takes the following form:

MAR Branch-condition, Address, Strobe-control, Interrupt, Timer,
Misc, BOE-type, Error-choice

Legal Error-choice options are:

Note the following:

Table 4.13.9.9-1 MAR Error-choice Operands

Operand Comments

ERRSRC1
(default)

Several tables (below) describe how the various combinations of static
setup (set using the mar_error_choice_set() function) plus these
operands and the various conditional branch options operate. See:
- Magnum 1 MAR Error-choice Operands, 1 to 8 DUTs per ECR.
- MAR Error-choice Operands.
- Branch Signal Operand Associations.
- Branch Operand Operation: t_errmode1.
- Branch Operand Operation: t_errmode2.
- Branch Operand Operation: t_errmode3.
- Branch Operand Operation: t_errmode4.

ERRSRC2

ERRSRC3

ERRSRC4
 2/27/09 Pg-1389

Memory Test Patterns
• To correctly use the Error-choice options requires knowledge of the associated
hardware. See Branch-on-error Logic.

• In hardware, the MAR Error-choice operand controls the Error Signal MUX
which is common to both memory pattern execution and logic pattern execution.
See Branch-on-error Logic. As indicated above, in pure Logic Test Patterns the
default MAR Error-choice value is used.

• The default configuration tests the same PE Error Flags as Maverick-I/-II (see
Error Flag vs. Error Latch) and supports testing of up to 4 DUTs per Sub-site.

• In Multi-DUT Test Programs, proper operation of the MAR Multi-DUT Branch-
condition Operands and VAR Multi-DUT Branch-condition Operands requires that
the DUT board connections to each DUT follow the rules noted in DUT-pin to
Tester-pin Connection Requirements.

Note: the following 2 rules were added on 4/21/2006.

During pattern execution, when the MAR Error-choice operand must change,
proper branch operation requires that the desired error choice be continuously
selected for a minimum of 4 cycles (16 using Logic Test Patterns or Mixed Memory/
Logic Patterns) which execute before the instruction which performs the branch
operation. This is required to allow time for the new MAR Error-choice selection
to propagate in the APG hardware. The same Error-choice selection must be
made in the branch cycle instruction.

• The default APG instruction automatically selects ERRSRC1, which is the
MAR Error-choice operand used by the mainstream branch-on-error options;
i.e. the most commonly used branch-on-error operations typically do not require an
explicit MAR Error-choice operand selection in the prior cycles.
•

The following Magnum 1 table describes how the 8 error signals map to specific DUTs for
the various combinations of static error mode and MAR Error-choice. Only 1 table is needed
because the relationship between DUT numbers and error signals never change. The table
applies when testing 1 to 8 DUTs per sub-site (per ECR); i.e. 2 to 16 DUTs per site). When
 2/27/09 Pg-1390

Memory Test Patterns
fewer DUTs are tested, the error signals are implicitly combined, so the user only needs to
consider DUT numbers, never error signals:

Several tables follow:

• MAR Error-choice Operands - describes which signals the hardware selects based
on the MAR Error-choice operand vs. the static error choice.

• Branch Signal Operand Associations - lists which hardware signal is tested by each
branch operand.

• Branch Operand Operation: t_errmode1, Branch Operand Operation: t_errmode2,
Branch Operand Operation: t_errmode3 and Branch Operand Operation:
t_errmode4 - specify how each branch operand operates for each MAR Error-
choice operand option.

Table 4.13.9.9-2 Magnum 1 MAR Error-choice Operands,
1 to 8 DUTs per ECR

Static Error Mode
1

Static Error Mode
2

Static Error Mode
3

Static Error Mode
43

MAR
Error-
choice

ERR
SRC1

ERR
SRC2

ERR
SRC3

ERR
SRC4

ERR
SRC1

ERR
SRC2

ERR
SRC3

ERR
SRC4

ERR
SRC1

ERR
SRC2

ERR
SRC3

ERR
SRC4

ERR
SRC13

ERR
SRC2

ERR
SRC3

ERR
SRC4

Sub-
site
A

ERR1 DUT1 DUT1 DUT1 DUT1 DUT1 DUT1 DUT9 DUT9 DUT1 DUT1 DUT9 DUT9 1/92 1/92 DUT1 DUT9

ERR3 DUT3 DUT3 DUT3 DUT3 DUT3 DUT3 DUT11 DUT11 DUT3 DUT3 DUT11 DUT11 3/112 3/112 DUT3 DUT11

ERR5 DUT5 DUT5 DUT5 DUT5 DUT5 DUT5 DUT13 DUT13 DUT5 DUT5 DUT13 DUT13 5/132 5/132 DUT5 DUT13

ERR7 DUT7 DUT7 DUT7 DUT7 DUT7 DUT7 DUT15 DUT15 DUT7 DUT7 DUT15 DUT15 7/152 7/152 DUT7 DUT15

Sub-
site
B

ERR2 DUT2 DUT2 DUT2 DUT2 DUT2 DUT2 DUT10 DUT10 DUT2 DUT2 DUT10 DUT10 2/102 2/102 DUT2 DUT10

ERR4 DUT4 DUT4 DUT4 DUT4 DUT4 DUT4 DUT12 DUT12 DUT4 DUT4 DUT12 DUT12 4/122 4/122 DUT4 DUT12

ERR6 DUT6 DUT6 DUT6 DUT6 DUT6 DUT6 DUT14 DUT14 DUT6 DUT6 DUT14 DUT14 6/142 6/142 DUT6 DUT14

ERR8 DUT8 DUT8 DUT8 DUT8 DUT8 DUT8 DUT16 DUT16 DUT8 DUT8 DUT16 DUT16 8/162 8/162 DUT8 DUT16

Branch
Signal
Type

Err TEC REC CEC Err TEC Err TEC REC CEC REC CEC Err TEC Err Err

Notes:

1) This is also the number of DUTs per 64-pin sub-site.

2) The logical OR of signals from the two DUT numbers shown.

3) Static mode 4 + ERRSRC1 must be used when testing more than 8 DUTs, to test (branch) if all DUTs have (or
don’t have) an error.

4) The hardware only uses ERRSRC1 when executing pure logic patterns.
 2/27/09 Pg-1391

Memory Test Patterns
The following table describes the MAR Error-choice Operands for Magnum 1:

Table 4.13.9.9-3 MAR Error-choice Operands

Static
Error
Mode

MAR
Error-
choice Description

Mode-1
(t_errmode1)

Primarily
used when
testing
1-4 DUTs

per
Sub-site

ERRSRC1

See
Note:

Default. PE Error Flags are routed to Branch Decode
Error Logic. Supports 1 to 4 DUTs per Sub-site.
Operation matches Maverick-I/-II pattern conditional
branch operation. See Mode-4 when testing 4-8 DUTs
per Sub-site.

ERRSRC2

See
Note:

TEC Comparator output(s) are routed to Branch
Decode Error Logic. Supports 1 to 4 DUTs per Sub-
site (each DUT having an independent TEC counter).
Enables pattern conditional branch based on whether
value(s) in Total Error Counters are greater than the
TEC Comparator value (see
ecr_compare_reg_set()).

ERRSRC3

See
Note:

REC Comparator output(s) are routed to Branch
Decode Error Logic. Supports 1 to 4 DUTs per Sub-
site (each DUT having an independent REC counter).
Enables pattern conditional branch based on whether
value(s) in Row Error Counters are greater than the
REC Comparator value (see
ecr_compare_reg_set()).

ERRSRC4

See
Note:

CEC Comparator output(s) are routed to Branch
Decode Error Logic. Supports 1 to 4 DUTs per Sub-
site (each DUT having an independent CEC counter).
Enables pattern conditional branch based on whether
value(s) in Col Error Counters are greater than the
CEC Comparator value (see
ecr_compare_reg_set()).

Note: odd numbered DUTs are from Sub-site-A, even numbered DUTs
from Sub-site-B.
 2/27/09 Pg-1392

Memory Test Patterns
Mode-2
(t_errmode2)

Primarily
used when
testing >4
DUTs per
Sub-site.
ECR REC

Comparators
and CEC

Comparators
are not

accessible.

ERRSRC1

See
Note:

PE Error Flag for DUTs 1..8 are routed to Branch
Decode Error Logic. Supports 1 to 8 DUTs per Sub-
site.

ERRSRC2

See
Note:

TEC Comparator outputs for DUTs 1..8 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent TEC
counter). Enables pattern conditional branch based on
whether values in Total Error Counters for DUTs 1..8
are greater than the TEC Comparator value (see
ecr_compare_reg_set()).

ERRSRC3

See
Note:

PE Error Flag from DUTs 9..16 are routed to Branch
Decode Error Logic. Supports 1 to 8 DUTs per Sub-
site. Not useful if number of DUTs < 8.

ERRSRC4

See
Note:

TEC Comparator outputs for DUTs 9..16 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent TEC
counter). Enables pattern conditional branch based on
whether values in Total Error Counters for DUTs 9..16
are greater than the TEC Comparator value (see
ecr_compare_reg_set()). Not useful if number of
DUTs < 8.

Table 4.13.9.9-3 MAR Error-choice Operands (Continued)

Static
Error
Mode

MAR
Error-
choice Description

Note: odd numbered DUTs are from Sub-site-A, even numbered DUTs
from Sub-site-B.
 2/27/09 Pg-1393

Memory Test Patterns
Mode-3
(t_errmode3)

Primarily
used when
testing >4
DUTs per
Sub-site.

Error flags
are not

accessible.

ERRSRC1

See
Note:

REC Comparator outputs for DUTs 1..8 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent REC
counter). Enables pattern conditional branch based on
whether values in Row Error Counters for DUTs 1..8
are greater than the REC Comparator value (see
ecr_compare_reg_set()).

ERRSRC2

See
Note:

CEC Comparator outputs for DUTs 1..8 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent CEC
counter). Enables pattern conditional branch based on
whether values in Col Error Counters for DUTs 1..8
are greater than the CEC Comparator value (see
ecr_compare_reg_set()).

ERRSRC3

See
Note:

REC Comparator outputs for DUTs 9..16 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent REC
counter). Enables pattern conditional branch based on
whether values in Row Error Counters for DUTs 9..16
are greater than the REC Comparator value (see
ecr_compare_reg_set()). Not useful if number of
DUTs < 8.

ERRSRC4

See
Note:

CEC Comparator outputs for DUTs 9..16 are routed to
Branch Decode Error Logic. Supports 1 to 8 DUTs per
Sub-site (each DUT having an independent CEC
counter). Enables pattern conditional branch based on
whether values in Col Error Counters for DUTs 9..16
are greater than the CEC Comparator value (see
ecr_compare_reg_set()). Not useful if number of
DUTs < 8.

Table 4.13.9.9-3 MAR Error-choice Operands (Continued)

Static
Error
Mode

MAR
Error-
choice Description

Note: odd numbered DUTs are from Sub-site-A, even numbered DUTs
from Sub-site-B.
 2/27/09 Pg-1394

Memory Test Patterns
During pattern execution, in each pattern instruction, the conditional branch operand (see
MAR Conditional Branch-condition Operands & MAR Multi-DUT Branch-condition
Operands) causes the Branch Signal Selection MUX to select one input, which is routed to
the APG Controller Engine to control the conditional branch operation in that instruction. See
Note:

Mode-4
(t_errmode4)

Primarily
used when
testing >4
DUTs per
Sub-site.

ERRSRC1

See
Note:

PE Error Flags are routed to Branch Decode Error
Logic. Supports 1 to 8 DUTs per Sub-site but the
logical OR of two DUT’s error flags are combined into
the output of a given Error Signal MUX. DUTs are
paired (OR’ed) 1/9, 2/10, etc.

ERRSRC2

See
Note:

TEC Comparator outputs are routed to Branch Decode
Error Logic. Supports 1 to 8 DUTs per Sub-site but the
logical OR of two DUT’s TEC Comparators are
combined into the output of a given Error Signal MUX.
DUTs are paired 1/9, 2/10, etc. Enables pattern
conditional branch based on whether value(s) in Total
Error Counters are greater than the TEC Comparator
value (see ecr_compare_reg_set()).

ERRSRC3

See
Note:

PE Error Flags are routed to Branch Decode Error
Logic. Supports 1 to 8 DUTs per Sub-site but only error
flags for DUTs 1-8 are output from the Error Signal
MUX (1/3/5/7 from Sub-site-A, 2/4/6/8 from Sub-site-
B).

ERRSRC4

See
Note:

PE Error Flags are routed to Branch Decode Error
Logic. Supports 1 to 8 DUTs per Sub-site but only error
flags for DUTs 9-16 are output from the Error Signal
MUX (DUTs 9/11/13/15 from Sub-site-A, DUTs 10/12/
14/16 from Sub-site-B).

Table 4.13.9.9-3 MAR Error-choice Operands (Continued)

Static
Error
Mode

MAR
Error-
choice Description

Note: odd numbered DUTs are from Sub-site-A, even numbered DUTs
from Sub-site-B.
 2/27/09 Pg-1395

Memory Test Patterns
The following table lists the branch signal tested by most of the MAR Branch Condition
Operands (timer and counter branch signals not included):

Four tables are presented below, one for each static error mode (see Static Error Choice
Functions, Branch-on-error. The following general rules apply:

• Odd numbered DUTs are on Sub-site-A, even numbered DUTs on Sub-site-B.
• Pure Logic Test Patterns default to ERRSRC1.
• t_errmode1 + ERRSRC1 = Maverick-I/-II operation with up to 4 DUTs per Sub-site

(4 DUTs per 64 pins).

Table 4.13.9.9-4 Branch Signal Operand Associations

Branch
Signal Operand

Error CJMPE, CJMPNE, CRETE, CRETNE, CSUBE, CSUBNE

A_not_B
CSUBNE_ANOTB, CSUBE_ANOTB, CJMPNE_ANOTB, CJMPE_ANOTB,
CRETNE_ANOTB, CRETE_ANOTB

B_not_A
CSUBNE_BNOTA, CSUBE_BNOTA, CJMPNE_BNOTA, CJMPE_BNOTA,
CRETNE_BNOTA, CRETE_BNOTA

Abort
CJMPA, CJMPNA
These test PE error latches, not error flags. See Error Flag vs. Error Latch.

AllDUTs
CSUBNE_ALL, CSUBE_ALL, CJMPNE_ALL, CJMPE_ALL,
CRETNE_ALL, CRETE_ALL

DUT1
thru
DUT8
(see
note)

CSUBNE_DUT1 thru CSUBNE_DUT8
CSUBE_DUT1 thru CSUBE_DUT8
CJMPNE_DUT1 thru CJMPNE_DUT8
CJMPE_DUT1 thru CJMPE_DUT8
CRETNE_DUT1 thru CRETNE_DUT8
CRETE_DUT1 thru CRETE_DUT8

Notes:
1) When using branch-on-DUT options, the terms DUT1 thru DUT8 represents DUT9
 thru DUT16 in static mode-2 and static mode-3. See Static Error Choice Functions,
Branch-on-error.
2) Except for the first row above, the other branch-on-error options have an additonal
 pattern requirement, as noted in MAR BOE Type Operands.
 2/27/09 Pg-1396

Memory Test Patterns
• In the tables below, the term branch is used to refers to any test pattern jump,
subroutine call or subroutine return operation.

• Tests of ECR counters (Total Error Counters, Row Error Counters/REC, and Col
Error Counters/CEC) are actually testing whether the counter value matches its
corresponding counter comparator value (see ecr_compare_reg_set()):

Table 4.13.9.9-5 Branch Operand Operation: t_errmode1

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-4 DUTs per
Sub-site

Tests ECR
Total Error
Counters

1-4 DUTs per
Sub-site

Tests ECR
Row Error
Counters

1-4 DUTs per
Sub-site

Tests ECR Col
Error Counters
1-4 DUTs per

Sub-site

CJMPNA
(CJMPNA)

Branch if at
lease one DUT
has no errors

Branch if at
least one

TEC ≠ count

Branch if at
least one

REC ≠ count

Branch if at
least one

CEC ≠ count

CJMPA
(CJMPA)

Branch if all
DUTs have an

error

Branch if TEC
for all DUTs

= count

Branch if REC
for all DUTs

= count

Branch if CEC
for all DUTs

= count

CJMPNE
(CJMPNE)
CRETNE
(CRETNE)
CSUBNE
(CSUBNE)

Branch if no
DUTs have an

error

Branch if TECs
for all DUTs

≠ count

Branch if RECs
for all DUTs

≠ count

Branch if CECs
for all DUTs

≠ count

CJMPE
(CJMPE)
CRETE
(CRETE)
CSUBE
(CSUBE)

Branch if at
least one DUT
has an error

Branch if TECs
for at least one
DUT = count

Branch if RECs
for at least one
DUT = count

Branch if CECs
for at least one
DUT = count
 2/27/09 Pg-1397

Memory Test Patterns
CSUBNE_ANOTB
(CSUBNE_ANOTB)
CJMPNE_ANOTB

(CJMPNE_ANOTB)
CRETNE_ANOTB

(CRETNE_ANOTB)

Branch if no
DUTs on Sub-
site-A have an

error OR
any DUT on

Sub-site-B has
an error

Branch if no
TECs for DUTs
on Sub-site-A
= count OR

any TEC for a
DUT on Sub-

site-B
= count

Branch if no
RECs for DUTs
on Sub-site-A
= count OR

any REC for a
DUT on Sub-

site-B
= count

Branch if no
CECs for DUTs
on Sub-site-A
= count OR

any CEC for a
DUT on Sub-

site-B
= count

CSUBE_ANOTB
(CSUBE_ANOTB)
CJMPE_ANOTB
(CJMPE_ANOTB)
CRETE_ANOTB
(CRETE_ANOTB)

Branch if any
DUT on Sub-
site-A has an
error AND no
DUTs on Sub-
site-B have an

error

Branch if TEC
for any DUT on

Sub-site-A
= count AND
no TEC for

DUTs on Sub-
site-B

= count

Branch if REC
for any DUT on

Sub-site-A
= count AND
no REC for

DUTs on Sub-
site-B

= count

Branch if CEC
for any DUT on

Sub-site-A
= count AND
no CEC for

DUTs on Sub-
site-B

= count

CSUBNE_BNOTA
(CSUBNE_BNOTA)
CJMPNE_BNOTA

(CJMPNE_BNOTA)
CRETNE_BNOTA

(CRETNE_BNOTA)

Branch if no
DUTs on Sub-
site-B have an

error OR
any DUT on

Sub-site-A has
an error

Branch if no
TECs for DUTs
on Sub-site-B
= count OR

any TEC for a
DUT on Sub-

site-A
= count

Branch if no
RECs for DUTs
on Sub-site-B
= count OR

any REC for a
DUT on Sub-

site-A
= count

Branch if no
CECs for DUTs
on Sub-site-B
= count OR

any CEC for a
DUT on Sub-

site-A
= count

Table 4.13.9.9-5 Branch Operand Operation: t_errmode1 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-4 DUTs per
Sub-site

Tests ECR
Total Error
Counters

1-4 DUTs per
Sub-site

Tests ECR
Row Error
Counters

1-4 DUTs per
Sub-site

Tests ECR Col
Error Counters
1-4 DUTs per

Sub-site
 2/27/09 Pg-1398

Memory Test Patterns
CSUBE_BNOTA
(CSUBE_BNOTA)
CJMPE_BNOTA
(CJMPE_BNOTA)
CRETE_BNOTA
(CRETE_BNOTA)

Branch if no
DUTs on Sub-
site-A have an
error AND any
DUT on Sub-
site-B has an

error

Branch if no
TECs for DUTs
on Sub-site-A
= count AND
TEC for any
DUT on Sub-
site-B = count

Branch if no
RECs for DUTs
on Sub-site-A
= count AND
REC for any
DUT on Sub-
site-B = count

Branch if no
CECs for DUTs
on Sub-site-A
= count AND
CEC for any
DUT on Sub-
site-B = count

CSUBNE_ALL
(CSUBNE_ALL)
CJMPNE_ALL
(CJMPNE_ALL)
CRETNE_ALL
(CRETNE_ALL)

Branch if any
DUT on Sub-
site-A doesn’t
have an error

OR if any DUT
on Sub-site-B
doesn’t have

an error

Branch if TEC
for any DUT on

Sub-site-A
≠ count OR if
TEC for any
DUT on Sub-
site-B ≠ count

Branch if REC
for any DUT on

Sub-site-A
≠ count OR if
REC for any
DUT on Sub-
site-B ≠ count

Branch if CEC
for any DUT on

Sub-site-A
≠ count OR if
CEC for any
DUT on Sub-
site-B ≠ count

Table 4.13.9.9-5 Branch Operand Operation: t_errmode1 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-4 DUTs per
Sub-site

Tests ECR
Total Error
Counters

1-4 DUTs per
Sub-site

Tests ECR
Row Error
Counters

1-4 DUTs per
Sub-site

Tests ECR Col
Error Counters
1-4 DUTs per

Sub-site
 2/27/09 Pg-1399

Memory Test Patterns
CSUBE_ALL
(CSUBE_ALL)
CJMPE_ALL
(CJMPE_ALL)
CRETE_ALL
(CRETE_ALL)

Branch if every
DUT on Sub-
site-A has an

error AND
every DUT on
Sub-site-B has

an error

Branch if TEC
for every DUT
on Sub-site-A
= count AND
TEC for every
DUT on Sub-
site-B = count

Branch if REC
for every DUT
on Sub-site-A
= count AND

REC for every
DUT on Sub-
site-B = count

Branch if CEC
for every DUT
on Sub-site-A
= count AND

CEC for every
DUT on Sub-
site-B = count

CSUBNE_DUT1
(CSUBNE_DUT1)
...thru...
CSUBNE_DUT8
(CSUBNE_DUT8)
CJMPNE_DUT1
(CJMPNE_DUT1)
...thru...
CJMPNE_DUT8
(CJMPNE_DUT8)
CRETNE_DUT1
(CRETNE_DUT1)
...thru...
CRETNE_DUT8
(CRETNE_DUT8)

Branch if the
specified DUT
has no errors

Branch if the
TEC for the

specified
DUT ≠ count

Branch if the
REC for the

specified
DUT ≠ count

Branch if the
CEC for the

specified
DUT ≠ count

Table 4.13.9.9-5 Branch Operand Operation: t_errmode1 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-4 DUTs per
Sub-site

Tests ECR
Total Error
Counters

1-4 DUTs per
Sub-site

Tests ECR
Row Error
Counters

1-4 DUTs per
Sub-site

Tests ECR Col
Error Counters
1-4 DUTs per

Sub-site
 2/27/09 Pg-1400

Memory Test Patterns
CSUBE_DUT1
(CSUBE_DUT1)
...thru...
CSUBE_DUT8
(CSUBE_DUT8)
CJMPE_DUT1
(CJMPE_DUT1)
...thru...
CJMPE_DUT8
(CJMPE_DUT8)
CRETE_DUT1
(CRETE_DUT1)
...thru...
CRETE_DUT8
(CRETE_DUT8)

Branch if the
specified DUT
has an error

Branch if the
TEC for the

specified
DUT = count

Branch if the
REC for the

specified
DUT = count

Branch if the
CEC for the

specified
DUT = count

Table 4.13.9.9-5 Branch Operand Operation: t_errmode1 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-4 DUTs per
Sub-site

Tests ECR
Total Error
Counters

1-4 DUTs per
Sub-site

Tests ECR
Row Error
Counters

1-4 DUTs per
Sub-site

Tests ECR Col
Error Counters
1-4 DUTs per

Sub-site
 2/27/09 Pg-1401

Memory Test Patterns
Static Error = t_errmode2 (see Static Error Choice Functions, Branch-on-error):

Table 4.13.9.9-6 Branch Operand Operation: t_errmode2

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
flags for DUTs

1-8 only

Tests ECR
Total Error

Counters for
DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

Tests ECR
Total Error
Counters
for DUTs
9-16 only

CJMPNA
(CJMPNA)

Branch if at
lease one of

DUTs 1-8 has
no errors

Branch if at
least one TEC
for DUTs 1-8

≠ count

Branch if at
lease one of

DUTs 9-16 has
no errors

Branch if at
least one TEC
for DUTs 9-16

≠ count

CJMPA
(CJMPA)

Branch if DUTs
1-8 each have

an error

Branch if the
TEC for each
of DUTs 1-8

= count

Branch if DUTs
9-16 each have

an error

Branch if DUTs
9-16 each have

an error

CJMPNE
(CJMPNE)
CRETNE
(CRETNE)
CSUBNE
(CSUBNE)

Branch if none
of DUTs 1-8
have an error

Branch if the
TECs for DUTs

1-8 are all
≠ count

Branch if none
of DUTs 9-16
have an error

Branch if the
TECs for DUTs

9-16 are all
≠ count

CJMPE
(CJMPE)
CRETE
(CRETE)
CSUBE
(CSUBE)

Branch if at
least one of

DUTs 1-8 has
an error

Branch if the
TEC for at

least one of
DUTs

1-8 = count

Branch if at
least one of

DUTs 9-16 has
an error

Branch if the
TEC for at

least one of
DUTs

9-16 = count
 2/27/09 Pg-1402

Memory Test Patterns
CSUBNE_ANOTB
(CSUBNE_ANOTB)
CJMPNE_ANOTB

(CJMPNE_ANOTB)
CRETNE_ANOTB

(CRETNE_ANOTB)

Branch if none
of DUTs 1-8 on

Sub-site-A
have an error

OR any of
DUTs 1-8 on

Sub-site-B has
an error

Branch if no
TECs for DUTs

1-8 on Sub-
site-A = count

OR the TEC for
any of DUTs 1-
8 on Sub-site-B

= count

Branch if none
of DUTs 9-16
on Sub-site-A
have an error

OR any of
DUTs 9-16 on
Sub-site-B has

an error

Branch if no
TECs for DUTs
9-16 on Sub-
site-A = count

OR the TEC for
any of DUTs
9-16 on Sub-
site-B = count

CSUBE_ANOTB
(CSUBE_ANOTB)
CJMPE_ANOTB
(CJMPE_ANOTB)
CRETE_ANOTB
(CRETE_ANOTB)

Branch if any
of DUTs 1-8 on
Sub-site-A has
an error AND
none of DUTs
1-8 on Sub-

site-B have an
error

Branch if the
TEC for any of
DUTs 1-8 on
Sub-site-A

= count AND
no TECs for
DUTs 1-8 on
Sub-site-B =

count

Branch if any
of DUTs 9-16
on Sub-site-A
has an error
AND none of
DUTs 9-16 on

Sub-site-B
have an error

Branch if the
TEC for any of
DUTs 9-16 on

Sub-site-A
= count AND
no TECs for

DUTs 9-16 on
Sub-site-B =

count

CSUBNE_BNOTA
(CSUBNE_BNOTA)
CJMPNE_BNOTA

(CJMPNE_BNOTA)
CRETNE_BNOTA

(CRETNE_BNOTA)

Branch if none
of DUTs 1-8 on

Sub-site-B
have an error

OR
any of DUTs
1-8 on Sub-

site-A has an
error

Branch if no
TECs for DUTs

1-8 on Sub-
site-B = count

OR the TEC for
any of DUTs 1-
8 on Sub-site-A

= count

Branch if none
of DUTs 9-16
on Sub-site-B
have an error

OR any of
DUTs 9-16 on
Sub-site-A has

an error

Branch if no
TECs for DUTs
9-16 on Sub-
site-B = count

OR the TEC for
any of DUTs
9-16 on Sub-
site-A = count

Table 4.13.9.9-6 Branch Operand Operation: t_errmode2 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
flags for DUTs

1-8 only

Tests ECR
Total Error

Counters for
DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

Tests ECR
Total Error
Counters
for DUTs
9-16 only
 2/27/09 Pg-1403

Memory Test Patterns
CSUBE_BNOTA
(CSUBE_BNOTA)
CJMPE_BNOTA
(CJMPE_BNOTA)
CRETE_BNOTA
(CRETE_BNOTA)

Branch if none
of DUTs 1-8 on

Sub-site-A
have an error
AND any of
DUTs 1-8 on

Sub-site-B has
an error

Branch if no
TECs for DUTs

1-8 on Sub-
site-A = count
AND the TEC

for any of
DUTs 1-8 on
Sub-site-B

= count

Branch if none
of DUTs 9-16
on Sub-site-A
have an error
AND any of

DUTs 9-16 on
Sub-site-B has

an error

Branch if no
TECs for DUTs
9-16 on Sub-
site-A = count
AND the TEC

for any of
DUTs 9-16 on
Sub-site-B =

count

CSUBNE_ALL
(CSUBNE_ALL)
CJMPNE_ALL
(CJMPNE_ALL)
CRETNE_ALL
(CRETNE_ALL)

Branch if any
of DUTs 1-8 on

Sub-site-A
doesn’t have
an error OR if

any of DUTs 1-
8 on Sub-site-B

doesn’t have
an error

Branch if the
TEC for any of
DUTs 1-8 on
Sub-site-A

≠ count OR if
the TEC for

any of DUTs 1-
8 on Sub-site-B

≠ count

Branch if any
of DUTs 9-16
on Sub-site-A
doesn’t have
an error OR if

any of DUTs 9-
16 on Sub-site-
B doesn’t have

an error

Branch if the
TEC for any of
DUTs 9-16 on

Sub-site-A
≠ count OR if
the TEC for

any of DUTs 9-
16 on Sub-site-

B ≠ count

Table 4.13.9.9-6 Branch Operand Operation: t_errmode2 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
flags for DUTs

1-8 only

Tests ECR
Total Error

Counters for
DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

Tests ECR
Total Error
Counters
for DUTs
9-16 only
 2/27/09 Pg-1404

Memory Test Patterns
CSUBE_ALL
(CSUBE_ALL)
CJMPE_ALL
(CJMPE_ALL)
CRETE_ALL
(CRETE_ALL)

Branch if DUTs
1-8 on Sub-

site-A each has
an error AND if
DUTs 1-8 on
Sub-site-B

each has an
error

Branch if the
TEC for DUTs
1-8 on Sub-

site-A each =
count AND the
TEC for DUTs
1-8 on Sub-

site-B each =
count

Branch if DUTs
9-16 on Sub-

site-A each has
an error AND if
DUTs 9-16 on

Sub-site-B
each has an

error

Branch if the
TEC for DUTs
9-16 on Sub-
site-A each =

count AND the
TEC for DUTs
9-16 on Sub-
site-B each =

count

CSUBNE_DUT1
(CSUBNE_DUT1)
...thru...
CSUBNE_DUT8
(CSUBNE_DUT8)
CJMPNE_DUT1
(CJMPNE_DUT1)
...thru...
CJMPNE_DUT8
(CJMPNE_DUT8)
CRETNE_DUT1
(CRETNE_DUT1)
...thru...
CRETNE_DUT8
(CRETNE_DUT8)

Branch if the
specified DUT

1-8 has no
errors

Branch if the
TEC for the

specified
DUT ≠ count

Branch if the
specified DUT

1-8 has no
errors.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Branch if the
TEC for the

specified
DUT ≠ count.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-6 Branch Operand Operation: t_errmode2 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
flags for DUTs

1-8 only

Tests ECR
Total Error

Counters for
DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

Tests ECR
Total Error
Counters
for DUTs
9-16 only
 2/27/09 Pg-1405

Memory Test Patterns
CSUBE_DUT1
(CSUBE_DUT1)
...thru...
CSUBE_DUT8
(CSUBE_DUT8)
CJMPE_DUT1
(CJMPE_DUT1)
...thru...
CJMPE_DUT8
(CJMPE_DUT8)
CRETE_DUT1
(CRETE_DUT1)
...thru...
CRETE_DUT8
(CRETE_DUT8)

Branch if the
specified DUT
has an error

Branch if the
TEC for the

specified
DUT = count

Branch if the
specified DUT
has an error

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Branch if the
TEC for the

specified
DUT = count

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-6 Branch Operand Operation: t_errmode2 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
flags for DUTs

1-8 only

Tests ECR
Total Error

Counters for
DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

Tests ECR
Total Error
Counters
for DUTs
9-16 only
 2/27/09 Pg-1406

Memory Test Patterns
Static Error = t_errmode3 (see Static Error Choice Functions, Branch-on-error):

Table 4.13.9.9-7 Branch Operand Operation: t_errmode3

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests ECR
Row Error

Counters for
DUTs

1-8 only

Tests ECR Col
Error Counters

for DUTs
1-8 only

Tests ECR
Row Error

Counters for
DUTs

9-16 only

Tests ECR Col
Error Counters

for DUTs
9-16 only

CJMPNA
(CJMPNA)

Branch if the
REC for at

lease one of
DUTs 1-8

≠ count

Branch if the
CEC for at

lease one of
DUTs 1-8

≠ count

Branch if the
REC for at

lease one of
DUTs 9-16

≠ count

Branch if the
CEC for at

lease one of
DUTs 9-16

≠ count

CJMPA
(CJMPA)

Branch if each
REC for DUTs

1-8 = count

Branch if each
CEC for DUTs

1-8 = count

Branch if each
REC for DUTs
9-16 = count

Branch if each
CEC for DUTs
9-16 = count

CJMPNE
(CJMPNE)
CRETNE
(CRETNE)
CSUBNE
(CSUBNE)

Branch if each
REC for DUTs

1-8 ≠ count

Branch if each
CEC for DUTs

1-8 ≠ count

Branch if each
REC for DUTs
9-16 ≠ count

Branch if each
CEC for DUTs
9-16 ≠ count

CJMPE
(CJMPE)
CRETE
(CRETE)
CSUBE
(CSUBE)

Branch if the
REC for at
least one of

DUTs
1-8 = count

Branch if the
CEC for at
least one of

DUTs
1-8 = count

Branch if the
REC for at
least one of

DUTs
9-16 = count

Branch if the
CEC for at
least one of

DUTs
9-16 = count
 2/27/09 Pg-1407

Memory Test Patterns
CSUBNE_ANOTB
(CSUBNE_ANOTB)
CJMPNE_ANOTB

(CJMPNE_ANOTB)
CRETNE_ANOTB

(CRETNE_ANOTB)

Branch if no
RECs for DUTs

1-8 on Sub-
site-A = count

OR
the REC for

any of DUTs 1-
8 on Sub-site-B

= count

Branch if no
CECs for DUTs

1-8 on Sub-
site-A = count

OR
the CEC for

any of DUTs 1-
8 on Sub-site-B

= count

Branch if no
RECs for DUTs
9-16 on Sub-
site-A = count
OR the REC

for any of
DUTs

9-16 on Sub-
site-B = count

Branch if no
CECs for DUTs
9-16 on Sub-
site-A = count
OR the CEC

for any of
DUTs

9-16 on Sub-
site-B = count

CSUBE_ANOTB
(CSUBE_ANOTB)
CJMPE_ANOTB
(CJMPE_ANOTB)
CRETE_ANOTB
(CRETE_ANOTB)

Branch if the
REC for any of
DUTs 1-8 on
Sub-site-A

= count AND
no REC for

DUTs 1-8 on
Sub-site-B =

count

Branch if the
CEC for any of
DUTs 1-8 on
Sub-site-A

= count AND
no CEC for

DUTs 1-8 on
Sub-site-B =

count

Branch if the
REC for any of
DUTs 9-16 on

Sub-site-A
= count AND
no REC for

DUTs 9-16 on
Sub-site-B =

count

Branch if the
CEC for any of
DUTs 9-16 on

Sub-site-A
= count AND
no CEC for

DUTs 9-16 on
Sub-site-B =

count

CSUBNE_BNOTA
(CSUBNE_BNOTA)
CJMPNE_BNOTA

(CJMPNE_BNOTA)
CRETNE_BNOTA

(CRETNE_BNOTA)

Branch if no
RECs for DUTs

1-8 on Sub-
site-B = count
OR the REC

for any of
DUTs 1-8 on
Sub-site-A

= count

Branch if no
CECs for DUTs

1-8 on Sub-
site-B = count
OR the CEC

for any of
DUTs 1-8 on
Sub-site-A

= count

Branch if no
RECs for DUTs
9-16 on Sub-
site-B = count
OR the REC

for any of
DUTs

9-16 on Sub-
site-A = count

Branch if no
CECs for DUTs
9-16 on Sub-
site-B = count
OR the CEC

for any of
DUTs 9-16 on
Sub-site-A =

count

Table 4.13.9.9-7 Branch Operand Operation: t_errmode3 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests ECR
Row Error

Counters for
DUTs

1-8 only

Tests ECR Col
Error Counters

for DUTs
1-8 only

Tests ECR
Row Error

Counters for
DUTs

9-16 only

Tests ECR Col
Error Counters

for DUTs
9-16 only
 2/27/09 Pg-1408

Memory Test Patterns
CSUBE_BNOTA
(CSUBE_BNOTA)
CJMPE_BNOTA
(CJMPE_BNOTA)
CRETE_BNOTA
(CRETE_BNOTA)

Branch if no
RECs for DUTs

1-8 on Sub-
site-A = count
AND the REC

for any of
DUTs 1-8 on
Sub-site-B

= count

Branch if no
CECs for DUTs

1-8 on Sub-
site-A = count
AND the CEC

for any of
DUTs 1-8 on
Sub-site-B

= count

Branch if no
RECs for DUTs
9-16 on Sub-
site-A = count
AND the REC

for any of
DUTs 9-16 on
Sub-site-B =

count

Branch if no
CECs for DUTs
9-16 on Sub-
site-A = count
AND the CEC

for any of
DUTs 9-16 on
Sub-site-B =

count

CSUBNE_ALL
(CSUBNE_ALL)
CJMPNE_ALL
(CJMPNE_ALL)
CRETNE_ALL
(CRETNE_ALL)

Branch if the
REC for any of
DUTs 1-8 on
Sub-site-A

≠ count OR if
the REC for

any of DUTs 1-
8 on Sub-site-B

≠ count

Branch if the
CEC for any
DUTs 1-8 on
Sub-site-A

≠ count OR if
the CEC for

any of DUTs 1-
8 on Sub-site-B

≠ count

Branch if the
REC for any of
DUTs 9-16 on

Sub-site-A
≠ count OR if
the REC for

any of DUTs 9-
16 on Sub-site-

B
≠ count

Branch if the
CEC for any

DUTs 9-16 on
Sub-site-A

≠ count OR if
the CEC for

any of DUTs 9-
16 on Sub-site-

B
≠ count

Table 4.13.9.9-7 Branch Operand Operation: t_errmode3 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests ECR
Row Error

Counters for
DUTs

1-8 only

Tests ECR Col
Error Counters

for DUTs
1-8 only

Tests ECR
Row Error

Counters for
DUTs

9-16 only

Tests ECR Col
Error Counters

for DUTs
9-16 only
 2/27/09 Pg-1409

Memory Test Patterns
CSUBE_ALL
(CSUBE_ALL)
CJMPE_ALL
(CJMPE_ALL)
CRETE_ALL
(CRETE_ALL)

Branch if the
RECs for each
of DUTs 1-8 on

Sub-site-A
= count AND
the RECs for
each of DUTs
1-8 on Sub-

site-B = count

Branch if the
CECs for each
of DUTs 1-8 on

Sub-site-A
= count AND
the CECs for
each of DUTs
1-8 on Sub-

site-B = count

Branch if the
RECs for each
of DUTs 9-16
on Sub-site-A
= count AND
the RECs for
each of DUTs
9-16 on Sub-
site-B = count

Branch if the
CECs for each
of DUTs 9-16
on Sub-site-A
= count AND
the CECs for
each of DUTs
9-16 on Sub-
site-B = count

CSUBNE_DUT1
(CSUBNE_DUT1)
...thru...
CSUBNE_DUT8
(CSUBNE_DUT8)
CJMPNE_DUT1
(CJMPNE_DUT1)
...thru...
CJMPNE_DUT8
(CJMPNE_DUT8)
CRETNE_DUT1
(CRETNE_DUT1)
...thru...
CRETNE_DUT8
(CRETNE_DUT8)

Branch if the
REC for the

specified
DUT ≠ count

Branch if the
CEC for the

specified
DUT ≠ count

Branch if the
REC for the

specified
DUT ≠ count.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Branch if the
CEC for the

specified
DUT ≠ count.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-7 Branch Operand Operation: t_errmode3 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests ECR
Row Error

Counters for
DUTs

1-8 only

Tests ECR Col
Error Counters

for DUTs
1-8 only

Tests ECR
Row Error

Counters for
DUTs

9-16 only

Tests ECR Col
Error Counters

for DUTs
9-16 only
 2/27/09 Pg-1410

Memory Test Patterns
CSUBE_DUT1
(CSUBE_DUT1)
...thru...
CSUBE_DUT8
(CSUBE_DUT8)
CJMPE_DUT1
(CJMPE_DUT1)
...thru...
CJMPE_DUT8
(CJMPE_DUT8)
CRETE_DUT1
(CRETE_DUT1)
...thru...
CRETE_DUT8
(CRETE_DUT8)

Branch if the
REC for the

specified
DUT = count

Branch if the
CEC for the

specified
DUT = count

Branch if the
REC for the

specified
DUT = count.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Branch if the
CEC for the

specified
DUT = count.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-7 Branch Operand Operation: t_errmode3 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests ECR
Row Error

Counters for
DUTs

1-8 only

Tests ECR Col
Error Counters

for DUTs
1-8 only

Tests ECR
Row Error

Counters for
DUTs

9-16 only

Tests ECR Col
Error Counters

for DUTs
9-16 only
 2/27/09 Pg-1411

Memory Test Patterns
Static Error = t_errmode4 (see Static Error Choice Functions, Branch-on-error):

Table 4.13.9.9-8 Branch Operand Operation: t_errmode4

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests ECR
Total Error
Counters

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests error
flags for DUTs

1-8 only

Tests error
flags for DUTs

9-16 only

CJMPNA
(CJMPNA)

Branch if at
lease one

DUT-pair has
no errors

Branch if TECs
for at least one
DUT-pair are
both ≠ count

Branch if at
lease one of

DUTs 1-8 has
no errors

Branch if at
lease one of

DUTs 9-16 has
no errors

CJMPA
(CJMPA)

Branch if at
least one DUT

of each
DUT-pair has

an error

Branch if TEC
for at least one
DUT of each

DUT-pair
= count

Branch if DUTs
1-8 each have

an error

Branch if DUTs
9-16 each have

an error

CJMPNE
(CJMPNE)
CRETNE
(CRETNE)
CSUBNE
(CSUBNE)

Branch if no
DUTs have an

error

Branch if TECs
for all DUTs

≠ count

Branch if none
of DUTs 1-8

have an error

Branch if none
of DUTs 9-16
have an error

CJMPE
(CJMPE)
CRETE
(CRETE)
CSUBE
(CSUBE)

Branch if at
least one DUT
has an error

Branch if TEC
for at least one
DUT = count

Branch if at
lease one of

DUTs 1-8 has
an error

Branch if at
lease one of

DUTs 9-16 has
an error
 2/27/09 Pg-1412

Memory Test Patterns
CSUBNE_ANOTB
(CSUBNE_ANOTB)
CJMPNE_ANOTB

(CJMPNE_ANOTB)
CRETNE_ANOTB

(CRETNE_ANOTB)

Branch if no
DUTs on Sub-
site-A have an

error OR
any DUT on

Sub-site-B has
an error

Branch if no
TECs for DUTs
on Sub-site-A
= count OR

any TEC for a
DUT on

Sub-site-B
= count

Branch if none
of DUTs 1-8 on

Sub-site-A
have an error

OR
any of DUTs
1-8 on Sub-

site-B has an
error

Branch if none
of DUTs 9-16
on Sub-site-A
have an error

OR any of
DUTs 9-16 on
Sub-site-B has

an error

CSUBE_ANOTB
(CSUBE_ANOTB)
CJMPE_ANOTB
(CJMPE_ANOTB)
CRETE_ANOTB
(CRETE_ANOTB)

Branch if any
DUT on Sub-
site-A has an
error AND no
DUTs on Sub-
site-B have an

error

Branch if TEC
for any DUT on

Sub-site-A
= count AND
no TEC for

DUTs on Sub-
site-B

= count

Branch if any
of DUTs 1-8 on
Sub-site-A has
an error AND
none of DUTs
1-8 on Sub-

site-B have an
error

Branch if any
of DUTs 9-16
on Sub-site-A
has an error
AND none of
DUTs 9-16 on

Sub-site-B
have an error

CSUBNE_BNOTA
(CSUBNE_BNOTA)
CJMPNE_BNOTA

(CJMPNE_BNOTA)
CRETNE_BNOTA

(CRETNE_BNOTA)

Branch if no
DUTs on Sub-
site-B have an

error OR
any DUT on

Sub-site-A has
an error

Branch if no
TECs for DUTs
on Sub-site-B
= count OR

any TEC for a
DUT on Sub-

site-A
= count

Branch if none
of DUTs 1-8 on

Sub-site-B
have an error

OR any of
DUTs 1-8 on

Sub-site-A has
an error

Branch if none
of DUTs 9-16
on Sub-site-B
have an error

OR any of
DUTs 9-16 on
Sub-site-A has

an error

Table 4.13.9.9-8 Branch Operand Operation: t_errmode4 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests ECR
Total Error
Counters

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests error
flags for DUTs

1-8 only

Tests error
flags for DUTs

9-16 only
 2/27/09 Pg-1413

Memory Test Patterns
CSUBE_BNOTA
(CSUBE_BNOTA)
CJMPE_BNOTA
(CJMPE_BNOTA)
CRETE_BNOTA
(CRETE_BNOTA)

Branch if no
DUTs on Sub-
site-A have an
error AND any
DUT on Sub-
site-B has an

error

Branch if no
TECs for DUTs
on Sub-site-A
= count AND
TEC for any
DUT on Sub-
site-B = count

Branch if none
of DUTs 1-8 on

Sub-site-A
have an error
AND any of

DUTs
1-8 on Sub-

site-B has an
error

Branch if none
of DUTs 9-16
on Sub-site-A
have an error
AND any of

DUTs 9-16 on
Sub-site-B has

an error

CSUBNE_ALL
(CSUBNE_ALL)
CJMPNE_ALL
(CJMPNE_ALL)
CRETNE_ALL
(CRETNE_ALL)

Branch if at
least one
DUT-pair

doesn’t have
an error

Branch if both
TECs for at
least one
DUT-pair
≠ count.

Branch if at
least one of
DUTs 1-8

doesn’t have
an error

Branch if at
least one of
DUTs 9-16

doesn’t have
an error

Table 4.13.9.9-8 Branch Operand Operation: t_errmode4 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests ECR
Total Error
Counters

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests error
flags for DUTs

1-8 only

Tests error
flags for DUTs

9-16 only
 2/27/09 Pg-1414

Memory Test Patterns
CSUBE_ALL
(CSUBE_ALL)
CJMPE_ALL
(CJMPE_ALL)
CRETE_ALL
(CRETE_ALL)

Branch if at
least one DUT

of every
DUT-pair has

an error

Branch if at
least one TEC
for each DUT-
pair = count

Branch if DUTs
1-8 each have

an error

Branch if DUTs
9-16 each have

an error

CSUBNE_DUT1
(CSUBNE_DUT1)
...thru...
CSUBNE_DUT8
(CSUBNE_DUT8)
CJMPNE_DUT1
(CJMPNE_DUT1)
...thru...
CJMPNE_DUT8
(CJMPNE_DUT8)
CRETNE_DUT1
(CRETNE_DUT1)
...thru...
CRETNE_DUT8
(CRETNE_DUT8)

Branch if both
DUTs of the

DUT-pair have
no errors.

Operand DUT
numbers show
first DUT of the

DUT-pair

Branch if the
TEC for both
DUTs of the

DUT pair
≠ count.

Operand DUT
numbers show
first DUT of the

DUT-pair

Branch if the
specified DUT
doesn’t have

an error

Branch if the
specified DUT
doesn’t have

an error.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-8 Branch Operand Operation: t_errmode4 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests ECR
Total Error
Counters

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests error
flags for DUTs

1-8 only

Tests error
flags for DUTs

9-16 only
 2/27/09 Pg-1415

Memory Test Patterns
4.13.9.10 Static Error Choice Functions, Branch-on-error
See MAR Error-choice Operands, MAR Multi-DUT Branch-condition Operands, VAR Multi-
DUT Branch-condition Operands.

Description

The mar_error_choice_set() function is used to set the static error choice selection for
the Branch Error Choice Logic. See the detailed description in Branch-on-error Logic..

CSUBE_DUT1
(CSUBE_DUT1)
...thru...
CSUBE_DUT8
(CSUBE_DUT8)
CJMPE_DUT1
(CJMPE_DUT1)
...thru...
CJMPE_DUT8
(CJMPE_DUT8)
CRETE_DUT1
(CRETE_DUT1)
...thru...
CRETE_DUT8
(CRETE_DUT8)

Branch if either
DUT of the

DUT-pair has
an error.

Operand DUT
numbers show
first DUT of the

DUT-pair.

Branch if the
TEC for either

DUT of the
DUT-pair
= count

Branch if the
specified DUT
has an error.

Branch if the
specified DUT
has an error.

Note that
DUT1 actually
means DUT9,

DUT2 =
DUT10, etc.

Table 4.13.9.9-8 Branch Operand Operation: t_errmode4 (Continued)

MAR Error
Choice ERRSRC1 ERRSRC2 ERRSRC3 ERRSRC4

MAR Branch
Operand

(link to VAR
Operand)

Tests error
Flags

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests ECR
Total Error
Counters

1-8 DUTs per
Sub-site

Logical OR of
DUTs 1/9, 2/
10, 3/11, etc.

Tests error
flags for DUTs

1-8 only

Tests error
flags for DUTs

9-16 only
 2/27/09 Pg-1416

Memory Test Patterns
The mar_error_choice_get() function is used to get the currently selected static error
choice.

Note the following:

• These functions are only useful if executed after the Error Catch RAM (ECR) has
been configured, using ecr_config_set().

• Static error choice option selection is primarily based on two criteria:
• The number of DUTs being tested per Sub-site:

- 1-4 DUTs (t_errmode1)
- 5-8 DUTs (t_errmode2, t_errmode3 and t_errmode4)

• Whether ECR Error Counters are to affect conditional branch operations, which
ECR Counter Comparators are to be tested: TEC Comparator , REC Comparator
, or CEC Comparator . Each static mode has different capabilities/limitations; i.e.
which ECR Counter Comparators can be tested, see MAR Error-choice
Operands.

• The static error mode is set to t_errmode1 during initial program load. The
system software does not otherwise change the mode.

• All APGs are set to the same static mode; i.e. in Multi-DUT Test Programs, the
Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on
mar_error_choice_set() operation.

• mar_error_choice_get() must not be used in a TDR_BLOCK(). See DUT
Board TDR Functions.

Usage
void mar_error_choice_set(APGStaticErrorMode mode);

APGStaticErrorMode mar_error_choice_get();

where:

mode specifies the desired static error mode.

mar_error_choice_get() returns the currently set static error mode.

Example
mar_error_choice_set(t_errmode1);
APGStaticErrorMode m = mar_error_choice_get();
 2/27/09 Pg-1417

Memory Test Patterns
4.13.9.11 DUT-pin to Tester-pin Connection Requirements

Note: on 7/22/2008 this section was substantially revised, to simplify the information
and improve the descriptions.

This section describes how DUT pins must be mapped to tester pins in Multi-DUT Test
Programs which capture errors in the Error Catch RAM (ECR) and/or when test patterns use
branch-on-error multi-DUT (branch-on-DUT) operations.

Note: this information only applies to DUT pins which will be strobed with errors
captured to the ECR and/or with errors which will affect test pattern
branch-on-error operations. It also applies when using over-programming
facilities (see Over-programming Controls and Parallel Test and Over-
programming Control Stimulus Selection). All other DUT pins can connect to any
tester channels as desired.

During pattern execution, the functional-fail error signals from individual tester pins are
organized per-DUT as outlined in the diagram below. This organization determines how the
ECR hardware and related software groups errors per-DUT. Proper ECR operation will not
occur if the user’s DUT board design does not follow these DUT-pin to tester-pin rules.

These same error signals are routed to the Algorithmic Pattern Generator (APG) for use by
test pattern branch-on-error multi-DUT (branch-on-DUT) operations. As above, proper per-
DUT branch operations will not occur if the user’s DUT board design does not follow these
DUT-pin to tester-pin rules.

Important related information is covered in:

• MAR Branch Condition Operands (MAR Multi-DUT Branch-condition Operands).
• VAR Branch-condition Operands (VAR Multi-DUT Branch-condition Operands).

The following diagram shows the DUT configurations supported on Magnum 1. All errors
from subsite-A are logged into the A ECR and errors from subsite-B are logged into the B
 2/27/09 Pg-1418

Memory Test Patterns
ECR:

Figure-67: Magnum 1 DUT-pin to Tester-pin Connection Rules (see Note:)

b_1..b_8

a_9..a_16

b_9..b_16

a_17..a_24

b_17..b_24

a_25..a_32

b_25..b_32

a_33..a_40

b_33..b_40

a_41..a_48

b_41..b_48

a_49..a_56

b_49..b_56

a_57..a_64

b_57..b_64

a_1..a_8

DUT2

Sub-site-A

Sub-site-B

DUT3

DUT2

DUT1

DUT4

DUT3

DUT6

DUT5

DUT8

DUT7

DUT2

DUT1

DUT4

DUT3

DUT6

DUT5

DUT8

DUT7

DUT10

DUT9

DUT12

DUT11

DUT2

DUT1

DUT4

DUT3

DUT6

DUT5

DUT8

DUT7

DUT10

DUT9

DUT12

DUT11

DUT14

DUT13

DUT16

DUT1516 DUTs
(8 per

sub-site)

12 DUTs
(6 per

sub-site)

8 DUTs
(4 per

sub-site)

4 DUTs
(2 per

sub-site)

2 DUTs
(1 per

sub-site)

DUT1

DUT2

DUT1

DUT4
 2/27/09 Pg-1419

Memory Test Patterns
4.13.10 CHIPS Instruction

See APG Chip Selects, Memory Test Patterns, Memory Pattern Instruction Format.

Description
The APG generates 8 signals, called chip selects, used when testing memory devices,
typically on pins which are not address or data pins; i.e. output enable (OE), read/write (R/
W), chip select (CS), etc.

The CHIPS instruction is used to control chip select state and format selection and to control
two other features unrelated to the chip select outputs:

• Send the low 4 UDATA bits to the LBdata pins of the DUT board. See Loadboard
Board Data Bits.

• RESET the PE error flags, and DC Error Flags. See Error Flag vs. Error Latch. The
MAR RESET, VEC RESET, VAR RESET and VPINFUNC RESET instructions also can
be used to reset the error flags.

The default CHIPS instruction is:

CHIPS NOCLKS

The entire CHIPS instruction can be omitted if the default operations are appropriate in the
current instruction.

The CHIPS instruction takes the form:

CHIPS Chip-select-control, Misc

where:

Chip-select-control controls the state and format selection of APG Chip Selects.

Misc controls the two other features noted above.
 2/27/09 Pg-1420

Memory Test Patterns
The table below summarizes the available operands for the CHIPS instruction. Default
values are indicated using (D):

Each CHIPS instruction may include up to eight operands from the Chip-select-
control column (to control up to 8 chip select outputs), and any combination of operands
from the Misc column.

4.13.10.1 CHIPS Chip-select-control Operands
See APG Chip Selects, Memory Test Patterns, CHIPS Instruction.

Description
The APG generates 8 signals, called chip selects, used when testing memory devices,
typically on pins which are not address or data pins; i.e. output enable (OE), read/write (R/
W), chip select (CS), etc.

The CHIPS instruction is used to control the following parameters of the 8chip selects:

• Drive logic state (TRUE/FALSE)
• Drive format: NRZ level or pulsed (RTO or RTZ)
• I/O state (t_cs1 and t_cs2 chip selects only)
• Strobe control (t_cs1 and t_cs2 chip selects only)

Note the following:

Table 4.13.10.0-1 CHIPS Instruction Operands

Chip Select Control Misc

CSnT
CSnF
CSnPT
CSnPF
CSmHIZ
CSmRDT
CSmRDF

where n = 1-8 and m = 1-2
NOCLKS(D)

LBDATA
RESET

(none)(D)
 2/27/09 Pg-1421

Memory Test Patterns
• The first two chip selects (t_cs1 and t_cs2) are fully I/O capable and can strobe;
i.e. both are independently able to drive, tri-state, and strobe (with tri-state).

• The other chip selects are drive-only.
• For all chip selects, the drive state (active/inactive) and signal format (NRZ or

RTZ/RTO) are controlled by the CHIPS instruction (CSnT, CSnF, CSnPT, CSnPF,
NOCLKS).

• For t_cs1 and t_cs2 only, the strobe and tri-state options are controlled using
the CHIPS instruction (CSmHIZ, CSmRDT, CSmRDF, CSmRDV, CSmRDZ).

Note: unlike the other APG outputs, the drive format generated on chip select pins is
not affected by the format specified when programming timing values using
settime(). The programmed edge times do determine when edges occur on
chip select pins, but the format (NRZ vs. RTZ vs. RTO) is solely determined by
the CHIPS instruction (CSnT, CSnF, CSnPT, CSnPF, NOCLKS) vs. the active state
polarity set using APG Chip Select Drive/Strobe Polarity Functions or APG Chip
Select Polarity Control Function.

The CHIPS instruction takes the following form:

CHIPS Chip-select-control, Misc

Each CHIPS instruction may include up to eight operands from the Chip-select-
control column (to control up to 8 chip select outputs), and any combination of operands
from the Misc column.

The entire CHIPS instruction can be omitted if the default values are acceptable.

Each chip select’s active-state polarity (i.e. high or low) is defined using the
cs_polarity_set() function. This determines whether a pulsed chip select will generate
an RTO or RTZ format, or whether DC TRUE (NRZ) is logic-1 or logic-0. The
cs_polarity_get() function can be used to determine the current active-state polarity of
one chip select.

It is possible for user-written C Code to get or set (modify) the operands of CHIPS
instruction(s) in a specified test pattern using get_chip_select() and
set_chip_select().
 2/27/09 Pg-1422

Memory Test Patterns
The table below summarizes the CHIPS Chip-select-control operands which are
usable for all 8 chip select:

The table below summarizes the CHIPS Chip-select-control operands which are
usable only for the first 2 chip selects (t_cs1 and t_cs2):

Table 4.13.10.1-1 CHIPS Chip-select-control Drive Operands

Operand Purpose

CSnT Sets chip select-n DC TRUE, NRZ format, at timing edge-1.

CSnF Sets chip select-n DC FALSE, NRZ format, at timing edge-1.

CSnPT Pulses chip select-n TRUE, generating an RTO or RTZ format depending
on the active state programmed using cs_polarity_set() (or the
default active low). The first edge occurs at the RTO/RTZ edge-1 time, the
second at the RTO/RTZ edge-2 time.

CSnPF Pulses chip select-n FALSE, generating an RTO or RTZ format depending
on the inverse of the active state programmed
using cs_polarity_set() (or the default active low). The first edge
occurs at the RTO/RTZ edge-1 time, the second at the RTO/RTZ edge-2
time.

NOCLKS Default. All chip selects drive DC FALSE, NRZ format, at timing edge-1.
This is equivalent to:
 % CHIPS CS1F,CS2F,CS3F,CS4F,CS5F,CS6F,CS7F,CS8F

where n = 1 through 8, representing chip selects t_cs1 to t_cs8.
The active-state polarity (i.e. high or low) for the chip selects is defined using the
cs_polarity_set() function. This determines whether a pulsed chip select will
generate an RTO or RTZ format, or whether DC TRUE (NRZ) is logic-1 or logic-0.

Table 4.13.10.1-2 CHIPS Chip-select-control Receive Operands

Operand Purpose

CSmHIZ Sets chip select-m to tri-state. No strobe is generated.

CSmRDT Tri-state chip select-m, and read (strobe) for TRUE data.

CSmRDF Tri-state chip select-m, and read (strobe) for FALSE data.
 2/27/09 Pg-1423

Memory Test Patterns
Example
In the example below, chip select 1 (t_cs1) is tri-stated, chip select 2 (t_cs2) is strobed for
TRUE data, chip select 3 (t_cs3) is set DC TRUE, chip select 4 (t_cs4) is pulsed TRUE,
and chip select 5 (t_cs5) is set DC FALSE. By default, the 3 unspecified chip selects are
set to DC FALSE:

% CHIPS CS1HIZ, CS2RDT, CS3T, CS4PT, CS5F

4.13.10.2 CHIPS Misc Operands
See APG Chip Selects, Memory Test Patterns, CHIPS Instruction.

Description
The CHIPS instruction is used to control the 8 APG chip select signals, and the following two
miscellaneous features:

• Send the low 4 UDATA bits to the LBdata pins of the DUT board. See Loadboard
Board Data Bits.

• RESET the PE error flags, and DC Error Flags. See Error Flag vs. Error Latch. The
MAR RESET, VEC RESET, VAR RESET and VPINFUNC RESET instructions also can
be used to reset the error flags.

CSmRDV Tri-state chip select-m, and read (strobe) for valid data (<VOL or >VOH).

CSmRDZ Tri-state chip select-m, and read (strobe) for tri-state (<VOH and > VOL).

where m = 1 or 2, representing chip selects t_cs1 or t_cs2.
The active-state polarity (i.e. high or low) for the chip selects is defined using the
cs_polarity_set() function. This determines whether a strobe-true, for example, is
strobing for logic-1 or logic-0.

Table 4.13.10.1-2 CHIPS Chip-select-control Receive Operands (Continued)

Operand Purpose
 2/27/09 Pg-1424

Memory Test Patterns
Note: as noted below, the RESET operand clears the PE error flags and the DC Error
Flags in the DC Comparators and Error Logic. The PE error flags have no effect
on the overall PASS/FAIL result of a functional test. However, the DC Error Flags
do effect the overall PASS/FAIL result of Dynamic DC Tests. See Error Flag vs.
Error Latch.

The CHIPS instruction takes the form:

CHIPS Chip-select-control, Misc

The table below summarizes the CHIPS Misc operands. Any combination of these
operands may be used in the same CHIPS instruction:

4.13.11 DATGEN Instruction

See APG Data Generator, Memory Test Patterns, Memory Pattern Instruction Format.

The APG Data Generator is used to algorithmically generate the drive/expect (strobe) data,
strobe mask, and I/O control signals used to test the data pins of memory devices. These

Table 4.13.10.2-1 CHIPS Misc Operands

Operand Purpose

LBDATA Sends bits 0-3 of UDATA to the LBdata bits on the DUT board. See
Loadboard Board Data Bits.

RESET Clears all PE error flags, and DC Error Flags. See Error Flag vs. Error
Latch. Using Magnum 1/2/2x, is effectively disabled using VLATCHRESET.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET and
VPINFUNC RESET) must NOT be used in the same instruction
OR the instruction following that using MAR VCOMP, VAR
VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: RESET may be used in the MAR, VEC/RPT, VAR, VPINFUNC, and
CHIPS instruction.
 2/27/09 Pg-1425

Memory Test Patterns

 2/27

ee Pin Scramble MUX and Pin

erator parameters:

t of the data output source

 (shift, count, etc.).
ndependent of the data output

 is controlled using the ADHIZ

e. This is controlled using the

 the Pin Scramble MUX for use
pecific data generator resource
ing, per-cycle:

c.
e DBM is a hardware option.
efore reaching the Pin
ive OR gates. More below.

ves. This is controlled using the

r and DBM must be initialized.
/09 Pg-1426

are pin(s) which are scrambled to APG Data Generator outputs in any given pattern instruction (s
Scramble Functions & Macros).

The DATGEN instruction is used, in each pattern instruction, to control the following APG Data Gen

• Selection of which data generator resource is output in the current cycle.
• Selection of two inputs (A & B) to the data generator ALU. This selection is independen

selection.
• Selection of the functional operation to be performed by the APG Data Generator’s ALU
• Selection of which data register will be updated from the ALU output. This selection is i

source selection.
• Specification of the various data inversion options.

The following data generator related parameters are not controlled using the DATGEN instruction:

• Specification of I/O state for pins scrambled to data generator outputs, as a group. This
operand to the PINFUNC Instruction.

• Specification of strobe enable state for data generator outputs; i.e. strobe or don’t strob
MAR Strobe Control Operands.

In each pattern cycle, the APG Data Generator outputs 36 bits, D0 through D35 (t_d0 .. t_d35), to
as drive/expect (strobe) data tester channels which are scrambled to data generator outputs. The s
which is output is controlled using the DATGEN Dataout Operand, to select from one of the follow

• DMAIN data register.
• DBASE data register.
• JAM Register (a fixed 36-bit value) or the JAM RAM, a 16Kx36-bit RAM. See JAM Logi
• Data Buffer Memory (DBM), which stores a unique data value for each X/Y address. Th

The selected data generator output is then routed through several stages of Data Inversion Logicb
Scramble MUX. In the hardware diagrams, the inversion logic is represented by a series of exclus

The data generator’s data registers can each be configured as one 36-bit register or two 18-bit hal
data_reg_width() function (default = 36-bits). All data registers use the same configuration.

Before being used, the data registers, JAM Register and/or JAM RAM/JAM RAM Address Counte
The following methods are available to perform this initialization:

Memory Test Patterns

 2/27

ata register or JAM Register.
 used for other purposes.
data registers, either prior to

 execution or via Pattern Initial

unter. See JAM Logic.
te().
e ALU takes one or two data
TGEN Drfunc Operand. The
perand. Either of these
e DATGEN Dataout Operand.

rsion options include:

a patterns. Options are
ta Inversion Function.
he specified X/Y address
y Function Operands. Used to

modify diagonal data patterns.
ects (inverts) all bits from the

f the current instruction. Set

 on the contents of the DTOPO
 Data Topological Inversion

rn using the DTOPO operand,

RINV (UDATA per-bit inversion)
l data generator output bits.
/09 Pg-1427

• From a pattern instruction, the UDATA value can be loaded into the DMAIN or DBASE d
See DATGEN UDATAJAM and UDATADR. In these instructions the UDATA value cannot be

• The dmain() and dbase() functions can be used to initialize the DMAIN and DBASE
pattern execution or via Pattern Initial Conditions.

• The jamreg() function can be used to initialize the JAM Register, either prior to pattern
Conditions. The apg_jam_ram_set() function is used to initialize the JAM RAM. The
apg_jam_ram_address_set() function is used to initialize the JAM RAM Address Co

• The DBM is initialized as using dbm_file_image_read(), dbm_fill(), dbm_wri
The heart of the APG Data Generator is an Arithmetic Logic Unit, or ALU. In each pattern cycle, th
source inputs (from DMAIN, DBASE or UDATA) and performs an operation, specified using the DA
result (ALU output) is placed back into DMAIN or DBASE, as controlled using the DATGEN Dest O
registers can be selected as the data source output to the Pin Scramble MUX as selected using th

The Data Inversion Logic provides additional flexibility in generating APG data patterns. Data inve

• Background inversion - inverts all bits from the selected data source based on
X/Y address parity plus a logical operation. Used to generate various checkerboard dat
specified using DATGEN Background Function Operands. Also see APG Background Da

• Equality functions - inverts all bits from the selected data source based on contents of t
register (MAIN, BASE, FIELD) plus a logical operation, specified using DATGEN Equalit
generate various diagonal data patterns.

• Y-index inversion - inverts all bits from the selected data source based on the
Y-address plus a logical operation, specified using DATGEN Yindex Operands. Used to

• Invert sense - an explicit invert command set using DATGEN Invert Sense Operand. Aff
selected data source.

• UDATA inversion - inverts individual data bits based on the contents of the UDATA field o
using DATGEN Invert Sense Operand (XORINV).

• Data Topological Inversion (DTOPO) - inverts all bits from the selected data source based
RAM, which is addressed by the APG’s X/Y address outputs. Configured using the APG
(DTOPO) Function and APG Data TOPO RAM Load Functions. Enabled in the test patte
see DATGEN Background Function Operands.

Often, multiple data inversion options are enabled simultaneously. All inversion options except XO
operate on all data generator outputs as a group; i.e. only XORINV can selectively invert individua

Memory Test Patterns

 2/27

Dbmwr Operand) can be used

aout, Udatajam, Dbmwr

an operand in every field. The
 be omitted if default values are
/09 Pg-1428

When the Data Buffer Memory (DBM) option is installed/used, the DBMWR operand (see DATGEN
to capture the output of the APG Data Generator into the DBM.

The default DATGEN instruction is:

DATGEN SDMAIN, SDMAIN, DMAIN, HOLDDR, HOLDYN, EQFDIS,
BCKFDIS, NOTINV, DATDAT

The DATGEN instruction takes the form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns, Dat

Each DATGEN instruction may include one operand in each field but it is not necessary to include
order operands are included in an instruction is not important. The entire DATGEN instruction may
acceptable.

Memory Test Patterns

 2/27

1/2/2x 2 tables are used;
nd table. Default values are
/09 Pg-1429

The table below summarizes the operands for each field of the DATGEN instruction. For Magnum
additional , and Dest operands, which only apply to Magnum 1/2/2x, are listed separately, in the 2
indicated using (D):

Table 4.13.11.0-1 DATGEN Instruction Operands

Drfunc Yindex Eqfunc Bckfunc Invsns Dataout Udatajam

ADD
AND

CNTDNDR
CNTUPDR
CMPLDR
HOLDDR
OR

ROTLDR
ROTRDR
SHLDR
SHRDR

SUBTRACT
UDATADR
XOR

CNTDNYN
CNTUPYN

HOLDYN(D)
UDATAYN

EQFDIS(D)
XEQB
XLEB
XLTB

XYLEBYF
XYLTBXF
XYLTBYF
XYLEBXF
XEQBORF
XEQYPN
XEQYBPN
XYEQB
YEQB
YLEB

YEQBORF
YLTB

BCKDTOPO
BCKFEN

BCKFDIS(D)
DTOPO

INVSNS
NOTINV(D)
XORINV

BUFBUF
BUFDAT
BUFJAM
DATBUF

DATDAT(D)
DATJAM
JAMBUF
JAMDAT
JAMJAM

BASEBASE
BASEBUF
BASEDAT
BASEMAIN
BASEJAM
BUFBASE
BUFMAIN
DATBASE
MAINBASE
MAINBUF
MAINMAIN
MAINJAM
JAMBASE
JAMMAIN

JAMRAMINCR
JAMRAMDECR
JAMRAMHOLD

[none](D)
UDATAJAM

Dbmwr

DBMWR
[none](D)

Memory Test Patterns
4.13.11.1 DATGEN Source Operands
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The heart of the APG Data Generator is an Arithmetic Logic Unit, or ALU. In each pattern
cycle, the ALU takes one or two data source inputs (from DMAIN, DBASE or UDATA) and
performs an operation, specified using the DATGEN Drfunc Operand.

The DATGEN instruction takes the following form:

Table 4.13.11.0-2 DATGEN Magnum 1/2/2x Only Instruction Operands

SrcA SrcB Dest Dataout

SDMAIN(D)
SDBASE
SUDATA

SDMAIN(D)
SDBASE
UDATA

DMAIN(D)
DBASE

BASEBASE
BASEBUF
BASEDAT
BASEMAIN
BASEJAM
BUFBASE
BUFMAIN
DATBASE
MAINBASE
MAINBUF
MAINMAIN
MAINJAM
JAMBASE
JAMMAIN

JAMRAMINCR
JAMRAMDECR
JAMRAMHOLD

SrcA and SrcB refer to the inputs to the APG Data Generator’s ALU.
Dest refers to the destination of the output of the APG Data Generator’s
ALU. Dataout refers to the APG Data Generator output selected for the
current instruction.

 2/27/09 Pg-1430

Memory Test Patterns
DATGEN SrcA, SrcBSrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc,
Invsns, Dataout, Udatajam, Dbmwr

The two inputs to the ALU are selected using the DATGEN SrcA and SrcB operands.

Rules:

• When the Drfunc field contains a single-source instruction; i.e. CNTDNDR,
CNTUPDR, CMPLDR, HOLDDR, ROTLDR, ROTRDR, SHLDR, or SHRDR, the SrcB field is
ignored.

• When the Drfunc field contains a two-source instruction; i.e. ADD, AND, OR,
SUBTRACT, or XOR, the SrcB field is used. If a SrcB operand is not specified the
value defaults to SDMAIN.

• When the Drfunc field contains UDATADR the SrcA field must be SUDATA and
SrcB cannot be specified.

• The selected DATGEN SrcA and SrcB operands may modify the Data Register Fill-
bit value depending on the Dest and Drfunc operands. See Data Register Fill-bit.

The table below describes the options available for the SrcA and SrcB operands to
DATGEN:

4.13.11.2 DATGEN Dest Operand
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
A multiplexer (MUX) on the output of the APG Data Generator’s ALU determines, in a given
pattern instruction, which data register will be updated with the ALU output.

Rules:

• Only one register may be specified.

Table 4.13.11.1-1 DATGEN SrcA and SrcB Operands

Operand Purpose

SDMAIN The DMAIN data register is selected. Default.

SDBASE The DBASE data register is selected.

SUDATA The UDATA register is selected.
 2/27/09 Pg-1431

Memory Test Patterns
• If no Dest value is specified the DMAIN register is written.
The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr

The table below describes the options available for the Dest operand to DATGEN:

4.13.11.3 DATGEN Drfunc Operand
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The Drfunc operand determines the functional operation performed by the APG Data
Generator’s ALU.

The heart of the APG Data Generator is an Arithmetic Logic Unit, or ALU. In each pattern
cycle, the ALU performs the functional operation specified using the Drfunc operand.
operating on one or two data source inputs (specified using DATGEN Source Operands).
The function result (i.e. ALU output) is placed into the data register specified using the
DATGEN Dest Operand.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr

Rules:

• When the Drfunc field contains a single-source instruction (i.e. CNTDNDR,
CNTUPDR, CMPLDR, HOLDDR, ROTLDR, ROTRDR, SHLDR, or SHRDR), the SrcB
operand is ignored.

Table 4.13.11.2-1 DATGEN Dest Operands

Operand Purpose

DMAIN Write the ALU output to the DMAIN register only (default). May also affect
the fill bit used during SHLDR./SHRDR. See Data Register Fill-bit.

DBASE Write the ALU output to the DBASE register only. May also affect fill bit
used during SHLDR./SHRDR. See Data Register Fill-bit.
 2/27/09 Pg-1432

Memory Test Patterns
• When the Drfunc field contains a two-source instruction (i.e. ADD, AND, OR, OR,
SUBTRACT, or XOR) both the SrcA and SrcB operands are used. If a SrcB operand
is not specified the value defaults to SDMAIN.

• When the Drfunc operand is UDATADR the SrcA field must be SUDATA and SrcB
cannot be specified.

The table below describes the options available for the Drfunc operand to DATGEN:

Table 4.13.11.3-1 DATGEN Drfunc Operands

Operand Purpose

ADD ADD SrcA + SrcB.

AND Logically AND SrcA with SrcB.

CNTDNDR CouNT DowN Data Register
Decrements the SrcA input by one. Requires a cycle period of at least
30nS (3 10nS system clocks).

CNTUPDR CouNT UP Data Register
Increments the SrcA input by one. Requires a cycle period of at least 30nS
(3 10nS system clocks).

CMPLDR CoMPLement Data Register
Complements the SrcA input, including the Data Register Fill-bit.

HOLDDR HOLD Data Register
No operation (Hold), i.e. the SrcA input is written to the Dest output
without modification (default) .

OR Logically OR SrcA with SrcB.

ROTLDR ROTate Left Data Register
Rotates the SrcA input left. The MSB will rotate into the LSB position. If the
SrcA input is configured as two 18-bit halves (see APG Data Register
Width Selection Function), this operation is performed on each half
independently.

ROTRDR ROTate Right Data Register
Rotates the SrcA input right. The LSB will rotate into the MSB position. If
the SrcA input is configured as two 18-bit halves (see APG Data Register
Width Selection Function), this operation is performed on each half
independently.
 2/27/09 Pg-1433

Memory Test Patterns

 2/27

HRDR. This is the value that fills
gister has a separate fill-bit.

for the data register identified

 register is set to the fill-bit of
n to the Dest register.
/09 Pg-1434

Data Register Fill-bit
The data register fill-bit supplys the new bit required by data register shift instructions SHLDR and S
the empty LSB bit in SHLDR instructions and the new MSB bit in SHRDR instructions. Each data re

The data register fill-bit can be set or modified several ways:

• In a DATGEN instruction which uses UDATADR, bit-36 of the UDATA value sets the fill-bit
by the Dest operand.

• In a DATGEN instruction which specifies a SrcA and Dest register, the fill-bit of the Dest
the SrcA register. If the Drfunc is CMPLDR the fill-bit is also inverted before being writte

SHLDR SHift Left Data Register
Shifts the SrcA input left. The LSB is filled from the Data Register Fill-bit. If
the SrcA input is configured as two 18-bit halves (see APG Data Register
Width Selection Function), this operation is performed on each half
independently.

SHRDR SHift Right Data Register
Shifts the SrcA input right. The MSB is filled from the Data Register Fill-bit.
If the SrcA input is configured as two 18-bit halves (see APG Data Register
Width Selection Function), this operation is performed on each half
independently.

SUBTRACT SUBTRACT SrcB from SrcA.

UDATADR UDATA Data Register
Loads UDATA bits 0-35 into the specified Dest and bit-36 into the Data
Register Fill-bit associated with Dest. Data is not modified. SrcA must be
SUDATA and SrcB cannot be specified.

XOR Logically XOR SrcA with SrcB.

Table 4.13.11.3-1 DATGEN Drfunc Operands (Continued)

Operand Purpose

Memory Test Patterns

 2/27

sion Logic.

t is used with the data equality
l data patterns.

ect the use and operation of

 the Y-address, then compared

 to the complement of the Y-
tor is inverted.
r left, or to move a diagonal the
nal, XEQYBPN is used to
aps around the memory array.

aout, Udatajam, Dbmwr
/09 Pg-1435

4.13.11.4 DATGEN Yindex Operands
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The DATGEN Yindex operands are used to control Yindex register component of the Data Inver

The Yindex register is used to conditionally invert selected outputs of the APG Data Generator. I
functions XEQYPN and XEQYBPN (see DATGEN Equality Function Operands), to generate diagona

The APG Data Inversion Enable Functions and APG Data Inversion Bank Select Functions do aff
DATGEN Yindex.

These operands operate as follows:

• XEQYPN: invert if the X-address = (Y-address + Yindex). The Yindex register is added to
to the
X-address. If they are equal, the output of the data generator is inverted.

• XEQYBPN: invert if the X-address = (Y-address + Yindex). The Yindex register is added
address, then compared to the X address. If they are equal, the output of the data genera

In general, the Yindex register value is used to shift the position of a diagonal pattern, either right o
number of columns specified by UDATA bits 0-15. XEQYPN is used to generate a left-to-right diago
generate a right-to-left diagonal. Both options generate barber-pole diagonals; i.e. the diagonal wr

The DATGEN yindex instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns, Dat

Memory Test Patterns

 2/27

he APG Data Generator based
e are used to generate various
 Logic.

ect the use and operation of

aout, Udatajam, Dbmwr
/09 Pg-1436

The table below describes the options available for the Yindex operand to DATGEN:

4.13.11.5 DATGEN Equality Function Operands
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The DATGEN Eqfunc operands control hardware used to conditionally invert selected outputs of t
on a comparison of X/Y address registers or X/Y address output + Y-index register. Together, thes
inverted bit, inverted row(s), inverted column(s) or diagonal data patterns using the Data Inversion

The APG Data Inversion Enable Functions and APG Data Inversion Bank Select Functions do aff
DATGEN Eqfunc.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns, Dat

The DATGEN Eqfunc operand is used to:

• Select which X/Y address registers, or combination of registers, will be compared.

Table 4.13.11.4-1 DATGEN Yindex Operands

Operand Purpose

CNTDNYN CouNT DowN YiNdex
Decrements the Yindex register.

CNTUPYN CouNT UP YiNdex
Increments the Yindex register.

HOLDYN HOLD YiNdex
Holds the Yindex register at its present value (default)

UDATAYN UDATA YiNdex
Loads the Yindex register from UDATA bits 0-15.

Memory Test Patterns

 2/27

 address register. The specific

 the combined value of the
ents both X-MAIN and Y-MAIN
er X/Y addresses as specified
s, ordered as specified using

For example, when YMAIN is
ison.
/09 Pg-1437

• Specify the boolean comparison operation to be performed.
Rules:

• Comparisons can be made based on the entire X or Y address or based on a specified
selection is encoded in the operand name, as described in the table below.

• When AMAIN, ABASE, or AFIELD is specified, the ‘A’ indicates a comparison based on
specified registers of both the X and Y address generators. For example, AMAIN repres
registers. The XYEQB, YEQB, XYLTBYF, XYLEBYF, XYLTBXF and XYLEBXF operands ord
using x_fast_axis(). Similarly, ABASE consists of both X-BASE and Y-BASE register
x_fast_axis().

• When a specific address register is specified only that register is used for comparison.
specified, only the MAIN register from the Y address generator is involved in the compar

The table below describes the options available for the Yindex operand to DATGEN:

Table 4.13.11.5-1 DATGEN Eqfunc Operands

Operand Purpose

EQFDIS EQuality Function DISable
Disable equality function inversion (default)

XYEQB Invert on AMAIN = ABASE
Inverts the data generator output when AMAIN (the address specified by
the combined X-MAIN and Y-MAIN registers) equals ABASE (the address
specified by the combined X-BASE and Y-BASE registers). In use, this
causes inverted data at a single address.

YEQB Invert on YMAIN = YBASE
Inverts the data generator output when the value in the Y-MAIN register
equals the value in the Y-BASE register. In use, this inverts one column of
data, generating a vertical stripe.

XEQB Invert on XMAIN = XBASE
Inverts the data generator output when the value in the X-MAIN register
equals the value in the X-BASE register. In use, this inverts one row of
data, generating a horizontal stripe.

Memory Test Patterns
YEQBORF Invert on YMAIN = YBASE or YFIELD
Inverts the data generator output when the value in the Y-MAIN register
equals the value in either the Y-BASE register or the Y-FIELD register. In
use, this generates one vertical stripe (when Y-BASE = Y-FIELD) or two
vertical stripes (when the Y-BASE does not equal Y-FIELD).

XEQBORF Invert on XMAIN = XBASE or XFIELD
Inverts the data generator output when the value in the X-MAIN register
equals the value in either the X-BASE register or the X-FIELD register. In
use, this generates one horizontal stripe (when X-BASE = X-FIELD) or
two horizontal stripes (when the X-BASE does not equal X-FIELD).

YLTB Invert on YMAIN < YBASE
Inverts the data generator output when the value in the Y-MAIN register is
less than the value in the Y-BASE register. In use, this generates multiple
columns of inverted data, up to but excluding the value in the Y-BASE
register.

XLTB Invert on XMAIN < XBASE
Inverts the data generator output when the value in the X-MAIN register is
less than the value in the X-BASE register. In use, this generates multiple
rows of inverted data, up to but excluding the value in the X-BASE
register.

YLEB Invert on YMAIN ≤ YBASE
Inverts the data generator output when the value in the Y-MAIN register is
less than or equal to the value in the Y-BASE register. In use, this
generates multiple columns of inverted data, up to and including the value
in the Y-BASE register.

XLEB Invert on XMAIN ≤ XBASE
Inverts the data generator output when the X-MAIN register is less than or
equal to the X-BASE register. In use, this generates multiple rows of
inverted data, up to and including the value in the X-BASE register.

Table 4.13.11.5-1 DATGEN Eqfunc Operands (Continued)

Operand Purpose
 2/27/09 Pg-1438

Memory Test Patterns
XYLTBYF Invert on AMAIN < ABASE, Y Fast
Inverts the data generator output when AMAIN is less than ABASE, with
the Y-axis selected as the fast axis. AMAIN is the concatenation of the X-
MAIN and Y-MAIN registers. ABASE is the concatenation of the X-BASE
and Y-BASE registers. Specifying Y Fast causes the concatenation to put
the Y-MAIN and Y-BASE registers at the low end; i.e. the fast axis is the
address axis (X or Y) that is changing most rapidly when the address is
incremented. In use, this generates inverted data for all addresses less
than that specified by the ABASE value.

XYLEBYF Invert on AMAIN ≤ ABASE, Y Fast
Inverts the data generator output when AMAIN is less than or equal to
ABASE, with the Y-axis selected as the fast axis. AMAIN is the
concatenation of the X-MAIN and Y-MAIN registers. ABASE is the
concatenation of the X-BASE and Y-BASE registers. Specifying Y Fast
causes the concatenation to put the Y-MAIN and Y-BASE registers at the
low end; i.e. the fast axis is the address axis (X or Y) that is changing
most rapidly when the address is incremented. In use, this generates
inverted data for all addresses less than or equal to that specified by the
ABASE value.

XYLTBXF Invert on AMAIN < ABASE, X Fast
Inverts the data generator output when AMAIN is less than ABASE, with
the X-axis selected as the fast axis. AMAIN is the concatenation of the X-
MAIN and Y-MAIN registers. ABASE is the concatenation of the X-BASE
and Y-BASE registers. Specifying X Fast causes the concatenation to put
the X-MAIN and X-BASE registers at the low end; i.e. the fast axis is the
address axis (X or Y) that is changing most rapidly when the address is
incremented. In use, this generates inverted data for all addresses less
than that specified by the ABASE value.

Table 4.13.11.5-1 DATGEN Eqfunc Operands (Continued)

Operand Purpose
 2/27/09 Pg-1439

Memory Test Patterns
4.13.11.6 DATGEN Background Function Operands
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

XYLEBXF Invert on AMAIN ≤ ABASE, X Fast
Inverts the APG Data Generator‘s output when AMAIN is less than or
equal to ABASE, with the X-axis selected as the fast axis. AMAIN is the
concatenation of the X-MAIN and Y-MAIN registers. ABASE is the
concatenation of the X-BASE and Y-BASE registers. Specifying X Fast
causes the concatenation to put the X-MAIN and X-BASE registers at the
low end; i.e. the fast axis is the address axis (X or Y) that is changing
most rapidly when the address is incremented. In use, this generates
inverted data for all addresses less than or equal to that specified by the
ABASE value.

XEQYPN Invert on XOUT = (YOUT + Yindex)
Inverts the data generator output when XOUT equals (YOUT plus Yindex).
XOUT is the output of the X address generator, as selected by the XALU
Destination operand and YOUT is the output of the Y address
generator, as selected by the YALU Destination operand (see YALU/
XALU Destination Operands). Yindex is the APG Data Generator‘s
Yindex register. In use, this generates a diagonal data pattern with a
slope opposite that obtained using XEQYBPN, with the Yindex register
used to offset the diagonal in the Y-axis. Also see DATGEN Yindex
Operands.

XEQYBPN Invert on XOUT = (YOUT + Yindex)
Inverts the data generator output when XOUT equals (YOUT plus Yindex).
XOUT is the output of the X address generator, as selected by the XALU
Destination operand and YOUT is the complement of the Y address
generator output, as selected by the YALU Destination operand (see
YALU/XALU Destination Operands). Yindex is the APG Data Generator‘s
Yindex register. In use, this generates a diagonal data pattern with a
slope opposite that obtained using XEQYPN, with the Yindex register
used to offset the diagonal in the Y-axis. Also see DATGEN Yindex
Operands.

Table 4.13.11.5-1 DATGEN Eqfunc Operands (Continued)

Operand Purpose
 2/27/09 Pg-1440

Memory Test Patterns
Description
The DATGEN Bckfunc operands are used to:

• Enable or disable the background inversion logic, used to conditionally invert the
output of the APG Data Generator as a function of X and/or Y address. See APG
Background Data Inversion Function and Data Inversion Logic.

• Enable or disable the data topological (DTOPO) inversion logic, used to
conditionally invert the output of the APG Data Generator based on the contents of
two DTOPO RAMs. See Data Inversion Logic.

When enabled, the background inversion logic performs a parity evaluation of the APG’s X
and/or Y address output. This generates a single bit, which determines whether to invert or
not-invert the output of the APG Data Generator. Before the pattern executes, the desired
parity operation, and optionally which X/Y address bits to consider, must be specified using
the bckfen() function. A typical application of background inversion is to generate various
checkerboard data patterns.

The APG Data Generator also contains logic to support data topological (DTOPO) inversion
as a function of X/Y address. Using DTOPO inversion, a single invert bit is used to either
invert or not-invert the output of the APG Data Generator based on the contents of the
DTOPO RAM. During pattern execution, the DTOPO RAM is addressed by the APG’s X and
Y address generator outputs. To use DTOPO inversion requires the following:

• Initializing the DTOPO RAM using APG Data TOPO RAM Load Functions.
• Specifying which DTOPO RAM output(s) are to be considered and what, if any,

logical operation is to be applied. See APG Data Topological Inversion (DTOPO)
Function.

• Enable DTOPO inversion using the DTOPO operand in the appropriate test pattern
instructions.

• The APG Data Inversion Enable Functions and APG Data Inversion Bank Select
Functions do affect the use and operation of background inversion and data
topological (DTOPO) inversion.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr
 2/27/09 Pg-1441

Memory Test Patterns
The table below describes the options available for the Bckfunc operand to DATGEN:

4.13.11.7 DATGEN Invert Sense Operand
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The DATGEN Invsns operands are used to:

• Explicitly invert the output of the APG Data Generator.
• Invert individual APG Data Generator outputs using the UDATA value as an

inversion bit-mask.
The APG Data Inversion Enable Functions and APG Data Inversion Bank Select Functions
do affect the use and operation of DATGEN Invsns.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr

Table 4.13.11.6-1 DATGEN Bckfen Operands

Operand Purpose

BCKDTOPO BaCKground and DTOPO enable
Enable both background inversion and DTOPO inversion.

BCKFDIS BaCKground Function DISable
Disable both background inversion and DTOPO inversion (default).

BCKFEN BaCKground Function ENable
Enable the background inversion but not the DTOPO inversion.

DTOPO DTOPO
Enable the DTOPO inversion but not the background inversion.
 2/27/09 Pg-1442

Memory Test Patterns
The table below describes the options available for the Invsns operand to DATGEN:

4.13.11.8 DATGEN Dataout Operand
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The DATGEN Dataout operands are used to select which APG Data Generator resource is
output, in the current instruction, to the DUT via the Pin Scramble MUX. Note the following:

• In each tester cycle, the APG Data Generator outputs 36 bits, D0 (t_d0) through
D35 (t_d35), to the Pin Scramble MUX, for use as drive/expect (strobe) data,
typically on tester channels connected to DUT data bus pins.

• The data generator has several sources which can be selected for output:
• DMAIN data register.
• DBASE data register.
• JAM Register, a single 36-bit value, or the JAM RAM, see JAM Logic.
• Data Buffer Memory (DBM) - stores a unique data value for each X/Y address.

The DBM is a hardware option.
• In hardware, the data generator output is selected by a multiplexer (MUX), which

is controlled by the DATGEN Dataout operand in each pattern instruction. The
MUX is located before the data inversion logic thus data inversion(s) operate

Table 4.13.11.7-1 DATGEN Invsns Operands

Operand Purpose

INVSNS INVert SeNSe
Unconditionally inverts the output of the APG Data Generator.

NOTINV NOT INVert
Does not invert the output of the APG Data Generator (default)

XORINV eXclusive OR INVert
XORs the output of the APG Data Generator with UDATA bits 0 through 35.
Data output D0 is XOR’ed with UDATA bit 0, D1 is XOR’ed with UDATA bit 1,
etc. Any UDATA bit which is logic-1 will invert the corresponding output of
the APG Data Generator.
 2/27/09 Pg-1443

Memory Test Patterns
consistently regardless of which data source is selected. See DATGEN Background
Function Operands, DATGEN Invert Sense Operand, DATGEN Equality Function
Operands, DATGEN Yindex Operands.

• By design, data source selection is split into two 18-bit halves. Thus it is possible
to select, for example, the DMAIN data register to output bits 0-17 and the JAM
Register to output bits 18-36. Etc.

• When a test pattern uses the Data Buffer Memory (DBM), if the pattern is paused
(MAR PAUSE), the first 20 tester cycles after restarting pattern execution (using
restart() or restart_and_wait()) must not select the DBM as a data
source. This rule does not apply when first executing the test pattern using
funtest() or start_pattern().

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr

The table below describes the options available for the Dataout operand to DATGEN:

Table 4.13.11.8-1 DATGEN Dataout Operands

Src/Src

BASEBASE Selects DBASE 35:0.

BASEBUF Selects DBASE 35:18 and DBM 17:0.

BASEDAT
BASEMAIN Selects DBASE 35:18 and DMAIN 17:0.

BASEJAM

When the JAM Register is selected (see apg_jam_mode_set()),
selects DBASE 35:18 and JAM Register 17:0 and the JAM RAM
Address Counter is not modified. When the JAM RAM is selected,
selects JAM RAM 35:0 and the JAM RAM Address Counter is not
modified.

BUFBASE Selects DBM 35:18 and DBASE 17:0.

BUFBUF Selects DBM 35:0.

BUFDAT
BUFMAIN Selects DBM 35:18 and DMAIN 17:0.

1) Specific rules apply when using both
 DATGEN BUF and/or DATGEN DBMWR. See DBM Usage Rules.
2) MAIN and DAT are the same hardware source.
 2/27/09 Pg-1444

Memory Test Patterns
BUFJAM

When the JAM Register is selected (see apg_jam_mode_set()),
selects DBM 35:18 and JAM Register 17:0 and the JAM RAM Address
Counter is not modified. When the JAM RAM is selected, selects JAM
RAM 35:0 and the JAM RAM Address Counter is not modified.

DATBASE
MAINBASE Selects DMAIN 35:18 and DBASE 17:0

DATBUF
MAINBUF Selects DMAIN 35:18 and DBM 17:0.

DATDAT
MAINMAIN

Selects DMAIN 35:0. Default data source selection. Note that DATMAIN
and MAINDAT are not supported.

DATJAM
MAINJAM

When the JAM Register is selected (see apg_jam_mode_set()),
selects DMAIN 35:18 and JAM Register 17:0 and the JAM RAM
Address Counter is not modified. When the JAM RAM is selected,
selects JAM RAM 35:0 and increments the JAM RAM address. Same
as JAMRAMINCR when JAM RAM is selected.

JAMBASE

When the JAM Register is selected (see apg_jam_mode_set()),
selects JAM Register 35:18 and DBASE 17:0 and the JAM RAM
Address Counter is not modified. When the JAM RAM is selected,
selects JAM RAM 35:0 but the JAM RAM Address Counter is not
modified.

JAMBUF

When the JAM Register is selected (see apg_jam_mode_set()),
selects JAM Register 35:18 and DBM 17:0 and the JAM RAM Address
Counter is not modified. When the JAM RAM is selected, selects JAM
RAM 35:0 but the JAM RAM Address Counter is not modified.

JAMDAT
JAMMAIN

When the JAM Register is selected (see apg_jam_mode_set()),
selects JAM Register 35:18 and DMAIN register 17:0 and the JAM
RAM Address Counter is not modified. When the JAM RAM is
selected, selects JAM RAM 35:0 and decrements the JAM RAM
Address Counter. Same as JAMRAMDECR when JAM RAM is selected.

Table 4.13.11.8-1 DATGEN Dataout Operands (Continued)

Src/Src

1) Specific rules apply when using both
 DATGEN BUF and/or DATGEN DBMWR. See DBM Usage Rules.
2) MAIN and DAT are the same hardware source.
 2/27/09 Pg-1445

Memory Test Patterns
4.13.11.9 DATGEN Udatajam Operands
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
The DATGEN Udatajam operands are used to load the JAM Register from UDATA bits
0-35.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr

The table below describes the options available for the Udatajam operand to DATGEN:

JAMJAM

When the JAM Register is selected (see apg_jam_mode_set())
selects JAM Register 35:0 and the JAM RAM Address Counter is not
modified. When the JAM RAM is selected, selects JAM RAM 35:0 and
holds the JAM RAM Address Counter. Same as JAMRAMHOLD when
JAM RAM.

JAMRAMINCR Same as DATJAM.

JAMRAMDECR Same as JAMDAT.

JAMRAMHOLD Same as JAMJAM.

Table 4.13.11.9-1 DATGEN Udatajam Operands

Operand Purpose

UDATAJAM Load the JAM Register from UDATA bits 0-35.

[none] Don’t load the JAM Register (default).

Table 4.13.11.8-1 DATGEN Dataout Operands (Continued)

Src/Src

1) Specific rules apply when using both
 DATGEN BUF and/or DATGEN DBMWR. See DBM Usage Rules.
2) MAIN and DAT are the same hardware source.
 2/27/09 Pg-1446

Memory Test Patterns
4.13.11.10 DATGEN Dbmwr Operand
See APG Data Generator, Memory Test Patterns, DATGEN Instruction.

Description
During pattern execution, the output of the APG Data Generator, including all inversions,
can be written to the Data Buffer Memory (DBM) option (if installed). This is enabled, per
cycle, using DATGEN DBMWR.

Any pattern instruction which contains the DBMWR operand will write the data generator
output, including all data inversions, to the DBM, at the address being output by the X/Y
APG Address Generator in the same cycle. Note that the actual DBM address written will be
affected when DBM Sequential Mode is used.

This feature is typically used to accumulate multiple data patterns, as they are written into a
non-volatile memory (NVM). Then, at any given time, the DBM represents the cumulative
data patterns stored in the DUT, allowing the DBM to be used as the data source when
reading the DUT. For example, several data patterns, including row and column stripes,
diagonal, and a checkerboard, are separately written to an NVM DUT. As each pattern is
written to the DUT it is also capture (accumulated) in the DBM using the DBMWR operand. To
verify that the DUT has correctly stored each test pattern requires reading the accumulation
of all patterns written. It is often not practical to algorithmically generate these pattern
accumulations, whereas storing the accumulation is practical using the DBM.

Note: specific rules apply when using both DATGEN DBMWR and/or DATGEN BUF. See
DBM Usage Rules.

The DATGEN instruction takes the following form:

DATGEN SrcA, SrcB, Dest, Drfunc, Yindex, Eqfunc, Bckfunc, Invsns,
Dataout, Udatajam, Dbmwr
 2/27/09 Pg-1447

Memory Test Patterns
The table below describes the options available for the Dbmwr operand to DATGEN:

4.13.12 UDATA Instruction
See Algorithmic Pattern Generator (APG), Memory Test Patterns, Memory Pattern
Instruction Format.

The UDATA (microdata) pattern instruction is used to explicitly specify a UDATA value. The
UDATA value represents 37 bits stored in each APG instruction which can be used for
various purposes as noted in the UDATA Bit Applications table below.

The UDATA value is used in 3 contexts, which occur in the test pattern on a per-instruction
basis:

1. Explicit user-defined UDATA value and application. The desired value is specified using
the UDATA instruction in the pattern instruction. The application is specified using one of
the optional operands to the YALU, XALU, COUNT, MAR, CHIPS, USERRAM and DATGEN
instruction. The UDATA Bit Applications table (below) lists these operand options, and
which UDATA bits are used in each application.

2. Implicit pattern compiler-defined UDATA value and application. The user’s pattern
instruction must not specify a UDATA value in the following situations:

• The first vector of Logic Test Patterns. The UDATA value is implicitly used to set
the Vector Address Register (VAR); i.e. the address of the first vector of the
pattern.

• A Logic pattern instruction with the RPT instruction. The UDATA value is implicitly
used to set an APG counter to the specified repeat value (-1).

Table 4.13.11.10-1 DATGEN Dbmwr Operands

Operand Purpose

DBMWR Write the APG Data Generator output, including all inversions, into
Data Buffer Memory (DBM) at the X/Y address output in the same
cycle.
The DBM address actually written will be affected when DBM
Sequential Mode is used.

[none] Do not write to the DBM (default).
 2/27/09 Pg-1448

Memory Test Patterns
• In a Logic pattern, any vector after a STARTLOOP instruction. The UDATA value is
implicitly used to record the VAR as the starting vector of the loop.

• In a Logic pattern, any vector before an ENDLOOP instruction. The UDATA value is
implicitly used to set an APG counter to the specified loop count value (-2). This is
done during the 1st loop iteration only, subsequent loop iterations decrement the
counter and if not zero, jump back to the beginning of the loop.

• In a Logic pattern, any vector with a label. The UDATA value is implicitly used to
record the VAR of that vector.

• In any instruction which includes LSENABLE.
• In any USERRAM instruction.
• In mixedsync patterns, any logic instruction with a label.
• In mixedsync patterns, any instruction with a MAR or VAR branch instruction.

3. A mix of explicit and implicit values. This is unique to Controlling PE Levels from the Test
Pattern. The UDATA value is used to encode the voltage/current value specified by the
user in the UDATA value, with information added by the pattern compiler to identify the
hardware being programmed, whether a value is being set or tweaked, and which
voltage or current DAC is being programmed (DPS voltage, VIL, etc.). This applies to the
LEVELSET pattern instruction.

Note: user code must NOT use set_udata() to modify the UDATA value of these
instructions because the implicit information added by the pattern compiler will
be corrupted.

An explicit UDATA instruction takes one of the following the forms:

UDATA n

UDATA value, units, range#

The first form sets the UDATA value to n, where n is in the range 0 to 0x1FFFFFFFFF0 hex
(37-bits). The table below defines how these bits are used. The second form is unique to
Controlling PE Levels from the Test Pattern, and is documented in that section.
 2/27/09 Pg-1449

Memory Test Patterns
The following table documents which UDATA bit positions are used by the pattern
instructions noted:

As indicated, the YALU, XALU, COUNT, MAR, CHIPS, USERRAM and DATGEN instructions may
optionally use the UDATA value, depending on other operands used in the instruction. With
the exception of YUDATA and XUDATA the UDATA value will only be applied to one target,
based on the operand specified. Thus, it is not possible, for example, to use YUDATA and
COUNTUDATA in the same instruction.

Example
The following examples presume 16-bits for both X and Y addresses:

Table 4.13.12.0-1 UDATA Bit Applications

Instruction
UDATA Application
(target operand) Bit Positions Used

YALU YUDATA 15-0

XALU XUDATA 33-16

COUNT RELOAD# 31-0

COUNT COUNTUDATA 31-0

MAR READUDATA 35-0

MAR INTADR 15-0

MAR INTENADR 15-0

CHIPS LBDATA 3-0

DATGEN UDATADR 35-0

DATGEN Data Register Fill-bit 36

DATGEN UDATAYN 15-0

DATGEN XORINV 35-0

DATGEN UDATAJAM 35-0

USERRAM LOAD 35-0
 2/27/09 Pg-1450

Memory Test Patterns
% YALU YUDATA, XCARE, COFF, HOLD, DYMAIN
XALU XUDATA, XCARE, COFF, HOLD, DXMAIN
MAR INC
UDATA 0x89ABCDEF

In this example, the UDATA value’s bits are loaded as follows:

• The hexadecimal value 0xCDEF, corresponding to UDATA bits 15-0, is loaded into
the Y-MAIN address register.

• The hexadecimal number 0x89AB, corresponding to UDATA bits 31-16, is loaded
into the X-MAIN address register.

4.13.13 PINFUNC Instruction
See Algorithmic Pattern Generator (APG), Memory Test Patterns, Memory Pattern
Instruction Format.

The PINFUNC instruction is used to control several unrelated APG options. The table below
lists each option and describes how the associated operand is used. All operands are
optional and, if used, may be specified in any order. The entire PINFUNC instruction is
optional if the default values, indicated below, are acceptable.

The default PINFUNC instruction is:

PINFUNC TSET1, PS1, VIHH1, NOADHIZ

The PINFUNC instruction takes the form:

PINFUNC PS#, VIHH#, TSET#, ADHIZ, VPULSE, VVCOMP, VLATCHRESET,
VOVER, VPS, VTSET, VVIHH, VVPULSE, VLEVELSET
 2/27/09 Pg-1451

Memory Test Patterns
The PINFUNC operands are described below:

Table 4.13.13.0-1 PINFUNC Instruction Operands

Operand Purpose

PS# Where # is from 1 to 64. Specifies the Pin Scramble Map to be
enabled during the instruction. The Pin Scramble Map determines
which data source is mapped to each pin channel. Default = PS1.
In Mixed Memory/Logic Patterns PINFUNC PS# is effectively
disabled by PINFUNC VPS.

VIHH# Where # is from 1 to 64. Specifies the VIHH Map to be enabled
during the instruction. A VIHH Map specifies which tester pins are
switched to the VIHH voltage, with all other pins driving at the
normal VIH and VIL levels. Default = VIHH1, which is defined by
the system software to disconnect VIHH from all tester pins. VIHH1
cannot be modified by user code. In Mixed Memory/Logic Patterns
is effectively disabled by PINFUNC VVIHH.

TSET# Where # is from 1 to 32. Specifies one Time-sets (TSET) to be
enabled during the current instruction. Default = TSET1. In Mixed
Memory/Logic Patterns is effectively disabled by PINFUNC VTSET.

ADHIZ Default operation causes any pin(s) which are pin scrambled to
APG Data Generator outputs (see Pin Scramble Macros) to tri-state
(excluding ADHIZ causes the pins to drive). The default operation
may be inverted using adhiz(). Has no effect on pins which are
not pin scrambled to APG data generator outputs.
 2/27/09 Pg-1452

Memory Test Patterns
VPULSE
Note: this feature is not usable on Magnum 1. This note will be

removed when this limitation is corrected.

Causes DUT power supplies which have been enabled (see
VPulse Function) to switch to the secondary (VPulse) level , set
using dps_vpulse(). The test pattern must execute multiple
instructions each containing VPULSE to allow time for the voltage to
stabilize at the DUT. In Mixed Memory/Logic Patterns is effectively
disabled by PINFUNC VVPULSE. If pattern execution ends on an
instruction containing VPULSE the secondary (VPulse) level
remains enabled in hardware.

Note: the VPULSE operand may be used in the PINFUNC,
VEC/RPT, VAR, and VPINFUNC instructions.

VVCOMP
 Note: this feature is not usable on Magnum 1. This note will be

removed when this limitation is corrected.

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the DC strobe for the current instruction. In
Mixed Memory/Logic Patterns effectively disables the MAR VCOMP
DC strobe for the current instruction. See Magnum 1/2/2x Memory
Pattern Instructions.

VLATCHRESET

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of both the error flag RESET signal and the
LATCH/NOLATCH signal, for the current instruction. See Error Flag
vs. Error Latch. In Mixed Memory/Logic Patterns effectively disables
the MAR RESET signal and MAR LATCH/NOLATCH signal for the
current instruction. See Magnum 1/2/2x Memory Pattern
Instructions.

Table 4.13.13.0-1 PINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1453

Memory Test Patterns
VOVER
 Note: this feature is not usable on Magnum 1. This note will be

removed when this limitation is corrected.

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the over programming inhibit signal (OVER) ,
for the current instruction. In Mixed Memory/Logic Patterns
effectively disables the MAR OVER signal for the current instruction.
See Magnum 1/2/2x Memory Pattern Instructions.

VPS

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the pin scramble selection (PS#) for the
current instruction. Effectively disables the PINFUNC PS# selection
for the current instruction.See Magnum 1/2/2x Memory Pattern
Instructions.

VTSET

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the time-set selection (TS#) for the current
instruction. Effectively disables the PINFUNC TSET# selection for
the current instruction. See Magnum 1/2/2x Memory Pattern
Instructions.

Table 4.13.13.0-1 PINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1454

Memory Test Patterns
Example
% PINFUNC PS55, VIHH42, TSET2

MAR INC

4.13.14 USERRAM Instruction
See APG User RAM, Memory Test Patterns, Memory Pattern Instruction Format.

Description
The USERRAM instruction is used to control/use the APG User RAM hardware.

Rules:

• The USERRAM instruction does not have any default operands.

VVIHH

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the VIHH Map selection (VIHH#) for the
current instruction. Effectively disables the PINFUNC VIHH#
selection for the current instruction. See Magnum 1/2/2x Memory
Pattern Instructions.

VVPULSE

Applies to Mixed Memory/Logic Patterns only. Selects the VAR
Engine as the source of the signal (VPULSE) used to switch one or
more DUT Power Supply(s) to their secondary voltage level for the
current instruction. See dps_vpulse(). Effectively disables the
PINFUNC VPULSE selection for the current instruction. See Magnum
1/2/2x Memory Pattern Instructions.

VLEVELSET Used when Controlling Magnum 1 Levels from the Test Pattern in
Mixed Memory/Logic Patterns. In the LSENABLE Pattern
Instruction determines whether the pin list is stored in the memory
pattern hardware or logic pattern hardware. The LEVELSET
Pattern Instruction determines whether the UDATA value or the
VUDATA value is used as the set/tweak value.

Table 4.13.13.0-1 PINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1455

Memory Test Patterns
• Values are copied into or out of the APG User RAM at a specified address. In most
USERRAM instructions the address is set explicitly, using USERRAM SourceA
Operands and USERRAM SourceB Operands. However, using the USERRAM SET/
GET URAMINCR and SET/GET URAMDECR instructions, the address is determined by
the contents of the User RAM Address Index Register, which is incremented or
decremented during use. See User RAM Address Index Register.

• Using USERRAM GET and SET, an APG User RAM address is specified using
USERRAM SourceA Operands and an APG Register is specified using a
USERRAM SourceB Operands.

• The UDATA field is implicitly used by USERRAM instructions. This means that the
UDATA field cannot be used for other purposes, including implicit use by other
portions of the same pattern instruction. See UDATA Instruction.

• Many of the other APG pattern instruction operations are not allowed in a pattern
instruction which contains a USERRAM instruction. ONLY the following instruction
operations are allowed in an instruction which contains a USERRAM instruction:
XALU OXMAIN or OXBASE or OXFIELD
YALU OYMAIN or OYBASE or OYFIELD
PINFUNC TSET#, PS#, VIHH#, VTSET, VPULSE, VPS, VVIHH,

VVCOMP, VVPULSE, VLATCHRESET, VOVER
MAR VCOMP, LATCH, RESET, OVER, READ

READZ, READV, NOLATCH, LATCH, RSTTMR, INTEN,
TIMEN

DATGEN All data source selection options (DATDAT, etc.)
CHIPS All options

Usage
USERRAM <Operation>, <SourceA>, <SourceB>

where:

Operation specifies the basic USERRAM operation to be performed: GET, SET. See
USERRAM Operation Operands.

SourceA identifies a specific APG User RAM address which, depending on the specified
Operation, can be the source and/or destination of the Operation. See USERRAM
SourceA Operands.

SourceB identifies a specific APG hardware register. See USERRAM SourceB Operands.
 2/27/09 Pg-1456

Memory Test Patterns
The table below summarizes the operands for each field of the USERRAM instruction:

Examples
The following example copies the value from APG User RAM address 6 (URAM6) to the
APG’s XMAIN register:

% USERRAM GET, URAM6, XMAIN

The following example copies the value from the APG’s YMAIN register to APG User RAM
address 6 (URAM2):

% USERRAM SET, URAM2, YMAIN

4.13.14.1 USERRAM Operation Operands
See APG User RAM, Memory Test Patterns, USERRAM Instruction.

Description
The USERRAM instruction takes the following form:

USERRAM <Operation>, <SourceA>, <SourceB>

The Operation operand specifies the basic USERRAM operation to be performed, one of
GET, SET.

Rules:

• There is no default Operation operand.

Table 4.13.14.0-1 USERRAM Instruction Operands

Operation SourceA SourceB

GET
SET

URAM1
to

URAM4096
URAMINCR
URAMDECR

XMAIN XBASE XFIELD
YMAIN YBASE YFIELD

 2/27/09 Pg-1457

Memory Test Patterns
The table below describes the options available for the USERRAM Operation operand:

Example
See Examples.

4.13.14.2 USERRAM SourceA Operands
See APG User RAM, Memory Test Patterns, USERRAM Instruction.

Description
The USERRAM instruction takes the following form:

USERRAM <Operation>, <SourceA>, <SourceB>

The SourceA operand identifies a specific APG User RAM address which, depending on
the specified Operation, can be the source and/or destination of the Operation.

Rules:

• SourceA can only be a APG User RAM address (URAM1-URAM4096) or one of
URAMINCR or URAMDECR.

• SourceA does not have a default value.

Table 4.13.14.1-1 USERRAM Operation Operands

Operand Purpose SourceA SourceB

GET GET the value from SourceA into SourceB. The
Modification operand is not allowed.

APG User
RAM

APG
Register

SET SET the value from SourceB into SourceA. The
Modification operand is not allowed.

APG User
RAM

APG
Register
 2/27/09 Pg-1458

Memory Test Patterns
The table below describes the options available for the USERRAM SourceA operand:

Example
See Examples.

4.13.14.3 USERRAM SourceB Operands
See APG User RAM, Memory Test Patterns, USERRAM Instruction.

Description
The USERRAM instruction takes the following form:

USERRAM <Operation>, <SourceA>, <SourceB>

The SourceB identifies the source of the second value used in selected Modification(s).

Rules:

Table 4.13.14.2-1 USERRAM SourceA Operands

Operand Purpose

URAM1
to

URAM4096

Explicit APG User RAM address 1.
... to ...
Explicit APG User RAM address 4096.

URAMINCR The SourceA address is taken from the User RAM Address Index
Register, which is incremented after the current operation is complete.

URAMDECR The SourceA address is taken from the User RAM Address Index
Register, which is decremented after the current operation is complete.

Note: the apg_user_ram_address_set(), apg_user_ram_address_get()
functions use values which start with 0, which is equivalent to URAM1 in the test pattern..
 2/27/09 Pg-1459

Memory Test Patterns
The table below describes the options available for the USERRAM SourceB operand:

Regarding the table above note the following:

• The Hardware Register identifies which APG resource is accessed for each
Operand value.

• Used Bit Position specifies the number of bits which are accessed.

Example
See Examples.

4.13.15 Minmax Pattern Example
See Memory Test Patterns.

Below is an example of a minmax read pattern using the Data Buffer Memory (DBM) as the
data source. This is a simple example of reading a ROM code.

PATTERN(minmax)

Table 4.13.14.3-1 USERRAM SourceB Operands

Operand
APG

Register
Used Bit
Positions

URAM1
to

URAM4096

APG User RAM
Address n/a

XMAIN X Main 17..0

XBASE X Base 17..0

XFIELD X Field 17..0

YMAIN Y Main 17..0

YBASE Y Base 17..0

YFIELD Y Field 17..0
 2/27/09 Pg-1460

Memory Test Patterns
// Initial Conditions
@{

count(1, amax()); // Load COUNT1/RELOAD1 with max DUT address
ymain(ymax()); // Load YMAIN with maximum Y address
xmain(xmax()); // Load XMAIN with maximum X address

@}

// Instruction 1
// XALU/YALU increment the DUT address, X fast. The first execution
// will increment the address from xmax()/ymax() to 0x0. MAR CJMPNZ
// causes the instruction to loop until COUNT1 DECRements to zero
// (i.e. amax() cycles +1). MAR READ enables strobes on pins
// scrambled to the APG Data Generator outputs, and since NOLATCH
// is NOT included any failing strobe(s) will set the error latch
// on the associated pin(s) (see Error Flag vs. Error Latch).
// PINFUNC ADHIZ causes pins scrambled to the APG Data Generator
// to tri-state (assuming adhiz() did not invert normal operation).
// DATGEN BUFBUF selects the DBM as the data source for the data
// generator. Three chip selects pulse true. Operands not specified
// are set to values in the Default Memory Pattern Instruction.

% Lool_Label:
YALU YMAIN, XCARE, CMEQMAX, INCREMENT, DYMAIN
XALU XMAIN, XCARE, CON, INCREMENT, DXMAIN
COUNT COUNT1, DECR, AON
MAR CJMPNZ, Lool_Label, READ
PINFUNC ADHIZ
CHIPS CS1PT,CS2PT,CS3PT
DATGEN BUFBUF

// Pattern is done. All undefined instructions/operands are set to
// default values (see Default Memory Pattern Instruction).
% MAR DONE

The funtest() function, executed in test block code, is used execute this minmax pattern.
This first causes the initial conditions to execute, then starts the APG to execute the pattern
instructions. The APG will stop when MAR DONE is executed or if a strobe fails (stop on
error):

funtest(minmax, error);
 2/27/09 Pg-1461

Memory Test Patterns
4.13.16 Adaptive Programming Pattern Example
See Memory Test Patterns, Over-programming Controls and Parallel Test.

Note: this section should be read only after reviewing Error Flag vs. Error Latch.

Note: this section was written in 1999 and may be somewhat dated. The concepts
remain valid, the details are suspect. Check with Nextest Applications for more
modern examples.

Below is an example of a pattern that performs adaptive programming of a programmable
memory device.

For the purpose of this example, assume this is a simple DUT that has an address bus, a
data bus, and three chip selects. This DUT can be put into a special programming mode by
applying a high voltage to the programming pin. In this example, the 3rd drive level (VIHH) is
used and enabled in the test pattern by selecting VIHH set = VIHH2 (configured using the
VIHH Map Macros in the test program code).

The key section of this example shows how to read the DUT outputs, wait the correct
number of cycles for error pipelining, perform a branch-on-error, and clear the error line in
preparation for the next read.

The following assumptions are made:

• VIHH1 = VIHH is disabled on all pins (default)
• VIHH2 = VIHH applied to adaptive programming pin
• TSET1 = normal DUT read cycle timing
• TSET2 = 2uS cycle period used for DUT programming cycles
• TSET3 = 30nS cycle period, to generate fast error pipeline clocks
• TSET4 = 600nS cycle period, for VIHH settling time

TSET2 is used to time the duration of the VIHH programming pulse to the DUT (the interrupt
timer could be used instead, but it is less accurate at small time values because it is
asynchronous to the pattern). TSET3 will be used to pipeline error(s) back to the APG as
quickly as possible. TSET4 is used to allow time for VIHH to settle to its programmed value.
 2/27/09 Pg-1462

Memory Test Patterns
In this example, if a given address fails to program after 500 2uS programming pulses the
pattern will terminate. The flow chart below shows the adaptive programming pattern:

Figure-68: Example Adaptive Programming Flow Chart

Set up VIHH and Let Voltage Settle

Generate 2 uS Programming Pulse

READ the DUT (NOLATCH)

Pipeline READ Result

Done = Good DUT

Increment Address

READ

Max

Programmed?
All addresses

programming
pulses

completed?

PASSed
?

Yes

Yes

Yes

No

No

No

Stop = Bad DUT

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Instruction 8

Instruction 9

Instruction 10

READ the DUT (LATCH) Instruction 7

RESET
 2/27/09 Pg-1463

Memory Test Patterns
PATTERN(adaptive_prog_pat)

// Initial Conditions
@{

// COUNT1 used to increment through every address
count(1, amax());// Load COUNT1/RELOAD1 with max DUT address

// Load COUNT2/RELOAD2 with (500 -1). COUNT2 stores the maximum
// number of programming pulses (-1) allowed at a given address
count(2, 499);

// Load COUNT3/RELOAD3 with (12 -1) = error pipeline length. This
// is used to loop on an instruction which clocks the error
// pipeline, to propagate any failing strobes to the APG error
// logic used to control branch-on-error operations.
count(3, 11);

amain(0); // Load XMAIN and YMAIN = 0 = 1st address to program.

// Set the data register to 0. This will be used as the data
// source for programming and reading the DUT
datreg(0);

@}

// Instruction 1
// Enable VIHH programming voltage by selecting VIHH2. Select TSET4
// to allow VIHH to settle before proceeding.
% PINFUNC TSET4, VIHH2

// Instruction 2
// Set CS1 = TRUE to send DUT a single programming pulse.
// The pulse duration is determined by TSET2 cycle period. VIHH2
// remains selected to apply the proper programming voltage. By
// default the data register (DATDAT) is selected as the data
// source. OYMAIN and OXMAIN are the default address generators.
% Prog_pulse:

CHIPS CS1T
PINFUNC TSET2, VIHH2

// Instruction 3
// Read (strobe) the DUT to see if this address programmed
// correctly. TSET1 (default) is set up with spec DUT read timing.
// NOLATCH prevents PE error latch(s) from being set; error
// flag(s) will be used for branch-on-error (below) to
// conditionally re-program this same address. PINFUNC ADHIZ causes
// tester pins scrambled to the APG data generator to tri-state.
 2/27/09 Pg-1464

Memory Test Patterns
% MAR READ, NOLATCH
CHIPS CS2T, CS3T
PINFUNC ADHIZ

// Instruction 4
// Loop here to pipeline error(s) from PE to APG, in preparation for
// branch-on-error below. TSET3 used to execute these cycles at
// minimum cycle period, to minimize the waiting time.
% Pipe_loop1:

COUNT COUNT3, DECR, AON
MAR CJMPNZ, Pipe_loop1
PINFUNC TSET3

// Instruction 5
// Branch-on-error based on PASS/FAIL result of earlier READ. If
// address was successfully programmed (no error) branch to the
// instruction with the label Next_address1. If the address was not
// successfully programmed execute the next instruction. Again,
// TSET3 used to minimize time.
% MAR CJMPNE, Next_address1

PINFUNC TSET3

// Instruction 6
// Execution comes here only if the current address did not program
// (READ failed, branch-on-error came here). This instruction
// counts the number of programming pulses which have been applied
// at the current X/Y address. If the max have not been applied
// execution jumps back to apply another pulse. If the max number
// has been applied, the DUT is bad, and execution proceeds to the
// next instruction, which stops the APG. Also, RESET the error
// flags here in preparation for performing another READ.
% COUNT COUNT2, DECR, AON

MAR CJMPNZ, Prog_pulse, RESET
PINFUNC TSET3

// Instruction 7
// This instruction is reached only if the DUT failed to
// program after receiving the maximum number of programming
// pulses. The DUT is bad, but the pattern must do a READ LATCH to
// set a PE error latch(es), which determine whether funtest()
// returns PASS or FAIL.
% MAR READ

CHIPS CS2T, CS3T
 2/27/09 Pg-1465

Memory Test Patterns
// Instruction 8
// End the pattern. This instruction is reached when the DUT
// fails to program correctly.
% MAR DONE

// Instruction 9
// Increment the address (X fast) and check (COUNT1) to see if all
// addresses have been programmed. If not, jump back to apply the
// programming pulse to the new address. TSET3 for speed.
% Next_address1:

YALU YMAIN, XCARE, CMEQMAX, INCREMENT, DYMAIN
XALU XMAIN, XCARE, CON, INCREMENT, DXMAIN
COUNT COUNT1, DECR, AON
MAR CJMPNZ, Prog_pulse
PINFUNC TSET3

// Instruction 10
// End the pattern. This instruction is reached when all addresses
// are successfully programmed.
% MAR DONE

The following test block code will execute this pattern. This executes the initial conditions
then starts the APG:

funtest(adaptive_prog_pat, error);

4.13.17 Over-programming Controls and Parallel Test
See Adaptive Programming Pattern Example, Error Flag vs. Error Latch,
error_flag_enable(), and over_inhibit().

Note: this section was written in 1999 and may be somewhat dated. The concepts
remain valid, the details are suspect. Check with Nextest Applications for more
modern examples.

When programming some programmable memory devices (Flash, EEPROM, etc.), it is often
required that only the minimum amount of programming stimulus be applied; i.e. to not
over-program the DUT.

Here, the term over-programming is used in the context of an adaptive programming test
pattern, used to program these memory device types. In general, rather than apply the full
 2/27/09 Pg-1466

Memory Test Patterns
spec amount of programming stimulus (pulse count, programming time, etc.) an adaptive
programming algorithm will:

• Apply less than spec programming stimulus.
• Read the DUT to see if it programmed successfully (i.e. branch-on-error).
• Repeat the previous 2 steps until either all DUT(s) program successfully or until

the spec amount of programming stimulus has been applied. In the latter case,
any DUT(s) which have not successfully programmed are considered defective.

See Adaptive Programming Pattern Example for more details.

Over-programming occurs when the programming stimulus continues to be applied even
after a device has programmed successfully. When testing a single DUT, this is not difficult
(see Adaptive Programming Pattern Example). When testing multiple DUTs in parallel, to
prevent over-programming requires specialized hardware, to disable programming stimulus
on a per-DUT and per-address basis. This allows DUT(s) which have not successfully
programmed to continue to receive stimulus while the other DUT(s) do not, on a per-DUT,
per-address basis.

An example of the basic adaptive programming algorithm used to program one DUT is
described in the Adaptive Programming Pattern Example: and the Example Adaptive
Programming Flow Chart. The latter should be reviewed before proceeding. Note that the
model in this flow chart must be adjusted to correctly program mutliple DUTs in parallel (as
described below and in Modified Adaptive Programming Pattern Outline). Also, this is the
time to review Error Flag vs. Error Latch, to understand these two signals and how they
operate.

When testing a single DUT, as indicated in the Example Adaptive Programming Flow Chart,
at the appropriate time the test pattern reads (strobes) the DUT outputs
(MAR READ,NOLATCH) at the address currently being programmed, pipelines the result to the
APG branch-on-error logic and branches based on whether the current address has been
successfully programmed (all strobes = PASS = no error flags are set) or not (one or more
strobes = FAIL = one or more error flags are set). If not, the programming loop repeats until
either the current address is programmed successfully or until the maximum amount of
programming stimulus has been applied (i.e. the DUT is bad). This process continues until
all addresses have been successfully programmed or until an address fails to program
correctly, at which time the pattern execution stops because the DUT is bad.

As indicated, the Adaptive Programming Pattern Example presumes that a single DUT is
being tested. When testing multiple DUTs in parallel, two additional considerations exist:
 2/27/09 Pg-1467

Memory Test Patterns
• When a given DUT fails (i.e. is bad) the test pattern must continue to program the
remaining DUTs, until all good DUTs are successfully programmed and all bad
DUTs have been identified. However, to ensure the adaptive programming
algorithm operates optimally, once a DUT has failed, the algorithm must ignore it
while programming the remaining DUT(s). And, usually, the programming stimulus
must be inhibited to the bad DUT(s).

• When a given DUT has been sucessfully programmed at the current address the
programming stimulus must be inhibited while the remaining DUTs continue to be
programmed at that same address. Then, at the next address, the programming
stimulus must be re-enabled again for the remaining good DUTs.

As indicated, to ensure the adaptive programming algorithm operates optimally, once a DUT
has failed, the programming loop must ignore PASS/FAIL signals from those DUT(s) when
determining whether the current address has been successfully programmed. More
specifically, the APG’s branch-on-error logic must ignore the error flags from bad DUT(s).
This is done using specialized hardware, by effectively setting the error flags for bad DUT(s)
= PASS.

A bad DUT is identified when an error latch for that DUT is set. In the Modified Adaptive
Programming Pattern Outline, this is done in instruction 12. If, after applying the
programming stimulus the maximum number of times, if the current address is still not
programmed correctly a MAR READ,LATCH is executed, which will set one or more error
latches for bad DUT(s) (for the good DUTs, the read will PASS and no latches are set).
Subsequently, as the pattern continues to program other DUT(s) the error flags from bad
DUT(s) are ignored because an error latch is set for these DUT(s). As indicated above this is
done using specialized hardware, which must be enabled using the
error_flag_enable() function. This same hardware also inhibits the programming
stimulus for any DUT with an error latch set (independent of the use of MAR OVER, more
below).

When testing multiple DUTs in parallel, to prevent the over-programming of individual
addresses additional specialized hardware is also required. As each address is
programmed, once a given DUT is successfully programmed at that address the
programming stimulus must be inhibited for that DUT while the pattern continues to program
the remaining DUT(s). Then, at the next address, the programming stimulus must be
enabled for all remaining good DUT(s), and the process repeated until all addresses have
been programmed (or all DUTs determined to be bad). This requires:

• Identification of the specific programming stimulus being used, to allow it to be
inhibited at the appropriate time in the test pattern. This is done using the
over_inhibit() function.
 2/27/09 Pg-1468

Memory Test Patterns
• Using the MAR OVER token in the test pattern, to cause the hardware to inhibit the
programming stimulus for any DUT(s) which DON’T have an error flag set. Note
that in mixed memory/logic patterns, logic instructions can control OVER and
LATCH/NOLATCH if enabled using PINFUNC VOVER and/or PINFUNC
VLATCHRESET.

• Moving the MAR RESET to ensure it occurs after the programming stimulus has
been applied but before the next read occurs. This is required to ensure the error
flags from DUTs which do require additional programming are not cleared before
the stimulus is applied. Using Magnum 1/2/2x, MAR RESET cannot be used for at
least three cycles following the last instruction in which the over-inhibit must be
effective. Note that in mixed memory/logic patterns, logic instructions can control
RESET if enabled using PINFUNC VLATCHRESET.

The latter benefits from further explanation. During the adaptive programming loop, after the
programming stimulus is applied, a MAR READ,NOLATCH is executed, to determine whether
the current address has been successfully programmed. READ,NOLATCH only affects the
error flags, which are not set for any DUT(s) which have been successfully programmed.
Conversely, the error flags are set for any DUT(s) which have not been successfully
programmed. Subsequently, if one or more error flags are set, the programming loop must
repeat (branch-on-error), to continue to program DUT(s) which require it. As each loop is
repeated, the stimulus is applied, then the error flags are reset and the read/branch process
repeats.

Adding MAR OVER to the test pattern causes the hardware to inhibit the programming
stimulus (as identified using over_inhibit()), but only for DUT(s) which DON’T have
an error flag set; i.e. DUTs which passed the previous MAR READ,NOLATCH. Since the user
writes the test pattern which controls when this stimulus is applied and when the error
flags are reset they are responsible for adding the MAR OVER token to the pattern and
ensuring that MAR RESET is not applied at the wrong time. See Modified Adaptive
Programming Pattern Outline.

Note: the APG pipeline model for MAR OVER is quite complex and thus not
documented. Instead, it is expected that MAR OVER will be included in all pattern
instructions in the program/reset/strobe/pipeline/branch sequence: it is harmless
to do so.

Using Magnum 1/2, the special hardware noted above is replicated for every 8 pins and one
DPS (i.e. a_1 through a_8, b_1 through b_8, etc). This restricts the minimum DUT size to 8
pins but also works when a DUT spans more than 8 pins. However, additional restrictions
apply depending on the programming stimulus being used:

• If using VIHH as the programming stimulus, no additional restrictions exist.
 2/27/09 Pg-1469

Memory Test Patterns
• If using DPS as the programming stimulus, the over-programming inhibit hardware
requires that the DPS Output Mode be configured/used in VPulse mode
(t_dps_vpulse). The over-programming inhibit hardware inhibits the DPS
programming stimulus by forcing the DPS to its primary output voltage, over-riding
(inhibiting) the secondary output voltage (vpulse).

• If using a normal PE driver signal as the programming stimulus, the
over-programming inhibit hardware forces the drive state to VIH (presuming the
active programming state to be active-low). This affects BOTH the A/B tester
channels which share a given timing generator.

Modified Adaptive Programming Pattern Outline
The memory pattern outline below presumes the use of both
error_flag_enable(FALSE) and over_inhibit():

Inst Details

1 Set new address

2

MAR READ,NOLATCH,OVER This READ is needed to set the error flags (to FAIL)
before programming the current address. At each new address this READ should
fail so that instructions below using MAR OVER will apply the programming
stimulus. For the very first execution (first address only) all error flags are
enabled since no READ/LATCH has yet occurred to set any error latches, which if
error_flag_enable() is used, would disable the error flags for bad DUTs.
For subsequent loop iterations/addresses, some error flags may be disabled
(forced PASS), per DUT, depending on the latched PASS/FAIL result in
instruction 12.

3 Pipeline errors, include MAR OVER. Required for proper MAR OVER operation in
next instruction.

4

Apply programming stimulus. Include MAR OVER.
The programming stimulus will be disabled for some DUT(s), as follows:
- Stimulus to DUTs which previously failed MAR READ/LATCH (instruction 12) are
 disabled for the duration of the pattern (presuming error_flag_enable()
 and over_inhibit() are setup).
- Stimulus to DUTs which DON’T have an error flag set (in instructions 4, 12 or
 8) is disabled while programming the current address only.

5 If required, loop with stimulus applied. Include MAR OVER.
 2/27/09 Pg-1470

Memory Test Patterns
6
Remove programming stimulus and loop 3 cycles (total) before resetting the
error flags. Include MAR OVER. 3 cycles are required to ensure proper
over-programming operation.

7 MAR RESET,OVER to reset error flags. See previous instruction.

8 MAR READ,NOLATCH,OVER = adaptive programming read.

9
Pipeline errors. Include MAR OVER. Pipeline cycles are required for proper
branch-on-no-error (instruction 10) and proper MAR OVER operation during
instructions 4 and 5.

10

Branch-on-no-error (MAR CJMPNE,OVER) to instruction 13 if previous MAR
READ,NOLATCH passed (no error flags were set). Remember, the error flag has
been disabled for devices which previously failed instruction 12 (i.e. DUTs which
have an error latch set are bad).

11 Programming limit check. Include MAR OVER Branch to instruction 4 if the
maximum stimulus has not been applied.

12

If pattern execution reaches here, at least 1 DUT has not been successfully
programmed at the current address. Need to perform MAR READ,LATCH,OVER to
set some error latch(es) for those DUTs (they are bad). This will enable the
over_inhibit() logic for these DUT(s) while the remaining good DUT(s)
continue to be programmed for the remainining addresses. For those devices
which fail here, their error flags are disabled (forced PASS) for the duration of the
pattern, causing programming stimulus to be disabled during cycles which use
the MAR OVER option, preventing any subsequent programming of the bad DUTs.

13 Check if all address have been programmed. If more addresses remain to be
programmed go to instruction 1, otherwise fall through to MAR DONE.

14 MAR DONE

Inst Details
 2/27/09 Pg-1471

Memory Test Patterns

 2/27
/09 Pg-1472

Memory Test Patterns
 2/27/09 Pg-1473

Memory Test Patterns
 2/27/09 Pg-1474

Memory Test Patterns
 2/27/09 Pg-1475

Memory Test Patterns
 2/27/09 Pg-1476

Memory Test Patterns
 2/27/09 Pg-1477

Memory Test Patterns
 2/27/09 Pg-1478

Memory Test Patterns
 2/27/09 Pg-1479

Memory Test Patterns
 2/27/09 Pg-1480

Memory Test Patterns
 2/27/09 Pg-1481

Memory Test Patterns
 2/27/09 Pg-1482

Memory Test Patterns
 2/27/09 Pg-1483

Memory Test Patterns
 2/27/09 Pg-1484

Memory Test Patterns
 2/27/09 Pg-1485

Memory Test Patterns
 2/27/09 Pg-1486

Memory Test Patterns
 2/27/09 Pg-1487

Memory Test Patterns
 2/27/09 Pg-1488

Memory Test Patterns
 2/27/09 Pg-1489

Memory Test Patterns
 2/27/09 Pg-1490

Memory Test Patterns
 2/27/09 Pg-1491

Memory Test Patterns
 2/27/09 Pg-1492

Memory Test Patterns
 2/27/09 Pg-1493

Memory Test Patterns
 2/27/09 Pg-1494

Memory Test Patterns
 2/27/09 Pg-1495

Memory Test Patterns
 2/27/09 Pg-1496

Memory Test Patterns
 2/27/09 Pg-1497

Memory Test Patterns
 2/27/09 Pg-1498

Memory Test Patterns
 2/27/09 Pg-1499

Memory Test Patterns
 2/27/09 Pg-1500

Memory Test Patterns
 2/27/09 Pg-1501

Memory Test Patterns
 2/27/09 Pg-1502

Memory Test Patterns
 2/27/09 Pg-1503

Memory Test Patterns
 2/27/09 Pg-1504

Memory Test Patterns
 2/27/09 Pg-1505

Memory Test Patterns
 2/27/09 Pg-1506

Memory Test Patterns
 2/27/09 Pg-1507

Memory Test Patterns
 2/27/09 Pg-1508

Memory Test Patterns
 2/27/09 Pg-1509

Memory Test Patterns
 2/27/09 Pg-1510

Memory Test Patterns
 2/27/09 Pg-1511

Memory Test Patterns
 2/27/09 Pg-1512

Memory Test Patterns
 2/27/09 Pg-1513

Memory Test Patterns
 2/27/09 Pg-1514

Memory Test Patterns
 2/27/09 Pg-1515

Memory Test Patterns
 2/27/09 Pg-1516

Memory Test Patterns
 2/27/09 Pg-1517

Memory Test Patterns
 2/27/09 Pg-1518

Memory Test Patterns
 2/27/09 Pg-1519

Memory Test Patterns
 2/27/09 Pg-1520

Memory Test Patterns
 2/27/09 Pg-1521

Memory Test Patterns
 2/27/09 Pg-1522

Memory Test Patterns
 2/27/09 Pg-1523

Memory Test Patterns
 2/27/09 Pg-1524

Memory Test Patterns
 2/27/09 Pg-1525

Memory Test Patterns
 2/27/09 Pg-1526

Memory Test Patterns
 2/27/09 Pg-1527

Memory Test Patterns
 2/27/09 Pg-1528

Memory Test Patterns
 2/27/09 Pg-1529

Memory Test Patterns
 2/27/09 Pg-1530

Memory Test Patterns
 2/27/09 Pg-1531

Memory Test Patterns
 2/27/09 Pg-1532

Memory Test Patterns
 2/27/09 Pg-1533

Memory Test Patterns
 2/27/09 Pg-1534

Memory Test Patterns
 2/27/09 Pg-1535

Memory Test Patterns
 2/27/09 Pg-1536

Memory Test Patterns
 2/27/09 Pg-1537

Memory Test Patterns
 2/27/09 Pg-1538

Memory Test Patterns
 2/27/09 Pg-1539

Memory Test Patterns
 2/27/09 Pg-1540

Memory Test Patterns
 2/27/09 Pg-1541

Memory Test Patterns
 2/27/09 Pg-1542

Memory Test Patterns
 2/27/09 Pg-1543

Memory Test Patterns
 2/27/09 Pg-1544

Memory Test Patterns
 2/27/09 Pg-1545

Memory Test Patterns
 2/27/09 Pg-1546

Memory Test Patterns
 2/27/09 Pg-1547

Memory Test Patterns
 2/27/09 Pg-1548

Memory Test Patterns
 2/27/09 Pg-1549

Memory Test Patterns
 2/27/09 Pg-1550

Memory Test Patterns
 2/27/09 Pg-1551

Memory Test Patterns
 2/27/09 Pg-1552

Memory Test Patterns
 2/27/09 Pg-1553

Memory Test Patterns
 2/27/09 Pg-1554

Memory Test Patterns
 2/27/09 Pg-1555

Memory Test Patterns
 2/27/09 Pg-1556

Memory Test Patterns
 2/27/09 Pg-1557

Memory Test Patterns
 2/27/09 Pg-1558

Memory Test Patterns
 2/27/09 Pg-1559

Memory Test Patterns
 2/27/09 Pg-1560

Memory Test Patterns
 2/27/09 Pg-1561

Memory Test Patterns
 2/27/09 Pg-1562

Memory Test Patterns
 2/27/09 Pg-1563

Memory Test Patterns
 2/27/09 Pg-1564

Memory Test Patterns
 2/27/09 Pg-1565

Memory Test Patterns
 2/27/09 Pg-1566

Memory Test Patterns
 2/27/09 Pg-1567

Memory Test Patterns
 2/27/09 Pg-1568

Memory Test Patterns
 2/27/09 Pg-1569

Memory Test Patterns
 2/27/09 Pg-1570

Logic Test Patterns
4.14 Logic Test Patterns
See Test Pattern Programming.

The Logic Test Patterns sections include the following:

• Overview
• Logic Vector Syntax

- Logic Vector Bit Codes
- 3-bits per Pin

• Magnum 1/2/2x Logic Pattern Rules
- LVM Branch/Label Limitations

• VECDEF Compiler Directive
• VEC Pattern Instruction
• RPT Pattern Instruction
• Optional VEC/RPT Instruction Parameters
• STARTLOOP / ENDLOOP Logic Vector Instructions
• VAR Instruction

- VAR Branch-condition Operands
- VAR Address Operand
- VAR Interrupt Operands
- VAR Error-control Operands
- VAR Misc Operands

• VCOUNT Instruction
- VCOUNT Counter Operands
- VCOUNT Function Operands

• VPINFUNC Instruction
• VUDATA Instruction
• Sync Loops

4.14.1 Overview
The Magnum 1 test system contains two sources of test pattern data:
 2/27/09 Pg-1571

Logic Test Patterns
• Algorithmic Pattern Generator (APG) when executing Memory Test Patterns.
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored

Logic Test Patterns and Scan Test Patterns.
The diagram below shows key Magnum 1 architecture features:

Figure-69: Test Pattern Data Source Hardware Architecture
Using the Pin Scramble MUX, the source of pattern data for each timing channel can be
selected on a per-channel/per-cycle basis, at full tester speed. In other words, for any given
pin-pair, the source of pattern data can be selected on a per-cycle basis from any APG
address, data, or chip select data bit, or one LVM/SVM data bit (2 bits in Double Data Rate
(DDR) Mode). This section discusses Memory Test Patterns, also see Logic Test Patterns
and Mixed Memory/Logic Patterns.

Memory Test Patterns use user-written instructions to control how the APG hardware
algorithmically generates pattern information. A logic vector pattern defines pattern
information to be stored on disk, which is loaded into Logic Vector Memory (LVM)during the
test pattern load sequence. The LVM hardware option consists of physical memory (RAM)
which can store various numbers of logic test vectors based on the size of the memories
installed. The LVM size will grow larger as technology and market demand evolves.

Pin b_64

Pin a_64

Pin b_1

Pin a_1
Chan-1

Timing &
Formatting

Chan-64
Timing &

Formatting

*LVM &
SVM

Sub-site B

Sub-site B

Sub-site A

Sub-site A

*Optional

Pattern Data
Strobe & I/O
Control (6 bits
per pin)

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

36 Data
8 Chip Selects

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

Drive
Strobe

I/O

VAR

 2/27/09 Pg-1572

Logic Test Patterns
The contents of a simple logic-only test pattern named “myPat1.pat” is shown below:

PATTERN(myPat1)
% VEC 00110 HL0XX
% RPT 3 00010 HL0XX // Comment
% label_1:

VEC 01110 XX0LL TSET3, PS9, VIHH2 // Comment
% VEC 00110 HL0XX

VAR DONE

Refering to the example above, myPat1 is the pattern name used in the test program to
refer to this pattern. The following example executes the myPat1 pattern to completion and
assigns the PASS / FAIL result to the variable “result”:

int result = funtest(myPat1, finish); // See funtest()

4.14.2 Logic Vector Syntax
See Logic Test Patterns.

A Logic Test Pattern uses pattern instructions and syntax different than used for Memory
Test Patterns. It is also possible to mix logic and memory pattern instructions to create
Mixed Memory/Logic Patterns.

Note: the term logic vector is historical. In this document a logic vector and a logic
pattern instruction (delimited by the Pattern Instruction Identifier (%) character)
are equivalent and used interchangeably.

The simplest form of a logic vector has three required parts:

% INSTRUCTION bit-pattern(s)

For example:

% VEC XHL10 // Single vector instruction
% RPT 4 XHL10 // Repeat instruction

Note: in any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF Compiler
Directive is required (not optional) in any test patterns containing logic
instructions. This is not shown above.
 2/27/09 Pg-1573

Logic Test Patterns
Note the following:

• Each logic vector begins with the required Pattern Instruction Identifier (%).
• Each logic vector requires an instruction, either VEC or RPT.
• The bit-pattern(s) use Logic Vector Bit Codes to specify, on a per channel basis,

the drive/strobe data, I/O control and strobe enable for each channel (each
character/token represents one channel). The token specified encodes the drive/
strobe data, I/O control and strobe enable for that channel, see 3-bits per Pin.
White-space usage is arbitrary in the bit-pattern field and between other
parameters.

A logic instruction may also include several Optional VEC/RPT Instruction Parameters and
sub-instructions:

• Pattern Labels may be used in logic patterns, for readability and as conditional
branch and subroutine targets. Restrictions exist, see LVM Branch/Label Limitations.
For example:

% myLabel_1:
VEC XHL10 XHL10

% myLabel_2: RPT 4 XHL10 XHL10

• Comments are supported, see Comments in Test Patterns.
• A time-set may be specified, see Time-sets (TSET) and Optional VEC/RPT

Instruction Parameters. For example:
% VEC XHL10 XHL10 // Default TSET1
% VEC XHL10 XHL10, TSET2
% RPT 4 XHL10 XHL10, TSET4

• A Pin Scramble Map may be specified, see Optional VEC/RPT Instruction
Parameters. For example:

% VEC XHL10 XHL10 // Default PS1
% VEC XHL10 XHL10, PS12
% RPT 4 XHL10 XHL10, PS13

• A VIHH Map may be specified, see Optional VEC/RPT Instruction Parameters. For
example:

% VEC XHL10 XHL10 // Default VIHH1
% VEC XHL10 XHL10, VIHH4
% RPT 4 XHL10 XHL10, VIHH2

• Any combination of Time-sets (TSET), Pin Scramble Map, and/or VIHH Map may be
specified. For example:
 2/27/09 Pg-1574

Logic Test Patterns
% VEC XHL10 XHL10 // Default TSET1, PS1, VIHH1
% VEC XHL10 XHL10, TSET2, PS5, VIHH4
% RPT 4 XHL10 XHL10, PS2, TSET19 // Default VIHH1

• Maverick-II and Magnum 1/2/2x have additional instruction options, see Magnum
1/2/2x Logic Vector Instructions. For example:
% VEC XHL10 XHL10, NOLATCH, VPULSE

VCOUNT COUNT3, COUNTVUDATA
VAR GOSUB, myLabel_1
VPINFUNC TSET4, VIHH3, PS9
VUDATA 0xFF

• The Test Pattern Line Continuation Character (“ \”) can be used to split long vectors
across multiple lines. For example:

% VEC XHL10XHL10 XHL10XHL10 \
XHL10XHL10 XHL10XHL10, TSET4, PS2

• The #define compiler directive, can be used in pattern files to improve readability
and maintainability.

• Multi-vector loops are possible. See STARTLOOP / ENDLOOP Logic Vector
Instructions.

• Pattern Subroutines are supported in logic patterns.
The information above applies to pure Logic Test Patterns; i.e. patterns without explicit
memory pattern instructions. However, the entire Memory Test Patterns instruction set can
be combined with the Logic Test Patterns instruction set, creating a mixed logic and memory
pattern. See Mixed Memory/Logic Patterns.

Example Logic Pattern
%% VECDEF p1, p2, p3, p4, p5, p6, p7

PATTERN(myPattern)

% VEC 0011 XXX // Defaults to TSET1, PS1,VIHH1

STARTLOOP 55 // Multi-vector loop, 55 iterations

% VEC 0101 HLX

% RPT 5 1100 LLH, TSET2// Repeat this vector 5 times,
// use timeset TSET2, PS1,VIHH1

% VEC 01HL HHH // Defaults again

ENDLOOP // End of loop

% VEC 10XX XXX
 2/27/09 Pg-1575

Logic Test Patterns
% VEC 10XX XXX
VAR DONE

4.14.2.1 Logic Vector Bit Codes
See Overview, Logic Test Patterns.

Description
Each logic test vector includes a series of vector bit codes (tokens), each consisting of a
character from Logic Vector Bit Codes. Each character encodes the drive state, I/O control
and strobe enable for one timing channel.

For example, the HL01XXXX tokens below are the bit codes for 8 timing channels:

% VEC HL01XXXX

Unless otherwise specified, the first token corresponds to tester channel 1, the second bit to
channel 2, etc. Or, the VECDEF Compiler Directive can used to specify how pattern tokens
are mapped to timing channels.

Note: in any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF Compiler
Directive is required (not optional) in any test patterns containing logic
instructions. This is not shown above.

To improve readability, white space is allowed anywhere in a set of vector bit codes. The
following examples result in identical operation:

% VEC HL01XXXX
% VEC HL01 XXXX
% VEC HL 01XX XX
% VEC H L 0 1 XXX X
% VEC H L \

0 1 \
XXX X

The following short-hand notation is available:

% VEC (n:bit-pattern)
 2/27/09 Pg-1576

Logic Test Patterns
where, bit-pattern specifies a set of bit code(s) and n is the number of times to repeat
bit-pattern in the vector. Multiple sets of (n:bit-pattern) can be included in a test
vector.

Usage

Note: it is illegal to strobe in the last vector of a logic pattern;
i.e. the last vector must not contain any Z, V, H or L tokens.

Examples
The following vector operates as noted below. The description presumes that the tester
channels noted have t_lvm selected in the current Pin Scramble Map. The indicated tester
channel numbers presume that a VECDEF is not specified; if one was specified, the VECDEF
definition would determine which tester channel was controlled by each pattern token:

% VEC HL01XXXXZV

• H = Tri-state tester channels 1a and 1b and strobe for logic-1.
• L = Tri-state tester channels 2a and 2b and strobe for logic-0.
• 0 = Drive logic-0 on tester channels 3a and 3b.
• 1 = Drive logic-1 on tester channels 4a and 4b.

Table 4.14.2.1-1 Logic Vector Bit Codes

Code Pin Function Performed

 0 Drive logic-0

 1 Drive logic-1

 L or l Tri-state and strobe for logic-0

 H or h Tri-state and strobe for a logic-1

 X or x Tri-state, no strobe

. Same as X

Z or z Tri-state and strobe for a tri-state

V or v Tri-state and strobe for valid i.e. logic-1 and logic-0

It is recommended that the lower-case L not be used since it is
quite difficult distinguishing it from the numerical 1 (1l1l1).
 2/27/09 Pg-1577

Logic Test Patterns
• X = Tri-state tester channelss 5a..8a and 8b..8b.
• Z = Tri-state tester channels 9a and 9b and strobe for tri-state.
• V = Tri-state tester channels 9a and 9b and strobe for valid i.e. logic-0 and logic-1.

Note that in Multi-DUT Test Programs, all pattern/timing signals are disabled to DUT(s)
which are not in the Active DUTs Set (ADS).

The following two logic instructions are functionally identical:

% VEC (4:01) (3:1) 0
% VEC 01010101 111 0

4.14.2.2 3-bits per Pin
See Logic Vector Bit Codes.

Note: this information is included for historical reference. The references to PEL, PEE,
PES originated with the Megatest Q2 family of test systems. No references are
made to the underlying concepts anywhere in the Magnum 1/2/2x software.

In a logic vector, each bit-pattern token (H, L, 0, 1, X, V, Z) actually represents 3-bits. Each
character encodes these three bit values for each tester channel:

Table 4.14.2.2-1 Logic Pattern Hardware Bit States

Pin Function
Pattern
Token PEL PEE PES

Drive Logic 0 0 0 0 0

Drive Logic 1 1 1 0 0

Tri-state Driver &
Strobe Logic 0

L 0 1 1

Tri-state Driver &
Strobe Logic 1

H 1 1 1
 2/27/09 Pg-1578

Logic Test Patterns
4.14.3 Magnum 1/2/2x Logic Pattern Rules
See Logic Test Patterns.

The following rules apply to Magnum 1/2/2x Logic Test Patterns and to logic instructions of
Magnum 1/2/2x Mixed Memory/Logic Patterns:

• In any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF Compiler
Directive is required (not optional) in any test patterns containing logic instructions.

• The RPT instruction cannot be used in the last pattern instruction, the instruction
following a STARTLOOP statement or the instruction before a ENDLOOP statement.

• The maximum RPT loop count = 232.
• A STARTLOOP statement cannot be used before the first pattern instruction or after

the last pattern instruction.
• Multiple vector loops (see STARTLOOP / ENDLOOP Logic Vector Instructions) may

include up to 3 levels of nesting.
• A STARTLOOP statement must be followed by a VEC instruction. A ENDLOOP

statement must be preceded by a VEC instruction.
• Logic Pattern Subroutines of < 24 execution counts will be loaded into SRAM (see

Logic Vector Memory (LVM)). The SRAM can store up to 8K vectors per test
pattern. This means a given Logic Test Pattern can define at least 340 unique
subroutines which are < 24 execution counts, each consisting of 24 discrete VEC
instructions (RPT instructions account for multiple execution counts and thus can
decrease the amount of SRAM used). SRAM based subroutines are not subject to
the LVM Branch/Label Limitations listed below.

Tri-state Driver &
Strobe Valid

V 0 0 1

Tri-state Driver &
Strobe Tri-state

Z 1 0 1

Tri-state Driver X 0 1 0

Table 4.14.2.2-1 Logic Pattern Hardware Bit States

Pin Function
Pattern
Token PEL PEE PES
 2/27/09 Pg-1579

Logic Test Patterns
• DRAM based subroutines, i.e. subroutines > 24 execution counts, are subject to
the LVM Branch/Label Limitations listed below.

• When a logic instruction controls functional strobes, extra error pipeline cycles are
required to propagate the error flag signals to the branch logic. This is in addition
to what are required for APG error pipelining. See Error Pipeline Requirements.

The Magnum 1/2/2x Logic Vector Memory (LVM) architecture uses DRAM to store both the
test pattern logic instructions and logic pattern drive/expect data. During pattern execution,
logic instructions are sequentially transferred from DRAM into an instruction FIFO, for
synchronization with the tester system clock. See LVM Branch/Label Limitations for rules
relating to a rare but important rule related to conditional branch instructions in logic
patterns.

4.14.3.1 LVM Branch/Label Limitations
See Logic Test Patterns, Magnum 1/2/2x Logic Pattern Rules, Check for LVM Branch/Label
Violations.

The Magnum 1/2/2x Logic Vector Memory (LVM) is DRAM. During pattern execution, logic
instructions are sequentially transferred from DRAM into an instruction FIFO, for
synchronization with the tester system clock. Because the DRAM access rate is only slightly
faster than the maximum pattern data rate it is possible for a very specific sequence of
pattern instructions to cause a FIFO deficit. If enough consecutive FIFO deficits occur a
FIFO under-run occurs.

A FIFO under-run means the FIFO runs out of pattern instructions, resulting in faulty pattern
execution (bad). Fortunately, this instruction sequence is not typical.

The logic instruction sequence which causes a FIFO deficit consists of a series of 6
consecutive branch instructions, but not all branch options apply (more below). And, it takes
many FIFO deficits in very close proximity to cause a FIFO under-run The FIFO under-run
conditions are impractical for the pattern compiler to detect directly. Instead, a simpler rule is
defined:

Any logic pattern branch instruction within 5 execution counts after a pattern
instruction with a label may cause a FIFO deficit.

Note the following:

• Patcom will check this rule if Check for LVM Branch/Label Violations is
enabled in the APFP Dialog, or -w is specifed as a command line option to
Patcom.
 2/27/09 Pg-1580

Logic Test Patterns
• The Pattern Label is important only if it is being used as a branch target, but the
pattern compiler can't know which labels are significant and which are not.

• The rule check is not needed if the logic pattern does not use branch instructions.
• As indicated above, not all logic branch instructions can cause a deficit. The

following branch instructions cannot cause a FIFO deficit:
• Counter-based branch instruction i.e. VAR CJMPNZ, VAR CSUBZ, etc.
• Unconditional subroutine return i.e. VAR RETURN
• RPT instruction
• VAR DONE
Also, STARTLOOP / ENDLOOP will not generate a FIFO deficit.

• A compiler warning of the rule violation does not mean that a FIFO under-run will
occur. As noted above, it takes a series of FIFO deficits in close proximity to cause
a FIFO under-run. The compiler warning only advises the user of a potential FIFO
deficit.

• A FIFO deficit can never occur if the cycle periods in use are > 240nS.
• Logic subroutines executed from the SRAM are immune from FIFO deficits. See

Magnum 1/2/2x Logic Pattern Rules.
• The first instruction in a logic pattern has an implicit label (the PATTERN name)

and thus is considered for the purposes of this rule check.
• The instruction after a STARTLOOP statement and before an ENDLOOP statement

are not considered to have a label for the purpose of this rule check.
• A RPT instruction and a VAR DONE instruction are not considered to have a label

for the purpose of this rule check.
• The rule description uses the term execution counts, not pattern instructions, since

there may be more than one execution count per instruction (RPT for example):
• Each straight-line vector (VEC) is 1 execution count.
• Each SVEC (scan vector) is 1 execution count.
• For RPT instructions, the execution count is the RPT operand value.
• The instruction after a STARTLOOP statement must be VEC and thus is 1

execution count.
• The instruction before and ENDLOOP statement must be VEC and thus is 1

execution count.
 2/27/09 Pg-1581

Logic Test Patterns
4.14.4 VECDEF Compiler Directive
See Logic Test Patterns, Logic Vector Syntax, Logic Vector Bit Codes.

Description

VECDEF is a Patcom compiler directive, used to describe the mapping of DUT pins to
columns of pattern tokens in a Logic Test Pattern.

Note: in any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF directive is
required (not optional) in any test patterns containing logic instructions.

When VECDEF is not used, the columns of VEC pattern tokens are mapped to physical tester
channels in numerical order, without regard to whether a given channel is used/connected at
the DUT or how the DUT pins are organized (a bus for example). This means that the test
pattern must contain a pattern data column for every tester channel (up to the last channel
used) even when a given pin isn’t actually used. For example, the following example
represents an 8-bit data bus connected to tester channels 1,3,4,6,10,12,15,16, leaving
tester channels 2, 5, 7, 8, 9, 11, 13, and 14 unused:

 1111111
Tester Channel-> 1234567890123456

% VEC 1X01X01XX0X1XX10
% VEC HXLHXLXXXLXHXXHL

... etc ...

Note that when the VECDEF is not used, it is not possible when viewing the test pattern to
know which pins are not used since the X token is a legitimate pattern token for used pins as
well as unused pins (used pin 7 above uses X in the 2nd vector).

Using the VECDEF directive enables the following logic pattern compile-time features:

• Define which DUT pins are used and how they are mapped to the logic pattern’s
pattern data columns.

• Specify default token values for selected pin(s), allowing the pattern to contain
fewer columns.

• Specify different VECDEFs per pin assignment table. See VECDEF per Pin
Assignment Table.
 2/27/09 Pg-1582

Logic Test Patterns
When using the VECDEF directive, pins which are not defined in the Pin Assignment Table
cannot have corresponding tokens in the test pattern; i.e. unused pins can’t appear in the
pattern.

Any pins in the Pin Assignment Table which are not included in a VECDEF directive are
assigned the ‘X’ Logic Vector Bit Code.

Multiple VECDEF directives may appear in a pattern. Since VECDEF is a compiler directive,
vectors are interpreted in the order in which they appear, not the order in which the are
executed. Also note that a VECDEF directive remains in effect across multiple patterns in the
same pattern file, but not between pattern files.

A VECDEF directive can span multiple source file lines but the Test Pattern Line Continuation
Character (‘ \’) must not be used. Just type <return> to continue the line.

Usage
%% VECDEF DUT_pin_name, DUT_pin_name, DUT_pin_name, ...,

DUT_pin_nameX = [DUT_pin_name,0,1,H,h,L,l,X,x,Z,z,V,v,.],...,
[0,1,H,h,L,l,X,x,Z,z,V,v,.]

where:

%% VECDEF is a compiler directive specifying the format of subsequent vectors.

DUT_pin_name is a user-defined DUT pin name, spelled exactly (case sensitive) as used
as argument 1 to the various ASSIGN() macros in the Pin Assignment Table. The order the
pin names are listed defines the mapping of the pattern data columns to DUT pins in
subsequent vectors. A DUT pin name must be listed for each pattern data column and, a
pattern data column must be specified for each DUT pin name listed in the VECDEF
directive. Arguments for all specified pins must appear before any of the other arguments
listed below.

DUT_pin_name = [DUT_pin_name,0,1,H,h,L,l,X,x,Z,z,V,v,.] This form
allows a default pattern token value to be specified for one DUT_pin_name. See Logic
Vector Bit Codes. Subsequently, this pin will not have a pattern data column in the pattern.
The right side of the “=” can be a Logic Vector Bit Code value or the DUT_pin_name of a
DUT pin which does have a pattern data column in the test pattern. This feature makes it
possible to set default values for pins that do not change in a given pattern.

Note: when using VECDEF to specify a default value for a pin it is not legal to include
a pattern data column for that pin in any test vectors in which the VECDEF is in
effect.
 2/27/09 Pg-1583

Logic Test Patterns
[0,1,H,h,L,l,X,x,Z,z,V,v,.] as the last field of the VECDEF statement specifies a
pattern data value that applies to all remaining pins not specified by the previous arguments.
These are all Logic Vector Bit Codes.

Example
DUT_PIN(dp1){}
DUT_PIN(dp2){}
DUT_PIN(dp3){}
DUT_PIN(dp4){}
DUT_PIN(dp5){}
DUT_PIN(dp6){}
DUT_PIN(dp7){}
DUT_PIN(dp8){}
DUT_PIN(dp9){}
DUT_PIN(dp10){}
DUT_PIN(dp11){}
DUT_PIN(dp12){}
DUT_PIN(dp13){}
DUT_PIN(dp14){}
DUT_PIN(dp15){}
DUT_PIN(dp16){}
DUT_PIN(dp17){}
DUT_PIN(dp18){}
DUT_PIN(dp19){}
DUT_PIN(dp20){}
DUT_PIN(dp21){}
DUT_PIN(dp22){}
DUT_PIN(dp23){}
DUT_PIN(dp24){}
DUT_PIN(dp25){}
DUT_PIN(dp26){}
DUT_PIN(dp27){}
DUT_PIN(dp28){}
DUT_PIN(dp29){}
DUT_PIN(dp30){}

PIN_ASSIGNMENTS(PA4){
ASSIGN_4DUT(dp1, a_1, b_1, a_31, b_31)
ASSIGN_4DUT(dp2, a_2, b_2, a_32, b_32)
ASSIGN_4DUT(dp3, a_3, b_3, a_33, b_33)
ASSIGN_4DUT(dp4, a_4, b_4, a_34, b_34)
 2/27/09 Pg-1584

Logic Test Patterns
ASSIGN_4DUT(dp5, a_5, b_5, a_35, b_35)
ASSIGN_4DUT(dp6, a_6, b_6, a_36, b_36)
ASSIGN_4DUT(dp7, a_7, b_7, a_37, b_37)
ASSIGN_4DUT(dp8, a_8, b_8, a_38, b_38)
ASSIGN_4DUT(dp9, a_9, b_9, a_39, b_39)
ASSIGN_4DUT(dp10, a_10, b_10, a_40, b_40)
ASSIGN_4DUT(dp11, a_11, b_11, a_41, b_41)
ASSIGN_4DUT(dp12, a_12, b_12, a_42, b_42)
ASSIGN_4DUT(dp13, a_13, b_13, a_43, b_43)
ASSIGN_4DUT(dp14, a_14, b_14, a_44, b_44)
ASSIGN_4DUT(dp15, a_15, b_15, a_45, b_45)
ASSIGN_4DUT(dp16, a_16, b_16, a_46, b_46)
ASSIGN_4DUT(dp17, a_17, b_17, a_47, b_47)
ASSIGN_4DUT(dp18, a_18, b_18, a_48, b_48)
ASSIGN_4DUT(dp19, a_19, b_19, a_49, b_49)
ASSIGN_4DUT(dp20, a_20, b_20, a_50, b_50)
ASSIGN_4DUT(dp21, a_21, b_21, a_51, b_51)
ASSIGN_4DUT(dp22, a_22, b_22, a_52, b_52)
ASSIGN_4DUT(dp23, a_23, b_23, a_53, b_53)
ASSIGN_4DUT(dp24, a_24, b_24, a_54, b_54)
ASSIGN_4DUT(dp25, a_25, b_25, a_55, b_55)
ASSIGN_4DUT(dp26, a_26, b_26, a_56, b_56)
ASSIGN_4DUT(dp27, a_27, b_27, a_57, b_57)
ASSIGN_4DUT(dp28, a_28, b_28, a_58, b_58)
ASSIGN_4DUT(dp29, a_29, b_29, a_59, b_59)
ASSIGN_4DUT(dp30, a_30, b_30, a_60, b_60)

}

%% VECDEF dp30, dp29, dp28, dp27, dp26, dp25, dp24, dp23,
dp22, dp21, dp20, dp19, dp18, dp17, dp16, dp15,
dp14, dp13, dp12, dp11, dp10, dp9, dp8, dp7,
dp6, dp5, dp4, dp3, dp2, dp1

PATTERN(LogicPat22, logic)
% VEC 1111111111 1111111111 1111111111, TSET1, PS2
// Etc...
 2/27/09 Pg-1585

Logic Test Patterns
4.14.4.1 VECDEF per Pin Assignment Table
See VECDEF Compiler Directive.

Description
The VECDEF Compiler Directive optionally allows the specification of which Pin Assignment
Table is associated with a given VECDEF directive. Among other uses, this feature facilitates
using a single test program to test devices manufactured with different package types,
containing a different number of signal pins.

Compile-time error-checking is performed to ensure that DUT pin vs. pattern data columns
of each test vector are correctly defined.

• Each column of pattern data must be mapped to at least one DUT pin listed in the
specified Pin Assignment Table. Or, to cause a given pattern data column to be
ignored, map that column to t_na, as shown in the one_pin example below.

• Each DUT pin in the VECDEF Compiler Directive must be mapped to a column of
pattern data. As shown in the four_pins example below it is possible to assign a
given column of pattern data to more than one DUT pin.

• It is legal to list multiple pins from a given pin assignments table for a particular
VECDEF statement (even though the example below doesn't use this feature).

• Every DUT pin name which appears in a VECDEF must also be mapped to a
t_lvm resource in at least one PIN_SCRAMBLE() macro. The pattern compiler
checks this. This is enforced because a DUT pin used in a VECDEF statement
which is not mapped to a t_lvm resource can not use logic pattern data.

Usage
The VECDEF Compiler Directive syntax optionally supports using curly-bracket-enclosed
specification of a pin assignments table, optionally for each VECDEF statement.

%% VECDEF d1, d0 { PinAssignTable1 }

Multiple pin assignment tables can be specified using a comma-separated list within the
curly-brackets. For example:

%% VECDEF d1, d0 { PinAssignTable1, PinAssignmentTable2 }

The pattern compiler will only apply the VECDEF statement to those Pin Assignment Tables
that have been listed. If no pin assignments tables are listed, then the behavior is exactly as
described in VECDEF Compiler Directive.
 2/27/09 Pg-1586

Logic Test Patterns
4.14.5 VEC Pattern Instruction
See Logic Test Patterns, Logic Vector Syntax, Logic Vector Bit Codes, VECDEF Compiler
Directive.

Description

The VEC pattern instruction is used to define a single logic vector. See Logic Vector Syntax,
Logic Vector Bit Codes.

Usage
% VEC bit-pattern [, optional parameter(s)]

where:

% VEC is a pattern instruction for specifying a logic vector. See Logic Vector Syntax.

bit-pattern is a set of Logic Vector Bit Codes (0, 1, H, L, V, Z or X) that determine pattern
data, I/O control, and strobe enable for each tester channel in the current instruction. See
VECDEF Compiler Directive for details regarding how the order of bit-pattern tokens is
aligned with tester channel numbering.

Note: it is illegal to strobe in the last vector of a logic pattern; i.e. the last vector must
not contain any Z, V, H or L tokens.

optional parameter(s) may be used to explicity select a time-set, VIHH Map and Pin
Scramble Map for the current instruction. Using Magnum 1/2/2x, additional optional
parameters are available. See Optional VEC/RPT Instruction Parameters.

Example
% VEC 00001111 HHHHLLLL
% VEC 11110000 LLLLHHHH, TSET3, PS2

The first vector will execute for one cycle, then increment to the next test vector. Logic-0 will
be driven to the tester pins associated with the first four vector bits and logic-1 will be driven
to the tester pins associated with the next four vector bits. The tester pins associated with
vector bits 9 through 12 will be strobed for logic-1 (H) and the tester pins associated with
vector bits 13 through 16 will be strobed for logic-0 (L). See VECDEF Compiler Directive for
details regarding how the order of bit-pattern tokens is aligned with tester channel
numbering..
 2/27/09 Pg-1587

Logic Test Patterns
4.14.6 RPT Pattern Instruction
See Logic Test Patterns, Logic Vector Syntax, Logic Vector Bit Codes, VECDEF Compiler
Directive.

Description

The RPT pattern instruction is used to define a logic instruction that executes multiple times
as specified by a repeat count. Note the following:

• It is illegal to use an explicit Pattern Label on an instruction containing RPT. The
pattern compiler automatically adds an implicit Pattern Label to these instructions.

• A RPT may not be used in the first instruction of a pattern.
• Rules also exist for using RPT at the end of a pattern (more below).
• The INTEN and INTENADR interrupt instructions are not allowed in RPT

instructions. If timer operations are required, use the MAR instruction with the
appropriate MAR Branch Condition Operands which are conditional on timer state
(zero or non-zero).

The following operation applies:

• RPT may not be used in the last instruction (vector) of the pattern i.e. with VAR
DONE.

• RPT cannot be used in the first instruction after a STARTLOOP or in the instruction
just prior to an ENDLOOP. Both STARTLOOP and ENDLOOP use the VUDATA field to
store a logic vector address (VAR) value, which conflicts with using the VUDATA to
store the RPT count.

• The pattern compiler places the RPT value (-1) in the VUDATA field of the
instruction thus the VUDATA field cannot be explicitly used in an instruction
containing RPT (more below). During pattern execution, the VUDATA value is used
to initialize VAR counter #1, which is used as a loop control counter.

• The pattern compiler sets the VAR instruction for a RPT instruction to CJMPNZ to
the implicit label added by the compiler to the RPT instruction. Then, during pattern
execution, when the counter is >0 execution jumps to this label, repeating the
instruction. When the counter reaches 0, pattern execution continues to the next
vector. Therefore...
 2/27/09 Pg-1588

Logic Test Patterns
Note: it is not legal to specify an explict VAR execution control operand (INC, GOSUB,
CJMPNZ, etc.) in a pattern instruction which contains a RPT.

Usage
% RPT n bit-pattern [, optional parameter(s)]

where:

% RPT is a pattern instruction for specifying repeat logic vector. See Logic Vector Syntax.

n specifies the number of times the instruction is repeated. Repeat counts may be between
2 and 232-1 (4,294,967,295 decimal or 0xFFFFFFFF hex).

bit-pattern is a set of Logic Vector Bit Codes (0, 1, H, L, V, Z or X) that determine pattern
data, I/O control, and strobe enable for each tester channel in the current instruction. See
VECDEF Compiler Directive for details regarding how the order of bit-pattern tokens is
aligned with tester channel numbering.

optional parameter(s) may be used to explicity select a time-set, VIHH Map and Pin
Scramble Map for the current instruction. Using Magnum 1/2/2x, additional optional
parameters are available. See Optional VEC/RPT Instruction Parameters.

Example
In the following example, the RPT vector will execute 32 times, then execution will increment
to the next instruction:

% VEC 11110000 LLLLHHHH
% RPT 32 00001111 HHHHLLLL // Repeat this 32 times
% VEC 11110000 LLLLHHHH

4.14.7 Optional VEC/RPT Instruction Parameters
See Logic Test Patterns, Logic Vector Syntax, Logic Vector Bit Codes, VECDEF Compiler
Directive.
 2/27/09 Pg-1589

Logic Test Patterns
Each VEC and RPT logic pattern instruction may optionally specify any or all of the following
parameters. Usage rules follow the table:

Table 4.14.7.0-1 Optional Logic Vector Parameters

Parameter Description

PS# Where # is from 1 to 64. Selects the Pin Scramble Map to be used
during the instruction. The Pin Scramble Map determines which data
source is mapped to each timing channel. Default = PS1. In Mixed
Memory/Logic Patterns, VEC PS# must be further enabled using
PINFUNC VPS.

VIHH# Where # is from 1 to 64. Selects the VIHH Map to be applied during
the instruction. Selecting a non-default VIHH Map specifies which
tester pin(s) are switched to the VIHH voltage in the current cycle.
The default VIHH Map = VIHH1, which is defined by the system
software to switch no pins to the VIHH level. VIHH1 cannot be
modified. In Mixed Memory/Logic Patterns, VEC VIHH# must be
further using PINFUNC VVIHH.

TS# Where # is from 1 to 32. Selects the Time-sets (TSET) to be used
during the current instruction. Default = TSET1. In Mixed Memory/
Logic Patterns, VEC TS# must be further enabled using PINFUNC
VTSET.

VCOMP During Dynamic DC Tests, sends a one trigger to the or .
Desired operation also requires specifying the CompCond argument
to the test function (ac_test_supply(), hv_ac_test_supply(),
ac_partest()). In Magnum 1/2/2x Mixed Memory/Logic Patterns,
VAR VCOMP must be further enabled using PINFUNC VVCOMP.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC
VCOMP.

Note: the VCOMP operand may be used in the MAR, VEC/RPT,
VAR and VPINFUNC instruction.
 2/27/09 Pg-1590

Logic Test Patterns
RESET Clears the pin electronics error flags and DC Error Flags used by
dynamic PMU and DPS tests. See Error Flag vs. Error Latch and
Dynamic DC Tests. In Mixed Memory/Logic Patterns VEC RESET
must be further enabled using PINFUNC VLATCHRESET.

Note: RESET (MAR RESET, VEC/RPT RESET, VAR RESET and
VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: the RESET operand may be used in the MAR, VEC/RPT,
VAR VPINFUNC and CHIPS instruction.

LATCH Complement of NOLATCH (next). LATCH is the default i.e. NOLATCH
must be explicitly specified to over-ride LATCH. In Mixed Memory/
Logic Patterns VEC LATCH must be further enabled using PINFUNC
VLATCHRESET.

Note: the LATCH operand may be used in the MAR, VEC/RPT,
VAR and VPINFUNC instructions.

Table 4.14.7.0-1 Optional Logic Vector Parameters (Continued)

Parameter Description
 2/27/09 Pg-1591

Logic Test Patterns
NOLATCH Complement of LATCH (default, above). Any failing strobe(s)
generated in a cycle which contains an explicit MAR NOLATCH or an
explicit VAR NOLATCH will not set the corresponding PE error latch(s).
See Error Flag vs. Error Latch. Pattern cycles which include
NOLATCH will not capture any errors into the ECR. NOLATCH has no
effect on the error flag, which controls test pattern branch-on-error
operations. For normal PASS/FAIL testing, the NOLATCH operand is
not used, allowing any failing strobes to set the error latches and
cause the test to fail. In Mixed Memory/Logic Patterns VEC NOLATCH
must be further enabled using PINFUNC VLATCHRESET.

Note: the NOLATCH operand may be used in the MAR, VEC/RPT,
VAR and VPINFUNC instruction.

OVER See Over-programming Controls and Parallel Test. This operand
enables special PE circuitry to inhibit programming stimulus on
DUT(s) that have successfully programmed while allowing other
DUTs on the same test site to continue programming. In other words,
it prevents over-programming. The over_inhibit() function is
used to select the programming mechanism that is disabled when the
OVER operand is specified. In Mixed Memory/Logic Patterns VEC
OVER must be furtherenabled using PINFUNC VOVER.

Note: the OVER operand may be used in the MAR, VEC/RPT, VAR
and VPINFUNC instruction.

Table 4.14.7.0-1 Optional Logic Vector Parameters (Continued)

Parameter Description
 2/27/09 Pg-1592

Logic Test Patterns
Optional parameters must immediately follow the vector bit-pattern field in a VEC or RPT
instruction and are comma delimited. For example:

% VEC 110011 LLHHLL, TSET2, PS3, NOLATCH

As indicated in the table above, the VCOMP, RESET, LATCH, NOLATCH, OVER and VPULSE
parameters can be added to a given pattern instruction using several methods:

• In Memory Test Patterns and Mixed Memory/Logic Patterns, as operands to the
MAR instruction (VCOMP, RESET, LATCH, NOLATCH, OVER) and PINFUNC instruction
(VPULSE).

• In Logic Test Patterns and Mixed Memory/Logic Patterns, as optional parameters to
the VEC and RPT instructions.

• In Logic Test Patterns and Mixed Memory/Logic Patterns, as operands to the VAR
and VPINFUNC pattern instruction.

The following rules apply:

• In Magnum 1/2/2x patterns it is possible to specify the optional parameters in both
the memory pattern instructions (MAR and PINFUNC) and in the logic pattern
instructions (VEC/RPT, VAR, VPINFUNC). This is because the Magnum 1/2/2x has
independent pattern execution control engine hardware for the memory pattern
(MAR Engine) and the logic pattern (VAR Engine). For example:

PATTERN(myPat)
% VEC HL10X, TSET2, PS2

VPINFUNC NOLATCH

VPULSE Causes DUT power supplies which have been enabled (see VPulse
Function) to switch to the secondary (VPulse) level , set using
dps_vpulse(). The test pattern must execute multiple instructions
each containing VAR VPULSE to allow time for the voltage to stabilize
at the DUT. In Mixed Memory/Logic Patterns, VPINFUNC VPULSE
must be further enabled using PINFUNC VVPULSE. If pattern
execution ends on an instruction containing VPULSE the secondary
(VPulse) level remains enabled in hardware.

Note: the OVER operand may be used in the MAR, VEC/RPT, VAR
and VPINFUNC instruction.

Table 4.14.7.0-1 Optional Logic Vector Parameters (Continued)

Parameter Description
 2/27/09 Pg-1593

Logic Test Patterns
VAR VIHH4
PINFUNC VPULSE
MAR VCOMP, TSET4, PS3

However, the optional parameters specified for the VAR Engine (VEC/RPT, VAR,
VPINFUNC) have no effect unless further enabled using the appropriate PINFUNC
operand (VTSET, VPS, VVIHH, VVPULSE, VVCOMP, VLATCHRESET, VOVER). In the
example above, since none of these are specified, the VPINFUNC and VAR
instructions have no effect, and time-set (TSET4) and pin scramble (PS3) are
selected by the MAR instruction, not the VEC instruction.

4.14.8 STARTLOOP / ENDLOOP Logic Vector Instructions
See Logic Test Patterns, Logic Vector Syntax.

The STARTLOOP and ENDLOOP instructions are not vectors, rather they are compiler
directives used to flag the start and end of a multi-vector loop.

Note the following:

• STARTLOOP cannot be used before the first instruction in a pattern.
• ENDLOOP cannot be used before the last instruction in a pattern.
• The pattern instruction immediately following STARTLOOP and immediately

preceding ENDLOOP must be VEC.
• The pattern compiler adds an implicit label to the first instruction after each

STARTLOOP token, thus the user’s pattern may not include an explicit label on
these instructions. This label is used as noted below.

• In the pattern instruction immediately preceding ENDLOOP the user’s pattern
instruction may not specify a VAR instruction operand which controls pattern
execution sequence i.e. VAR CJMPNE, VAR CJMPNZ, etc. are illegal (more below).

• the first vector immediately following a STARTLOOP token and the vector
immediately preceding an ENDLOOP token must not use any other instruction which
contains VUDATA operations i.e. COUNTVUDATA.

• STARTLOOP / ENDLOOP nesting to 3 levels is supported. However, pattern
subroutines are not aware of external VAR counter use, which means that a
subroutine can use a STARTLOOP/ENDLOOP structure but the subroutine must not
be called from within another STARTLOOP/ENDLOOP structure.
 2/27/09 Pg-1594

Logic Test Patterns
• Timer Interrupts (using INTEN or INTENADR) are not allowed between STARTLOOP
and ENDLOOP tokens.

• A STARTLOOP cannot immediately follow an ENDLOOP from a previous loop.
• A VAR DONE cannot immediately follow an ENDLOOP token.

the STARTLOOP count value is used, via the VUDATA field of the instruction immediately
preceding the ENDLOOP token, to initialize one of the VAR Engine counters (COUNT 1 to
COUNT 4) used to control the loop execution.

The hardware loop counter is used (checked) in the instruction immediately preceding the
ENDLOOP token. The pattern compiler implicitly adds a VCOUNT instruction to decrement the
counter and adds VAR CJMPNZ to branch to the implicit label added by the STARTLOOP
instruction.

During execution, when the counter value in the instruction immediately preceding the
ENDLOOP token is >0 pattern execution will jump back to the implicit label inserted by
compiler i.e. the instruction immediately following the STARTLOOP token. When the counter
reaches 0, the vector after the ENDLOOP token executes next.

Usage
STARTLOOP count

% VEC HL10X

// ... Other logic instructions

% VEC HL10X

ENDLOOP

where:

STARTLOOP identifies the start of a multi-vector loop.

count specifies the number of times the loop is repeated. The legal loop count values range
from 2 to 232 -1 (4,294,967,295 decimal, or 0xFFFFFFFF hex).

ENDLOOP marks the end of the multi-vector loop.

Example
In the following example, the loop repeats 55 times and contains a single vector repeat
which repeats 75 times. This generates 4290 pattern cycles

% VEC 00000000 XXXXXXXX // Or RPT

STARTLOOP 55
 2/27/09 Pg-1595

Logic Test Patterns
% VEC 00000000 XXXXXXXX // First vector in loop

% VEC 00000000 HHHHLLLL

% RPT 75 00001111 HHHHLLLL

% VEC 00000000 11111111 // Last vector in loop

ENDLOOP

% VEC 11110000 LHLHLHLH // Or RPT

4.14.9 VAR Instruction

See Magnum 1/2/2x Logic Vector Instructions.

The term VAR refers to the APG’s Vector Address Register. In this documentation, the term
VAR is also used:

• When referring to the Magnum 1/2/2x hardware engine which controls Logic Test
Pattern execution; i.e. VAR Engine. This only applies to patterns which contain
logic instructions.

• To represent the VAR instruction which controls logic pattern execution sequence;
i.e. VAR instruction.

• The value in the APG VAR register. This is the address of the logic pattern
instruction being executed. Note that the user rarely needs to deal with literal VAR
values; all references to specific pattern instructions is done using a Pattern Label
or pattern name.

The purposes of the VAR instruction are:

• Control Logic Test Pattern instruction execution sequence (Branch-condition,
Address)

• Specify an interrupt address used in conjunction with the APG’s programmable
interrupt timer (Interrupt)

• Control miscellaneous features (Error-control, Misc, more below)
The VAR instruction takes the following form:

VAR Branch-condition, Address, Interrupt, Error-control, Misc

where:
 2/27/09 Pg-1596

Logic Test Patterns
Branch-condition specifies how the next logic pattern instruction to be executed will be
determined. This can be as simple as incrementing the VAR address to the next instruction
(VAR INC), or a conditional or unconditional branch to an arbitrary instruction (VAR CJMPNZ,
etc.), or a conditional or unconditional subroutine call, or return (VAR CRETE, etc.).
Conditional operations can be based on a VAR counter value (VCOUNT), or the PASS/FAIL
status of the error flag. See VAR Branch-condition Operands.

Address specifies the instruction to be executed when a conditional operation is specified
or a subroutine is called. When the condition is FALSE the next instruction will execute
(i.e. VAR INC). An address is specified using a Pattern Label or the name of another test
pattern. See VAR Address Operand

The Interrupt operand is not used on Magnum 1/2/2x.

Error-control controls several unrelated features. See VAR Error-control Operands:

• RESET = reset the APG error flag (see Error Flag vs. Error Latch).
• LATCH, NOLATCH = allow any failing strobe(s) in the current cycle to set the PE

error latch (LATCH, default) or not (NOLATCH). See Error Flag vs. Error Latch). The
use of LATCH and NOLATCH are mutually exclusive in a given pattern instruction.

Misc has two options, see VAR Misc Operands:

• MCNTR is used to specify that a VAR Engine conditional branch decision is to be
based on the value in one of the 60 MAR engine counters instead of using one of
the 4 VAR engine counters. This allows logic vector execution control to branch
based on a specified MAR counter value.

• OVER = enable the over-programming logic in the current instruction.
See Over-programming Controls and Parallel Test.

• VCOMP = generate a trigger to strobe the DC Comparators and Error LogicDC
Comparators and Error Logic in the DC Test and Measure System. See DPS
Dynamic Current Test Functions and PMU Dynamic Test Functions.

• VPULSE causes DUT power supplies which have been enabled (see VPulse
Function) to switch to the secondary (VPulse) level , set using dps_vpulse().
 2/27/09 Pg-1597

Logic Test Patterns
The table below summarizes the available operands for the VAR instruction. Default values
are indicated using (D):

Table 4.14.9.0-1 VAR Instruction Operands

Branch
Condition Address Interrupt

Error
Control Misc

CJMPA
CJMPE
CJMPNA
CJMPNE
CJMPNT
CJMPNZ
CJMPT
CJMPZ
CRETE
CRETNE
CRETNT
CRETNZ
CRETT
CRETZ
CSUBE
CSUBNE
CSUBNT
CSUBNZ
CSUBT
CSUBZ
DONE
GOSUB
INC(D)
JUMP
PAUSE
RETURN

Pattern
Label

(none)(D)

(none)(D)

This
operand is

not used on
Magnum 1
Magnum 2
Magnum 2x

(none)(D)
LATCH
NOLATCH
RESET

Note: the default
(none) selects the
LATCH option.

MCNTR
OVER
VCOMP
VPULSE
DEFAULT1

(none)(D)

Note-1: Usable in mixedsync test patterns only. See Mixed Memory/Logic
Patterns.
 2/27/09 Pg-1598

Logic Test Patterns
4.14.9.1 VAR Branch-condition Operands
See Magnum 1/2/2x Logic Vector Instructions, VAR Instruction.

All VAR branch operands are used to control pattern execution sequence. The VAR
instruction takes the following form:

VAR Branch-condition, Address, Interrupt, Error-control, Misc

There are three types of VAR branch condition operands:

• VAR Unconditional Branch-condition Operands the next instruction to be executed,
regardless of any conditions. These include VAR JUMP, INC, DONE, GOSUB,
RETURN, PAUSE.

• VAR Conditional Branch-condition Operands identify what is tested to determine
execution flow, and the address of the instruction to execute if the condition is
TRUE. Conditional operations can test a VAR Engine counter value, the state of the
error flag (see Error Flag vs. Error Latch), or whether the APG interrupt timer has
counted to 0. See APG Instruction Execution and VCOUNT Counter Operands.

• VAR Multi-DUT Branch-condition Operands are used in Multi-DUT Test Programs to
branch based on DUT-related test results. Note that these options are only usable in
Mixed Memory/Logic Patterns.

A branch address is specified using a Pattern Label or the name of another test pattern. VAR
INC, DONE, RETURN, and PAUSE do not require a branch address.

Proper branch-on-error and branch-on-abort operations require that the test pattern comply
with the Error Pipeline Requirements.

Note: using Magnum 1/2/2x, proper operation of the Abort signal requires that all DUTs
be enabled; i.e. all DUTs must be in the Active DUTs Set (ADS). The Abort signal
will NOT go active if any DUT(s) are disabled.

Note: a subroutine may be identified using a Pattern Label if the subroutine is within the
same pattern, or by referring to another PATTERN. The destination of a test
pattern jump/branch instruction can only reference a Pattern Label within the
same pattern.
 2/27/09 Pg-1599

Logic Test Patterns
The tables below describe the options available for the Branch-condition operands to
the VAR instruction. Detailed descriptions of each branch option are included:

Table 4.14.9.1-1 VAR Unconditional Branch-condition Operands

Operand Purpose

DONE Halts the VAR Engine. This sends a done signal to the site controller
(default)

GOSUB Call the subroutine at the specified address. See Pattern Subroutines
and Note:.

INC Execution proceeds to the next instruction. Any specified address
(label) is ignored. This is the default operand.

JUMP Jump (branch) to the specified address. See Note:.

PAUSE stops the VAR Engine (pauses the logic pattern) when the instruction
containing the PAUSE reaches the DUT. The pattern can be restarted
using the restart() function. The restarted pattern will continue
execution at the instruction immediately following the instruction
containing the PAUSE. Restriction: two consecutive pattern instructions
containing PAUSE are not allowed.
Note: the pattern generator uses a pipe-line architecture. This means

that during the time a test pattern is paused that user-code must
not:

• Write any APG hardware registers, including Address Generator, Data
Generator, Chip-selects, Counters, JAM register, User RAM, UDATA,
etc. Register read is OK.

• Modify any cycle period values.

The details of the pattern generator pipe-line architecture are not
documented, because:
• The architecture is variable, based on which hardware options are
 used in any given test program and/or test pattern.
• The architecture is subject to change without notice, as needed to add
 new features, fix problems, etc.

RETURN Return from a subroutine. See Pattern Subroutines
 2/27/09 Pg-1600

Logic Test Patterns
Table 4.14.9.1-2 VAR Conditional Branch-condition Operands

Operand Purpose

CJMPA Conditional JuMP on Abort
Execution will jump to the specified address (see Note:) if the Abort signal is
TRUE at the start of the current instruction. The Abort signal comes from the
PE error latches, not error flags, see Error Flag vs. Error Latch. If the Abort
signal is FALSE, the next instruction will execute. The Abort signal will be
TRUE when all DUTs in a site have one or more set error latches. See Error
Pipeline Requirements. The Abort signal is useful when testing multiple
DUTs; the Abort signal will be TRUE when all DUTs have failed. Using
Magnum 1/2/2x, the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and which MAR
Error-choice Operands are used in the same instruction. See APG
Instruction Execution.

Note: using Magnum 1/2/2x, proper operation of the Abort signal
requires that all DUTs be enabled; i.e. all DUTs must be in the
Active DUTs Set (ADS). The Abort signal will NOT go active if any
DUT(s) are disabled.
 2/27/09 Pg-1601

Logic Test Patterns
CJMPNA Conditional JuMP on Not Abort
Execution will jump to the specified address (see Note:) if the Abort signal is
FALSE at the start of the current instruction. The Abort signal comes from
the PE error latches, not error flags, see Error Flag vs. Error Latch. If the
Abort signal is TRUE, the next instruction will execute. The Abort signal will
be FALSE when any one or more DUT(s) in a site do not have a set error
latch. See Error Pipeline Requirements. The Abort signal is useful when
testing multiple DUTs; the Abort signal will be TRUE when all DUTs have
failed. Using Magnum 1/2/2x, the operation of this operand is affected/
changed by a static setup (see Static Error Choice Functions, Branch-on-
error) and which MAR Error-choice Operands are used in the same
instruction. See APG Instruction Execution.

Note: using Magnum 1/2/2x, proper operation of the Abort signal
requires that all DUTs be enabled; i.e. all DUTs must be in the
Active DUTs Set (ADS). The Abort signal will NOT go active if any
DUT(s) are disabled.

CJMPE Conditional JuMP on Error
Execution will jump to the specified address (see Note:) if the error signal is
TRUE at the start of the current instruction. If the error signal is FALSE, the
next instruction will execute. The Error signal will be TRUE if any error flag(s)
are set (see Error Flag vs. Error Latch). See Error Pipeline Requirements.
Using Magnum 1/2/2x, the operation of this operand is affected/changed by
a static setup (see Static Error Choice Functions, Branch-on-error) and
which MAR Error-choice Operands are used in the same instruction. See
APG Instruction Execution.

Table 4.14.9.1-2 VAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1602

Logic Test Patterns
CJMPNE Conditional JuMP on No Error
Execution will jump to the specified address (see Note:) if the Error signal is
FALSE at the start of the current instruction. If the Error signal is TRUE, the
next instruction will execute. The Error signal will be FALSE when no error
flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CJMPT Conditional JuMP on Timer = 0
Execution will jump to the specified address (see Note:) if the APG Interrupt
Timer = 0 at the start of the current instruction. If the interrupt timer is not
zero, the next instruction will execute. See Note:. See APG Instruction
Execution.

CJMPNT Conditional JuMP on Timer Not = 0
Execution will jump to the specified address (see Note:) if the APG Interrupt
Timer is not zero at the start of the current instruction. If the interrupt timer is
zero, the next instruction will execute. See Note:. See APG Instruction
Execution.

CJMPZ Conditional JuMP on Zero
Execution will jump to the specified address (see Note:) if the counter
specified in the VCOUNT instruction is zero at the start of the current
instruction. If the counter is not zero the next pattern instruction will execute.
See APG Instruction Execution.

CJMPNZ Conditional JuMP on Not Zero
Execution will jump to the specified address (see Note:) if the counter
specified in the VCOUNT instruction is not zero at the start of the current
instruction. If the counter is zero the next instruction will execute. See APG
Instruction Execution.

Table 4.14.9.1-2 VAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1603

Logic Test Patterns
CRETE Conditional RETurn on Error
Execution returns to the instruction address popped off the stack if the error
signal is TRUE at the start of the current instruction. If the Error signal is
FALSE, the next instruction will execute. The Error signal will be TRUE if any
error flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements and Pattern Subroutines. Using Magnum 1/2/2x, the
operation of this operand is affected/changed by a static setup (see Static
Error Choice Functions, Branch-on-error) and which MAR Error-choice
Operands are used in the same instruction. See APG Instruction Execution.

CRETNE Conditional RETurn on No Error
Execution returns to the instruction address popped off the stack if the error
signal is FALSE at the start of the current instruction. If the Error signal is
TRUE, the next instruction will execute. The Error signal will be FALSE when
no error flag(s) are set (see Error Flag vs. Error Latch). See Error Pipeline
Requirements and Pattern Subroutines. Using Magnum 1/2/2x, the
operation of this operand is affected/changed by a static setup (see Static
Error Choice Functions, Branch-on-error) and which MAR Error-choice
Operands are used in the same instruction. See APG Instruction Execution.

CRETT Conditional RETurn on Timer = 0
Execution returns to the instruction address popped off the stack if the APG
Interrupt Timer = 0 at the start of the current pattern instruction. If the
interrupt timer is not zero, the next instruction will execute. See Pattern
Subroutines. See Note:. See APG Instruction Execution.

CRETNT Conditional RETurn on Timer Not = 0
Execution returns to the instruction address popped off the stack if the APG
Interrupt Timer is not zero at the start of the current pattern instruction. If
the interrupt timer is zero, the next instruction will execute. See Pattern
Subroutines. See Note:. See APG Instruction Execution.

CRETZ Conditional RETurn on Zero
Execution returns to the instruction address popped off the stack if the
counter specified in the COUNT instruction is zero at the start of the current
pattern instruction. If the counter is not zero, the next instruction will execute.
See Pattern Subroutines. See APG Instruction Execution.

Table 4.14.9.1-2 VAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1604

Logic Test Patterns
CRETNZ Conditional RETurn on Not Zero
Execution returns to the instruction address popped off the stack if the
counter specified in the COUNT instruction is not zero at the start of the
current pattern instruction. If the counter is zero, the next instruction will
execute. See Pattern Subroutines. See APG Instruction Execution.

CSUBE Conditional SUBroutine call on Error
If the error signal is TRUE at the start of the current instruction, calls the
specified pattern subroutine (see Note:) and pushes the subroutine return
address on the execution stack. If the Error signal is FALSE, the next
instruction will execute. The Error signal will be TRUE if any error flag(s) are
set (see Error Flag vs. Error Latch). See Error Pipeline Requirements and
Pattern Subroutines. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CSUBNE Conditional SUBroutine call on No Error
If the error signal is FALSE at the start of the current instruction, calls the
specified pattern subroutine (see Note:) and pushes the subroutine return
address on the execution stack. If the Error signal is TRUE, the next
instruction will execute. The Error signal will be FALSE if no error flags are
set (see Error Flag vs. Error Latch). See Error Pipeline Requirements and
Pattern Subroutines. Using Magnum 1/2/2x, the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in the
same instruction. See APG Instruction Execution.

CSUBT Conditional SUBroutine call on Timer = 0)
Calls the specified subroutine (see Note:) if the APG Interrupt Timer = 0 at
the start of the current pattern instruction. The subroutine return address is
pushed on the execution stack. If the interrupt timer is not 0, the next
instruction will execute. See Pattern Subroutines. See Note:. See APG
Instruction Execution.

Table 4.14.9.1-2 VAR Conditional Branch-condition Operands (Continued)

Operand Purpose
 2/27/09 Pg-1605

Logic Test Patterns
The following conditional options are targeted for use in Magnum 1/2/2x Multi-DUT Test
Programs:

CSUBNT Conditional SUBroutine call on Timer Not = 0
Calls the specified subroutine (see Note:) if the APG Interrupt Timer is not 0
at the start of the current pattern instruction. The subroutine return address
is pushed on the execution stack. If the timer = 0, the next instruction will
execute. See Pattern Subroutines. See Note:. See APG Instruction
Execution.

CSUBZ Conditional SUBroutine call on Zero
Calls the specified subroutine (see Note:) if the counter specified in the
COUNT instruction is zero at the start of the current pattern instruction. The
subroutine return address is pushed on the execution stack. If the counter is
not zero, the next instruction will execute. See Pattern Subroutines and APG
Instruction Execution.

CSUBNZ Conditional SUBroutine call on Not Zero
Calls the specified subroutine (see Note:) if the counter specified in the
COUNT instruction is not zero at the start of the current pattern instruction.
The subroutine return address is pushed on the execution stack. If the
counter is zero, the next instruction will execute. See Pattern Subroutines
and APG Instruction Execution.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands

Operand Purpose

CSUBE_ALL

Conditional SUBroutine Call Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn)
The subroutine will be called if every DUT on all sub-sites have an
error; i.e. all DUTs fail. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and and by the MAR Error-choice Operands selection.

Table 4.14.9.1-2 VAR Conditional Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1606

Logic Test Patterns
CSUBNE_ALL

Conditional SUBroutine Call No Error ALL
(A1 + A2 + An) + (B1 + B2 + Bn)
This is the inverse of CSUBE_ALL. The subroutine will be called if any
DUT on any sub-site doesn’t have an error; i.e. all DUTs must have
an error to NOT branch. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

CSUBE_ANOTB

Conditional SUBroutine Call Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn)
The subroutine will be called if any DUT on Sub-site-A has an error
AND no DUTs on Sub-site-B have an error. See Error Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

CSUBNE_ANOTB

Conditional SUBroutine Call No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn)
This is the inverse of CSUBE_ANOTB. The subroutine will be called if
no DUTs on Sub-site-A have an error OR any DUT on Sub-site-B has
an error. See Error Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CSUBE_BNOTA

Conditional SUBroutine Call Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn)
The subroutine will be called if no DUTs on Sub-site-A have an error
AND any DUT on Sub-site-B has an error. See Error Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1607

Logic Test Patterns
CSUBNE_BNOTA

Conditional SUBroutine Call No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn)
This is the inverse of CSUBE_BNOTA i.e. the subroutine will be called if
any DUT on Sub-site-A has an error OR no DUTs on Sub-site-B have
an error. See Error Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CSUBE_DUT1
thru

CSUBE_DUT8
See Note:

Conditional SUBroutine Call Error DUT-1 thru DUT-8
Subroutine will be called if the specified DUT has an error. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CSUBNE_DUT1
thru

CSUBNE_DUT8
See Note:

Conditional SUBroutine Call No Error DUT-1 thru DUT-8
Subroutine will be called if the specified DUT has no errors. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CRETE_ALL

Conditional Return Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn)
The subroutine will return if every DUT on every Sub-site has an error;
i.e. all DUTs fail. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1608

Logic Test Patterns
CRETNE_ALL

Conditional Return No Error ALL
(A1 + A2 + An) + (B1 + B2 + Bn)
This is the inverse of CRETE_ALL. The subroutine will return if any
DUT on any Sub-site doesn’t have an error; i.e. all DUTs must have
an error to NOT return. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

CRETE_ANOTB

Conditional Return Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn)
The subroutine will return if any DUT on Sub-site-A has an error AND
no DUTs on Sub-site-B have an error. See Error Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

CRETNE_ANOTB

Conditional Return No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn)
This is the inverse of CRETE_ANOTB i.e. the subroutine will return if no
DUTs on Sub-site-A have an error OR any DUT on Sub-site-B has an
error. See Error Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CRETE_BNOTA

Conditional Jump Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn)
The subroutine will return if no DUTs on Sub-site-A have an error
AND any DUT on Sub-site-B has an error. See Error Pipeline
Requirements and Pattern Subroutines. Note: the operation of this
operand is affected/changed by a static setup (see Static Error Choice
Functions, Branch-on-error) and by the MAR Error-choice Operands
selection.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1609

Logic Test Patterns
CRETNE_BNOTA

Conditional Jump No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn)
This is the inverse of CRETE_BNOTA i.e. the subroutine will return if
any DUT on Sub-site-A has an error OR no DUTs on Sub-site-B have
an error. See Error Pipeline Requirements and Pattern Subroutines.
Note: the operation of this operand is affected/changed by a static
setup (see Static Error Choice Functions, Branch-on-error) and by the
MAR Error-choice Operands selection.

CRETE_DUT1
thru

CRETE_DUT8

Conditional Return Error DUT-1 thru DUT-8
Subroutine will return if the specified DUT has an error. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CRETNE_DUT1
thru

CRETNE_DUT8

Conditional Return No Error DUT-1 thru DUT-8
Subroutine will return if the specified DUT has no errors. Errors
associated with other DUTs have no effect. See Error Pipeline
Requirements, Pattern Subroutines and Note:. Note: the operation of
this operand is affected/changed by a static setup (see Static Error
Choice Functions, Branch-on-error) and by the MAR Error-choice
Operands selection.

CJMPE_ALL

Conditional Jump Error ALL
(A1 • A2 • An) • (B1 • B2 • Bn)
The jump will occur if every DUT on every Sub-site has an error; i.e.
all DUTs fail. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1610

Logic Test Patterns
CJMPNE_ALL

Conditional Jump No Error ALL DUTs
(A1 + A2 + An) + (B1 + B2 + Bn)
This is the inverse of CJMPE_ALL. The jump will occur if any DUT on
any Sub-site doesn’t have an error; i.e. all DUTs must have an error to
NOT branch. See Error Pipeline Requirements and Pattern
Subroutines. Note: the operation of this operand is affected/changed
by a static setup (see Static Error Choice Functions, Branch-on-error)
and by the MAR Error-choice Operands selection.

CJMPE_ANOTB

Conditional Jump Error Sub-site-A not Sub-site-B
(A1 + A2 + An) • (B1 • B2 • Bn)
The jump will occur if any DUT on Sub-site-A has an error AND no
DUTs on Sub-site-B have an error. See Error Pipeline Requirements
and Pattern Subroutines. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

CJMPNE_ANOTB

Conditional Jump No Error Sub-site-A not Sub-site-B
(A1 • A2 • An) + (B1 + B2 + Bn)
This is the inverse of CJMPE_ANOTB. The jump will occur if no DUTs
on Sub-site-A have an error OR any DUT on Sub-site-B has an error.
See Error Pipeline Requirements and Pattern Subroutines. Note: the
operation of this operand is affected/changed by a static setup (see
Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CJMPE_BNOTA

Conditional Jump Error Sub-site-B not Sub-site-A
(A1 • A2 • An) • (B1 + B2 + Bn)
The jump will occur if no DUTs on Sub-site-A have an error AND any
DUT on Sub-site-B has an error. See Error Pipeline Requirements
and Pattern Subroutines. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1611

Logic Test Patterns
4.14.9.2 VAR Address Operand
See Magnum 1/2/2x Logic Vector Instructions, VAR Instruction.

The VAR instruction takes the following form:

VAR Branch-condition, Address, Interrupt, Error-control, Misc

The address specified in a VAR instruction identifies a jump, branch or subroutine target
instruction. This is the instruction target for the VAR Branch-condition operand. It is

CJMPNE_BNOTA

Conditional Jump No Error Sub-site-B not Sub-site-A
(A1 + A2 + An) + (B1 • B2 • Bn)
This is the inverse of CJMPE_BNOTA. The jump will occur if any DUT
on Sub-site-A has an error OR no DUTs on Sub-site-B have an error.
See Error Pipeline Requirements and Pattern Subroutines. Note: the
operation of this operand is affected/changed by a static setup (see
Static Error Choice Functions, Branch-on-error) and by the MAR
Error-choice Operands selection.

CJMPE_DUT1
thru

CJMPE_DUT8

Conditional Jump Error DUT-1 thru DUT-8
Jump will occur if the specified DUT has an error. Errors associated
with other DUTs have no effect. See Error Pipeline Requirements,
Pattern Subroutines and Note:. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and by the MAR Error-choice Operands selection.

CJMPNE_DUT1
thru

CJMPNE_DUT8
See Note:

Conditional Jump No Error DUT-1 thru DUT-8
Jump will occur if the specified DUT has no errors. Errors associated
with other DUTs have no effect. See Error Pipeline Requirements,
Pattern Subroutines and Note:. Note: the operation of this operand is
affected/changed by a static setup (see Static Error Choice Functions,
Branch-on-error) and which MAR Error-choice Operands are used in
the same instruction.

Table 4.14.9.1-3 VAR Multi-DUT Branch-condition Operands (Continued)

Operand Purpose

B2 = Sub-site-B DUT #2 has no errors
Note: A1 = Sub-site-A DUT #1 has an error
 2/27/09 Pg-1612

Logic Test Patterns
specified using a Pattern Label. A subroutine address (GOSUB, CSUBNT, etc.) can be
specified as a label in the same pattern source file, or a PATTERN name.

The VAR address operand may be omitted for instructions that do not require a target
address; i.e. INC, DONE, RETURN, PAUSE. An address must be specified with all conditional
and unconditional jump and subroutine operands (CSUBE, CJMPZ, JUMP, GOSUB, etc.).

4.14.9.3 VAR Interrupt Operands

Note: on 8/4/2008 this operand was un-documented for Magnum 1. The related
functionality has not been implemented. All APG Interrupt Timer use requires the
use of related MAR Interrupt Operands which requires either a Memory Test
Pattern or Mixed Memory/Logic Pattern. This operand is also not supported on
Magnum 2/2x.

4.14.9.4 VAR Error-control Operands
See Magnum 1/2/2x Logic Vector Instructions, VAR Instruction.

The VAR instruction takes the following form:

VAR Branch-condition, Address, Interrupt, Error-control, Misc

The Error-control operand is used to control several independent features:

• Error flag operations. This requires understanding the two error signal types
generated by the hardware. See Error Flag vs. Error Latch.

• Over-programming control. See Over-programming Controls and Parallel Test.
• Trigger DC comparators, when testing DPS current or PMU voltage/current.

The table below describes the options available for the VAR Error-control operands:
 2/27/09 Pg-1613

Logic Test Patterns
Table 4.14.9.4-1 VAR Error-control Operands

Operands Purpose

RESET Clears the pin electronics error flags and DC Error Flags used by
dynamic PMU and DPS tests. See Error Flag vs. Error Latch and
Dynamic DC Tests. In Mixed Memory/Logic Patterns VEC RESET must
be further enabled using PINFUNC VLATCHRESET.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: RESET may be used in the MAR, VEC/RPT, VAR, VPINFUNC
and CHIPS instruction.
 2/27/09 Pg-1614

Logic Test Patterns
Multiple operands are allowed in this field simultaneously, however, LATCH and NOLATCH
are mutually exclusive and, as noted above, VCOMP and RESET should not be used together.

Example
The following example resets the PE error flags from the VAR Engine:

% VEC 1010HLXX
PINFUNC VLATCHRESET // Enable RESET from VAR Engine
VAR RESET

LATCH Complement of NOLATCH. Any failing strobe(s) generated by an
instruction which does not contain an explicit MAR NOLATCH or an
explicity VAR NOLATCH will set the corresponding PE error latch(s) and
cause the test to fail. See Error Flag vs. Error Latch. In Mixed Memory/
Logic Patterns VEC LATCH must be further enabled using PINFUNC
VLATCHRESET.

Note: LATCH may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

NOLATCH Complement of LATCH. In memory patterns, used in conjunction with
READ and READUDATA. In logic patterns, affects functional strobe
operation. Any pattern instruction which includes MAR NOLATCH and/or
VAR NOLATCH prevents any failing strobe(s) from setting the a PE error
latch(s). It also inhibits capturing errors into the ECR. Has no effect on
the error flag, which controls branch-on-error decisions. For normal
PASS/FAIL testing, the NOLATCH operand is not used, allowing any
failing strobes to set the error latches and cause the test to fail. See
Error Flag vs. Error Latch. In Mixed Memory/Logic Patterns, VAR
NOLATCH must be further enabled using PINFUNC VLATCHRESET.

Note: NOLATCH may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

CLEARERR Clear the errorline specified by the error-choice operand (see MAR
Error-choice Operands)

Table 4.14.9.4-1 VAR Error-control Operands (Continued)

Operands Purpose
 2/27/09 Pg-1615

Logic Test Patterns
In the following instruction, the DC comparators are enabled for PASS/FAIL testing. Since a
loop counter and conditional jump are used, the comparators will be enabled during the
entire time in which this instruction is looping:

% Vloop:// Enable DC comparators in this cycle
VEC 1010HLXX
PINFUNC VVCOMP // Enable VCOMP from VAR Engine
VCOUNT COUNT1, DECR
VAR CJMPNZ, Vloop, VCOMP

4.14.9.5 VAR Misc Operands
See Magnum 1/2/2x Logic Vector Instructions, VAR Instruction.

The VAR instruction takes the following form:

VAR Branch-condition, Address, Interrupt, Error-control, Misc

The table below describes the options available for the VAR misc operands:

Table 4.14.9.5-1 VAR Misc Operands

Operands Purpose

MCNTR Used to specify that a VAR Engine conditional branch decision is to be
based on the value in one of the 60 MAR counters instead of using one
of the 4 VAR counters. This allows logic vector execution control to
branch based on a specified MAR counter value. The logic vector VAR
Engine cannot control the MAR counters, but does receive a signal
when the selected counter reaches a count of zero. Using this feature
does consume MAR uRAM, to identify the MAR counter, but the pattern
must be a mixed mode pattern for this to be useful anyway.
 2/27/09 Pg-1616

Logic Test Patterns
OVER See Over-programming Controls and Parallel Test. This operand
enables special PE circuitry to inhibit programming stimulus on DUTs
that have successfully programmed while allowing other DUTs on the
same test site to continue programming. In other words, it prevents
over-programming. The over_inhibit() function is used to select
the programming mechanism that is disabled when the OVER operand
is specified. In Mixed Memory/Logic Patterns, VAR OVER must be
further enabled using PINFUNC VOVER.

Note: OVER may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

VCOMP During Dynamic DC Tests, sends a one trigger to the or .
Desired operation also requires specifying the CompCond argument to
the test function (ac_test_supply(), hv_ac_test_supply(),
ac_partest()). In Magnum 1/2/2x Mixed Memory/Logic Patterns,
VAR VCOMP must be further enabled using PINFUNC VVCOMP.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: VCOMP may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

Table 4.14.9.5-1 VAR Misc Operands (Continued)

Operands Purpose
 2/27/09 Pg-1617

Logic Test Patterns
Multiple operands are allowed in this field simultaneously, in any order.

Example
In this example, the VAR instruction will jump to some_label if the APG MAR counter
COUNT2 is not zero. Note that the APG instruction which causes COUNT2 to reach zero may
not be in the same pattern source statement as the VAR instruction which evaluates
COUNT2 ≠ 0. However, if it is not and auto-reload occurs (AON), this instruction will never
jump to the specified label.

% VEC 1010HLXX
COUNT COUNT2, DECR, AON// ID MAR Counter. Uses uRAM
VAR MCNTR, CJMPNZ, some_label

4.14.10 VCOUNT Instruction
See Magnum 1/2/2x Logic Vector Instructions.

VPULSE Causes DUT power supplies which have been enabled (see VPulse
Function) to switch to the secondary (VPulse) level , set using
dps_vpulse(). The test pattern must execute multiple instructions
each containing VAR VPULSE to allow time for the voltage to stabilize at
the DUT. In Mixed Memory/Logic Patterns, VPINFUNC VPULSE must be
further enabled using PINFUNC VVPULSE. If pattern execution ends on
an instruction containing VPULSE the secondary (VPulse) level remains
enabled in hardware.

Note: the VPULSE operand may be used in the PINFUNC, VEC/
RPT, VAR and VPINFUNC instructions.

DEFAULT Valid only in Mixed Memory/Logic Patterns with the mixedsync attribute
(see Pattern Type Attributes). Identifies the current instruction as the
default logic instruction to be applied in any subsequent instructions
which do not include any explicit memory instructions. See Mixed
Memory/Logic Patterns.

Table 4.14.9.5-1 VAR Misc Operands (Continued)

Operands Purpose
 2/27/09 Pg-1618

Logic Test Patterns
Magnum 1/2/2x APG design includes a logic vector execution control engine (VAR
Engine),and associated instruction memory (vRAM). This allows Logic Test Pattern
execution to be controlled independently (VAR Engine) of memory patterns (MAR Engine).
See Magnum 1/2/2x Memory Pattern Instructions.

The VAR Engine has 4 counters, identified as COUNT1 through COUNT4. The VCOUNT
instruction is used to explicitly control VAR engine counter operation. Note the following:

• Each VAR engine counter is 32 bits; i.e. 232 = 4,294,967,296 counts.
• The entire VCOUNT instruction is optional. When omitted, no counters are modified

and COUNT1 is selected for any VAR conditional branch operations based on a
counter value.

• When a VCOUNT instruction is specified exactly one operand must be specified in
both the counter and function operands.

• The 4 VAR counters may be used much like the MAR engine counters; as pattern
loop control, as execution trace flags, etc. For example:

VCOUNT COUNT1, DECR
VAR CJMPZ, label // Jump to label if VAR counter COUNT1 = 0

Note: when VAR engine counters are explicitly used to control pattern loops the value
assigned is the number of desired loop iterations (n) which is different than
when using MAR engine counters, which use n-1.

• The VAR counters in Maverick-II and Magnum 1 do not have reload registers.
Magnum 2/2x (and the MAR counters) do have reload registers. A reload register
may be used to reload its associated counter when that counter = 0. Reload
operation is controlled using the VCOUNT Autoreload Operands.

• The 4 VAR counters can be incremented (INCR), decremented (INCR),
decremented by 2 (DEC2) or loaded from the VUDATA field (COUNTVUDATA).

• Using Maverick-II and Magnum 1, VAR counters are used implicitly for RPT and
STARTLOOP control and thus must not be used explicitly in vectors with those
instructions or inside STARTLOOP/ENDLOOP boundries. VAR counter COUNT4 is
always used for RPT. VAR counters COUNT1 through COUNT3 are used for
STARTLOOP count control, allowing up to three levels of nesting. Magnum 2/2x
have seperate counters for RPT/STARTLOOP control plus 4 seperate VAR counters
for explicit user applications.

• Pattern Subroutines are not aware of external VAR counters use, which means:
 2/27/09 Pg-1619

Logic Test Patterns
• Calling a pattern subroutine from inside a STARTLOOP is OK, but the subroutine
must not contain a STARTLOOP and on Maverick-II and Magnum 1 must not
explictly use VAR counters.

Or...
• If the pattern subroutine must contain a STARTLOOP, the subroutine must not be

called from inside a STARTLOOP or on Maverick-II and Magnum 1 from a loop
explictly controlled using VAR counters.

In all cases, on Maverick-II and Magnum 1 explicit use of VAR counters must be
consistent with how these counters are used implicitly.

• VAR counters can be accessed (set or get) from C-code or pattern initial
conditions using vcount(). See previous sentence.

• VAR counters can be set from a test pattern instruction:
VCOUNT COUNT2, COUNTVUDATA
VUDATA 10

causes the value in the VUDATA field (10) to be transferred to the specified VAR
counter (COUNT2).

The VCOUNT instruction takes the following form:

VCOUNT counter, function, autoreload

where:

counter specifies which VAR engine counter is selected in the current instruction.

function the operation to perform on counter.

autoreload controls automatic reloading of the counter when that counter = 0. This field is
not used on Maverick-II or Magnum 1. See VCOUNT Autoreload Operands.

The table below summarizes the available operands for each VCOUNT instruction option:

Table 4.14.10.0-1 VCOUNT Instruction Operands

Counter Function Autoreload

COUNT#
NOCOUNT(D)

COUNTVUDATA
DECR
INCR
DEC2

NOCOUNT(D)

AOFF(D)
AON

Note: this field is
not used on

Maverick-II or
Magnum 1.
 2/27/09 Pg-1620

Logic Test Patterns
Example
In this example VAR counter 1 (COUNT1) will be decremented (DECR) each time this
instruction executes. The VAR CJMPNZ instruction causes execution to repeat this instruction
(jump to label_X) until COUNT1 decrements to 0 (see Note:):

% label_X:
VCOUNT COUNT1, INCR
VAR CJMPNZ, label_X

4.14.10.1 VCOUNT Counter Operands
See Magnum 1/2/2x Logic Vector Instructions, VCOUNT Instruction.

The VCOUNT instruction takes the following form:

VCOUNT counter, function, autoreload

The table below describes the options available for the counter operand to the COUNT
instruction:

4.14.10.2 VCOUNT Function Operands
See Magnum 1/2/2x Logic Vector Instructions, VCOUNT Instruction.

The VCOUNT instruction takes the following form:

VCOUNT counter, function, autoreload

where:

Table 4.14.10.1-1 VCOUNT counter Operands

Operand Purpose

COUNT# Selects the target counter. This is the counter affected by the specified
VCOUNT function and is the counter tested by VAR conditional branch
operations which evaluate a counter value.

NOCOUNT COUNT1 is selected (default).
 2/27/09 Pg-1621

Logic Test Patterns
counter is COUNT1 through COUNT4. This selects one VAR engine counter which will be
affected by the selected function.

function is one of the operand values from the following table:

4.14.10.3 VCOUNT Autoreload Operands
See VCOUNT Instruction.

Description

Note: this field is not used on Maverick-II or Magnum 1.

The VCOUNT instruction takes the following form:

VCOUNT counter, function, autoreload

The autoreload operand is optional and, if specified, determines whether the specified
VAR engine counter will be reloaded from its associated reload register.

Each VAR engine counter is backed by a 32 bit reload register. During pattern execution,
counter auto-reload occurs when:

• At the start of the current instruction (i.e. before any counter modifications occurs
in the current instruction), the value in the counter selected in the current
instruction equals 1. And...

Table 4.14.10.2-1 VCOUNT function Operands

Operand Purpose

COUNTVUDATA Loads the VUDATA value into the counter# specified by the counter
operand. See Note:.

DECR Decrements by 1 the counter# specified by the counter operand

DEC2 Decrements by 2 the counter specified in the counter operand

INCR Increments by 1 the counter specified in the counter operand

NOCOUNT No counter function is performed; i.e. counter# holds its value (default).
The selected counter# may still be tested by VAR conditional branch
operations.
 2/27/09 Pg-1622

Logic Test Patterns
• VCOUNT AON is specified in the current instruction.
The table below describes the options available for the autoreload operand to
VCOUNT:

Example
The following example decrements VAR engine counter #2 (COUNT2). If, before counter #2
is decremented, its value = 1, counter #2 will be reloaded (AON) from its reload register; i.e.
reload register #2:

% VCOUNT COUNT2, DECR, AON

In the following example, assuming the first instruction causes counter #2 to decrement to 1,
counter #2 will be reloaded as indicated. Note that reloading would occur as noted if
counter #2 = 1 regardless of how it reached that value:

% VCOUNT COUNT2, DECR, AON // Reloaded here if =1 before DECR
% VCOUNT COUNT2, any_function, AOFF// NOT reloaded here
% VCOUNT COUNT2, any_function, AOFF// NOT reloaded here
% VCOUNT COUNT2, any_function, AON // Reload occurs here if =1

4.14.11 VPINFUNC Instruction
See Magnum 1/2/2x Logic Vector Instructions.

The Magnum 1/2/2x APG design includes a logic vector execution control engine (VAR
Engine) and associated instruction memory (vRAM). This allows logic pattern execution to
be controlled independently (VAR Engine) of memory patterns (MAR Engine). See Magnum
1/2/2x Memory Pattern Instructions.

The VPINFUNC instruction is used to control several unrelated options. The table below lists
each operand option and describes how the operand is used.

The VPINFUNC instruction takes the form:

Table 4.14.10.3-1 VCOUNT Autoreload Operands

Operand Purpose

AOFF Disables Autoreload (default)

AON Enables Autoreload
 2/27/09 Pg-1623

Logic Test Patterns
VPINFUNC PS#, VIHH#, TSET#, VCOMP, RESET, LATCH, NOLATCH, OVER,
VPULSE

The VPINFUNC operands are optional and may be specified in any order. The entire
VPINFUNC instruction is optional if the default values, indicated below, are acceptable

The VPINFUNC operands are described below::

Table 4.14.11.0-1 VPINFUNC Instruction Operands

Operand Purpose

PS# Where # is from 1 to 64. Selects the Pin Scramble Table to be used
during the instruction. The Pin Scramble Table determines which data
source is mapped to each timing channel. Default = PS1. In Mixed
Memory/Logic Patterns, VPINFUNC PS# must be further enabled using
PINFUNC VPS.

VIHH# Where # is from 1 to 64. Selects the VIHH Map to be applied during the
instruction. A VIHH Map specifies which tester pins are connected to
the VIHH voltage, with all other pins driving at the normal VIH and VIL
levels. Default = VIHH1, which is defined by the system software to
disconnect VIHH from all tester pins. VIHH1 cannot be modified by the
user. In Mixed Memory/Logic Patterns, VPINFUNC VIHH# must be
further enabled using PINFUNC VVIHH.

TSET# Where # is from 1 to 32. Selects the Time-sets (TSET) to be used
during the current instruction. Default = TSET1. In Mixed Memory/Logic
Patterns, VPINFUNC TSET# must be further enabled using PINFUNC
VTSET.
 2/27/09 Pg-1624

Logic Test Patterns
VCOMP During Dynamic DC Tests, sends a one trigger to the or .
Desired operation also requires specifying the CompCond argument to
the test function (ac_test_supply(), hv_ac_test_supply(),
ac_partest()). In Magnum 1/2/2x Mixed Memory/Logic Patterns,
VAR VCOMP must be further enabled using PINFUNC VVCOMP.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: VCOMP may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

RESET Clears the pin electronics error flags and DC Error Flags used by
dynamic PMU and DPS tests. See Error Flag vs. Error Latch and
Dynamic DC Tests. In Mixed Memory/Logic Patterns VEC RESET must
be further enabled using PINFUNC VLATCHRESET.

Note: RESET (including MAR RESET, VEC RESET, VAR RESET
and VPINFUNC RESET) must NOT be used in the same
instruction OR the instruction following that using MAR
VCOMP, VAR VCOMP, VEC VCOMP, or VPINFUNC VCOMP.

Note: RESET may be used in the MAR, VEC/RPT, VAR, VPINFUNC
and CHIPS instruction.

Table 4.14.11.0-1 VPINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1625

Logic Test Patterns
LATCH Complement of NOLATCH. Any failing strobe(s) generated by an
instruction which does not contain an explicit MAR NOLATCH or an
explicity VAR NOLATCH will set the corresponding PE error latch(s) and
cause the test to fail. See Error Flag vs. Error Latch. In Mixed Memory/
Logic Patterns, VPINFUNC LATCH must be further enabled using
PINFUNC VLATCHRESET.

Note: LATCH may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

Table 4.14.11.0-1 VPINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1626

Logic Test Patterns
NOLATCH Complement of LATCH. In memory patterns, used in conjunction with
READ and READUDATA. In logic patterns, affects functional strobe
operation. Any pattern instruction which includes MAR NOLATCH and/or
VAR NOLATCH prevents any failing strobe(s) from setting the a PE error
latch(s). It also inhibits capturing errors into the ECR. Has no effect on
the error flag, which controls branch-on-error decisions. For normal
PASS/FAIL testing, the NOLATCH operand is not used, allowing any
failing strobes to set the error latches and cause the test to fail. See
Error Flag vs. Error Latch. In Mixed Memory/Logic Patterns, VPINFUNC
NOLATCH must be further enabled using PINFUNC VLATCHRESET.

Note: NOLATCH may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

OVER See Over-programming Controls and Parallel Test. This operand
enables special PE circuitry to inhibit programming stimulus on DUTs
that have successfully programmed while allowing other DUTs on the
same test site to continue programming. In other words, it prevents
over-programming. The over_inhibit() function is used to select
the programming mechanism that is disabled when the OVER operand
is specified. In Mixed Memory/Logic Patterns, VPINFUNC OVER must be
further enabled using PINFUNC VOVER.

Note: OVER may be used in the MAR, VEC/RPT, VAR and
VPINFUNC instruction.

Table 4.14.11.0-1 VPINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1627

Logic Test Patterns
Example
% VEC 1010HLXX

VPINFUNC PS55, VIHH42, TSET2

4.14.12 VUDATA Instruction

See Magnum 1/2/2x Logic Vector Instructions.

Description
The Magnum 1/2/2x APG design includes a logic vector execution control engine (VAR
Engine and associated instruction memory (vRAM). This allows logic pattern execution to be
controlled independently (VAR Engine) of memory patterns (MAR Engine). See Magnum 1/
2/2x Memory Pattern Instructions.

In a Magnum 1/2/2x logic pattern, the VUDATA field is used in 3 contexts, which occur on a
per-instruction basis in the test pattern:

1. Explicit user-defined VUDATA value and application. The desired value is specified using
the VUDATA statement in the pattern instruction. The application is specified using the
VCOUNT COUNTVUDATA operand.

VPULSE Causes DUT power supplies which have been enabled (see VPulse
Function) to switch to the secondary (VPulse) level , set using
dps_vpulse(). The test pattern must execute multiple instructions
each containing VAR VPULSE to allow time for the voltage to stabilize at
the DUT. In Mixed Memory/Logic Patterns, VPINFUNC VPULSE must be
further enabled using PINFUNC VVPULSE. If pattern execution ends on
an instruction containing VPULSE the secondary (VPulse) level remains
enabled in hardware.

Note: the VPULSE operand may be used in the PINFUNC, VEC/
RPT, VAR and VPINFUNC instructions.

Table 4.14.11.0-1 VPINFUNC Instruction Operands (Continued)

Operand Purpose
 2/27/09 Pg-1628

Logic Test Patterns
2. Implicit pattern compiler defined VUDATA value and application. The user must not
explicitly use VUDATA statements in these pattern instructions. These include:

• A logic instruction using the RPT opcode. The VUDATA field is implicitly used to
set a VAR counter (COUNT4) to the specified repeat value (-1).

• The vector after a STARTLOOP statement. The VUDATA field is implicitly used to set
a VAR Engine counter (counter COUNT1 through COUNT3, depending on
STARTLOOP nesting) to the specified repeat value (-1).

• The vector preceeding an ENDLOOP statement. The VUDATA field is implicitly used
to set the address of the first vector in the loop.

• In a logic pattern, any vector performing a conditional or unconditional subroutine
call or branch i.e. VAR GOSUB, VAR CJMPE, VAR JUMP, etc. The VUDATA field is
implicitly used to set jump/call address.

4.14.13 Sync Loops
Sync loops are used to synchronize the DUT outputs to a specific sequence of bits in a
functional pattern.

This is accomplished by looping on a set of test vectors, clocking the DUT on each pass
through the loop, strobing the desired DUT pins, and branching out of the loop if
synchronization occurs.

Note that this example works well when testing a single DUT; i.e. in parallel test applications
the test pattern will likely be more complex, typically requiring a separate synchronization
loop for each DUT being tested.

Example
PATTERN(myPat, logic)
% VEC XXXX XXXX

STARTLOOP 10
% VEC 1111 XXXX // Clock the DUT
% VEC 0000 HHHH // Strobe for 4 bits high

VAR NOLATCH
% RPT 12 0000 XXXX // See Error Pipeline Requirements
% VEC 0000 XXXX

VAR CJMPNE, SYNC_LABEL // Jump out of loop if "no error"
 2/27/09 Pg-1629

Scan Test Patterns
% VEC 0000 XXXX
VAR RESET // Reset the error flags

ENDLOOP

% VEC 0000 XXXX
% VAR DONE // End here if sync failed

% SYNC_LABEL: // Arrive here from CJMPNE
VEC 0000 XXXX // first vector after successfully

// synchronizing

In the example above, the synchronization loop will execute a maximum of 10 times (via
STARTLOOP 10). If synchronization is not achieved after 10 attempts, the program
terminates by dropping through the ENDLOOP after 10 passes and executing the MAR DONE
command. The sync loop in this example starts by clocking the DUT once and then strobing
four pins for being high. Since the tester is pipelined, a number of cycles must be inserted
(the RPT vector plus a normal VEC) to allow the strobe and error signals to propagate
through the pipelines so that a jump on no error condition (CJMPNE) can be properly
detected. If there is no error (i.e. the four strobed pins were high.), meaning synchronization
has been achieved, the program jumps to SYNC_LABEL and continues executing. Note that
SYNC_LABEL is inside the percent sign so that it is clearly associated with a particular test
vector.

4.15 Scan Test Patterns
See Test Pattern Programming.

The Magnum 1 test system contains two sources of test pattern data:

• Algorithmic Pattern Generator (APG) when executing Memory Test Patterns.
• Combined Logic Vector Memory (LVM) / Scan Vector Memory (SVM) for stored

Logic Test Patterns and Scan Test Patterns.
 2/27/09 Pg-1630

Scan Test Patterns
The diagram below shows key Magnum 1 architecture features:

Figure-70: Test Pattern Data Source Hardware Architecture
Using the Pin Scramble MUX, the source of pattern data for each timing channel can be
selected on a per-channel/per-cycle basis, at full tester speed. In other words, for any given
pin-pair, the source of pattern data can be selected on a per-cycle basis from any APG
address, data, or chip select data bit, or one LVM/SVM data bit (2 bits in Double Data Rate
(DDR) Mode). This section discusses Memory Test Patterns, also see Logic Test Patterns
and Mixed Memory/Logic Patterns.

This section discusses Scan Memory Patterns. also see Memory Test Patterns and Mixed
Memory/Logic Patterns.

4.15.1 Overview
See Scan Test Patterns.

Pin b_64

Pin a_64

Pin b_1

Pin a_1
Chan-1

Timing &
Formatting

Chan-64
Timing &

Formatting

*LVM &
SVM

Sub-site B

Sub-site B

Sub-site A

Sub-site A

*Optional

Pattern Data
Strobe & I/O
Control (6 bits
per pin)

Pin
Scramble

RAM

P
in

 S
cr

am
bl

e
M

U
X

*DBM

Algorithmic
Pattern

Generator
(APG)

36 Data
8 Chip Selects

16 Y Address
18 X Address

Per-cycle
PS Select
(PS1..PS64)

Drive
Strobe

I/O

VAR

 2/27/09 Pg-1631

Scan Test Patterns
Scan test patterns are a source of stored pattern data similar to logic vector data. Scan
patterns reside in the combined LVM / SVM memory along with logic vectors.

For each Site Assembly Board (each APG), the combined LVM / SVM memory supplies 64
scan data channels. Each channel supplies three logic bits which define:

• Pattern data (drive/strobe data) (PEL)
• I/O control (PEE)
• Strobe control (PES)

The combined Logic Vector Memory (LVM)/Scan Vector Memory (SVM) memory outputs are
routed to the timing system via the Pin Scramble MUX, allowing scan pattern data to be
mapped to any tester pin(s) on a per cycle basis.

Scan pattern instructions can only be used in Logic Test Patterns (or Mixed Memory/Logic
Patterns). This is required because it is the VAR Engine which controls/accesses the
combined LVM/SVM.

Each scan pattern always has the following components:

• At lease one VEC/RPT instruction (but typically more, as in any logic pattern)
• One (and only one) SCANDEF directive per pattern
• One or more scan pattern instruction(s) (SVEC)

For example:

%%SCANDEF pin9, pin3, pin2, pin13

% VEC 01HL10X01HL10X01HL10X // Or RPT
% SVEC 0000
% SVEC 0101
% SVEC 1010

The SCANDEF directive identifies which DUT pin(s) will have scan data in the subsequent
scan instructions (SVEC). The order the DUT pin(s) are listed identifies the mapping of
pattern tokens to pins in subsequent SVEC pattern instructions. This allows the pattern
compiler to generate a scan pattern which will be loaded into the correct LVM/SVM locations
based on the pin(s) to receive scan data. The SCANDEF directive also controls which of the
two scan modes is enabled (see SCANDEF Compiler Directive).

A logic VEC or RPT instruction must be executed before the first scan pattern instruction
(SVEC) can be executed. During pattern execution, when a scan instruction (SVEC) is
encountered the following operation occurs:

• Any pin which appears in the pattern’s SCANDEF directive will be controlled by the
scan data mapped to that pin. This is true even if the pin is scrambled to t_lvm.
 2/27/09 Pg-1632

Scan Test Patterns
• Similarly, in scan instructions (SVEC), any attempt to scramble pin(s) which appear
in the pattern’s SCANDEF directive to t_lvm is ignored. It is possible to scramble
these pins to APG resources but this is not recommended.

• Any pin which does not appear in the pattern’s SCANDEF directive and is
scrambled to t_lvm is controlled by the logic instruction (VEC or RPT) executed
prior to the SVEC instruction. During SVEC executions, the logic vector address
(VAR) does not change and any pin(s) scrambled to t_lvm (except as noted
above) receive the same logic pattern data for each scan instruction in the series.

• Any pin(s) scrambled to t_scan but which do not appear in the pattern’s SCANDEF
directive will receive scan data from the first pin in the SCANDEF directive.
However, do not use this technique intentionally; it is technically an error and this
operation may change in the future.

• It is legal to strobe pin(s) in the logic instruction (VEC or RPT) prior to a scan
instruction.

• A pattern subroutine may contain only scan instructions (SVEC). The pattern
instruction which calls the subroutine must have a VEC or RPT instruction. This will
control any pin(s) scrambles to t_lvm, as noted above.

• A subroutine which contains only scan vectors must be defined as a PATTERN();
i.e. Pattern Labels are not allowed on a pure scan instruction.

• Pin(s) which are scrambled to APG resources are not affected by scan pattern
instructions.

Note: the following usage restriction was added 3/25/05. This restriction is required to
ensure that DUT boards and test programs written for Magnum 1 will operate in
Magnum-compatible systems being planned for future development.

As note above, each Site Assembly Board supports two ECR’s which can be used as a
Logic Error Catch (LEC) to capture scan instruction errors: 1 ECR/LEC captures errors from
Sub-site A pins and 1 ECR/LEC captures errors from sub-site B pins. Each ECR/LEC can
capture errors from up to 36 pins in its associated sub-site, however, to maintain DUT board
and test program compatibility with future Magnum-compatible systems, at most a maximum
of 18 pins from each group of 32 pins should be captured. In other words:

• From sub-site A, capture any 18 pins from a_1 to a_32
• From sub-site A, capture any 18 pins from a_33 to a_64
• From sub-site B, capture any 18 pins from b_1 to b_32
• From sub-site B, capture any 18 pins from b_33 to b_64
 2/27/09 Pg-1633

Scan Test Patterns
This requires that the user carefully consider which tester pins are connected, via the DUT
board, to the DUT pins which are to be captured in the ECR.

4.15.2 SCANDEF Compiler Directive
See Scan Test Patterns, Overview.

Description

SCANDEF is a compiler directive used in conjunction with Scan Test Patterns.

As noted in Overview, Scan patterns always have the following components:

• At lease one VEC/RPT instruction (but typically more, as in any logic pattern)
• One (and only one) SCANDEF directive per pattern
• One or more scan pattern instruction(s) (SVEC)

The SCANDEF directive addresses the following requirements:

• It identifies which DUT pin(s) will have scan data in the subsequent scan
instructions (SVEC). See Note:regarding an important hardware scan pin usage
rule.

• It determines how the pattern tokens in SVEC instructions are mapped to pins; the
first pin in the SCANDEF directive is associated with the first pattern token in the
SVEC instruction, etc. This is required for proper pattern loading.

• The form of SCANDEF directive used (there are two) controls which of the two scan
pin modes is enabled.

• Note that in scan instructions (SVEC), any attempt to scramble pin(s) which appear
in the pattern’s SCANDEF directive to t_lvm is ignored. It is possible to scramble
these pins to APG resources but this is not recommended.

As indicated, scan patterns have two modes:

• Standard Scan
• Split-I/O Scan

Standard Scan
Using standard scan mode, each scan pin has I/O capability, is represented by a single scan
pattern source token (0,1,H,L,X, Z), and stores a 3-bit value in LVM/SVM. Operation is the
same as for logic vectors. For example:
 2/27/09 Pg-1634

Scan Test Patterns
%% SCANDEF p9, p2, p7, p0
PATTERN(myPat, logic)

VEC HL10XHL10XHL10XHL10XHL10XHL10X
% SVEC 1HLX

In this example, the SCANDEF directive specifies 4 scan pins in subsequent scan
instructions. The 3-bits derived from the first pattern token (1) will be stored in the LVM/SVM
for pin p9, the 3-bits derived from the second pattern token (H) will be stored in the LVM/
SVM for pin p2, etc.

Split-I/O Scan
Split-I/O scan effectively doubles the scan depth possible when a DUT scan pins all connect
to a single Site Assembly Board. When a DUT spans Site Assembly Boards (i.e. Sites-per-
Controller > 1), the level of compression will vary.

Using split I//O scan, each pin must either be a dedicated scan-in pin or a dedicated
scan-out pin. The pattern compiler derives a 3-bit value, stored in LVM/SVM, for a pair of
scan pins, each pair consisting of one scan-in pin and one scan-out pin. During execution,
the drive and strobe control bits are routed separately to the two pins: the scan-in pin can
only drive and the scan-out pin can only tri-state and optionally strobe. For example:

PATTERN(myPat, logic)
%% SCANDEF (p9, p2), (p3, p5)

VEC HL10XHL10XHL10XHL10XHL10XHL10X
% SVEC 10 HX

In this example, the SCANDEF directive specifies 2 scan-in pins and 2 scan-out pins. Scan-in
pins may only use the 1/0 pattern tokens. Scan-out pins may only use H/L,Z,X tokens; the V
token is not legal in split-I/O scan patterns.

The pattern compiler derives 3-bits from the first scan-in token (1) plus the first scan-out
token (H) and stores them in the LVM/SVM for a single pin (the pattern compiler manages
the storage details, matching scan-in pins with scan-out pins on the same Site Assembly
Board). The process repeats, combining the 2nd scan-in token plus the 2nd scan-out token,
etc.

Using the example above, during pattern execution, pin p9 (scan-in) will be set to drive and
receive one of the 3 bits as drive-data (1), and pin p3 (scan-out) will tri-state and receive the
other 2 bits: one to enable a strobe and the other as strobe data (H = 1).

Using split I//O scan, there must be at least one scan-in pin and one scan-out pin. Then, if
the DUT does not have an equal number of scan-in pins vs. scan-out pins the pattern
compiler inserts an implicit a_na for input pin(s) or one output pin(s). In the following
example, the pattern compiler inserts a_na for the 3rd and 4th scan-out pin.:
 2/27/09 Pg-1635

Scan Test Patterns
%% SCANDEF (p14, p9, p2, p1), (p3, p5)
% SVEC 1010 HX

SCANDEF directives take effect in the order they appear in the pattern file. It is legal to define
more than one SCANDEF directive in a pattern file but it is NOT legal for the SCANDEF to
change for a given pattern or any subroutines called by that pattern. The order in which scan
instructions (SVECs) are ultimately executed is not affected by the SCANDEF directive used
when compiling each SVEC instruction.

It is possible to define a different SCANDEF directive for each Pin Assignment Table in the
program (see Usage). When this is done, every Pin Assignment Table in the program must
appear in a SCANDEF definition.

Usage
The following syntax is used for Standard Scan patterns. Each scan pin has I/O capability:

%% SCANDEF p1, p2, p3, p4

The following syntax is used for Split-I/O Scan patterns. Each pin in the first group is a
scan-in pin, each pin in the second group is a scan-out pin:

%% SCANDEF (inp1, inp2, inp3, inp4),(outp1, outp2, outp3, outp4)

The following syntax is used to define a SCANDEF for each Pin Assignment Table for
Standard Scan patterns:

%% SCANDEF p1, p2, p3, p4 { pa1 }
%% SCANDEF p1, p2, p3, p4 { pa2, pa3}

The following syntax is used to define a SCANDEF for each Pin Assignment Table for
Split-I/O Scan patterns:

%% SCANDEF (inp1),(outp1) { pa1 }
%% SCANDEF (inp1),(outp1) { pa2, pa3}

where:

p1, p2, inp1, inp2, outp1, outp2, etc. represent DutPin names. They must be used in
the Pin Assignment Table and must be signal pins (not DPS, etc.).

pa1, pa2, pa3 represent the names of three Pin Assignment Tables.

Example
See Description.
 2/27/09 Pg-1636

Scan Test Patterns
4.15.3 SVEC Pattern Instruction
See Scan Test Patterns.

Description

SVEC is the scan pattern instruction token. The following rules apply:

• SVEC can only be used in Logic Test Patterns and Mixed Memory/Logic Patterns
but not pure Memory Test Patterns.

• A VEC/RPT pattern instruction must be executed before the first SVEC may be
executed.

• If the logic instruction prior to SVEC is a RPT, the RPT will execute the specified
number of times (per the RPT count value) before execution proceeds to the SVEC
instruction.

• No DUT pins receive any scan data during the VEC/RPT instruction, and the SVEC
instruction has no provisions for specifying the pattern data for non-scan pins.
During the scan cycles, non-scan pins receive pattern data from the preceding
VEC/RPT instruction.

• The number of pattern tokens in an SVEC instruction must agree with the number
of pin(s) specified in the preceding SCANDEF directive.

• The standard Logic Vector Bit Codes (1, 0, L, H, Z, V, X) are used in Standard
Scan instructions. Split-I/O Scan instructions cannot use the V token (strobe for
valid).

• In Split-I/O Scan, the pattern compiler counts the tokens to determine which
belong to scan-in pins vs. scan-out pins; i.e. there is no specific delimiter used to
mark the end of scan-in tokens vs. scan-out tokens.

• SVEC instructions do select a time set and pin scramble table. See Time-sets
(TSET) and Pin Scramble Table. When an explicit value is not specified the default
values are used (TSET1, PS1).

• In SVEC instructions, any attempt to scramble pin(s) which appear in the pattern’s
SCANDEF directive to t_lvm is ignored. It is possible to scramble these pins to
APG resources but this is not recommended.

• The VIHH Map may not be specified in an SVEC instruction. It remains as set in the
preceding VEC/RPT instruction.

• There are no provisions for repeats or looping on SVEC instruction(s).
 2/27/09 Pg-1637

Scan Test Patterns
• An SVEC microinstruction cannot immediately follow a STARTLOOP directive or
immediately precede an ENDLOOP directive.

• The VAR RETURN, VAR DONE, and VAR PAUSE instructions may be used in an SVEC
instruction. No other VAR options are legal.

• SVEC instructions can be executed as a subroutine, called from the preceding VEC
instruction. A subroutine can consist solely of SVEC instructions.

• DDR scan operation is supported. See Usage and Double Data Rate (DDR) Mode.
• The Magnum 1/2/2x scan implementation, both hardware and software, is quite

different than for Maverick-I/-II. Maverick-I/-II style test pattern scan syntax; i.e.
using SCAN LOAD and SCAN INC is not supported using Magnum 1/2/2x.

Usage
The following syntax is used for non-DDR scan instructions:

% SVEC bit-pattern [, optional params]

The following syntax is used for DDR scan instructions:

% SVEC A-cycle-bit-pattern B-cycle-bit-pattern[, optional params]

where:

% SVEC is the pattern instruction for specifying a scan instruction.

bit-pattern is a set of Logic Vector Bit Codes (0, 1, H, L, V, Z or X) that determine pattern
data, I/O control, and strobe enable for each tester channel scrambled to scan memory in
the current instruction. See SCANDEF Compiler Directive for details regarding how the
order of bit-pattern tokens is specified. The V token cannot be used in Split-I/O Scan mode.

A-cycle-bit-pattern and B-cycle-bit-pattern are two sets of Logic Vector Bit
Codes (0, 1, H, L, V, Z or X) that determine pattern data, I/O control, and strobe enable for
each tester channel scrambled to scan memory in the current instruction. See SCANDEF
Compiler Directive for details regarding how the order of bit-pattern tokens is specified. The
V token cannot be used in Split-I/O Scan mode.

Note: it is illegal to strobe in the last vector of a logic pattern; i.e. the last vector must
not contain any Z, V, H or L tokens.

optional params may be used to explicitly select a time-set and/or Pin Scramble Map for
the current instruction. The VIHH Map may not be specified in an SVEC instruction, it
remains as set in the preceding VEC/RPT instruction.
 2/27/09 Pg-1638

Mixed Memory/Logic Patterns
Example
The following example has 16 scan pins and 4 Standard Scan instructions:

%%SCANDEF p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12,\
p13, p14, p15, p16

PATTERN(myPat, logic)
% VEC HL10XZVHL10XZVHL10XZVHL10XZVHL10XZVHL10XZVHL10XZV
% SVEC 0000000000000000
% SVEC 0101010101010101
% SVEC 1010101010101010
% SVEC 1100110011001100

The following example has 4 scan-in pins and 3 scan-out pins 4 Split-I/O Scan instructions:

PATTERN(myPat, logic)
% VEC HL10XZVHL10XZVHL10XZVHL10XZVHL10XZVHL10XZVHL10XZV
%%SCANDEF (p1, p2, p3, p4), (p5, p6, p7)
% SVEC 0000 XXX
% SVEC 1010 HHL
% SVEC 0110 LHL
% SVEC 1101 LLH
% SVEC 1111 HHH

4.15.4 Datalogging Scan Failures
Not yet documented for Magnum 1/2/2x.

4.16 Mixed Memory/Logic Patterns
See Pattern Overview and Naming, Pattern Attributes.

Note: this section intentionally includes information which applies to Maverick-I,
Maverick-II, Magnum 1, Magnum 2 and Magnum 2x test systems.
 2/27/09 Pg-1639

Mixed Memory/Logic Patterns
Any test pattern containing a mix of logic instructions and memory instructions is, by
definition, a mixed memory/logic pattern. Maverick-I, Maverick-II, Magnum 1, Magnum 2
and Magnum 2x all support mixed memory/logic patterns.

Mixed memory/logic pattern testing applications include micro controllers with embedded
memory and memory devices with embedded logic (like flash memory with
on-board micro controller functions). This section documents how the various system types
operate and the options and related rules which apply to mixed memory/logic patterns.

A typical logic-only pattern instruction might appear like the following:

% VEC 00001111 HHHHLLLL, TSET2, PS4

A typical memory-only instruction might appear like the following:

% YALU YMAIN, XCARE, CMEQMAX, INCREMENT, DYMAIN
XALU XMAIN, XCARE, CON, INCREMENT, DXMAIN
COUNT NOCOUNT, AOFF
MAR INC, NOREAD, NOINT, RSTTMR
CHIPS NOCLKS, ADHIZ
DATGEN HOLDDR, HOLDYN, EQFDIS, BCKFDIS, NOTINV, DATDAT
UDATA 0
PINFUNC TSET2, PS4

The combined mixed pattern instruction would be:

% VEC 00001111 HHHHLLLL
YALU YMAIN, XCARE, CMEQMAX, INCREMENT, DYMAIN
XALU XMAIN, XCARE, CON, INCREMENT, DXMAIN
COUNT NOCOUNT, AOFF
MAR INC, NOREAD, NOINT, RSTTMR
CHIPS NOCLKS, ADHIZ
DATGEN HOLDDR, HOLDYN, EQFDIS, BCKFDIS, NOTINV, DATDAT
UDATA 0
PINFUNC TSET2, PS4

It is the Pin Scramble Map selected in each pattern instruction which determines which data
source is actually used by a given pin in each tester cycle.

The Maverick-I APG hardware has a single pattern execution control engine, called the
MAR engine, which controls all aspects of both the memory and logic execution. This means
that Maverick-I mixed patterns always execute in lockstep; i.e. the memory portion and logic
portion of a given pattern instruction always execute in sync. Using Maverick-I, because the
MAR engine controls everything, any test pattern which contains a logic instruction is
effectively a mixed pattern, even when the pattern source file only contains logic
 2/27/09 Pg-1640

Mixed Memory/Logic Patterns
instructions. Thus, in any Maverick-I pattern which contains only logic instructions, the
Default Memory Pattern Instruction is implicitly added by Patcom and logic RPT instructions
are treated the same as a single-instruction loop written explicitly using a memory pattern
instruction.

The Maverick-II hardware includes a second pattern execution control engine, called the
VAR engine, which may be used to control logic pattern execution. The term may is
emphasized because the Maverick-II hardware supports two mixed execution modes,
designated in the pattern source file using the Pattern Type Attributes: mav1 and mav2.

A mav1 pattern executes on Maverick-II using only the MAR engine, exactly as if using
Maverick-I, Therefore, when using both mav1 and mixed pattern attributes the memory
portion and the logic portion of each pattern instruction execute in lockstep. Because of this,
the following instruction is illegal in a mav1 mixed pattern because the MAR engine cannot
both repeat the logic instruction and increment to the next memory instruction:

% RPT 3 HL10X
MAR INC

Using Maverick-II, when using both mav1 and mixed pattern attributes there are actually
two potential areas of conflict:

• Conflicting pattern execution control instructions, as noted above (INC, JUMP,
GOSUB, RETURN, vs. RPT, etc.).

• Any pattern instruction which contains a Pattern Label and a logic instruction (VEC,
RPT) implicitly uses the UDATA field, which means the memory instructions in that
instruction may not use UDATA. See UDATA Instruction.

On Maverick-II, with both mav2 and mixed pattern attributes a memory/logic pattern uses
both the MAR engine and the VAR engine, allowing the logic pattern execution sequence to
diverge from the memory pattern. This means that, with respect to the pattern source file,
execution of the memory portion of an instruction vs. the logic pattern portion of the same
instruction may or may not occur in the same cycle. Using the previous example, the RPT
logic instruction will repeat while the MAR INC memory instruction will proceed to the next
source instruction; i.e. execution is not in lockstep with the source pattern instructions. In a
mav2 mixed pattern any required synchronization between memory pattern and logic
pattern execution is entirely the responsibility of the user’s test pattern (which can be very
challenging to validate and debug).

Note that in Maverick-II mixed mode patterns (mav2 mixed) the pattern compiler does
provide a very limited synchronization support, by adding MAR INC to any pattern
instructions which do include VEC or RPT but don’t include an explicit MAR instruction.
Patcom does not, however, attempt any other flow control synchronization between the
MAR engine and VAR engine. Thus, if a given pattern instruction contains execution control
 2/27/09 Pg-1641

Mixed Memory/Logic Patterns
instructions which are different for the MAR engine vs. the VAR engine, whether explicit or
by default, the memory portion and logic portion of the pattern execution will diverge.

Magnum 1/2/2x include both the VAR engine and MAR engine, but do not directly support
mav1 mixed mode patterns. Instead, the pattern compiler provides a limited version of this
capability, called mixedsync mode. When compiling a test pattern for Magnum 1/2/2x, the
Pattern System Attributes (mav1, mav2) are ignored, but the Pattern Type Attributes are
used. The memory, logic and mixed options operate the same as described above for
Maverick-II. The mixedsync option, usable on Magnum 1/2/2x, is used to force lockstep
execution of the memory portion and the logic portion of each pattern instruction.
Restrictions apply because the MAR engine and VAR engine have somewhat different
capabilities, in particular some features that are available in pure logic or pure memory
patterns are not available in mixed mode patterns. See MixedSync Pattern Rules.

Magnum 1/2/2x: Rules and Restrictions
These rules apply when using Magnum 1/2/2x:

1. Memory pattern execution is controlled by the MAR instruction. Logic pattern execution is
controlled by the VAR instruction. This is true even when explicit MAR and/or VAR
instructions are not specified (defaults apply).

2. Using the STARTLOOP compiler directive, the loop count value is stored in the VUDATA
field of the instruction immediately following the STARTLOOP statement. In mixed
memory/logic patterns the instruction immediately following a STARTLOOP must not
contain a user-defined VUDATA value (the pattern compiler will overwrite the user’s
value).

3. The vector address (VAR) of the logic instruction after the STARTLOOP statement is
stored in the VUDATA field of the pattern instruction immediately preceding the ENDLOOP
compiler directive. Thus in mixed memory/logic patterns, the pattern instruction
immediately preceding an ENDLOOP must not contain a user specified VUDATA value (the
pattern compiler will overwrite the user’s value).

4. In any Multi-DUT Test Program testing more than 2 DUTs, a VECDEF directive is required
(not optional) in any test patterns containing logic instructions.

When mixedsync is specified:

• Patcom enforces the MixedSync Pattern Rules which, with respect to the pattern
source file, ensures both the memory and logic components of each pattern
instruction execute concurrently (in lockstep). This requires the user’s test pattern
and any Pattern Subroutines executed by that pattern have the mixedsync pattern
attribute.
 2/27/09 Pg-1642

Mixed Memory/Logic Patterns
• Patcom also adds instructions/operands to any pattern instruction which conforms
to the MixedSync Pattern Rules but which does not contain explicit instructions
required to ensure the MAR engine and VAR engine remain synchronized. For
example, the following instructions contain components explicitly specified in the
user’s test pattern and components added by Patcom to ensure lockstep
operation:

% VEC HL10X // User, explicit
MAR CJMPE // User, explicit
VAR CJMPE // Added by Patcom

Note that the MAR/VAR engines have copies of the other’s counters which are
kept syncronized by Patcom. The added instructions are not shown.

% here:
VEC HL10X // User, explicit
VCOUNT COUNT1, DECR // User, explicit
VAR CJMPNZ, here // User, explicit
MAR CJMPNZ, here // Added by Patcom

• The user’s test pattern may select a default memory instruction (using MAR
DEFAULT, more below), which is applied by Patcom to any pattern instruction
which doesn’t contain any memory pattern instructions. Similarly, the user’s test
pattern may select a default logic instruction (using VAR DEFAULT), which is
applied by Patcom to any pattern instruction which doesn’t contain any logic
pattern instructions. More below.

Also note the following regarding mixed and mixedsync patterns:

• mixedsync is only valid when compiling a test pattern for Magnum 1, Magnum 2
or Magnum 2x. See APFP Dialog.

• When mixedsync is used, it is recommended that the user’s pattern only specify
either the MAR-side execution control instructions/operand or the VAR-side
execution control instructions/operand but not both. This allows Patcom to manage
the synchronization between the MAR/VAR engines.

• The maximum size of a mixedsync pattern (i.e. the number of pattern
instructions) is limited to the size of the APG uRAM (64K). However, this only
limits the number of memory instructions, it does not limit the number of logic
instructions. And, in mixedsync mode, Patcom detects duplicate consecutive
memory instructions and, when possible, creates a single-instruction loop, thus
conserving uRAM.

• Scan vectors are also stored in LVM and execution is controlled by the VAR
engine. Thus any pattern that needs to execute scan vectors must be a logic,
mixed or mixedsync pattern.
 2/27/09 Pg-1643

Mixed Memory/Logic Patterns
• When a mav1 mixed pattern is compiled for Magnum 1/2/2x it will be compiled as
if its pattern type attribute was mixedsync (more below). No warnings are issued.
Since mav1 does not support the logic attribute and Magnum 1/2/2x always uses
the VAR engine, effectively all mav1 patterns become mixedsync patterns when
compiled for Magnum 1/2/2x.

• When a mav2 mixed pattern is compiled for and executed on Magnum 1/2/2x it
will operate the same as if executed on a Maverick-II; i.e. any synchronization is
the responsibility of the user’s pattern instructions.

• Using Maverick-I/-II, the user has no control over the Default Memory Pattern
Instruction that Patcom applies to any mixed pattern instructions which don’t
explicitly specify a memory instruction (i.e. any instruction containing only VEC or
RPT). This limitation also applies to mixed patterns compiled for Magnum 1/2/2x.

• Magnum 1/2/2x mixedsync patterns allow the user to tag a pattern instruction,
using MAR DEFAULT, which will subsequently be applied, instead of the built-in
Default Memory Pattern Instruction, to any pattern instructions which contain no (as
in zero) memory instructions; i.e. in instructions which contain none of the
following: YALU, XALU, COUNT, MAR, CHIPS, DATGEN, UDATA, PINFUNC and
USERRAMm and LSENABLE and LEVELSET when controlled by the MAR engine.
More below.

• Magnum 1/2/2x mixedsync patterns allow the user to tag a logic pattern
instruction, using VAR DEFAULT, which will subsequently be applied to any pattern
instructions which contain no (as in zero) logic instructions; i.e. in instructions
which contain none of the following: VEC, RPT, VAR, VCOUNT, VPINFUNC, VUDATA
and SVEC, and LSENABLE and LEVELSET when controlled by the VAR engine.

• The MAR/VAR DEFAULT operands only affect the pattern compiler, causing it to
record the instruction containing the operand for subsequent use. The compiler
then applies this default instruction, as noted above, until it is redefined.
Instructions containing either/both DEFAULT operand(s) otherwise executed
normally.

• The scope of MAR/VAR DEFAULT operands is limited to the pattern being compiled.
Starting a new pattern (i.e. each PATTERN() statement) resets all default
instructions to the system default. This includes patterns which are treated as
Pattern Subroutines.

• It is legal to apply MAR DEFAULT and VAR DEFAULT to the same instruction.
• There is no explicit pattern instruction/operand to cause operation to revert to the

system default instruction. However, this can be accomplished indirectly by
including MAR DEFAULT and/or VAR DEFAULT in a pattern instruction which
contains no other memory or logic instructions.
 2/27/09 Pg-1644

Mixed Memory/Logic Patterns
• As indicated above, execution of the LSENABLE and LEVELSET instructions can
be controlled by either the MAR engine (memory instruction) or the VAR engine
(logic instruction). In mixed and mixedsync patterns, default execution is
controlled by the MAR engine. To transfer execution control to the VAR engine
requires an explicit memory pattern instruction: PINFUNC VLEVELSET. Thus, by
default, in mixedsync patterns, LSENABLE and LEVELSET are treated as memory
instructions and even though a given pattern instruction only contains logic
instructions plus LSENABLE or LEVELSET that instruction will not have the user’s
default memory instruction applied because it contains memory instructions.
Similarly, when an instruction contains PINFUNC VLEVELSET that instruction will
also not have the user’s default memory instruction applied because it contains a
memory instruction. However, if the PINFUNC VLEVELSET instruction is included in
the user’s default memory instruction, any pattern instruction which doesn’t
contain any memory instructions will use the user’s default and transfer LSENABLE
and LEVELSET execution to the VAR engine.

MixedSync Pattern Rules
Note that the mixedsync option applies only to Magnum 1/2/2x.

As indicated above, the purpose of the mixedsync option is to ensure lockstep execution of
the memory portion and logic portion of each pattern instruction. And, since the
Magnum 1/2/2x hardware cannot do this, it is up to the user’s pattern plus the pattern
compiler (Patcom). The mixedsync option causes Patcom to output pattern instructions
that result in identical execution sequence for both the MAR Engine and VAR Engine, or to
issue an error. To do this, Patcom must limit the pattern features used in mixedsync
patterns to the intersection of the features available in both memory instructions and logic
instructions.

The reason for some of the rules below will be fairly obvious. For example, disallowing
execution control instructions which would cause memory pattern execution to diverge from
logic pattern execution, and vice-versa. Other rules are required because the MAR Engine
and VAR Engine have somewhat different capabilities. For example, the VAR engine
implicitly uses the UDATA field to store Pattern Subroutine/branch addresses, whereas the
MAR engine stores them separately. This limits the user’s ability to use UDATA in
mixedsync patterns.

Note also that, for simplicity, the use of a Pattern Label is presumed to indicate that the
associated instruction is the target of a conditional or unconditional branch or is treated as
a Pattern Subroutine.

The following restrictions apply to mixedsync patterns:
 2/27/09 Pg-1645

Mixed Memory/Logic Patterns
1. Any memory instruction with a label cannot use the UDATA field.

2. Any memory or logic instruction with a label cannot use:

• MAR or VAR instructions with conditional or unconditional branch or Pattern
Subroutine (GOSUB) operands. Note that subroutine RETURN is OK, as is the
special case of a memory instruction which loops on itself.

• COUNT COUNTUDATA and VCOUNT COUNTVUDATA
• LSENABLE or LEVELSET
• MAR INTADR or INTENADR (INTEN is OK)
• STARTLOOP and ENDLOOP
• USERRAM

• RPT

3. Any memory pattern instruction with a MAR conditional or unconditional branch or Pattern
Subroutine operand cannot also include COUNT COUNTUDATA or VCOUNT
COUNTVUDATA.

4. In a given instruction it is illegal to select a MAR counter and a VAR counter which are
different. For example:

% COUNT COUNT1, DECR
VCOUNT COUNT2, DECR // Illegal, must be COUNT1

5. It is illegal to specify a MAR engine control statement and VAR engine control statement
which might result in a different pattern execution sequence on the two engines. For
example:

% MAR CJMPNZ, label
VAR CJMPZ, label // Illegal: CJMPNZ vs. CJMPZ

% MAR INC
RPT 3 HL10X // Illegal: INC vs. RPT

% MAR CJMPNZ, label
VAR CSUBE, label // Illegal: CJMPNZ vs. CSUBE

% MAR CJMPNZ, label_1
VAR CJMPNZ, label_2 // Illegal: different jump labels

As indicated earlier, when mixedsync is used, the user should specify either MAR-side
execution control instructions/operand or VAR-side execution control instructions/
operand but not both. Allow Patcom to manage the synchronization between the MAR/
VAR engines.
 2/27/09 Pg-1646

Mixed Memory/Logic Patterns
6. It is illegal to specify any operand of the following instructions which do not have an
equivalent for both the MAR engine and VAR engine:

• MAR and VAR
• COUNT and VCOUNT
For example:

% COUNT COUNT1, DEC2 // Illegal: VCOUNT doesn’t support DEC2

This rule does not apply to counter selections; i.e. even though the VAR engine has only
four counters (COUNT1 .. COUNT4) and the MAR engine has 64 counters (COUNT1 ..
COUNT64) the counter selections in COUNT and VCOUNT instructions operate as desired.

7. It is illegal to use any USERRAM GET instruction that may affect instruction execution
sequence, anywhere in the pattern; e.g. changes the value in a counter used for
conditional branch operations.

8. When COUNT COUNTUDATA is used in the pattern, if the counter is used for conditional
branch operations, anywhere in the pattern, do not modify the UDATA value from the test
program (using set_udata()).

A common error made in mixed mode patterns is to specify a Time-set (TSET#), Pin
Scramble Map (PS#), VIHH Map (VIHH#), etc. in a logic VEC or RPT instruction without also
enabling the selection using the corresponding PINFUNC operand (VTSET, VPS, VOVER,
etc.). Without these additional PINFUNC operands, the values specified in the VEC or RPT
instruction are not used and the memory instruction selections are used (or the default
values are used: TSET1, PS1, VIHH1, etc.). In mixedsync patterns, Patcom detects these
and related situations and attempts to correct or warn the user, as shown in the following
table. Note that the table uses the time set selection and PINFUNC VTSET but that operation
 2/27/09 Pg-1647

Controlling PE Levels from the Test Pattern
is similar for each of the parameters which have both MAR-side and VAR-side selections
(PS#, VPULSE, TSET#, etc.):

4.17 Controlling PE Levels from the Test Pattern
See Test Pattern Programming.

Many of the tester’s programmable voltages/currents can be set or modified (tweaked) from
an executing test pattern.

Note: the hardware implementation, pattern syntax used, and general capabilities are
quite different using Maverick-I/-II vs. Magnum 1/2/2x.

This section contains the following:

• Controlling Magnum 1 Levels from the Test Pattern
• LSENABLE Pattern Instruction
• LEVELSET Pattern Instruction
• Setting a Static Pin-state using Level Sets.

Instruction
Patcom
Action Note

% PINFUNC TSET8 None Uses the default logic
instruction.

% VEC HL10X, TSET8

Patcom adds
% PINFUNC VTSET and
issues a warning that it was
added.

VAR engine time set
specified without explicit
PINFUNC VTSET.

% PINFUNC TSET8
 VEC HL10X, TSET23

Patcom warns that TSET23 is
not used.

VAR engine TSET
specified but not used.

% PINFUNC TSET8,
VTSET

Patcom warns that TSET8 is
not used.

MAR engine TSET
specified but not used.

% PINFUNC VTSET
 VEC HL10X

TSET1 is used (default) with
no warning.

Implicit time set
(TSET1).
 2/27/09 Pg-1648

Controlling PE Levels from the Test Pattern
• changes_voltages()
• level_set_value_change()

4.17.1 Controlling Magnum 1 Levels from the Test Pattern
See Controlling PE Levels from the Test Pattern.

Overview
Many of the tester’s programmable voltage/current parameters, i.e. levels, can be set or
modified (tweaked) from an executing test pattern. Using Magnum 1/2/2x, this is done using
two pattern instructions:

• LSENABLE Pattern Instruction - identifies the target hardware using a pin list.
• LEVELSET Pattern Instruction - specifies the type of operation (set/tweak), the

parameter to modify (VIL, DPS voltage, etc.), and a range if required.

Note: important usage details are described separately from the LSENABLE Pattern
Instruction and LEVELSET Pattern Instruction sections. See below.

This section covers the following topics:

• Controllable Level Types
• Operation and Rules
• DC Level Response Time
• DPS Considerations
• Pattern Loop Considerations
• Set/Tweak PASS/FAIL Limits
• Set/Tweak in Subroutines
• Setting a Static Pin-state using Level Sets.

Supporting functions include:

• changes_voltages()

• level_set_value_change()
 2/27/09 Pg-1649

Controlling PE Levels from the Test Pattern
Controllable Level Types
The table below shows the various level parameters which can be controlled using methods
documented in this section:

Table 4.17.1.0-1 Levels Controllable from the Test Pattern

Level
Pattern
Token

C-Code Set
Function

VIL LS_VIL vil()

VIH LS_VIH vih()

VOL LS_VOL vol()

VOH LS_VOH voh()

VTT LS_VTT vtt()

VZ LS_VZ vz()

VIHH LS_VIHH vihh()

DPS Primary Voltage LS_DPS dps()

DPS Secondary Voltage LS_DPS_VPULSE dps_vpulse()

DPS Current Test High Limit LS_DPS_CURRENT_HIGH dps_current_high()

DPS Current Test Low Limit LS_DPS_CURRENT_LOW dps_current_low()

PMU Force Current LS_PMU_IPAR_FORCE ipar_force()

PMU Current Test High
Limit LS_PMU_IPAR_HIGH ipar_high()

PMU Current Test Low Limit LS_PMU_IPAR_LOW ipar_low()

PMU Force Voltage LS_PMU_VPAR_FORCE vpar_force()

PMU Voltage Test High
Limit LS_PMU_VPAR_HIGH vpar_high()

PMU Voltage Test Low Limit LS_PMU_VPAR_LOW vpar_low()

PMU Voltage Clamp High LS_PMU_VCLAMP_POS
vclamp()

PMU Voltage Clamp Low LS_PMU_VCLAMP_NEG

PTU Force Current LS_PTU_IPAR_FORCE ptu_ipar_force_set()

PTU Current Test High Limit LS_PTU_IPAR_HIGH ptu_ipar_high_set()
 2/27/09 Pg-1650

Controlling PE Levels from the Test Pattern
Note: the Per-pin Parametric Test Unit (PTU) supplies various DC levels, including VZ
and VIHH, used during functional tests (see Magnum PE Driver Modes), the
background voltage optionally used during PMU tests (see back_voltage())
and all levels used to perform PTU voltage/current tests (see PTU Functions).

Operation and Rules
The following two example pattern instructions show the key features used to control levels
from the test pattern. Following this is a mix of usage rules and operational descriptions:

% LSENABLE PinListName, TSET# // TSET is optional
% LEVELSET OPERATION, LevelToken, RANGE, TSET#

UDATA VALUE UNITS
... or ...

VUDATA VALUE UNITS // Requires PINFUNC VLEVELSET

PTU Current Test Low Limit LS_PTU_IPAR_LOW ptu_ipar_low_set()

PTU Force Voltage LS_PTU_VPAR_FORCE ptu_vpar_force_set()

PTU Voltage Test High Limit LS_PTU_VPAR_HIGH ptu_vpar_high_set()

PTU Voltage Test Low Limit LS_PTU_VPAR_LOW ptu_vpar_low_set()

PTU Voltage Clamp High LS_PTU_VCLAMP_POS
ptu_vclamp_set()

PTU Voltage Clamp Low LS_PTU_VCLAMP_NEG

HV Force Voltage LS_HV_VOLTAGE hv_voltage_set()

HV Current Test High Limit LS_HV_IPAR_HIGH hv_ipar_high()

HV Current Test Low Limit LS_HV_IPAR_LOW hv_ipar_low()

HV Voltage Test High Limit LS_HV_VPAR_HIGH hv_vpar_high()

HV Voltage Test Low Limit LS_HV_VPAR_LOW hv_vpar_low()

None _SEL_RT_D0
See Setting a Static Pin-
state using Level Sets.

Table 4.17.1.0-1 Levels Controllable from the Test Pattern (Continued)

Level
Pattern
Token

C-Code Set
Function
 2/27/09 Pg-1651

Controlling PE Levels from the Test Pattern
Note: the LSENABLE Pattern Instruction and LEVELSET Pattern Instruction must
always be used as a contiguous pair. The pattern compiler enforces this rule.

• In Multi-DUT Test Programs, only levels for DUT(s) in the Active DUTs Set (ADS)
are affected.

• The LSENABLE Pattern Instruction uses a pin list to identify the target hardware on
which a level will be modified. Optionally, a time-set may also be specified to be
used in the LSENABLE Pattern Instruction (TSET1 is the default).

• The pin list(s) used in the LSENABLE Pattern Instruction(s) must be defined in the
test program before test patterns are loaded. See LSENABLE Pattern Instruction.

• An LSENABLE Pattern Instruction implicitly uses the UDATA and VUDATA fields; i.e.
they cannot be used for other purposes. More below.

• The LSENABLE Pattern Instruction may not be the first instruction in the test
pattern.

• The LEVELSET Pattern Instruction must immediately follow the LSENABLE Pattern
Instruction. The pattern compiler enforces this rule.

• The LEVELSET Pattern Instruction specifies the remaining parameters; i.e.:
• The desired operation: SET or TWEAK.
• The specific level parameter to be set/tweaked, using pattern tokens from the

table above (or see LEVELSET Pattern Instruction).
• The desired voltage or current value. This is specified in the UDATA field

(Memory Test Patterns) or VUDATA field (Logic Test Patterns). See LEVELSET
Pattern Instruction for details of Mixed Memory/Logic Patterns.

• When required, a range selection (see LEVELSET Pattern Instruction).
• Optionally, a time-set selection (TSET) may also be specified.

• The LEVELSET Pattern Instruction may not be the last instruction in the test
pattern.

• The LEVELSET Pattern Instruction may not have a Pattern Label, to prevent
accidentally branching to the LEVELSET Pattern Instruction, which requires a label.
 2/27/09 Pg-1652

Controlling PE Levels from the Test Pattern
Note: in each LEVELSET Pattern Instruction, the compiled UDATA value stores more
than just the user specified voltage/current value. And, the LSENABLE Pattern
Instruction uses the UDATA value implicitly, to store information related to target
hardware. In both cases, it is NOT valid to use get_udata() or set_udata()
to access the UDATA value in these instructions. In particular, using
set_udata() will corrupt the information generated by the compiler, and result
in incorrect operation. Instead, the level_set_value_change() function is
available to modify selected parameters specified in a target LEVELSET Pattern
Instruction. There are no provisions for changing the target hardware selections
made in a LSENABLE Pattern Instruction.

• The LSENABLE Pattern Instruction and LEVELSET Pattern Instruction may be
used in both Memory Test Patterns and Logic Test Patterns (more below).

• During pattern execution, the LSENABLE and LEVELSET operations access the pin
scramble RAM in areas which are reserved solely for this purpose. This means
that the normal pin scramble operation isn’t usable in LSENABLE and LEVELSET
instructions, which has the following effects:
• In an LSENABLE and LEVELSET instruction selecting a pin scramble is illegal.

The pattern compiler will issue an error if PINFUNC or VPINFUNC instructions
include a pin scramble selection (PS#).

• During an LSENABLE and LEVELSET execution, the pattern data, strobe enable,
I/O control and drive format selection are determined by the instruction executed
immediately prior to the LSENABLE, for all pins. However, edge timing values are
determined by the time-set selected in the LSENABLE and LEVELSET instruction.

• During an LSENABLE and LEVELSET execution, pattern operands which change
the state of the pattern generator hardware will continue to do so i.e. XALU, YALU
and DATGEN can/will modify the APG state, VEC will increment the vector
address, etc.

• LSENABLE and LEVELSET instructions may include MAR and VAR instructions but
operands which control pattern execution flow are limited to INC; i.e. MAR INC and
VAR INC. Other pattern execution flow operands are illegal i.e. all conditional and
unconditional branch and subroutine call/return operands, etc. Other MAR/VAR
operands operate normally.

• As indicated above, the LSENABLE instruction implicitly uses the UDATA field
(Memory Test Patterns) or VUDATA field (Logic Test Patterns) to store pin list
information; i.e. UDATA and VUDATA are not available for other applications in
 2/27/09 Pg-1653

Controlling PE Levels from the Test Pattern
these cycles. In Mixed Memory/Logic Patterns whether UDATA or VUDATA is used
is determined by whether PINFUNC VLEVELSET the is specified (more below). See
Note:

• The LEVELSET instruction explicitly uses the UDATA value (Memory Test Patterns)
or VUDATA value (Logic Test Patterns) to specify the desired voltage or current
value. In Mixed Memory/Logic Patterns whether UDATA or VUDATA is used is
determined by whether PINFUNC VLEVELSET the is specified (more below). See
Note:

• The COUNT and VCOUNT instructions are usable in LSENABLE and LEVELSET
instructions although condtional operations based on a counter value are not.

• The PINFUNC/VPINFUNC instruction is usable as follows:
• In Mixed Memory/Logic Patterns, by default the memory pattern controls level set

operation. PINFUNC VLEVELSET may be specified to enable the logic pattern
hardware to control level setting; (more below).

• PINFUNC VLEVELSET may not be specified in pure Logic Test Patterns (no
PINFUNC instructions may be specified as they are memory instructions).

• PS# - Illegal in LSENABLE and LEVELSET instructions. The pin scramble
selection is implicit, as described above.

• VPULSE operates normally.
• TSET# selection affects only edge times and cycle period value. As noted above,

the drive format is determined by the instruction which executes immediately
prior to the LSENABLE instruction.

• Only the first 8 VIHH# maps may be used, otherwise VIHH# operate normally
• VVCOMP, VLATCHRESET, VOVER, VTSET, VVIHH, VVPULSE, VLEVELSET operate

normally.
• ADHIZ - has no effect in LSENABLE instructions. As indicated above, in
LSENABLE instructions the I/O state control for APG data generator outputs is
latched and re-used from the instruction executed immediately cycle prior to the
LSENABLE instruction.

• As indicated above, each unique LSENABLE pin list is stored in a reserved area of
the pin scramble memory. The reserved memory can store up to 64 pin lists, thus
a given test pattern may define up to 64 unique LSENABLE pin lists. This is
checked by the pattern compiler, however, subroutines are not considered in the
compile-time error check, thus runtime software may also report a related error.
This is also noted in Set/Tweak in Subroutines.
 2/27/09 Pg-1654

Controlling PE Levels from the Test Pattern
• In Mixed Memory/Logic Patterns, an additional consideration exists when tweaking
a given level parameter. Before a level-setting test pattern executes, for each level
type to be modified by the pattern, the system software reads the current value of
the first pin (only!) in each LSENABLE pin list and stores the value in a special
hardware register. Using Magnum 1, separate registers are used for memory
patterns vs. logic patterns and a given value is saved in both. Then, during pattern
execution, when a level is, for example, tweaked from, for example, the memory
hardware (i.e. PINFUNC VLEVELSET is not specified in the LEVELSET Pattern
Instruction) the register value is modified by adding the tweak value to the original
value stored in the memory pattern’s register. The register value is then written to
the target hardware, which can consist of multiple pins/DPSs/HVs. This single
stored reference value is modified again each time the same level is tweaked from
the memory hardware. This raises several issues:
• If the same level is subsequently tweaked from the logic hardware (i.e. PINFUNC
VLEVELSET is specified in the LEVELSET Pattern Instruction) the reference level
is read from the logic pattern hardware register, which initially will contain the
original value read/saved i.e. it doesn’t reflect any changes made from the
memory pattern.

• When the LSENABLE pin list contains multiple pins/DPSs/HVs all are set/tweaked
to the same value each time the LEVELSET instruction executes. This is true even
if they were originally at different levels.

• The cycle period of any pattern instruction containing LEVELSET must be a
minimum of 140nS. Neither the pattern compiler nor the system software can
check this; i.e. it is the user’s responsibility. IMPROPER operation is likely if this
rule is violated.

• The minimum time between any 2 pattern instructions containing LEVELSET is
1.5uS. Neither the pattern compiler nor the system software can check this; i.e. it
is the user’s responsibility. IMPROPER operation is likely if this rule is violated.

Note: the time values noted in the two previous bullets are required by the test pattern
hardware and do not include the time required for the DC circuitry to react and
begin to change the target level. See DC Level Response Time.

DC Level Response Time
The test pattern LEVELSET instruction operates by sending a serial command to the target
hardware identified via the LSENABLE instruction. The following table shows the amount of
time required for the target hardware output level to begin to change. For target levels which
are internal to the system, no additional time is required for the level to reach the final
 2/27/09 Pg-1655

Controlling PE Levels from the Test Pattern
programmed value. However, for external levels (i.e. those that reach the DUT) additional
time may be required and this time is normally dependent on both the magnitude of the level
change and the enviroment/load presented by the user’s DUT board and the DUT. For these
levels, additional settling time may be necessary, requiring user characterization, and the
table below does not include this added time:

DPS Considerations
When setting or tweaking level parameters from DUT Power Supply (DPS) several
additional consideration exists:

• Each DPS has two programmable output voltages: primary and secondary
(VPulse). The test pattern may modify either value and the selection of which
value is output by a given DPS may be changed by the test pattern. More below.

• The low level DPS hardware resolution is different than that allowed by the
software.

Regarding the latter, the DPS software resolution is 5mV but the underlying hardware
resolution is may be different. When setting or tweaking DPS output voltage the hardware
resolution determines the final resolution of a given voltage value. This has two effects:

• If the test pattern is tweaking/setting another voltage parameter along with the
DPS voltage and the goal is to have the two levels track each other it is important
that the tweak value of both parameters be specified in increments which are
evenly divisible by 5mV.

• After the test pattern changes a DPS voltage if the dps() getter function is used
it may return a value not normally obtainable using the dps() setter function.

Target Level Min Max

VIH VIL
VOL VOL

VTT, VZ, VCOMP
PTU DC Comparators

PTU Force Voltage/Current
PTU Clamps

31uS 93uS

PMU Force Current
DPS Force Voltage
HV Force Voltage

PMU High/Low Pass/Fail Test Limits

31uS

PMU Force Voltage 10uS
 2/27/09 Pg-1656

Controlling PE Levels from the Test Pattern
As indicated above, each DPS has two programmable voltages: primary (set using dps())
and VPulse (set using dps_vpulse()). But, the DPS output mode is configurable (see
dps_output_mode_set()). In the default mode (t_dps_vpulse mode), both outputs of
a given DPS are always set to the primary voltage (set using dps()) or to the secondary
voltage (set using dps_vpulse()). Using dps_output_mode_set(), if the mode is set
to t_dps_independent, the voltage of the two outputs of a given DPS can be
programmed independently, using dps(). In this mode, programming dps_vpulse() has
no effect (unless the mode is switched back to t_dps_vpulse mode). When modifying a
DPS output voltage from the test pattern two level tokens are available:

• LS_DPS - selects the primary output voltage for modification. If the target DPS is in
t_dps_vpulse mode, using LS_DPS modifies the primary output voltage only,
affecting any DPS(s) which are currently set to output the primary voltage. If a
DPS is in t_dps_independent mode, using LS_DPS modifies both the A and B
DPS outputs.

• LS_DPS_VPULSE - selects the secondary (VPulse) output voltage for modification.
If the target DPS is in t_dps_vpulse mode, using LS_DPS_VPULSE modifies the
secondary output voltage only, affecting any DPS(s) which are currently set to
output the secondary (VPulse) voltage. If the DPS is in t_dps_independent
mode, using LS_DPS_VPULSE modifies the DPS B output only.

Pattern Loop Considerations
When a test pattern contains loops which set or tweak a level note the following:

• Be very cautious. The normal system software used to program a given level is
not used, thus no limits are enforced on how high or low the level can be set or
tweaked. It is quite easy for a pattern loop to tweak a voltage/current to the
maximum value developed by the hardware, in both the positive or negative
direction. This can even exceed the values normally obtained from the test
program code. And, it is possible when a hardware limit is reached that the next
increment programmed in the pattern loop will set the level to the opposite
hardware limit. BEWARE!

• Within the pattern loop, it may be necessary to add instructions to create a delay
between LEVELSET executions. See Operation and Rules. And, each level
parameter type has different slew-rate and settling time characteristics; the
desired operation is the responsibility of the user.

Set/Tweak PASS/FAIL Limits
When the test pattern sets or tweaks a PASS/FAIL test limit, special consideration must be
given to how these values are used in the hardware.
 2/27/09 Pg-1657

Controlling PE Levels from the Test Pattern
For example, when partest() executes a PMU test, or test_supply() executes a DPS
current test, three possible PASS/FAIL conditions can be specified: pass_pcl,
pass_nicl, or pass_ncl. However, the DC comparators actually only use pass_pcl and
pass_ncl, thus when pass_nicl is specified the system software automatically swaps
the user’s specified high/low limits to create the desired results. The getter API functions and
Voltage and Current Tool all handle this transparently when the values are set using the
standard functions. However, this swapping is not (cannot be) done when PASS/FAIL limits
are controlled from the test pattern e.g. the user must manage this process explicitly when
modifying PMU, PTU, DPS and HV test PASS/FAIL limits from the pattern. And, when the
PASS/FAIL values are swapped by the user neither the standard getter functions nor
Voltage and Current Tool know that the values were reversed, and thus won’t be (can’t be)
correct for the swap.

Set/Tweak in Subroutines
As noted earlier, each unique LSENABLE pin list is stored in a reserved area of the pin
scramble memory. The reserved memory can store up to 64 unique pin lists, thus a given
test pattern may define up to 64 unique LSENABLE pin lists. This is checked by the pattern
compiler, however, subroutines are not considered in the compile-time error check, thus
runtime software may also report a related error.

4.17.1.1 LSENABLE Pattern Instruction
See Controlling Magnum 1 Levels from the Test Pattern, Controlling PE Levels from the Test
Pattern, DUT-specific Pin Lists.

Description

When Controlling Magnum 1 Levels from the Test Pattern, the target hardware is identified
using the LSENABLE pattern instruction. Note the following:

• Important usage rules are documented in Operation and Rules, Pattern Loop
Considerations, Set/Tweak PASS/FAIL Limits and Set/Tweak in Subroutines. Read
these!

• The LSENABLE instruction PinListName operand identifies which hardware is
being modified (more below). In Multi-DUT Test Programs, only levels for DUT(s) in
the Active DUTs Set (ADS) are affected.

• A given test pattern may define up to 64 unique LSENABLE pin lists.
 2/27/09 Pg-1658

Controlling PE Levels from the Test Pattern
• The PinListName operand specified in an LSENABLE instruction must exactly
match the name of a pin list defined in the test program. This pin list must be
defined before test patterns are loaded i.e. either statically or in a
CONFIGURATION() block (before the SITE_BEGIN_BLOCK()). The pattern
compiler cannot check this or whether the specified pin list members are valid; this
will be checked by the system software as the test patterrns are loaded and
executed.

• If the LEVELSET instruction paired with a given LSENABLE instruction uses the
PINFUNC VLEVELSET option, the LSENABLE instruction must also use it. This is
enforced by the pattern compiler.

• In the test program, the specified pin list must contain only pins of one type:
• Signal pins (PE pins) only. These are used to identify which pin(s) will be

modified when PE levels are adjusted (VOL/VOH, VIL/VIH, VTT/VZ and VIHH),
or which PTUs will be modified when PTU levels are adjusted (force voltage/
current, PASS/FAIL test limits), or which PMUs are modified when PMU levels
are adjusted (force V/I, PASS/FAIL limits, clamps, etc.).

• DPS pins only. These are used to identify which DPS(s) will be modified when
DPS levels are adjusted (output voltage, PASS/FAIL test limits, clamps, etc.) or
which PMUs are modified when PMU levels are adjusted (for PMU-on-DPS
tests). See DPS Considerations.

• HV pins only. These are used to identify which HV(s) will be modified when HV
levels are adjusted (output voltage, PASS/FAIL test limits, etc.) or which PMUs
are modified when PMU levels are adjusted (for PMU-on-HV tests).

Note that it is the LEVELSET Pattern Instruction parameters which determines
which level type (VIL, VOH, etc.) is being modified, the type of adjustment (set or
tweak), the desired level value, etc.

• During test program execution, the pin list members may be modified by user
C-code. However, the target hardware type represented by these pins (PE vs.
DPS vs. HV) must remain the same. This is not checked by the system software.
Proper operation is very unlikely if this rule is violated.

• DUT-specific Pin Lists may be used to allow pins of some DUTs to be affected while
other pins remain unchanged.

Usage
% LSENABLE PinListName, TSET#

PINFUNC VLEVELSET // Optional

where:
 2/27/09 Pg-1659

Controlling PE Levels from the Test Pattern
PinListName identifies a pin list which identifies the target hardware which will be set/
tweaked by subsequent LEVELSET Pattern Instruction. Specific rules apply, see Description
and Operation and Rules.

TSET# is optional and, if used, specifies the time-set to be selected while the LSENABLE
instruction executes. Legal values are TSET1 through TSET32. Default = TSET1.

PINFUNC VLEVELSET is optional and only useful in Mixed Memory/Logic Patterns, see
Operation and Rules. If PINFUNC VLEVELSET is used in the LSENABLE instruction is must
also be used in the subsequent LEVELSET instruction.

Example
The following Logic Test Pattern sets the primary DPS output voltage to 3.3V on all DPS
identified in the pin list named my_vcc_pins (see DPS Considerations):

// Test program code
PIN_LIST(my_vcc_pins){

PINS2(vcc1, vcc2)
}

// Test pattern
PATTERN(my_pattern, logic)
// One (minimum) or more logic instructions here
% VEC HL10X HL10X HL10X // and so on

% VEC HL10X HL10X HL10X
LSENABLE my_vcc_pins

% VEC HL10X HL10X HL10X
LEVELSET SET, LS_DPS // TSET1 cycle >= 140nS
VUDATA 3.3 V

// More logic instructions as needed

The following Memory Test Pattern sets the primary DPS output voltage to 3.3V on all DPS
identified in the pin list named my_vcc_pins (see DPS Considerations):

// Test program code
PIN_LIST(my_vcc_pins){

PINS2(vcc1, vcc2)
}

// Test pattern
PATTERN(my_pattern memory)
// One or more memory instructions here
% XALU ...
 2/27/09 Pg-1660

Controlling PE Levels from the Test Pattern
YALU ...
COUNT ...
MAR ...
CHIPS ...
DATGEN ...
PINFUNC ...
UDATA ...

% LSENABLE my_vcc_pins
% LEVELSET SET, LS_DPS // TSET1 cycle >= 140nS

UDATA 3.3 V

The following mixed Memory Test Pattern/Logic Test Pattern sets the primary DPS output
voltage to 3.3V on all DPS identified in the pin list named my_vcc_pins (see DPS
Considerations). The desired level value is taken from the VUDATA field:

// Test program code
PIN_LIST(my_vcc_pins){

PINS2(vcc1, vcc2)
}

// Test pattern
PATTERN(my_pattern, mixed)
// One (minimum) or more logic/memory instructions here
% VEC HL10X HL10X HL10X // and so on

XALU ...
YALU ...
COUNT ...
MAR ...
CHIPS ...
DATGEN ...
PINFUNC ...
UDATA ...

% LSENABLE my_vcc_pins
PINFUNC VLEVELSET // Must match LEVELSET’s PINFUNC option

% LEVELSET SET, LS_DPS // TSET1 cycle >= 140nS
VUDATA 3.3 V
PINFUNC VLEVELSET // Use VUDATA value and pin list from

// logic LSENABLE RAM
 2/27/09 Pg-1661

Controlling PE Levels from the Test Pattern
4.17.1.2 LEVELSET Pattern Instruction
See Controlling Magnum 1 Levels from the Test Pattern, Controlling PE Levels from the Test
Pattern

Description

The LEVELSET pattern instruction is used to set or modify (tweak) a level from an executing
test pattern. Note the following:

• Important usage rules are documented in Operation and Rules, Pattern Loop
Considerations, Set/Tweak PASS/FAIL Limits and Set/Tweak in Subroutines. Read
these!

• The LEVELSET instruction must immediately follow an LSENABLE Pattern
Instruction. The pattern compiler enforces this rule. The LSENABLE Pattern
Instruction determines which hardware will be modified using a pin list. In Multi-
DUT Test Programs, only levels for DUT(s) in the Active DUTs Set (ADS) are
affected.

• The LEVELSET instruction causes the specified level parameter to be set or
tweaked. In hardware, the process begins immediately but requires a minimum of
140nS to complete (not counting any voltage slew rate and/or settling time). Thus,
the minimum cycle period used in a LEVELSET instruction is 140nS. See
Operation and Rules.

• The LEVELSET instruction specifies the following parameters:
• The desired operation: SET or TWEAK.
• The target level to be modified, see table below.
• The VALUE to be written, in the UDATA value (Memory Test Patterns) or VUDATA

value (Logic Test Patterns).

• A RANGE value, if required (more below).
• A pattern instruction containing LEVELSET may not have a Pattern Label. This is

enforced by the pattern compiler, to prevent [accidentally] branching to a
LEVELSET instruction without first executing an LSENABLE Pattern Instruction.

• The LEVELSET instruction can be used in both Memory Test Patterns and Logic
Test Patterns. In Mixed Memory/Logic Patterns, by default the VALUE is taken from
the UDATA instruction. Using PINFUNC VLEVELSET causes the VALUE to be taken
from the VUDATA instruction. Using PINFUNC VLEVELSET has other effects, see
 2/27/09 Pg-1662

Controlling PE Levels from the Test Pattern
Operation and Rules. When a LEVELSET instruction uses PINFUNC VLEVELSET
the preceding (corresponding) LSENABLE instruction must also use it. This is
enforced by the pattern compiler.

• As noted above, a RANGE value must be specified if the target level has multiple
operating ranges (see Magnum 1/2/2x Test Pattern Set/Tweak Parameter List). The
RANGE value is NOT used to set a hardware range, but rather to calculate the
correct value to write to the target hardware (a D/A converter (DAC) value). This
calculated value is only correct if the target hardware is currently in the range
specified.

Note: proper level set operation requires that the RANGE value specified in a
LEVELSET instruction be identical to the range value selected in the hardware
at the time the test pattern is executed. No related error checks are made; i.e.
the user is responsible.
Careless programming can cause damage to the DUT!

Note: unlike Maverick-II, the Magnum 1/2/2x software does not set up initial
conditions C-code to set a hardware range i.e. the range set in the hardware at
the time the test pattern is executed is not changed by the test pattern.

• Any levels modified by the test pattern remain modfied after the pattern execution
ends.

The following table lists the parameters which can be directly set or modified (tweaked) from
a Magnum 1/2/2x test pattern:

Table 4.17.1.2-1 Magnum 1/2/2x Test Pattern Set/Tweak Parameter List

Level Parameter
Pattern Token

Range
Options Range Notes

LS_VIL
LS_VIH
LS_VOL
LS_VOH
LS_VTT

None -1V to +7V
LSENABLE Pattern
Instruction PinList
contains only PE pins.

LS_VZ None -1V to +7V
LSENABLE Pattern
Instruction PinList
contains only PE pins.
 2/27/09 Pg-1663

Controlling PE Levels from the Test Pattern
LS_VIHH None 0V to +12.5V

LS_DPS
LS_DPS_VPULSE

None -15V to +15V WARNING: normal limit
checks on DPS output
voltage are NOT enforced,
including a negative
voltage output.
LSENABLE Pattern
Instruction PinList
contains only DPS pins.
See DPS Considerations.
±600mA only when using
the DPS 300mA/600mA
DPS Option.

LS_DPS_CURRENT_HIGH
LS_DPS_CURRENT_LOW

RANGE1 ±4uA
RANGE2 ±40uA
RANGE3 ±400uA
RANGE4 ±4mA
RANGE5 ±40mA
RANGE6 ±400mAor

/±600mA

LS_PMU_IPAR_FORCE
LS_PMU_IPAR_HIGH
LS_PMU_IPAR_LOW

RANGE1 ±2uA
RANGE2 ±20uA
RANGE3 ±200uA
RANGE4 ±2mA
RANGE5 ±20mA

LSENABLE Pattern
Instruction PinList
contains either PE pins or
DPS pins or HV pins (don’t
mix types).

LS_PMU_VPAR_FORCE None -5V to +15V

WARNING: normal limit
checks on PE pins are
NOT enforced. See
Pattern Loop
Considerations.
LSENABLE Pattern
Instruction PinList
contains either PE pins or
DPS pins or HV pins (don’t
mix types).

LS_PMU_VPAR_HIGH
LS_PMU_VPAR_LOW

RANGE1 -2.5V to +4V
RANGE2 -5V to +15V

LSENABLE Pattern
Instruction PinList
contains either PE pins or
DPS pins or HV pins (don’t
mix types).

LS_PMU_VCLAMP_POS
None

-5V to +16V

LS_PMU_VCLAMP_NEG -6V to +15V

Table 4.17.1.2-1 Magnum 1/2/2x Test Pattern Set/Tweak Parameter List

Level Parameter
Pattern Token

Range
Options Range Notes
 2/27/09 Pg-1664

Controlling PE Levels from the Test Pattern
Usage
% LEVELSET OPERATION, LevelToken, RANGE, TSET#, PS#

UDATA VALUE UNITS
and/or

VUDATA VALUE UNITS
PINFUNC VLEVELSET // Optional

where:

OPERATION determines whether the level is being SET or adjusted (TWEAK).

LS_PTU_IPAR_FORCE
LS_PTU_IPAR_HIGH
LS_PTU_IPAR_LOW

RANGE1 ±2uA
RANGE2 ±8uA
RANGE3 ±32uA
RANGE4 ±128uA
RANGE5 ±512uA
RANGE6 ±8mA
RANGE7 ±32mA

LSENABLE Pattern
Instruction PinList
contains only PE pins. See
Note:.

LS_PTU_VPAR_FORCE
LS_PTU_VPAR_HIGH
LS_PTU_VPAR_LOW

-2V to +12V

LSENABLE Pattern
Instruction PinList
contains only PE pins. See
Note:.

LS_PTU_VCLAMP_POS 0.5V to +12V LSENABLE Pattern
Instruction PinList
contains only PE pins. See
Note:.

LS_PTU_VCLAMP_NEG
None

-2V to +11V

LS_HV_VOLTAGE None 0V to +28V

LSENABLE Pattern
Instruction PinList
contains only HV pins.

LS_HV_IPAR_HIGH
LS_HV_IPAR_LOW

None 0mA to 8mA

LS_HV_VPAR_HIGH
LS_HV_VPAR_LOW

None 0V to +28V

_SEL_RT_D0 None n/a See Setting a Static Pin-
state using Level Sets.

Table 4.17.1.2-1 Magnum 1/2/2x Test Pattern Set/Tweak Parameter List

Level Parameter
Pattern Token

Range
Options Range Notes
 2/27/09 Pg-1665

Controlling PE Levels from the Test Pattern
LevelToken identifies the target level being SET/TWEAKed. Legal values are listed in the
table above.

RANGE is required when the test parameter has multiple operating ranges. Legal values are
RANGE1 through RANGE6. Careless programming can cause damage to the DUT!, see
Note:. Legal values are shown in Table 4.17.1.2-1 above.

TSET# is optional and, if used, specifies the time-set to be selected while the LEVELSET
instruction executes. Legal values are TSET1 through TSET32. Default = TSET1. The cycle
period of the time set used in a LEVELSET instruction must be >= 140nS. See Operation
and Rules.

PS# is optional and, if used, specifies the pin scramble to be selected while the LEVELSET
instruction executes. Legal values are PS1 through PS64. Default = PS1.

VALUE specifies the desired level value to be written. Units must be used (see Specifying
Units). VALUE is specified as a UDATA operand value (Memory Test Patterns) or a VUDATA
operand value (Logic Test Patterns). In mixed memory/logic patterns both UDATA and
VUDATA may specify a value, however, to use the VUDATA value requires specifying
PINFUNC VLEVELSET.

UNITS specifies a units macro to be applied to VALUE. Units must be used, see Specifying
Units.

PINFUNC VLEVELSET is optional and only useful in Mixed Memory/Logic Patterns. See
Description. If PINFUNC VLEVELSET is used in the LEVELSET instruction is must also be
used in the prior LSENABLE instruction.

Example
See Example.

4.17.1.3 Setting a Static Pin-state using Level Sets
See Controlling Magnum 1 Levels from the Test Pattern, Controlling PE Levels from the Test
Pattern

Description
This section documents how to use the Controlling PE Levels from the Test Pattern facility to
set one or more tester signal pins to drive a static state (CPU Drive State), effectively
disabling the drive signals from the timing system to the PE driver on those pins.
 2/27/09 Pg-1666

Controlling PE Levels from the Test Pattern
In general, using the test pattern Level Set pattern instructions noted below, selected pins
may be set to drive a static logic state, as set in the test program prior to pattern execution.
When in this state, these pins will not receive drive edges from their associated timing
generators (strobe and I/O edges are not affected). Later, in the same pattern, normal
operation can be restored using the same Level Set instructions.

The target application allows the test pattern to disable/enable selected signals to selected
DUTs by disabling the drive high/low signals of key pins of each DUT and, instead, cause
these pin(s) to drive a logic state set prior to executing the test pattern.

The following simplified diagram is used to describe this operation:

Normally, during pattern execution, the drive signal from a pin’s timing generator passes
through that pin’s Drive Select MUX to control the pin’s PE driver. In this situation, the Drive
Source Select signal shown above selects the Drive signal from the timing generator,
allowing normal operation.

The Drive Source Select signal is normally only changed in two situations:

• The pin_dc_state_set() function can be used, without executing a test
pattern, to cause specified pins to drive high (VIH), low (VIL), super-voltage
(VIHH) or to tri-state. Optionally, the hold_state argument can be used inhibit
drive edges during subsequent test pattern executions. The
pin_dc_state_set() function sets both the CPU Drive State signal and the
Drive Source Select signal for the specified pin(s). Using pin_dc_state_set(),
each pin of a given pin-pair can be controlled independently.

E
rr

or
 L

og
ic

Strobe Per-Pin

DUT
I/O

Drive

PE Driver

From
Timing

Generator

Drive
Select
MUX

CPU Drive State

Drive Source Select

To other pin of pin-
pair
 2/27/09 Pg-1667

Controlling PE Levels from the Test Pattern
• The Drive Source Select signal for each pin can also be controlled from the test
pattern, using the Controlling PE Levels from the Test Pattern facility (more below).
This allows the test pattern to determine whether a given pin’s driver receives the
drive signals from its associated timing generator or is set to the CPU Drive State,
as programmed using pin_dc_state_set() before the test pattern is executed.
Note that strobe and I/O edges are not affected and that each pin of a given
pin-pair can be configured separately.

To allow the test pattern to manipulate the Drive Source Select signal (correctly) requires
two things:

• Execute pin_dc_state_set() (twice, more below) to configure the CPU Drive
State signal for the target pins. This sets the desired static pin state (high/VIH, low/
VIL, super voltage/VIHH or tri-state) prior to pattern execution.

• Add the appropriate Level Set instructions to the test pattern, to cause the Drive
Source Select signal to switch between the normal timing generator drive signal and
the CPU Drive State (this controls the Drive Select MUX selection). As noted
below, these pattern instructions must include a delay to allow adequate time for
the Drive Select MUX configuration to change before the test pattern depends on
the change.

In the following example, pin_dc_state_set() is used to configure the pins in the pin list
named pl_WE:

pin_connect(pl_WE); // Normally already in the test program
pin_dc_state_set(pl_WE, t_vih, TRUE); // REQUIRED, more below
pin_dc_state_set(pl_WE, t_vih, FALSE); // REQUIRED, more below

Note that the pin_dc_state_set() must be executed twice for each pin list:

• First execution, with the hold_state argument = TRUE, latches the CPU Drive
State signal for the specified pin(s). In this example, the drive-high (VIH) state is
specified (t_vih). But, specifying hold_state = TRUE also changes the Drive
Source Select signal to select the CPU Drive State, which inhibits signals from the
timing generators. To restore normal TG operation requires that
pin_dc_state_set() be executed again...

• Second execution, with the hold_state argument = FALSE. This restores normal
timing generator operation without changing the latched CPU Drive State value.

The following example test pattern causes the pins in the pin list named pl_WE to switch to
the static driver state (CPU Drive State) set in the code above. In this state, these pins will
not receive driver signals (edges) from their associated timing generators:
 2/27/09 Pg-1668

Controlling PE Levels from the Test Pattern
% LSENABLE pl_WE // Select target pins
% LEVELSET SET, _SEL_RT_D0 // _SEL_RT_D0 = Drive Source Select

UDATA 0 // 0 = select CPU Drive State
% waitA: // Wait 2uS for pin config to

COUNT COUNT1, DECR, AON // actually change. Setup
MAR CJMPNZ, waitA // COUNT1 accordingly

The following instructions restores normal operation for the pins in the pin list named pl_WE;
i.e. to receive driver signals (edges) from their associated timing generators:

% LSENABLE pl_WE // Select target pins
% LEVELSET SET, _SEL_RT_D0 // _SEL_RT_D0 = Drive Source Select

UDATA 1 // 1 = select TG drive signal

% waitB: // Wait 2uS for pin config to
COUNT COUNT1, DECR, AON // actually change. Setup
MAR CJMPNZ, waitB // COUNT1 accordingly

Also note:

• It is the user’s responsibility to restore normal driver operation (the system
software does not do this). This can be done as shown in the second pattern
example above or by executing pin_dc_state_set() with the hold_state
argument = FALSE; i.e.

pin_dc_state_set(pl_WE, t_vih, FALSE);

• Note that the test pattern must include a 2uS delay, to allow adequate time for the
LEVELSET instruction to change the Drive Select MUX selection. In the examples
above, this is shown as a separate delay instruction using counter COUNT1,
however this delay can also be obtained using a long cycle period in the
LEVELSET instruction. This delay is the user’s responsibility.

• Using this feature only the SET option to the LEVELSET pattern instruction is valid
(TWEAK is not valid).

• In Multi-DUT Test Programs the Active DUTs Set (ADS) determines which pin(s)
are enabled at any given time.

4.17.1.4 changes_voltages()
See Controlling Magnum 1 Levels from the Test Pattern, Controlling PE Levels from the Test
Pattern.
 2/27/09 Pg-1669

Controlling PE Levels from the Test Pattern
Description
The changes_voltages() function can be used to determine if a specified test pattern is
Controlling PE Levels from the Test Pattern.

Usage
BOOL changes_voltages(Pattern *obj);

where:

obj identifies the target pattern.

changes_voltages() returns TRUE if the specified pattern (obj) is Controlling PE Levels
from the Test Pattern, otherwise FALSE is returned.

Example
BOOL cv = changes_voltages(myPat);
if(cv == TRUE) output(" myPat does control levels");
else output(" myPat does NOT control levels");

4.17.1.5 level_set_value_change()
See Manipulating Tester Hardware, Controlling PE Levels from the Test Pattern.

Note: first available in software release h3.3.xx.

Description
The level_set_value_change() function is used to modify the DC parameter value of a
specified target instruction in test patterns which set/tweak PE levels. See Controlling
Magnum 1 Levels from the Test Pattern.

The following 2 example patterns (one memory, one logic) are used to describe the
operation of level_set_value_change():

PATTERN(myPat, memory)
% MAR INC // One or more memory instructions here
// ...
% target_label:
 2/27/09 Pg-1670

Controlling PE Levels from the Test Pattern
LSENABLE someDPSpins
% LEVELSET SET, LS_DPS

UDATA 3.3 V

PATTERN(myPat, logic)
% VEC HL10X HL10X HL10X // One or more logic instructions here
// ...
% target_label:

VEC HL10X HL10X HL10X
LSENABLE someDPSpins

% VEC HL10X HL10X HL10X
LEVELSET SET, LS_DPS
VUDATA 3.3 V

In these examples, the LEVELSET instruction sets the primary DPS voltage (LS_DPS) to
3.3V, on the DPS identified by the someDPSpins pin list specified in the LSENABLE
instruction. Operational details are documented in Controlling Magnum 1 Levels from the
Test Pattern. Given these example patterns, the level_set_value_change() function
may be used to change the 3.3V value to a different value. Subsequently, executing either
pattern will set the DPS to the new value in these instructions.

Note the following:

• The obj argument to level_set_value_change() identifies the pattern
containing the target pattern instruction to be modified. The pattern specified by
obj must include at least one set of LSENABLE/LEVELSET instructions.

• The label and delta arguments identify the target pattern instruction to be
modified, as follows:
• The pattern instruction to be modified must be a LEVELSET instruction.
• label is a Pattern Label attached to a pattern instruction preceding the target

instruction.
• delta specifies an offset from label and is used (required here) when the

target pattern instruction does not have a label. In this application a non-zero
delta value is always required because the LEVELSET instruction is not allowed
to have a Pattern Label (to prevent accidentally branching to a LEVELSET, which
must always be preceding by a LSENABLE instruction). Using either example
pattern above, the target instruction can be identified with
label = target_label and delta = 1.
 2/27/09 Pg-1671

Controlling PE Levels from the Test Pattern
• One version (overload) of level_set_value_change() includes a range
arguement. This version MUST be used when modifying any parameter type which
requires that a range argument be specified in the test pattern LEVELSET Pattern
Instruction. The system type cannot enforce this. The table below lists these
parameter types.

Note: abnormally high voltage or current values (positive and negative) may be
generated if this rule is violated. Proper operation requires that the range
specified using level_set_value_change() match the range specified in
the test pattern (which must match the range currently programmed in the target
hardware at the time the pattern executes, see LEVELSET Pattern Instruction).
The system software cannot enforce this, the user is responsible!

The following table lists the parameter types which require that a range argument
be specified, see previous note:

Usage
BOOL level_set_value_change(Pattern *obj,

LPCTSTR label,
int delta,
double value);

Level-set
Parameter Description

LS_DPS_CURRENT_HIGH
LS_DPS_CURRENT_LOW

DPS Current Test Pass/Fail Test Limits

LS_PMU_IPAR_FORCE
LS_PMU_IPAR_HIGH
LS_PMU_IPAR_LOW

PMU Force Current - Warning see Note:.
PMU Current Test Pass/Fail Test Limit
PMU Current Test Pass/Fail Test Limit

LS_PMU_VPAR_HIGH
LS_PMU_VPAR_LOW

DPS Voltage Test Pass/Fail Test Limits

LS_PTU_IPAR_FORCE
LS_PTU_IPAR_HIGH
LS_PTU_IPAR_LOW

PTU Force Current - Warning see Note:.
PTU Current Test Pass/Fail Test Limit
PTU Current Test Pass/Fail Test Limit
 2/27/09 Pg-1672

Controlling PE Levels from the Test Pattern
BOOL level_set_value_change(Pattern *obj,
LPCTSTR label,
int delta,
double value,
Range range);

where:

obj identifies the pattern to be modified. See Description.

label and delta identify the instruction to be modified. See Description.

value specifies the new value. Units are supported.

range specifies the range used to calculate the underlying hardware value written to the
pattern. Legal values are of the Range enumerated type. This argument is required when
the parameter type is included in the table above. The specified range must match the value
specified in the target pattern instruction (which must match the range currently
programmed in the target hardware at the time the pattern executes, see LEVELSET
Pattern Instruction). See Note:.

level_set_value_change() returns TRUE if no errors occurred otherwise FALSE is
returned.

Example
BOOL ok = level_set_value_change(myPat, "target_label", 1, 2.1 V);

 2/27/09 Pg-1673

Chapter 5 Redundancy Analysis (RA)

Note: the functions used to configure and use the Error Catch RAM (ECR), including
for RA applications, were re-implemented and re-named for Magnum. See Error
Catch RAM Software. This chapter only refers to the Magnum ECR functions.

Note: the legacy (Maverick-I/-II) Redundancy Analysis functions continue to operate
as documented however, they have ZERO built-in parallel test support and no
support for using Magnum’s 64 B-pins (see Functional Pin-pairs).

DO NOT mix the Maverick RA functions with the Magnum RA functions: they
DO NOT inter-operate.

For all new Magnum test programs, it is highly recommended that the new RA
functions, documented in this section, be used.

The RA topic is organized into the following main sections:

• Overview and Concepts
- RA Pseudo-Code Example
- RA Data and Lists
- RaErrorPosition
- RA vs. Magnum 1/2 Parallel Test
- Must-repair vs. Sparse-repair

• Spares For Repair
- Spare Rows, Spare Columns
- Per I/O Spares
- Per-I/O Spare Mask
- Rows-Used-Together(RUT), Columns-Used-Together(CUT)
- Spare Segments

• RA Software
- Too many functions to list here
 2/27/09 Pg-1674

Redundancy Analysis (RA) Overview and Concepts
• Magnum RA vs. Maverick-I/-II RA
- Magnum vs. Maverick RA Functions

5.1 Overview and Concepts
This section includes a substantial overview of RA concepts. Also see RA Data and Lists,
Must-repair vs. Sparse-repair, Logical vs. Physical, vs. Electrical Addresses.

Memory devices often contain spare circuits which can be used to replace (repair) defective
memory elements during the manufacturing process. This repair is commonly called
redundancy repair.

Prior to performing a redundancy repair, a redundancy analysis (RA) must be made which
considers test failure data, the device architecture and available spare repair elements, rules
about how these spare elements can be used, etc. This chapter documents the software
used to perform the redundancy analysis, and how the necessary model of the device
architecture, and available spare row/column elements, is described in user-written
software.

Note: Nextest can not document the actual device repair process or software because
each device is unique. The primary output of the Nextest RA software is a
Repair List which is used by user-written software to actually repair the device.
More below.

Redundancy Analysis (RA) reads and analyzes errors captured in the Error Catch RAM
(ECR) during the execution of one or more functional memory test pattern(s). RA then
generates 2 basic outputs:

• An overall result status (obtained using ra_result_get()); i.e. does the DUT
need repair and is it repairable given the available spare resources?

• The Repair List containing specific repair details; i.e. which spare element(s) were
allocated to repair the device.

To use RA, the user’s test program must do the following (note, these steps are described in
greater detail below):

1. Configure the ECR (typically once)

2. Configure the RA subsystem (typically once)
 2/27/09 Pg-1675

Redundancy Analysis (RA) Overview and Concepts
3. Define the DUT’s segment (block) configuration (typically once)

4. Define the DUT’s spare resources configuration (typically once)

5. Clear the ECR

6. Reset the RA Data and Lists

7. Execute one or more functional tests and log errors to the ECR

8. Invoke RA

9. Examine and use the RA results

10.Repeat steps 5. through 9. for each new set of DUT(s) being tested, OR, to re-test and
re-repair DUT(s) which were previously repaired.

In Magnum Multi-DUT Test Programs, user code only needs to define the segment (block)
architecture and spares architecture for a single DUT, the system software then manages
the details separately for each DUT defined in the Pin Assignment Table. The parallel test
architecture of the Magnum hardware and software allows optimized hardware operations
and software RA to provide the performance needed in production test applications.

The following outline describes, in more detail, the configuration steps noted above (the RA
Pseudo-Code Example implements this outline in even more detail):

• Execute ecr_config_set() to configure the ECR, normally to match the DUT's
X/Y address and data architecture. This must be done before the DUT’s RA
configuration is defined (next) and before any functional tests which capture errors
to the ECR are executed.

• Execute ra_config_set() to initialize the RA subsystem and specify various
options.

• Use ra_segment_make(), one or more times, to define the DUT’s RA Segment
architecture. This tells the RA software the number and size of each memory
segment (block) in the DUT. In Multi-DUT Test Programs, the system software
duplicates the segments for each DUT in the program.

• Use ra_spare_row_make() and ra_spare_col_make() to create one or more
spare row(s) and/or spare column(s).

• Use ra_spare_add() to formally associate each spare created with one or more
segments. This creates the Spares List which, during RA, tracks which spares are
available to make a repair. In Multi-DUT Test Programs, the system software
duplicates the Spares List for each DUT in the program. Linked Segments may be
created when a given spare is associated with more than one segment.
 2/27/09 Pg-1676

Redundancy Analysis (RA) Overview and Concepts
This normally completes the ECR and RA configuration. These steps are usually only
performed once, typically in the Site Begin Block.

To actually perform an RA involves the following sequence, which will execute in Test Blocks
executed by the Sequence & Binning Table:

• Execute ecr_all_clear() to delete errors from any previously tested DUTs
from the ECR.

• Execute ra_reset() to reset the various RA lists (Error List, Spares List, Repair
List, Unusable List, Bad Segment List) for all DUTs.

• Use funtest() with the fullec option to execute one or more functional
memory test patterns and log errors to the ECR.

• Execute ra_execute() to perform the RA, which does the following:
• Scans (reads) the Error Catch RAM (ECR) and caches the errors for each

segment of each active DUT (each DUT in the Active DUTs Set (ADS)). This is
done once, for all active DUT(s).

• Individually analyze the errors for each segment of each active DUT, to
determine the overall status of each DUT and generate the Repair List. User
code may use Redundancy Call-back Functions to modify various analysis
operations or replace Nextest-defined functionality with user-written code.

• When a repairable failure is detected identify which spare element is to be used
to make the repair and move it from the Spares List to the Repair List. This must
consider which spares are currently available (Spares List). User code can use
Redundancy Call-back Functions to enforce device-specific rules regarding how
spares may be used or limited, move spares to the Unusable List, etc. More
below.

• For each active DUT, if an unrepairable segment is identified add it to the Bad
Segment List and stop analyzing the DUT if the max_bad_segments limit is
exceeded (see ra_config_set()).

• User code then performs the following for each active DUT:
• Execute ra_result_get() to get the overall RA result status for the DUT.
• If the status indicates the DUT needs repair and is repairable use various Repair

List Functions to get the Repair List.
• Either Repair the DUT or export the Repair List for off-line repair. This is device

specific and cannot be done by the RA software.
• If appropriate, use ra_repair_done() to update the Repair List in preparation

for re-test and re-repair. This changes the state of any repairs in the Repair List
from pending to done (see Repair List).
 2/27/09 Pg-1677

Redundancy Analysis (RA) Overview and Concepts
As noted above, the RA Pseudo-Code Example implements this outline in even more detail.

When all active DUT(s) have been processed, if appropriate, re-test and re-repair those
DUT(s) which were just repaired. The process stops when:

• A given DUT has been fully repaired; i.e. it passes the appropriate tests.
• The DUT is determined to be unrepairable; i.e. defects remain and the device

can’t be repaired with the available spares resources.
• User code exits the process, for other reasons.

In the latter two cases the DUT is usually considered to be defective.

As mentioned above, actual device repair may be done off-line, typically using laser
hardware and software developed by others, or online using user-written software in the test
program performing the RA. When done off-line, the Repair List must be exported (via user-
written code) to capture the repairs identified by the RA. It is important to note that actual
repair is highly device specific, thus Nextest RA software is not used to actually repair the
DUT.

Selecting a specific spare element to make a given repair can be a complex process since
multiple repair options often exist and spare elements are often constrained, by the device
design, in how they may be used to repair the device. For example:

• A single spare row and/or column may not be available. Spare rows (or columns)
are often grouped such that only multiple rows (or columns) can be replaced as a
unit. When this occurs, the spare elements can be defined as having 2 or more
rows and/or columns used together (see Rows-Used_Together, Columns-
Used_Together).

• Only a subset of addresses and/or data bits can be repaired using a given spare
element. Per I/O Spares are used in the latter situation.

• Spare elements may be shared between segments, which may or may not create
Linked Segments.

• There may be a larger number of spare rows vs. columns (or vice versa). Spare
selection priority must be user programmable.

• ... Etc. ..
 2/27/09 Pg-1678

Redundancy Analysis (RA) Overview and Concepts
Note: most redundancy requirements can be addressed with just a few of the
functions documented in this Redundancy Analysis (RA) chapter. Conversely,
many of the functions documented here will only be used in those rare
occasions when the user needs to customize portions of the RA operation. The
documentation for these rarely used functions has a special note indicating that
the function is not commonly used in mainstream redundancy applications. The
following functions are commonly used to implement redundancy analysis and
repair:
ecr_config_set() (see Error Catch RAM Software)
ecr_all_clear() (see Error Catch RAM Software)
ra_config_set()
ra_segment_make()
ra_spare_row_make(), ra_spare_col_make()
ra_spare_add()
ra_execute()
ra_result_get()
ra_repaired_row_count_get(), ra_repaired_col_count_get()
ra_repaired_rows_get(), ra_repaired_cols_get()
ra_repair_done()
ra_reset()
ra_dump() (during debug)

5.1.1 RA Pseudo-Code Example
See Redundancy Analysis (RA), Overview and Concepts.

Note: the detailed example below is also described in the Overview and Concepts
section, in two levels of detail: very basic, more detailed.

In this example, the DUT has 8X and 8Y addresses, 8 data, organized in 4 segments, each
with 128 rows x 128 columns. Each pair of segments have two 1-bit-wide per-I/O spare
columns (see Per I/O Spares) and two spare rows, each spare consisting of 2 rows; i.e. each
 2/27/09 Pg-1679

Redundancy Analysis (RA) Overview and Concepts
row spare is a 2-RUT spare (see Rows-Used-Together(RUT), Columns-Used-
Together(CUT)):

This example is divided into two sections:

• Code which is typically executed once to configure the ECR and RA software and
to describe the DUT’s segment and redundancy architecture.

• Code which is executed for each set of DUTs being tested; i.e. each time the
Sequence & Binning Table is executed. This retrieves errors from the ECR,
performs the RA, allocates spares for repair, etc.

The following code is normally executed only once. Consider doing this in the Site Begin
Block:

// Setup the ECR in preparation for use
ecr_config_set(8, 8, data_pins); // ecr_config_set()

// Initialize the RA subsystem to configure and use the
// ECR Mini-RAM. Must be done after ecr_config_set() and before any
// test patterns are executed to capture errors in the ECR
ra_config_set(TRUE, TRUE); // ra_config_set()

Two, 1-bit

0 1 2 3 4 5 6 0 1 2 3 4 5 6
0
1
2
3
4
5
6

0
1
2
3
4
5
6

Spare Columns

Segment-1 Segment-2

Segment-3 Segment-4

Two, 1-bit
Spare Columns

Two, 2-RUT
Spare Rows
8-bit data

Two, 2-RUT
Spare Rows
8-bit data

Column address-7 selects
between 2 segments.

Row address-7 selects
between 2 segments.
 2/27/09 Pg-1680

Redundancy Analysis (RA) Overview and Concepts
// The DUT architecture has 4 segments, each 128 rows by 128
// columns. Define one DUT for RA; the system software will
// automatically create the segments for every DUT in the program.
RaSegment S1, S2, S3, S4;
S1 = ra_segment_make(0, 127, 0, 127); // ra_segment_make()
S2 = ra_segment_make(0, 127, 128, 255);
S3 = ra_segment_make(128, 255, 0, 127);
S4 = ra_segment_make(128, 255, 128, 255);

// Columns are PerIO spares, 1 bit wide. seg_length of '2' is
// required to denote that the spare covers 2 segments
RaSpareCol col1 = ra_spare_col_make(0x1, 2);
RaSpareCol col2 = ra_spare_col_make(0x1, 2);
RaSpareCol col3 = ra_spare_col_make(0x1, 2);
RaSpareCol col4 = ra_spare_col_make(0x1, 2);
// Add the spare columns to the appropriate segments
ra_spare_add(S1, col1);
ra_spare_add(S3, col1);
ra_spare_add(S1, col2);
ra_spare_add(S3, col2);
ra_spare_add(S2, col3);
ra_spare_add(S4, col3);
ra_spare_add(S2, col4);
ra_spare_add(S4, col4);

// Spare rows are 2-RUT spares. mask = 0 specifies full width spare.
// seg_length of 2 is required to denote that the spare covers 2
// segments. numRUT of 2 says this spare replaces 2 rows. Leaving
// blanksBetweenRUT at the default value denotes that the 2 rows
// replaced are adjacent to each other.
RaSpareRow row1 = ra_spare_row_make(0, 2, 2);
RaSpareRow row2 = ra_spare_row_make(0, 2, 2);
RaSpareRow row3 = ra_spare_row_make(0, 2, 2);
RaSpareRow row4 = ra_spare_row_make(0, 2, 2);
// Add the spare rows to the appropriate segments
ra_spare_add(S1, row1);
ra_spare_add(S2, row1);
ra_spare_add(S1, row2);
ra_spare_add(S2, row2);
ra_spare_add(S3, row3);
 2/27/09 Pg-1681

Redundancy Analysis (RA) Overview and Concepts
ra_spare_add(S4, row3);
ra_spare_add(S3, row4);
ra_spare_add(S4, row4);

The pseudo-code below is typically executed each time the Sequence
& Binning Table executes. Comments indicate where preparations are
made to re-test/re-repair those DUTs which were repaired:

// Reset the RA lists (Error List, Spares List, Repair List,
// Unusable List, Bad Segment List) in preparation for testing a
// new set of DUTs, and clear all previous errors from the ECR.
// Consider doing this in a Before-testing Block.
ra_reset();
ecr_all_clear();

// Execute other test blocks as desired...

// Setup DC, AC, DPS etc. for functional test(s) and RA.

// Execute one or more memory pattern(s) to test the active DUT(s)
// and log errors to the ECR
funtest(myPattern1, fullec); // funtest()
funtest(myPattern2, fullec); // Etc... errors accumulate in ECR

// Perform RA to retrieve and cache errors from the ECR for each
// DUT in the Active DUTs Set (ADS), then analyze the errors for
each
// active DUT.
ra_execute(); // Arguments not shown, see ra_execute() for details

// Check the RA result for each active DUT
{ // Extra braces required to set ActiveDutIterator scope
ActiveDutIterator duts; // For each active DUT...
while (duts.More()) {

// Get the RA status result for this DUT
RaResult status = ra_result_get();

DutNum d = active_dut_get(); // For printing only
switch(status){

case t_ra_good :
output(" t_dut%d had NO ERRORS, needs no repair", d);

break;
case t_ra_unrepairable :

output(" t_dut%d had errors, is NOT REPAIRABLE", d);
break;
case t_ra_repairable :
 2/27/09 Pg-1682

Redundancy Analysis (RA) Overview and Concepts
output(" t_dut%d had errors, IS REPAIRABLE", d);
DoRepairHere();// User code to repair this device or export

// the Repair List for off-line repair
ra_repair_done(); // Prepare for re-test/re-repair
if(verbosity == 999) ra_dump();

break;
case t_ra_not_analyzed :

output(" ERROR: ADS was modified after the RA was done");
break;

}
} // while(duts.More())
} // Extra braces required to set ActiveDutIterator scope

// Re-test and re-repair as appropriate.

Note the following:

• The actual repair of each DUT must be done by user-written code, represented
above by DoRepairHere(). If the repair is done off-line, or by another test
program, this code must export the Repair List for later use (see
ra_repaired_row_count_get(), ra_repaired_col_count_get(),
ra_repaired_row_get(), ra_repaired_col_get(),
ra_repaired_rows_get(), ra_repaired_cols_get()).

• ra_repair_done() moves spares from the pending Repair List to the done
Repair List, leaving the done Repair List available to see what was already
repaired. This is only required to prepare for re-test and re-repair of the same set
of DUTs.

• The verbosity variable above is user-defined (elsewhere) and represents the
fact that ra_dump() is not normally used during production test.

5.1.2 RA Data and Lists
See Redundancy Analysis (RA), Overview and Concepts.

The RA software uses several lists to manage and track errors, repairs and spare elements.
In general, separate lists are maintained for each RA Segment. And, in Multi-DUT Test
Programs, the RA software automatically creates and maintains these lists for each DUT
in the program.
 2/27/09 Pg-1683

Redundancy Analysis (RA) Overview and Concepts
• Error List: in this document, for convenience and clarity, the term Error List
is used to represent the errors scanned (read) from the Error Catch RAM (ECR)
and cached for each segment of each active DUT. These are the errors actually
analyzed during the RA. This list is populated by ra_execute(), using
ra_scan_area_callback() or the user’s call-back if an
RaScanAreaCallbackFunc Call-back Function is registered. The Error List is
cleared using ra_reset() or ra_segment_reset() (ra_reset() calls
ra_segment_reset() for all segments).

• Spares List: the list of spare elements (RaSpareRows and/or RaSpareCols)
which are currently available to repair each segment. At any given time, these are
the unused spares which have not been moved to the Repair List or the
Unusable List. The Spares List for a given segment is implicitly created by
ra_spare_add(), which associates the spare rows/columns created using
ra_spare_row_make(), ra_spare_col_make() with one or more
segment(s).

• Repair List: the main output of redundancy analysis (RA); i.e. a list of the spare
rows and/or columns allocated, during RA, to repair each segment. The Repair
List actually stores a list of RaSpareRow(s) and/or a list of RaSpareCol(s).
Each RaSpareRow identifies both the spare row allocated for a repair and records
the row it replaces. When the DUT supports Per I/O Spares, the spare also records
the Per-I/O Spare Mask identifying what data bits the spare replaces. The same
applies to RaSpareCol vs. columns. During RA, spares are moved from the
Spares List to the Repair List by the ra_spare_use() function which is
called, as necessary, by ra_execute(). It is the Repair List which user code
either uses to actually repair the device or exports to perform off-line repair. To
access the Repair List, to repair a DUT or to export the list, user code uses
ra_repaired_row_count_get(), ra_repaired_col_count_get() and
ra_repaired_row_get(), ra_repaired_col_get() or
ra_repaired_rows_get(), ra_repaired_cols_get(). The
ra_what_repaired_row_get(), ra_what_repaired_col_get() functions
may be used to identify which spare was allocated to replace a specified row or
column. Spare elements in the Repair List have two states:
- Pending - identified repairs not yet consummated
- Done - completed repairs retained for reference
Once repairs are complete, before the device is retested, if the test strategy allows
additional repairs the ra_repair_done() function is used to change the state of
the spares in the Repair List from pending to done.

• Unusable List: a list of spare elements which have not been used but become
unusable due to enforcement of the DUT’s redundancy architectural rules. This is
done by the system software when dealing with shared spares (see Linked
 2/27/09 Pg-1684

Redundancy Analysis (RA) Overview and Concepts
Segments) and may also be done using Redundancy Call-back Functions. Spare
elements are moved between the Spares List and Unusable List using the
ra_usable_set() and the ra_unusable_set() functions. ra_reset() and
ra_segment_reset() move spares from the Unusable List back to the
Spares List.

• Bad Segment List: a list of segments which have been determined to be
unrepairable. See Spare Segments.

The following diagram shows how RA information is moved between the different lists:

5.1.3 RaErrorPosition
See Redundancy Analysis (RA), Overview and Concepts.

The Magnum RA software supports Per I/O Spares i.e. spare row(s) and/or spare column(s)
which replace a subset of a given row’s or column’s data bits.

If the RA software did not support Per I/O Spares, a given repair could be specified using an
integer to identify which spare row or spare column is allocated to replace a given bad row or

Repair List
(pending)

RaSpareCol(s)
RaSpareRow(s)

Spares List

Bad
Segment
List

Analysis,
performed by

ra_execute()

RaSpareCol(s)
RaSpareRow(s) RaSpareCol(s)

RaSpareRow(s)
Repair List

(done)

RaSegment(s)Unusable List RaSpareCol(s)
RaSpareRow(s)

Error List

ra_unusable_set()

ra_spare_use()
executed by
ra_execute()

Error Catch
RAM
(ECR)

ra_reset() clears all lists, but not the ECR, in preparation for testing new DUT(s)

ra_usable_set()

ra_repair_done()

RaErrorPosition(s)
 2/27/09 Pg-1685

Redundancy Analysis (RA) Overview and Concepts
bad column. However, Per I/O Spares require that the RA software also identify which data
bits a given spare row or spare column will replace. For example, consider a segment which
has four 1-bit per-I/O spare columns and a segment with the errors in column 94 shown
below:

In this scenario, three 1-bit per-I/O spare columns are required to repair the segment:

• Spare column SC1 is allocated to replace bit-4 i.e. mask = 0x10
• Spare column SC2 is allocated to replace bit-5 i.e. mask = 0x20
• Spare column SC3 is allocated to replace bit-0 i.e. mask = 0x01

Therefore, the repair made by a given spare requires specifying two components:

• A bad row or column number; in the previous example column 94.
• A Per-I/O Spare Mask; in the previous example 0x31.

In the Magnum RA software, these are represented as an RaErrorPosition:

0 94 n
0x00
0x01
0x31
0x01
0x01

Columns
Four

1-Bit per-I/O
Spare Columns

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Bit Errors

1
0

2
3
4
n

Rows

Rows

Column 94

1
2
3
4

x x
x
x
x
x

S
C
1

S
C
2

S
C
3

S
C
4

Per-I/O Spare
Mask Value

SC1 = 0x10

SC2 = 0x20

SC3 = 0x01
 2/27/09 Pg-1686

Redundancy Analysis (RA) Overview and Concepts
typedef struct RaErrorPosition {
int rcnum; // Bad row or column number
__int64 mask; // Mask position within that row or col

} RaErrorPosition;

By definition, an RaErrorPosition stores two things:

• A (potentially bad) row or column e.g. the RaErrorPosition rcnum value.
• A bit-mask e.g. the RaErrorPosition mask value. See Per-I/O Spare Mask.

An RaErrorPosition is used in the following contexts:

• Each spare row (RaSpareRow) and spare column (RaSpareCol) stores an
RaErrorPosition, recording the bad row or column and data bits the spare is
allocated to replace. More below.

• Some RA functions require an RaErrorPosition as an input argument or return
an RaErrorPosition, or both.

• Arrays of RaErrorPositions (i.e. RaErrorPosArray) are also used as
input to or returned as output from some RA functions. More below.

Note that the errors stored in the Error List are not represented as an RaErrorPosition.
However, all of the RA functions which retrieve errors from the Error List return error
information only as an RaErrorPosition or RaErrorPosArray.

As noted above, each spare row (RaSpareRow) and spare column (RaSpareCol) stores an
RaErrorPosition, targeted at recording the bad row/column and data bits the spare will
replace. These operate as follows:

• When a spare is initially created (see ra_spare_row_make(),
ra_spare_col_make()), its RaErrorPosition rcnum value = -1 and
RaErrorPosition mask = the initial Per-I/O Spare Mask value of the spare.

• Subsequently, but before the spare is actually allocated for a repair (by
ra_spare_use() via ra_execute()), the rcnum and mask values may remain
as initialized or may reflect transient values assigned by various analysis functions
(see ra_what_repaired_row_get(), ra_what_repaired_col_get())
This applies to all spares in the Spares List and Unusable List.

• When a spare is allocated for repair it is moved from the Spares List to the Repair
List. At that time, the spare’s RaErrorPosition rcnum value records which bad
row or column the spare was allocated to repair and the RaErrorPosition mask
value records which data bits the spare will replace (see Per-I/O Spare Mask).
 2/27/09 Pg-1687

Redundancy Analysis (RA) Overview and Concepts
• Some RA functions require an RaErrorPosition or an RaErrorPosArray as
input, via an argument of the same type. In most cases, the value(s) supplied will
be obtained using an RA function which returns an RaErrorPosition or
RaErrorPosArray; i.e. user code will not normally be required to explicitly
identify rcnum or mask value(s).

• In this document, the term RaErrorPosition is used in context to refer to
error(s) obtained, using the various RA functions, from the Error List. This is done
to emphasize that, using Magnum RA software, an error usually consists of the
two component parts noted above.

• When a segment has Per I/O Spares, a given bad row or column may be
represented by more than one RaErrorPosition, each with a different Per-I/O
Spare Mask.

• When a segment does not have Per I/O Spares, a given bad row or column will be
represented by a single RaErrorPosition, with a Per-I/O Spare Mask reflecting
all data bits of the DUT.

• When a segment has Per I/O Spares, and every bit in a given row or column has
an error, the number of RaErrorPosition(s) needed to represent that row or
column will match the number of valid Per I/O Spares masks for the spares which
can be used to replace it

• Non-per-I/O spares are treated as per-I/O spares that replace the full data width of
the bad row or bad column.

• Row RaErrorPositions are usually different than column error positions for the
same error address. This is especially true when the row-vs-column spares have a
different data-width.

• RA functions which analyze and return repair results return values in the terms of
RaErrorPositions.

• The ra_spare_current_mask_set(), ra_spare_current_mask_get()
functions may be used to set and get a spare’s current RaErrorPosition mask
value of a spare row or column. As indicated above, this is normally not necessary
(for advanced users only).

• The ra_spare_mask_count_get() and ra_spare_mask_get() functions can
be used to sequentially get each legal mask value for a given spare.

5.1.4 RA vs. Magnum 1/2 Parallel Test
See Redundancy Analysis (RA), Overview and Concepts, Magnum 1, 2 & 2x Parallel Test.
 2/27/09 Pg-1688

Redundancy Analysis (RA) Overview and Concepts
The Magnum Test System software formally supports parallel test; i.e. concurrently testing
multiple DUTs in parallel. The general features and operation are described in Magnum 1, 2
& 2x Parallel Test. Issues specific to Redundancy Analysis (RA) are described below.

The following information applies to Multi-DUT Test Programs; i.e. test programs which
define more than one DUT in the Pin Assignment Table:

• Except as noted below, all setter functions operate on all DUT(s) in the Active
DUTs Set (ADS) and all getter functions return a value from the first DUT in the
Active DUTs Set (ADS). This is the general paradigm for all Nextest functions in
Multi-DUT Test Program.

• ra_config_set() should be executed once regardless of the number of DUT(s)
defined in the Pin Assignment Table. The Active DUTs Set (ADS) and Ignored DUTs
Set (IDS) have no effect on ra_config_set().

• User code must create/define segments for a single DUT, using
ra_segment_make(). The system software then automatically duplicates the
segment configuration for each DUT in the Pin Assignment Table. The segment
(RaSegment) returned by ra_segment_make() is from the first DUT in the Active
DUTs Set (ADS) but may be used elsewhere to identify the segment for any DUT,
with the Active DUTs Set (ADS) determining which DUT(s) are affected or
accessed.

• User code must create/define spare row(s) and/or spare column(s) for a single
DUT, using ra_spare_row_make() and ra_spare_col_make(). The system
software then automatically duplicates these spare(s) for each DUT in the test
program. The spare row (RaSpareRow) returned by ra_spare_row_make() and
the spare column (RaSpareCol) returned by ra_spare_col_make() is from the
first DUT in the Active DUTs Set (ADS) but may be used elsewhere to identify a
spare, for any DUT with the Active DUTs Set (ADS) determining which DUT(s) are
affected or accessed.

• User code associates (adds) spare row(s) and/or spare column(s) to a segment
using ra_spare_add(). The system software automatically duplicates these
spare-vs-segment associations for each DUT in the Pin Assignment Table. The
RaSegment returned by ra_segment_make() is used to identify the target
segment and the spare row (RaSpareRow) returned by ra_spare_row_make()
or spare column (RaSpareCol) returned by ra_spare_col_make() identifies
the target spare.

• The ra_execute() function performs RA on all DUTs in the Active DUTs Set
(ADS).
 2/27/09 Pg-1689

Redundancy Analysis (RA) Overview and Concepts
• The ra_reset() and ra_segment_reset() functions have an optional
argument (all_duts) used to specify whether its operation applies to all DUTs in
the Pin Assignment Table (default) or only to the DUT(s) in the Active DUTs Set
(ADS).

• The Redundancy Call-back Functions operate identically for all DUTs in the Pin
Assignment Table; i.e. it is not possible to register Redundancy Call-back Functions
on a per-DUT basis. It is, however, possible to change which function is registered
and thus executed at any given time.

• ra_usable_set() and ra_unusable_set() move the specified spare for the
first DUT in the Active DUTs Set (ADS). This is unconventional as compared to most
other setter functions.

• ra_repair_done() moves repairs in the pending Repair List to the done Repair
List for the first DUT in the Active DUTs Set (ADS).

5.1.5 Must-repair vs. Sparse-repair
See Redundancy Analysis (RA), Overview and Concepts.

ra_execute() first scans (reads) errors from the ECR and caches them in the Error List,
separately for each segment of every active DUT. Rather than store all errors scanned
(read) from the ECR the RA software performs a preliminary analysis as the errors are read,
caching only the minimum number of errors necessary, thus both reducing the amount of
data stored for each DUT and improving performance.

ra_execute() then performs the detailed redundancy analysis on each DUT individually
in two phases:

• Must-repair
• Sparse-repair

Must-repair is performed initially and has two goals:

• Identify non-repairable DUTs as early as possible, to reduce time wasted testing
bad devices.

• Identify any rows or columns which can only be repaired one way; i.e. using only
a spare row or only a spare column.

For example, if the RA detects 5 failures in a particular row (by definition in 5 distinct
columns) if only three spare columns are available it is not possible to repair the device
using spare columns. This repair must use a spare row and thus is logged as a Must-repair
 2/27/09 Pg-1690

Redundancy Analysis (RA) Spares For Repair
row. A spare row is selected to make the repair and moved from the Spares List to the
Repair List, and the associated failures are removed from the analysis (removed from the
Error List). Must-repair columns are treated similarly.

Once the initial Must-repair phase has completed, only failures which were not identified as
Must-repair remain in the Error List. Provided the device is still repairable, these remaining
failures will be further analyzed by the Sparse-repair algorithm.

Only failures not previously identified as Must-repair are considered during the Sparse-repair
evaluation. However, since the consumption of a spare element changes the conditions
used to detect a Must-repair row or column, Must-repair is performed again any time a
Sparse-repair is identified.

A more detailed description of the entire analysis and repair process is outlined in the
ra_execute() function subsection.

5.2 Spares For Repair
See Redundancy Analysis (RA), Overview and Concepts, RA Software.

This section covers the following topics:

• Spare Rows, Spare Columns
• Per I/O Spares
• Per-I/O Spare Mask
• Rows-Used-Together(RUT), Columns-Used-Together(CUT)
• Spare Segments

5.2.1 Spare Rows, Spare Columns
See Redundancy Analysis (RA), Overview and Concepts, Spares For Repair.

Spare rows and/or spare columns and/or Spare Segments, also called spare elements or
just spares, are the device specific resources available to repair a defective DUT.

In the RA software, one or more spare row(s) and/or column(s) are defined/created using
ra_spare_row_make(), ra_spare_col_make(). To be used during RA, each spare
 2/27/09 Pg-1691

Redundancy Analysis (RA) Spares For Repair
must be associated with one or more segments, using ra_spare_add(). Note that Spare
Segments are treated differently, without formal creation and require user code support.

Then, during the RA performed by ra_execute(), specific spares are identified to repair
(replace) each defective row and/or column. If the RA consumes all the spares before a
DUT is completely repaired that DUT is considered unrepairable; i.e. bad.

As indicated, each spare is associated with one or more specified segments. In some device
architectures a given spare spans more than one segment. When this occurs the associated
segments are considered linked. Linked Segments change how the RA actually analyzes
errors and allocates spares since the spare actually affects multiple segments. When a
spare causes Linked Segments, using that spare will, by definition, replace the same row(s)
or column(s) in all segment(s) to which it is linked.

A spare can be shared between segments without linking those segments. This means that
the spare can be used to repair one of the segments which share it. This is described in
more detail in Linked Segments.

In some DUT architectures, a single spare row or column element may replace more than
one actual row or column. For example, when a single spare row element replaces 4 actual
rows, the RA software will treat this as 4 rows used together, or RUT. Similarly, columns
used together are called CUT. See Rows-Used-Together(RUT), Columns-Used-
Together(CUT). To operate properly, the RA software must be aware of RUT and/or CUT
features in the DUT architecture. This is specified when each spare is created, using
ra_spare_row_make(), ra_spare_col_make(). Note that ECR address
compression is not required to support use of RUTs and/or CUTs (unlike Maverick-I/-II).

The Magnum RA software supports Per I/O Spares; i.e. spare row(s) and/or column(s) which
replace some but not all data bits. The support for Per I/O Spares is the reason Per-I/O
Spare Masks exist.

Each spare records an RaErrorPosition; i.e. which row or column it is replacing and the
Per-I/O Spare Mask which records which data bits it is replacing. Each spare also has a
record of the number of rows/columns it replaces (i.e., RUTs and CUTs). When a given
spare resides in the Spares List or Unusable List, this information is not very useful;
however, after the spare is allocated for a repair and moved to the Repair List, the
RaErrorPosition records what the spare repaired. It is the Repair List which user code
accesses to actually repair the DUT.
 2/27/09 Pg-1692

Redundancy Analysis (RA) Spares For Repair
5.2.2 Per I/O Spares
See Overview and Concepts, Spare Rows, Spare Columns, Spares For Repair.

Per-I/O spare

As indicated in Spares For Repair, some device architectures have spare rows and/or
columns that replace less than a segment’s full data width. In this document and in the RA
software these are called per-I/O spares.

Except as noted, per-I/O spares have the same attributes as regular spares:

• A DUT can have per-I/O spare rows, per-I/O spare columns or both.
• All spares are created using the same methods; i.e. ra_spare_row_make(),

ra_spare_col_make(). The only difference between per-I/O spares and non-
per-I/O spares is the Per-I/O Spare Mask definition for a given spare. A spare with
a Per-I/O Spare Mask that includes the full data-width of a segment is a non-per-I/O
spare. Conversely, any spare with a Per-I/O Spare Mask that doesn’t include the full
data-width of the segment is a per-I/O spare.

• Per-I/O spares can span segments, which creates Linked Segments. Per-I/O
spares can be shared between segments (see Linked Segments).

• Per-I/O spares can be columns-used-together (CUTs) and/or rows-used-together
(RUTs). See Rows-Used-Together(RUT), Columns-Used-Together(CUT).

• All spare rows associated with a given segment must all the same data width.
Similarly, All spare columns associated with a given segment must all the same
data width. This means that it is not legal, in the same segment, to have a spare
row 16 bits wide, for example, and a second spare row 1 bit wide. Different
segments, however, may have different per-I/O widths.

Per-I/O spares have attributes and usage rules which do not apply to regular spares:

• Per-I/O spares may be 1 or more bit(s) wide; i.e. multi-bit per-I/O spares are
supported.

• Multi-bit per-I/O spares need not replace adjacent data bits. These are called non-
adjacent multi-bit per-I/O spares. For example, a per-I/O spare 2 bits wide could
have 1 bit in between the replaced bits. Given a DUT with an 8-bit data width, this
spare could be used to replace bits D0+D2 or D1+D3 or D4+D6 or D5+D7. In
another example, given a device with 2 per-I/O spares each 4 bits wide with a
1-bit gap, one spare can replace bits D0, D2, D4 and D6, the other spare can
replace bits D1, D3, D5 and D7.
 2/27/09 Pg-1693

Redundancy Analysis (RA) Spares For Repair
• All bits replaced using a multiple-bit per-I/O spare must reside within one row
address or one column address. For example, using a 4 bit wide per-I/O spare
column to replace column-17 all 4 bits must reside in column-17 and no bits may
reside in column-16 or column-18. For a device with this same spare architecture
but having 2 columns-used-together (CUT = 2) both columns of the CUT would
replace same bits.

• As indicated above, normally, a given per-I/O spare can potentially be used to
replace different sets of data bits at a given address. This can be visualized as
shifting the spare to cover different sets of data bits. A mask is used to specify
(and record) which bits are replaced by a given per-I/O spare. See Per-I/O Spare
Mask and RaErrorPosition.

• By default, a one-bit-wide per-I/O spare can replace any data bit of the segment
with which it is associated. Other per-I/O spare configurations have additional
constraints. For example, the diagram below shows how a per-I/O spare column
with 2 adjacent bits might be used to make 3 different repairs:
• The repairs shown in magenta are valid; i.e. D7/D6 of column C3 and D5/D4 of

column C1. Many other valid repairs are also possible but are not shown for
clarity. The mask value for both repairs is shown.
 2/27/09 Pg-1694

Redundancy Analysis (RA) Spares For Repair
• The repair shown in grey is invalid: a two-adjacent-bit per-I/O spare can only
replace D0/D1 or D2/D3 or D4/D5 or D6/D7 but not D4/D3:

D6
D5

D4
D3

D2
D1

D0

D6
D5

D4
D3

D2
D1

D0

C0 C1 C2 C3

R0

R1

R2

R3

R4

0x30

Mask
0xC0

D7

D7
 2/27/09 Pg-1695

Redundancy Analysis (RA) Spares For Repair
• The following example shows the valid repairs possible using a 2-CUT (see
Rows-Used-Together(RUT), Columns-Used-Together(CUT)) 4-bit per-I/O spare
column:

• By default, the RA software requires that a given per-I/O spare row must be able
to replace any legal set of bits (more below) of a bad row. The same rule applies
to spare columns. Any device-specific limitations on spare usage, including
per-I/O spares, must be handled by a user-written RaRowUseOK or RaColUseOK
call-back function (see Redundancy Call-back Functions).

D6
D5

D4
D3

D2
D1

D0

D6
D5

D4
D3

D2
D1

D0

C0 C1 C2 C3

R0

R1

R2

R3

R4

Mask
0x0F

Mask
0xF0

Mask
0xF0

Mask
0x0F

D7

D7
 2/27/09 Pg-1696

Redundancy Analysis (RA) Spares For Repair
5.2.3 Per-I/O Spare Mask
See Per I/O Spares, Redundancy Analysis (RA), Overview and Concepts.

As indicated in Per I/O Spares, a given per-I/O spare may be used to replace different
combinations of data bits at a given address. For example, a single data bit
per-I/O spare could replace D0 or D1 or D2, etc. For a device with 8-bit data width, this
one spare could potentially make 1 of 8 different repairs.

Each spare has an integral RaErrorPosition, which records the bad row or bad column the
spare replaces and which data bits the spare replaces. During the RA, when a given
per-I/O spare is allocated to make a repair, the RA software sets the spare’s RaErrorPosition
rcnum value to the bad row or column it will replace and the spare’s RaErrorPosition mask
value to the data bits the spare will replace. The mask value is more generally called a
per-I/O spare mask.

As indicated, the per-I/O spare mask records which data bits the spare will replace. This can
be visualized as shifting the spare to repair the identified data bits with the mask
representing both the shifted position and which bits are being replaced.

Note the following:

• The data bits that a given spare is able to replace are specified using the mask
argument to ra_spare_row_make(), ra_spare_col_make(). This sets the
spare’s initial RaErrorPosition mask value.

• A per-I/O spare replacing a single data bit will have an initial mask of 0x1. If the
spare is subsequently used to replace the LSB data bit (D0) its mask will remain
0x1. If the spare is used to replace the D1 its mask will shift left to 0x2. If the spare
is used to replace the D2 its mask will shift left twice to 0x4. Etc. The mask is
manipulated during the RA as each spare is allocated to make a given repair.

• A per-I/O spare replacing 2 adjacent data bits will have an initial mask of 0x3. For a
DUT with 8-bit data it can be shifted to 0x0C, 0x30 and 0xC0.

• A per-I/O spare replacing 4 adjacent data bits will have an initial mask of 0xF. For a
DUT with 16-bit data it can be shifted to 0x000F, 0x00F0, 0x0F00 and 0xF000.

• Etc.
 2/27/09 Pg-1697

Redundancy Analysis (RA) Spares For Repair
• For example, a per-I/O spare 2-bits wide with a 1-bit gap between the replaced bits
is used to repair a DUT with an 8-bit data width:

In this example, the spare can make one of 4 repairs: D0+D2, D1+D3, D4+D6 and
D5+D7. The table above shows the mask for each possible repair. The RA
performed by ra_execute() will identify both which spare to use to make a given
repair and, when a per-I/O spare is selected, will set that spare’s RaErrorPosition
mask value to record which data bit(s) are being repaired by the spare.

• When a multi-bit per-I/O spare replaces non-adjacent bits several rules apply
(which actually apply to all Per I/O Spares):
• The RA software expects that the spare may be used in any mask position. Any

device-specific limitations on spare usage, including per-I/O spares, must be
handled by a user-written RaRowUseOK or RaColUseOK call-back function (see
Redundancy Call-back Functions).

• The bits replaced by a given spare cannot overlap bits of any other spare. For
example, in the example above, a mask of 0x28 is not legal because D3 is
already covered by the mask 0xA0.

• All bits replaced by a given spare must remain within the data width of the
segment being repaired. In the example above, the mask 0x40 is illegal because
the upper data bit is outside the data width of the ECR address.

D7 D6 D5 D4 D3 D2 D1 D0 Mask

0x05

0xA0

0x50

0xA0

DnDn+2

2-Bit Per-I/O
Spare Column
with 1-bit Gap

0x28 ILLEGAL

0x40 ILLEGAL
 2/27/09 Pg-1698

Redundancy Analysis (RA) Spares For Repair
The RA software knows which mask positions are valid for each spare. For example:

In this document, the phrase mask position is frequently used. A mask position is defined to
be one of the valid mask values for each spare created. Thus, the second table entry above
has 4 valid mask positions: 0x03, 0x0C, 0x30, 0xC0.

Each spare row and column records an RaErrorPosition:

• When a spare is initially created (see ra_spare_row_make(),
ra_spare_col_make()), its RaErrorPosition rcnum value = -1 and
RaErrorPosition mask = the initial mask value of the spare.

• Subsequently, but before the spare is actually allocated for a repair (by
ra_spare_use() via ra_execute()), the mask values may remain as initialized
or may reflect transient values assigned by various analysis functions. This applies
to spares in the Spares List and Unusable List.

• When a spare is allocated for repair it is moved from the Spares List to the Repair
List. At that time, the spare’s RaErrorPosition rcnum value records which bad row
or column the spare was allocated to repair and the RaErrorPosition mask value
records which data bits the spare will replace.

Note that spares which are not per-I/O spares will have a mask equal to the data width of the
DUT and this mask value will never change.

Initial
Mask
Value

Segment’s
Data
Width Valid Mask Positions

0x1 8 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40,
0x80

0x3 8 0x03, 0x0C, 0x30, 0xC0

0x5 8 0x05, 0x0A, 0x50, 0xA0

0x11 16 0x0011, 0x0022, 0x0044, 0x0088, 0x1100,
0x2200, 0x4400, 0x8800

0x55 16 0x0055, 0x00AA, 0x5500, 0xAA00
 2/27/09 Pg-1699

Redundancy Analysis (RA) Spares For Repair
5.2.4 Rows-Used-Together(RUT), Columns-Used-Together(CUT)
See Spares For Repair, Overview and Concepts, Redundancy Analysis (RA).

The redundancy architecture of some devices include spare elements which replace more
than one row or column. Thus, if a given row or column must be replaced, the repair actually
replaces multiple rows or multiple columns. The terms rows-used-together (RUT) and
columns-used-together (CUT) are used when the DUT design includes spare element(s)
which replace multiple rows or columns.

To properly perform the repair analysis, the RA software must be aware of each spare’s RUT
or CUT attributes. Note the following:

• The cardinality of all spare rows associated with a given segment must be
identical (see ra_spare_add()). Likewise for spare columns. In this context,
cardinality refers to the number of rows or columns replaced by a RUT or CUT.
Within a given segment, RUTs and CUTs may not be intermixed with individual
spare rows and columns.

• ra_spare_row_make(), ra_spare_col_make() have optional arguments
used to specify the number of RUT rows or CUT columns; i.e. the number of rows
or columns the spare being created will replace.

• The second and later rows in a RUT and/or columns in a CUT need not be
immediately adjacent to the first. Additional arguments to
ra_spare_row_make(), ra_spare_col_make() are used to specify the
number of non-replaced rows or columns between each replaced row or column;
i.e. the gap between the RUTs or CUTs.

• When the RUT spare or CUT spare includes a gap, the RA software requires that
the rows or columns be evenly spaced; i.e., with the same number of unreplaced
rows or columns between each row or column.

• The rows replaced by a RUT spare cannot extend vertically into an adjacent
segment. The columns replaced by a CUT spare cannot extend horizontally into
an adjacent segment. For example, the diagram below shows a 2 CUT spare
which, during the RA, links Segment-1 with Segment-3 and Segment-2 with
Segment-4. For example clarity only, this spare column element has a 1-bit gap
between the replaced columns. This spare can be used to replace columns 0+2,

Rows-Used_Together RUT

Columns-Used_Together CUT
 2/27/09 Pg-1700

Redundancy Analysis (RA) Spares For Repair
1+3, 4+6 or 5+7 in any segment. The example shows 2 repairs in green which are
legal. The repair shown in magenta is illegal because the spare columns can’t
cross horizontally between segments:

• There is no maximum numbers of rows allowed in a RUT or columns in a CUT.
However, declaring a RUT spare or CUT spare with a very large number of rows
or columns as a substitute for creating Spare Segments will impact RA
performance.

• Rows or columns that are part of a RUT or CUT may not be used individually. The
RA software considers a RUT and CUT to be a single replaceable unit.

• The number of rows or columns in a RUT or CUT and their configuration must be
regular; i.e. the RUT must evenly and completely tile the segment. For example:
• No RUT placement can overlap any part of another RUT placement. Similarly for

CUTs. For example, in a 2-row RUT where the rows are adjacent, this one RUT
can replace either row addresses 0+1, OR 2+3, OR 4+5, etc. This RUT may not
replace addresses 1+2, OR 3+4, etc.

• All rows or columns in a segment must be replaceable by a valid RUT or CUT
placement. For example. it is illegal for a RUT to replace 3 adjacent rows in a
segment containing 16 rows, because row 16 is not covered by a possible RUT
placement.

One Spare
2 CUT

Column Element

Segment-1 Segment-2

Segment-3 Segment-4

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
 2/27/09 Pg-1701

Redundancy Analysis (RA) Spares For Repair
• RUTs and CUTs can be Per I/O Spares. When a RUT or CUT is a per-I/O spare,
the Per-I/O Spare Mask position for the spare applies identically to all rows or
columns in the spare. Stated another way, to replace, for example, D5 in a row
with a RUT spare, D5 will be replaced in each row replaced by that RUT spare.

5.2.5 Spare Segments
See Spares For Repair, Overview and Concepts.

A spare segment replaces an entire rectangle (block) of addresses instead of just replacing
row(s) or column(s).

In memory devices, spare segments are generally implemented in two different forms:

• Some devices (e.g., NOR flash) have actual spare segments that are used to
physically replace a bad segment, much like a spare row is used to replace a bad
row, etc.

• Some devices (e.g., NAND flash) are designed with extra segments. In these
devices a bad segment is not actually replaced. Instead, the device stores a list of
bad segments which are subsequently not used, much like the bad block list used
in a disk drive. In these devices, as long as a sufficient number of good segments
exist the device is considered good.

The Magnum RA software supports spare segments somewhat differently than spare rows
and columns, as follows:

• ra_config_set() has an optional argument (max_bad_segs) used to specify
the number of unrepairable segments allowed before the DUT is declared
unrepairable (bad). The default value of 0 means no bad segments are allowed;
i.e., the DUT is declared unrepairable when the first unrepairable segment is
identified. For devices which have spare segment support a non-zero
max_bad_segs value may be specified.

• ra_max_bad_segments_set() function can also be used to set the value of the
number of unrepairable segments allowed. This is targeted at re-test/re-repair
applications and changes the value temporarily. See Note:. The
ra_max_bad_segments_get() function may be used to get the current
max_bad_segs value.
 2/27/09 Pg-1702

Redundancy Analysis (RA) RA Software
• During the RA (ra_execute()) if, at any time, it is determined that a defective
segment cannot be repaired using the available spare rows and/or columns the
RA analysis tags the segment as unrepairable. When the DUT has no spare
segment support (i.e. max_bad_segs = 0) the RA stops because the DUT is not
repairable.

• If the DUT does have spare segment support; i.e. max_bad_segs > 0:
• RA software adds the unrepairable segment to the Bad Segment List.
• If the max_bad_segs limit has been reached, the RA for the DUT stops.
• If any shared spares (see Linked Segments) had been allocated to repair the bad

segment they are returned to the Spares List. Note that this cannot be done for
spares which link segments (see Linked Segments).

• After RA is complete, user code can access the Bad Segment List to retrieve any
bad segments and act accordingly. Note that this is the extent of spare segment
support; i.e. it is up to user code to determine how to use the contents of the Bad
Segment List.
• The ra_bad_segments_count_get() function can be used to determine the

number of the bad segment(s) in the Bad Segment List.
• The ra_bad_segment_get() function can be used to get a bad segment from

the Bad Segment List.
These functions are useful during a test-repair-retest cycle, particularly if repair is
performed off-line.

5.3 RA Software
See Redundancy Analysis (RA).

This section includes the following RA topics:

• Types, Enums, etc.
• RA Configuration - must do this first!
• RA Segment - define DUT’s segment architecture
• RA Spares - define spare rows & columns and associate with segment(s)
• RA Execution And Results - perform RA and get the overall result
• Repair List Functions - use or export the detailed RA results
• Redundancy Call-back Functions - replace built-in operations for special needs
 2/27/09 Pg-1703

Redundancy Analysis (RA) RA Software
• Magnum vs. Maverick RA Functions - for migration reference only

5.3.1 Types, Enums, etc.
See Redundancy Analysis (RA), RA Software.

Description
The following data and enumerated types are used in Redundancy Analysis (RA)
applications:

Functions, MACROs & Keyword

Usage

The RaSegment data type is used in the RA Software to represent a segment. This is an
opaque object.

The RaSpareRow data type is used in the RA Software to represent a spare row. This is an
opaque object.

The RaSpareCol data type is used in the RA Software to represent a spare column. This is
an opaque object.

The PointFailureArray is used to store one or more errors (a PointFailure) read
from the Error Catch RAM (ECR):

struct PointFailure {
DWORD row, col;
__int64 data;

};

typedef CArray< PointFailure, PointFailure & > PointFailureArray;

As indicated, the PointFailureArray is based on the CArray class, defined by
Microsoft. The various CArray member functions can be used to access a
PointFailureArray. Use the MSDN on-line documentation.

The RaSpareRowArray is used to store one or more spare rows (RaSpareRow):

typedef CArray< RaSpareRow, RaSpareRow & > RaSpareRowArray;
 2/27/09 Pg-1704

Redundancy Analysis (RA) RA Software
As indicated, the RaSpareRowArray is based on the CArray class, defined by Microsoft.
The various CArray member functions can be used to access a RaSpareRowArray. Use
the MSDN on-line documentation.

The RaSpareColArray is used to store one or more spare columns (RaSpareCol):

typedef CArray< RaSpareCol, RaSpareCol & > RaSpareColArray;

As indicated, the RaSpareColArray is based on the CArray class, defined by Microsoft.
The various CArray member functions can be used to access a RaSpareColArray. Use
the MSDN on-line documentation.

The RaErrorPosition struct is a key structure used throughout the RA software. see
RaErrorPosition:

typedef struct RaErrorPosition {
int rcnum; // Row or column number
__int64 mask; // Mask position within that row or col

} RaErrorPosition;

The RaErrorPosArray is used to store one or more error positions (RaErrorPosition):

typedef CArray< RaErrorPosition, RaErrorPosition& > RaErrorPosArray;

As indicated, the RaErrorPosArray is based on the CArray class, defined by Microsoft.
The various CArray member functions can be used to access a RaErrorPosArray. Use
the MSDN on-line documentation.

The RaSpareRowPosition and RaSpareColPosition structs are used to store a
combination of bad row or column and the mask indicating which data bits are defective plus
a spare row (RaSpareRow) or column (RaSpareCol) being considered to replace the bad
row or column:

typedef struct RaSpareRowPosition {
int rownum; // Bad row
__int64 mask; // Bad row mask
RaSpareRow row; // Spare row to repair rownum

} RaSpareRowPosition;

typedef struct RaSpareColPosition {
int colnum; // Bad column
__int64 mask; // Bad column mask
RaSpareCol col; // Spare column to repair colnum

} RaSpareColPosition;
 2/27/09 Pg-1705

Redundancy Analysis (RA) RA Software
The RaSpareRowPosArray is used to store one or more spare row positions
(RaSpareRowPosition). The RaSpareColPosArray is used to store one or more spare
column positions (RaSpareColPosition)::

typedef
CArray< RaSpareRowPosition, RaSpareRowPosition& > RaSpareRowPosArray;

typedef
CArray< RaSpareColPosition, RaSpareColPosition& > RaSpareColPosArray;

As indicated, the RaSpareRowPosArray and RaSpareColPosArray are based on the
CArray class, defined by Microsoft. The various CArray member functions can be used to
access a RaSpareRowPosArray and RaSpareColPosArray. Use the MSDN on-line
documentation.

The RaResult enumerated type is used as the overall RA result returned by
ra_result_get():

enum RaResult {t_ra_good,
t_ra_repairable,
t_ra_unrepairable,
t_ra_not_analyzed };

5.3.2 RA Configuration
See Redundancy Analysis (RA), Overview and Concepts, RA Software.

Before an RA can be performed, the RA software must be configured. Various options are
controlled or retrieved using arguments to the following functions:

• ra_config_set()

• ra_config_get()

5.3.2.1 ra_config_set()
See Overview and Concepts, RA Software, RA Configuration.

Note: this function is commonly used in redundancy applications. See Note:
 2/27/09 Pg-1706

Redundancy Analysis (RA) RA Software
Description
The ra_config_set() function is used to configure the RA Software before use. Note the
following:

• ra_config_set() must be executed after the Error Catch RAM (ECR) is
configured (using ecr_config_set()).

• ra_config_set() must be executed before any other RA-related functions are
executed.

• Arguments to ra_config_set() are used to select various options which affect
both how the ECR hardware is used and configured and how various RA operations
are performed.
• use_miniram specifies whether the ECR Mini-RAM is used when performing

the RA. The ECR Mini-RAM was created primarily to make RA faster. By
configuring the ECR Mini-RAM to match the segment architecture of the DUT,
the ECR Mini-RAM will indicate exactly which segment(s) in the DUT contain
errors and thus need to be analyzed during RA. The ECR’s Row RAM or Column
RAM are not used when the ECR Mini-RAM is used, and vice-versa.

• autoconfig_mini specifies whether the user wants the system software to
automatically configure the ECR Mini-RAM to match the segment architecture of
the DUT (as defined using ra_segment_make() one or more times). Setting
autoconfig_mini TRUE will overwrite any previous execution of
ecr_miniram_config_set(). The ECR Mini-RAM is actually configured
during the first funtest() execution after ra_config_set(); thus all
segments must be defined before funtest() is executed after
ra_config_set().

• max_bad_segs specifies the number of bad segments allowed before a DUT is
declared unrepairable. See Spare Segments.

• The scan_func argument registers a user-written RaScanAreaCallbackFunc
Call-back Function call-back function which will execute during the RA to scan
errors from the main ECR array and add them to the Error List. If used, this
replaces the built-in method (ra_scan_area_callback()) with user-written
code. Setting this argument to 0 causes the built-in method to be used (and un-
registers any previously registered user-written call-back).

• The scan_rc_func argument registers a user-written RaScanRCFunc call-back
function which will execute during the RA to scan errors from the ECR’s Row
RAM or Column RAM. These RAMs are only used when the ECR Mini-RAM is
not enabled (see above). If registered, this replaces the built-in method with
user-written code. Setting this argument to 0 causes the built-in method to be
used (and un-registers any previously registered user-written call-back).
 2/27/09 Pg-1707

Redundancy Analysis (RA) RA Software
• In Multi-DUT Test Programs, ra_config_set() should be executed once,
regardless of the number of DUT(s) defined in the Pin Assignment Table. The
Active DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on
ra_config_set(). See RA vs. Magnum 1/2 Parallel Test.

• If any of the following RA configuration options need to be modified, it is
necessary to re-execute ra_config_set() first:
• Segment definitions (ra_segment_make())
• Spare definitions (ra_spare_row_make(), ra_spare_col_make())
• Association of spare(s) with segment(s) (ra_spare_add())
• Segment definitions (ra_spare_add())
Note that executing ra_config_set() resets all of these definitions, thus it is
necessary to completely redefine these parameters after executing
ra_config_set().

Usage
void ra_config_set(

BOOL use_miniram DEFAULT_VALUE(TRUE),
BOOL autoconfig_mini DEFAULT_VALUE(FALSE),
int max_bad_segs DEFAULT_VALUE(0),
RaScanAreaCallbackFunc scan_func DEFAULT_VALUE(0),
RaScanRCFunc scan_rc_func DEFAULT_VALUE(0));

where:

use_miniram is optional and, if used, determines whether the ECR Mini-RAM is used
(TRUE) or not used (FALSE, default) when performing the RA.

autoconfig_mini is optional and, if used, specifies whether the system software
automatically configures the ECR Mini-RAM (TRUE) to match the segment architecture of
the DUT or not (FALSE, default). If FALSE is specified user code must execute
ecr_miniram_config_set() to configure the ECR Mini-RAM. The use_miniram value
must be TRUE for autoconfig_mini TRUE to be useful.

max_bad_segs is optional and, if used, specifies the number of bad segments allowed
before a DUT is declared unrepairable. Default = 0 = no bad segments are allowed; i.e. a
DUT is declared unrepairable when the first unrepairable segment is identified. This value is
set for all DUTs in the test program; i.e. the Active DUTs Set (ADS) and Ignored DUTs Set
(IDS) are ignored.

scan_func is optional and is used to register a user-defined RaScanAreaCallbackFunc
function. See Description and Redundancy Call-back Functions.
 2/27/09 Pg-1708

Redundancy Analysis (RA) RA Software
scan_rc_func is optional and is used to register a user-defined RaScanRCFunc call-back
function. See Description and Redundancy Call-back Functions.

Example
The following example enables the use of the ECR Mini-RAM and causes the system
software to automatically configure the ECR Mini-RAM to match the segment architecture
of the DUT:

ra_config_set(TRUE, TRUE);

5.3.2.2 ra_config_get()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_config_get() function is used to retrieve the current value of the parameters set
up using ra_config_set().

These parameters are not set per-DUT; i.e. in Multi-DUT Test Programs the Active DUTs Set
(ADS) as no effect on this function.

Usage
void ra_config_get(

BOOL* use_miniram DEFAULT_VALUE(0),
BOOL* autoconfig_mini DEFAULT_VALUE(0),
int *max_bad_segs DEFAULT_VALUE(0),
RaScanAreaCallbackFunc* scan_func DEFAULT_VALUE(0),
RaScanRCFunc* scan_rc_func DEFAULT_VALUE(0));

where:

use_miniram is optional and, if specified, must be the address of an existing BOOL variable
used to return whether the ECR Mini-RAM is being used during the RA performed by
ra_execute(). Specify 0 if this value is not needed.
 2/27/09 Pg-1709

Redundancy Analysis (RA) RA Software
autoconfig_mini is optional and, if specified, must be the address of an existing BOOL
variable used to return whether the ECR Mini-RAM was automatically configured by the
system software to match the segment architecture of the DUT (TRUE) or not (FALSE).
This value is undefined if use_miniram returns FALSE. Specify 0 if this value is not
needed.

max_bad_segs is optional and, if specified, must be the address of an existing int variable
used to return the number of bad segments allowed before a DUT is deemed unrepairable.
Specify 0 if this value is not needed.

scan_func is optional and returns a pointer to an RaScanAreaCallbackFunc call-back
function (see Redundancy Call-back Functions). Returns 0 if the user has not registered a
RaScanAreaCallbackFunc Call-back Function. Specify 0 if this value is not needed.

scan_rc_func is optional and returns a pointer to a RaScanRCFunc call-back function
(see Redundancy Call-back Functions). Returns 0 if the user has not registered a
RaScanRCFunc. Specify 0 if this value is not needed.

Example
The following example retrieves the current autoconfig_mini and scan_rc_func
values:

BOOL auto;
RaScanRCFunc scanrc;
ra_config_get(0, &auto, 0, 0, &scanrc);

5.3.3 RA Segment
See Redundancy Analysis (RA), RA Software.

In the context of the DUT, a segment represents a physical block of addresses. Commonly,
memory devices are partitioned into physical segments (blocks) where a subset of rows and/
or columns and/or data bits are visibly (i.e. under a microscope) or logically distinct. A DUT
will typically either have 1 segment or some power-of-2 number of segments.

In the context of the RA software a segment represents a rectangular block of contiguous
addresses which are a separately repairable subcomponent of the DUT; i.e. a segment is an
area of the DUT which has its own spare repair elements. It is common for redundant
(spare) elements to, by design, be constrained to repairing less than the whole DUT; i.e. a
segment. It is also possible for spares to be shared between multiple segments and to
create Linked Segments.
 2/27/09 Pg-1710

Redundancy Analysis (RA) RA Software
In order to properly perform a redundancy analysis (RA) the DUT’s segment architecture
must be defined, using ra_segment_make() once for each segment in the DUT.

Note: the RA software requires that at least one segment be created.

Some DUTs have Spare Segments, which doesn’t affect the DUT’s RA segment description
and are thus discussed as a separate topic.

During RA (ra_execute()), each segment will be analyzed separately and will have spare
resource allocation tracked separately. When Linked Segments exist, the RA software
adjusts the analysis and spare allocation accordingly.

The functions directly related to segment are:

Always Used Rarely Used (see Note:)
ra_segment_make() ra_segment_config_get()

ra_segment_count_get()

ra_segment_get()

Used When DUT Has Spare Segments ra_segment_id_get()

ra_bad_segments_count_get() ra_segment_lookup()

ra_bad_segment_get() ra_segment_linkage_count_get()

ra_max_bad_segments_set()

ra_max_bad_segments_get()

5.3.3.1 Linked Segments
See RA Segment, Redundancy Analysis (RA).

Definitions:

• When a given spare (row or column) will replace parts of more than one segment
that spare links those segments i.e. linked segments are created.

• A shared spare is a spare which can replace a part of one of possibly several
segments; i.e. that spare is shared between those segments.

• It is possible for a given spare row or spare column to be shared and to link
segments

The distinction between linked and shared is important:
 2/27/09 Pg-1711

Redundancy Analysis (RA) RA Software
• Both concepts are fundamentally based on the DUT architecture; i.e. how the
DUT’s spare rows and/or spare columns may be applied to repair one or more
DUT segments.

• Proper RA operation requires that linked segments and shared spares be clearly
defined.

A given spare can be added to more than one segment (see ra_spare_add()). When this
is done, it is the length of the spare which differentiates between linked and shared.

The seg_length argument to ra_spare_row_make(), ra_spare_col_make()
specifies the length of the spare being created, in segments. A given spare may be added
(ra_spare_add()) to more than one segment which may, or may not, create linked
segments, depending on the seg_length value. The following diagram explains this
graphically. Note that it is very unlikely that a real-world DUT would have all of the spare
options shown:

In this diagram:

• Spare columns SC1 through SC16 each have a seg_length of 1 and will be
added to only one segment (ra_spare_add()). These spares may only repair
the single segment to which they are added and no linked segments are created.

S

Seg1 Seg2 Seg3 Seg4

Seg5 Seg6 Seg7 Seg8
S

S

S

S
C
5

C
1
8

C
2
1

S
C
6

S
C
7

S
C
8

S
C
1

S
C
2

S
C
3

S
C
4

C
1

C
2
4S

Seg9 Seg10 Seg11 Seg12

Seg13 Seg14 Seg15 Seg16
S

S

S
C
1

C
2
0

C
2
2S

C
1

S
C
1

S
C
1

S
C
9

S
C
1

S
C
1

S
C
1

C
1

0 1 2

3 4 5 6

7

9

S
C
2
3

S
C
2
5

 2/27/09 Pg-1712

Redundancy Analysis (RA) RA Software
• Spares SC17 through SC20 also have a seg_length of 1 but will each be added
to 4 segments: SC17 can only repair one of Seg1 through Seg4 and SC18 can
only repair one of Seg5 through Seg8, etc. These segments are not linked
segments because these spares may only repair errors in one segment.

• Spares SC21 and SC22 have a seg_length of 2 and each will be added to 8
segments. SC21 can repair any 2 vertical segments between Seg1 and Seg8. This
will link Seg1 with Seg5, or Seg2 with Seg6, or Seg3 with Seg7, etc. Similarly,
SC22 can repair any 2 vertical segments between Seg9 and Seg16. This will link
Seg9 with Seg13, or Seg10 with Seg14, etc.

• Segment SC23 has a seg_length of 4 and will be added to all 16 segments. It
can repair any vertical set of 4 segments. This will link Seg1/Seg5/Seg9/Seg13,
etc.

• Spare SC24 has a seg_length of 1 and will be added to all 16 segments. It can
repair any single segment. This does not cause any linked segments.

• Spare SC25 has a seg_length of 2 and will be added to all 16 segments. It can
repair any vertical pair of segments in the upper half (Seg1/Seg5, Seg3/Seg7,
etc.) or any vertical pair of segments in the lower half (Seg9/Seg13, etc.). The RA
software does not allow SC25 to replace, for example, SC5/SC9, etc.). This spare
does create linked segments.

During RA, when a repair is identified for a segment which is linked to other segment(s) the
Spares List, Repair List, and Unusable List for all linked segments are updated. When a
repair using a shared spare is identified, the RA software puts the spare into the Unusable
List for all other segments.

The following functions directly support segment linkage:

• ra_segment_linkage_count_get()

This function is not commonly used in most redundancy applications.

5.3.3.2 ra_segment_make()
See RA Segment, Redundancy Analysis (RA).

Note: this function is commonly used in redundancy applications. See Note:
 2/27/09 Pg-1713

Redundancy Analysis (RA) RA Software
Description
The ra_segment_make() function is used to describe the DUT’s segment (block)
architecture for the RA software. See RA Segment. Each segment description specifies the
row and column ranges in that segment.

Note: the RA software requires that at least one segment be created.

In Multi-DUT Test Programs, user code must create/define segments for a single DUT. The
system software then automatically duplicates the segment configuration for each DUT in
the Pin Assignment Table. The segment (RaSegment) returned by ra_segment_make()
is from the first DUT in the Active DUTs Set (ADS) but may be used elsewhere to identify the
segment for any DUT with the Active DUTs Set (ADS) determining which DUT(s) are
affected or accessed. See RA vs. Magnum 1/2 Parallel Test. The Active DUTs Set (ADS)
and Ignored DUTs Set (IDS) have no effect on ra_config_set(). See RA vs. Magnum 1/
2 Parallel Test.

The ra_segment_config_get() function may be used to get the values set using
ra_segment_make() for a specified segment.

Usage
RaSegment ra_segment_make(int rmin, int rmax,

int cmin, int cmax,
RaRowAvailableFunc row_available_func DEFAULT_VALUE(0),
RaColAvailableFunc col_available_func DEFAULT_VALUE(0),

BOOL by_row = -1);

where:

rmin and rmax identify the first and last row (inclusive) of the segment being created.

cmin and cmax identify the first and last column (inclusive) of the segment being created.

row_available_func is optional, and is used to register a user-written
RaRowAvailableFunc call-back function which, if used, executes during RA to obtain an
array of spare rows that are currently usable to repair the segment being created. Set this
argument = 0 (default) to get the available spares directly from the Spares List.

col_available_func is optional, and is used to register a user-written
RaColAvailableFunc call-back function which, if used, executes during RA to obtain an array
of spare columns that are currently usable to repair the segment being created. Set this
argument = 0 (default) to get the available spares directly from the Spares List.
 2/27/09 Pg-1714

Redundancy Analysis (RA) RA Software
by_row is optional and, if used, allows the ECR scan direction to be set on a per-segment
basis: TRUE = scan rows fast, FALSE = scan columns fast. The default value (-1) causes
the ECR to be scanned in the direction set using x_fast_axis(). This parameter has no
effect if the ECR Mini-RAM is enabled (see ra_config_set()).

ra_segment_make() returns the segment created. In Multi-DUT Test Programs, the
segment is returned for the first DUT in the Active DUTs Set (ADS) but may be used
elsewhere to identify the segment for any DUT, with the Active DUTs Set (ADS)
determining which DUT(s) are affected or accessed. See RA vs. Magnum 1/2 Parallel Test.

Example
This example shows one DUT containing 4 segments, each with 64 columns and 512 rows:

The following code example is used to set up this configuration:

RaSegment S1 = ra_segment_make(0, 511, 0, 63);
RaSegment S2 = ra_segment_make(0, 511, 64, 127);
RaSegment S3 = ra_segment_make(512, 1023, 0, 63);
RaSegment S4 = ra_segment_make(512, 1023, 64, 127);

5.3.3.3 ra_segment_config_get()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:

Segment-1

0 63

511

0
Segment-2

64 127

511

0

Segment-3

0 63

1023

512
Segment-4

64 127

1023

512
 2/27/09 Pg-1715

Redundancy Analysis (RA) RA Software
Description
The ra_segment_config_get() function can be used to retrieve several key parameters
(previously set using ra_segment_make()) for a specified segment.

Usage
void ra_segment_config_get(

RaSegment s,
int* rmin DEFAULT_VALUE(0),
int* rmax DEFAULT_VALUE(0),
int* cmin DEFAULT_VALUE(0),
int* cmax DEFAULT_VALUE(0),
RaRowAvailableFunc *row_available_func DEFAULT_VALUE(0),
RaColAvailableFunc *col_available_func DEFAULT_VALUE(0),
BOOL * by_row DEFAULT_VALUE(0));

where:

s is the segment of interest.

rmin and rmax are optional and, if used, are the addresses of a user-defined int variable
used to return rmin and/or rmax value(s) currently set for segment s. Specify 0 if these
values are not wanted.

cmin and cmax are optional and, if used, are the addresses of a user-defined int variable
used to return cmin and/or cmax value(s) currently set for segment s. Specify 0 if these
values are not wanted.

row_available_func is optional and, if used, is the address of an existing
RaRowAvailableFunc variable used to return the address of the user registered
RaRowAvailableFunc call-back function. Specify 0 if this value is not wanted. The value
returned will be 0 if the user code has not registered a RaRowAvailableFunc call-back
function.

col_available_func is optional and, if used, is the address of an existing
RaColAvailableFunc variable used to return the address of the user registered
RaColAvailableFunc call-back function. Specify 0 if this value is not wanted. The value
returned will be 0 if the user code has not registered a RaColAvailableFunc call-back
function.

by_row is optional and, if used, is the address of an existing BOOL variable used to return
the ECR scan direction: TRUE if scan-by-row, FALSE if scan-by-column. Specify 0 if this
value is not wanted. The value returned has no effect if the ECR Mini-RAM is enabled (see
ra_config_set()).
 2/27/09 Pg-1716

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs the values are retrieved from the first DUT in the Active DUTs
Set (ADS).

Example
The following example uses ra_segment_make() to define one segment, S1, and then
uses ra_segment_config_get() to get only the row and column min/max values:

RaSegment S1 = ra_segment_make(0, 128, 0, 256);

int rmin, rmax, cmin, cmax;
ra_segment_config_get(S1, &rmin, &rmax, &cmin, &cmax);

5.3.3.4 ra_segment_count_get()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_count_get() function is used to return either:

• The number of segments created.
• The number of segments associated with a spare row or spare column (see

ra_spare_add()).
RA segments are created using ra_segment_make() and are stored in a list.
ra_segment_count_get() gets the number of segments in the list.
ra_segment_count_get() is targeted for use with ra_segment_get() to sequentially
get each segment in the list or each segment associated with a specified spare.

In Multi-DUT Test Programs, the value is returned for the first DUT in the Active DUTs Set
(ADS), however, this should be the same for all DUTs.

Usage
The following function returns the number of segments currently defined for one DUT:

int ra_segment_count_get();
 2/27/09 Pg-1717

Redundancy Analysis (RA) RA Software
The following functions return the number of segments associated with the specified spare
row or column:

int ra_segment_count_get(RaSpareRow r);

int ra_segment_count_get(RaSpareCol c);

where:

r and c identify the spare row or spare column of interest.

ra_segment_count_get() returns either the number of segments created or the number
of segments associated with the specified spare.

Example
int num_segs = ra_segment_count_get();
for(int i = 0; i < num_segs; ++i){

RaSegment s = ra_segment_get(i);
// Do something with the segment returned

}

5.3.3.5 ra_segment_get()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_get() function is used with ra_segment_count_get() to
sequentially get each segment created or each segment associated with a specified spare
row or spare column (see ra_spare_add()).

RA segments are created using ra_segment_make() and are stored in a list.
ra_segment_get() is targeted for use with ra_segment_count_get() to sequentially
get each segment in the list or each segment associated with a specified spare.

In Multi-DUT Test Programs, the segment is returned for the first DUT in the Active DUTs Set
(ADS).
 2/27/09 Pg-1718

Redundancy Analysis (RA) RA Software
Usage
RaSegment ra_segment_get(int index);

RaSegment ra_segment_get(RaSpareRow r, int index);

RaSegment ra_segment_get(RaSpareCol c, int index);

where:

index is the zero-based value which specifies which segment is returned.

r and c identify the spare row or spare column of interest.

ra_segment_get() returns the index’th segment created or the index’th segment
associated with the specified spare. NULL is returned if index is out of range.

Example
See Example.

5.3.3.6 ra_segment_id_get()
See RA Segment, Redundancy Analysis (RA).

Note: this function is not used in most redundancy applications. See Note:. It is
included for backwards compatibility with Maverick-I/-II RA. New programs
should use ra_segment_count_get() and ra_segment_get().

Description
The ra_segment_id_get() function returns a segment’s ID. Each RA segment has an
integer ID (see ra_segment_lookup()) which is typically only useful to sequentially
process every segment of a DUT.

Usage
int ra_segment_id_get(RaSegment s);

where:

s identifies the segment of interest.
 2/27/09 Pg-1719

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs, the segment is returned for the first DUT in the Active DUTs Set
(ADS).

Example
int id = ra_segment_id_get(S1);

5.3.3.7 ra_segment_lookup()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:. It is
included for backwards compatibility with Maverick-I/-II RA. New programs
should use ra_segment_count_get() and ra_segment_get().

Description
The ra_segment_lookup() function returns a pointer to a segment given its ID. Each RA
segment has an integer ID (see ra_segment_id_get()) which is typically only useful to
sequentially process every segment of a DUT.

Usage
RaSegment ra_segment_lookup(int id);

where:

id identifies the segment of interest. See Description.

ra_segment_lookup() returns a pointer to the specified segment. NULL is returned if id
is not a valid segment ID. In Multi-DUT Test Programs, the segment is returned for the first
DUT in the Active DUTs Set (ADS).

Example
RaSegment s = ra_segment_lookup(ra_segment_id_get(S1));
 2/27/09 Pg-1720

Redundancy Analysis (RA) RA Software
5.3.3.8 ra_max_bad_segments_set(), ra_max_bad_segments_get()
See Redundancy Analysis (RA), Spare Segments.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_max_bad_segments_set() function sets the number of unrepairable segments
allowed before a DUT is considered unrepairable during RA. ra_config_set() also sets
this value (more below). In Multi-DUT Test Programs the value is set for all DUTs the Active
DUTs Set (ADS).

ra_max_bad_segments_set() is used primarily in re-test/re-repair situations, to
temporarily reduce the max_bad_segs allowed when some spare segments have been
consumed in previous repairs.

Note: the change made using ra_max_bad_segments_set() is temporary;
executing ra_reset() always restores the max_bad_segs value to the value
originally set using ra_config_set().

The ra_max_bad_segments_get() function is used to get the current max_bad_segs
value. This is the value initially set using ra_config_set() or the temporary value set
using ra_max_bad_segments_set().

Usage
void ra_max_bad_segments_set(int max_bad_segs);

int ra_max_bad_segments_get();

where:

max_bad_segs specifies the number of unrepairable segments allowed before a DUT is
considered unrepairable. A value of 0 means no unrepairable segments are allowed before
declaring the DUT unrepairable. A warning is issued if max_bad_segs is negative, or if the
value exceeds the number segments defined for the DUT. In Multi-DUT Test Programs the
value is set for all DUT(s) in the Active DUTs Set (ADS). See Note: above.

ra_max_bad_segments_get() returns the current max_bad_segs value. In Multi-DUT
Test Programs the value is returned for the first DUT in the Active DUTs Set (ADS).
 2/27/09 Pg-1721

Redundancy Analysis (RA) RA Software
Example
The following code sets the max_bad_segs value to 0, then gets that value and prints it:

ra_config_set(TRUE, TRUE, 0); // ra_config_set()
output(" Max Bad Segs => %d", ra_max_bad_segments_get());

The following code sets the max_bad_segs value to 2, then gets that value and prints it:

ra_max_bad_segments_set(2);
output(" Max Bad Segs => %d", ra_max_bad_segments_get());

The following code resets the max_bad_segs value to that last set using
ra_config_set():

ra_reset();
output(" Max Bad Segs => %d", ra_max_bad_segments_get());

5.3.3.9 ra_segment_linkage_count_get()
See RA Segment, Redundancy Analysis (RA)

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_linkage_count_get() function is used to determine the number of
segments linked to a specified segment. Segments are linked when a spare with a length
greater than 1 is associated with more than one segment. See Linked Segments and
ra_spare_add().

Usage
int ra_segment_linkage_count_get(RaSegment s);

where:

s identifies the segment of interest.

ra_segment_linkage_count_get() returns the number of segments linked to segment
s. In Multi-DUT Test Programs, the value is returned for the first DUT in the Active DUTs Set
(ADS).
 2/27/09 Pg-1722

Redundancy Analysis (RA) RA Software
Example
In the following example ra_segment_linkage_count_get() will return 2; i.e. two
segments are linked to segment S2:

RaSegment S1 = ra_segment_make(); // Parameters not shown
RaSegment S2 = ra_segment_make(); // Parameters not shown
RaSegment S3 = ra_segment_make(); // Parameters not shown
RaSpareCol C1 = ra_spare_col_make();
ra_spare_add(S1, C1);
ra_spare_add(S2, C1);
ra_spare_add(S3, C1);
// Other code to do other things...
int count = ra_segment_linkage_count_get(S2);

5.3.4 RA Spares
See Redundancy Analysis (RA), RA Software.

The functions related to RA spares are:

Commonly Used Rarely Used (see Note:)
ra_spare_row_make() ra_spare_config_get()
ra_spare_col_make() ra_usable_set()
ra_spare_add() ra_unusable_set()

ra_spare_row_count_get(), ra_spare_col_count_get()
ra_spare_id_get()
ra_spare_row_lookup(), ra_spare_col_lookup()
ra_spare_row_get(), ra_spare_col_get()
ra_spare_rows_get(), ra_spare_cols_get()
ra_spare_rownum_set(), ra_spare_rownum_get()
ra_spare_colnum_set(), ra_spare_colnum_get()
ra_spare_position_set(), ra_spare_position_get()
ra_spare_mask_count_get(), ra_spare_mask_get()

ra_spare_current_mask_set(), ra_spare_current_mask_get()
ra_shortest_spare_row_get(), ra_shortest_spare_col_get()
 2/27/09 Pg-1723

Redundancy Analysis (RA) RA Software
5.3.4.1 ra_spare_row_make(), ra_spare_col_make()
See RA Spares, RA Software.

Note: these functions are used in most redundancy applications. See Note:

Description

The ra_spare_row_make() function is used to create a spare row.

The ra_spare_col_make() function is used to create a spare column.

Spare rows and columns cannot be used for repair until associated with one or more
segment(s), using ra_spare_add().

The seg_length argument to these functions is used to specify the length, in segments, of
the spare being created. This is required when a given spare can be used to repair more
than one segment and/or the spare will create Linked Segments.

In Multi-DUT Test Programs, user code must create/define spare row(s) and/or spare
column(s) for a single DUT. The system software then automatically duplicates these
spare(s) for each DUT in the test program. The spare row (RaSpareRow) returned by
ra_spare_row_make() and the spare column (RaSpareCol) returned by
ra_spare_col_make() is from the first DUT in the Active DUTs Set (ADS), but may be
used elsewhere to identify a spare for any DUT with the Active DUTs Set (ADS) determining
which DUT(s) are affected or accessed. See RA vs. Magnum 1/2 Parallel Test. The Active
DUTs Set (ADS) and Ignored DUTs Set (IDS) have no effect on ra_spare_row_make()
and ra_spare_col_make().

The configuration details of a specified spare can be retrieved using
ra_spare_config_get().

Usage
RaSpareRow ra_spare_row_make(

__int64 mask DEFAULT_VALUE(0),
int seg_length DEFAULT_VALUE(-1),
int numRUT DEFAULT_VALUE(1),
int blanksBetweenRUT DEFAULT_VALUE(0),
RaRowUseOK okFunc DEFAULT_VALUE(0));
 2/27/09 Pg-1724

Redundancy Analysis (RA) RA Software
RaSpareCol ra_spare_col_make(
__int64 mask DEFAULT_VALUE(0),
int seg_length DEFAULT_VALUE(-1),
int numCUT DEFAULT_VALUE(1),
int blanksBetweenCUT DEFAULT_VALUE(0),
RaColUseOK okFunc DEFAULT_VALUE(0));

where:

mask is optional and, if specified, identifies which data bit(s) the spare can replace. The
value 0 means the spare replaces all data bits in the associated segment(s). A value other
than 0 signifies Per I/O Spares and the RA software generates the set of Per-I/O Spare
Mask values and sets the spare’s mask to the initial value. The low order mask bit
represents D0, etc. Only the low 36 bits are used.

seg_length is optional and, if used, specifies the length of the spare, in segments. See
Description and Linked Segments. The default seg_length value (-1) sets the spare’s
length to match the number of contiguous segments to which it is later added using
ra_spare_add(); i.e. Linked Segments are created if the spare is added to more than one
segment.

numRUT and numCUT are optional and, if used, specifies the number of rows or columns that
the spare will replace (see Rows-Used-Together(RUT), Columns-Used-Together(CUT)).
Default = 1; i.e. the spare can replace one row or one column.

blanksBetweenRUT and blanksBetweenRUT is optional and, if used, specifies the
number of non-replaced rows or columns between the rows or columns replaced by this
spare; i.e. the gap between rows/columns replaced by the spare. Default = 0. Legal values
are 0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, etc.

okFunc is optional and is used to register a user-defined RaRowUseOK or RaColUseOK
call-back function (see Redundancy Call-back Functions). As RA occurs (ra_execute()),
and the need for a repair is identified, the process of choosing which spare element will be
used to make the repair will execute each spare element's call-back function as part of the
decision process. If the call-back function returns FALSE, that spare will not be used to
make that repair. There are no default RaRowUseOK or RaColUseOK call-back functions; i.e.
any spare in the Spares List will be considered usable if otherwise valid for a given repair.
The built-in ra_exclusive() function is available as an example call-back.

ra_spare_row_make() and ra_spare_col_make() return the spare created. In Multi-
DUT Test Programs, the spare is returned for the first DUT in the Active DUTs Set (ADS).

The following errors are checked:

• The number of mask bits exceeds the segment's data width.
 2/27/09 Pg-1725

Redundancy Analysis (RA) RA Software
• numRUT/numCUT is less than 1.
• numRUT/numCUT is 1, but blanksBetweenRUT/CUT is not 0.
• blanksBetweenRUT/blanksBetweenCUT is not a legal value.

Example

Example 1:
The following example creates one spare row which can replace the full data width of any
row of the segment(s) with which is associated:

RaSpareRow r = ra_spare_row_make();

Example 2:
The following example creates a 2-CUT per-I/O spare column (see Per I/O Spares). The
mask indicates it can replace D0+D2 or D1+D3, etc. There is a 1-bit gap between the two
columns this spare can replace and the user’s myColRules() function is registered as a
RaColUseOK call-back.

RaSpareCol c = ra_spare_col_make(0x5, -1, 2, 1, myColRules);

Example 3:
In the following example, the DUT has 4 segments. Each segment has one spare row which
can only be used to repair one segment. The DUT also has two spare columns which are
shared between all four segments and which link segments 1/3 and segments 2/4 (see
Linked Segments):

RaSegment S1 = ra_segment_make(...); // Details not included
RaSegment S2 = ra_segment_make(...);
RaSegment S3 = ra_segment_make(...);
RaSegment S4 = ra_segment_make(...);

Segment-1 Segment-2

Segment-4Segment-3

C1 C2R3

R1

R4

R2
 2/27/09 Pg-1726

Redundancy Analysis (RA) RA Software
ra_spare_add(S1, ra_spare_row_make()); // ra_spare_add()
ra_spare_add(S2, ra_spare_row_make());
ra_spare_add(S3, ra_spare_row_make());
ra_spare_add(S4, ra_spare_row_make());

// Spare columns are shared among all segments and link 2 segments
RaSpareCol C1 = ra_spare_col_make(0, 2);
RaSpareCol C2 = ra_spare_col_make(0, 2);

ra_spare_add(S1, C1); // ra_spare_add()
ra_spare_add(S2, C1);
ra_spare_add(S3, C1);
ra_spare_add(S4, C1);
ra_spare_add(S1, C2);
ra_spare_add(S2, C2);
ra_spare_add(S3, C2);
ra_spare_add(S4, C2);

Example 4:
This example shows two user-created RaColUseOK call-back functions, named odd() and
even(), and how they are used during spare creation. This device has one segment, with
one spare row (R1) and two spare columns (C1, C2). Spare column C1 can only replace odd
columns (1,3, 5, etc.) and spare column C2 can only replace even columns (0, 2, 4, etc.).

BOOL odd(RaSegment s, RaSpareCol spare_col){ //For RaColUseOK
// c is UNUSED in this example
// s is UNUSED in this example
return (spare_col % 2); // TRUE for odd columns

}

BOOL even(RaSegment s, RaSpareCol spare_col){//For RaColUseOK
// c is UNUSED in this example
// s is UNUSED in this example
return !(spare_col % 2); // FALSE for odd columns

}

RaSegment S = ra_segment_make(...); // Details not included

Segment-1

R1
C1 C2
 2/27/09 Pg-1727

Redundancy Analysis (RA) RA Software
RaSpareCol C1 = ra_spare_col_make(0, 1, 1, 0, odd);
RaSpareCol C2 = ra_spare_col_make(0, 1, 1, 0, even);
RaSpareRow R1 = ra_spare_row_make();

ra_spare_add(S, C1); // ra_spare_add()
ra_spare_add(S, C2);
ra_spare_add(S, R1);

Example 5:
In the following example, the DUT has two segments, each with one spare row (R1). Three
spare columns (C1, C2, C3) are shared between the two segments, and can be used to
repair either segment, with the restriction that no more than two spare columns can be used
to repair any one segment. The user-written call-back function named max_two() shows
how to enforce this restriction.

// RaColUseOK call-back function
BOOL max_two(RaSegment s, RaSpareCol spare_col){

if(ra_repaired_col_count_get(s) < 2) return TRUE;
else {

ra_unusable_set(s, spare_col); // ra_unusable_set()
return FALSE;

}
}

RaSegment S1 = ra_segment_make(...); // Details not included
RaSegment S2 = ra_segment_make(...); // Details not included

RaSpareCol C1 = ra_spare_col_make(0, 1, 1, 0, max_two);
RaSpareCol C2 = ra_spare_col_make(0, 1, 1, 0, max_two);
RaSpareCol C3 = ra_spare_col_make(0, 1, 1, 0, max_two);
RaSpareRow R1 = ra_spare_row_make();
RaSpareRow R2 = ra_spare_row_make();

ra_spare_add(S1, C1); // ra_spare_add()
ra_spare_add(S1, C2);
ra_spare_add(S1, C3);

Segment-1

R1

C1 C2 C3

Segment-2

R2
 2/27/09 Pg-1728

Redundancy Analysis (RA) RA Software
ra_spare_add(S2, C1);
ra_spare_add(S2, C2);
ra_spare_add(S2, C3);
ra_spare_add(S1, R1);
ra_spare_add(S2, R2);

5.3.4.2 ra_spare_add()
See RA Spares, RA Software.

Note: this function is commonly used in redundancy applications. See Note:

Description
The ra_spare_add() function is used to associate a spare row or column with a segment
and causes the spare to be added to the Spares List. Spare elements which are not in the
Spares List are not usable during RA; i.e. they can’t/won’t be allocated to make a repair.

Note the following:

• All spares of the same type (i.e., spare rows or spare columns) associated with a
given segment must be the same data width. It is not legal, for example, to add a
1-bit wide spare row to a segment that already has a 16-bit wide spare row.

• Adding a given spare row or spare column to more than one segment may create
Linked Segments, depending on the length of the spare. See Linked Segments.

• The cardinality of all spare rows associated with a segment must be identical.
Likewise for spare columns. In this context, cardinality refers to the number of
rows or columns replaced by a RUT or CUT. See Rows-Used-Together(RUT),
Columns-Used-Together(CUT). Within a given segment, RUTs and CUTs may not
be intermixed with individual spare rows and columns.

• In Multi-DUT Test Programs, user code only needs to add spare row(s) and/or
spare column(s) to a segment for a single DUT. The system software automatically
duplicates these spare-vs.-segment associations for each DUT in the Pin
Assignment Table. See RA vs. Magnum 1/2 Parallel Test. The Active DUTs Set
(ADS) and Ignored DUTs Set (IDS) have no effect on ra_spare_add().

Usage
BOOL ra_spare_add(RaSegment s, RaSpareRow r);
 2/27/09 Pg-1729

Redundancy Analysis (RA) RA Software
BOOL ra_spare_add(RaSegment s, RaSpareCol c);

where:

s identifies the target segment.

r and c identify the spare to be added to segment s. This spare must have been previously
created using ra_spare_row_make(), ra_spare_col_make().

ra_spare_add() returns TRUE if no errors occur. FALSE is returned if s, r, or c are NULL
or if the data width of the spare being added is different than any previous spares (of the
same type) added to the segment. FALSE is also returned if the cardinality rule noted in
Description is violated.

Example
RaSegment S1 = ra_segment_make(...); // Details not included
RaSpareCol C1 = ra_spare_col_make(...); // Details not included
RaSpareCol C2 = ra_spare_col_make(...); // Details not included
RaSpareCol C3 = ra_spare_col_make(...); // Details not included
RaSpareCol C4 = ra_spare_col_make(...); // Details not included
ra_spare_add(S1, C1);
ra_spare_add(S1, C2);
ra_spare_add(S1, C3);
ra_spare_add(S1, C4);

5.3.4.3 ra_spare_config_get()
See RA Spares, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_config_get() function can be used to retrieve the configuration
attributes, set using ra_spare_row_make(), ra_spare_col_make(), of a specified
spare row or spare column.

In Multi-DUT Test Programs, the information is returned for the first DUT in the Active DUTs
Set (ADS).
 2/27/09 Pg-1730

Redundancy Analysis (RA) RA Software
Usage
void ra_spare_config_get(RaSpareRow r,

__int64* mask DEFAULT_VALUE(0),
int* seg_length DEFAULT_VALUE(0),
int* numRUT DEFAULT_VALUE(0),
int* blanksBetweenRUT DEFAULT_VALUE(0));

void ra_spare_config_get(RaSpareCol c,
__int64* mask DEFAULT_VALUE(0),
int* seg_length DEFAULT_VALUE(0),
int* numCUT DEFAULT_VALUE(0),
int* blanksBetweenCUT DEFAULT_VALUE(0));

where:

r and c identify the spare row or column of interest.

mask is optional and, if used, is the address of an existing __int64 variable used to return
the Per-I/O Spare Mask attribute. Specify 0 if this parameter is not desired.

seg_length is optional and, if used, is the address of an existing int variable used to
return the length of the spare, in segments. See Description and Linked Segments. Specify
0 if this parameter is not desired.

numRUT and numCUT are optional and, if used, are the address of an existing int variable
used to return the number of Rows-Used-Together(RUT), Columns-Used-Together(CUT).
Specify 0 if this parameter is not desired.

blanksBetweenRUT and blanksBetweenCUT are optional and, if used, are the address
of an existing int variable used to return the number of rows or columns between each
RUT or CUT; i.e. the gap between RUTs/CUTs.

Example
The following example returns a value for each attribute of the specified row:

__int64 mask;
int numruts, rutgap;
RaSpareRow r = ra_spare_row_make(...); // Details not included
ra_spare_config_get(r, &mask, &numruts, &rutgap);

The following example returns only the number of RUTs value for the specified row:

ra_spare_config_get(r, 0, &numruts);
 2/27/09 Pg-1731

Redundancy Analysis (RA) RA Software
5.3.4.4 ra_usable_set()
See RA Execution And Results, Repair List Functions, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_usable_set() function is used to move a specified spare row or column,
associated with a specified segment, from the Unusable List back to the Spares List. This
allows any subsequent RA processing to allocate that spare for a repair.

By default, all spare elements defined are initially usable. Spare elements become unusable
by calling the ra_unusable_set() function, typically during an RaRowUseOK or
RaRowUseOK call-back function (see Redundancy Call-back Functions).

In Multi-DUT Test Programs, the spare is moved for the first DUT in the Active DUTs Set
(ADS). This is unconventional as compared to most other setter functions.

ra_usable_set() has no effect on spares already moved to the Repair List.

Executing ra_reset() and ra_segment_reset() returns spares in the Unusable List to
the Spares List, typically in preparation for testing new DUT(s).

Usage
BOOL ra_usable_set(RaSegment s, RaSpareRow r);

BOOL ra_usable_set(RaSegment s, RaSpareCol c);

where:

s identifies the segment of interest.

r and c identify the spare row or column to be moved from the Unusable List back to the
Spares List. A warning is issued if r or c is not a valid spare for s or if r or c is not currently
in the Unusable List.

These functions return TRUE if the designated spare element is successfully moved from
the Unusable List list to the Spares List list. FALSE is returned if the specified spare is not
currently in the Unusable List.
 2/27/09 Pg-1732

Redundancy Analysis (RA) RA Software
Example
RaSegment S1 = ra_segment_make(); // Parameters not shown
RaSpareRow R1 = ra_spare_row_make();
ra_spare_add(S1, R1); // ra_spare_add()
// Other code here which must have moved R1 to the Unusable List
BOOL ok = ra_usable_set(S1, R1);
if(!ok) output(" WARNING: ra_usable_set() returned FALSE");

5.3.4.5 ra_unusable_set()
See RA Execution And Results, Repair List Functions, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_unusable_set() function is used to move a specified spare row or column from
the Spares List to the Unusable List. Any subsequent RA processing cannot allocate that
spare for a repair.

The ra_unusable_set() function has two general applications:

• By default, all spare elements defined are considered usable during the RA. If the
device architecture limits the universal application of a spare element, a user-
defined RaRowUseOK and/or RaRowUseOK call-back function may be used to
enforce the application rules (see RaRowUseOK & RaColUseOK Call-back
Functions).

• When retesting a previously repaired device sometimes the original Spares List,
Repair List and Unusable List are lost, as occurs when off-line repair is performed.
Some device designs allow the test program to read back which spare elements
were consumed in previous repairs. When it is possible, this information can be
used to move those spares from the Spares List to the Unusable List.

The version of ra_unusable_set() with the RaSegment argument makes the specified
spare unusable for only the specified segment. The version without the RaSegment
argument makes the spare unusable for all segment(s) which are linked by the spare or
which share the spare (see Linked Segments).
 2/27/09 Pg-1733

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs, the spare is moved for the first DUT in the Active DUTs Set
(ADS). This is unconventional as compared to most other setter functions.

A spare can be made usable again using the ra_usable_set() function.

Executing ra_reset() and ra_segment_reset() returns spares to the Spares List,
typically in preparation for testing new DUT(s).

ra_unusable_set() has no effect on spares in the Repair List.

Usage
BOOL ra_unusable_set(RaSpareRow r);

BOOL ra_unusable_set(RaSpareCol c);

BOOL ra_unusable_set(RaSegment s, RaSpareRow r);

BOOL ra_unusable_set(RaSegment s, RaSpareCol c);

where:

r and c identify the spare row or column to be moved from the Spares List to the Unusable
List.

s identifies the segment of interest. A warning is issued if r or c is not a valid spare for s.

These functions return TRUE if the designated spare element is successfully moved from
the Spares List to the Unusable List. FALSE is returned if the specified spare is not currently
in the Spares List.

Example
RaSegment S1 = ra_segment_make(); // Parameters not shown
RaSpareCol C1 = ra_spare_col_make();
ra_spare_add(S1, C1); // ra_spare_add()
// Other code here which must not have moved C1 from the Spares List
BOOL ok = ra_unusable_set(S1, C1);
if(!ok) output(" WARNING: ra_unusable_set() returned FALSE");

5.3.4.6 ra_spare_row_count_get(), ra_spare_col_count_get()
See RA Spares, RA Software.
 2/27/09 Pg-1734

Redundancy Analysis (RA) RA Software
Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_spare_row_count_get() function is used to get a count of the number of spare
row(s) associated with a specified segment (see ra_spare_add()) from the Spares List or
Unusable List. Similarly, the ra_spare_col_count_get() function is used to get a count
of the number of spare column(s) associated with a specified segment. from the Spares List
or Unusable List.

These functions are used in conjunction with ra_spare_row_get() and
ra_spare_col_get() to sequentially process each spare row or column associated with
a specified segment.

Usage
int ra_spare_row_count_get(RaSegment s,

BOOL usable DEFAULT_VALUE(TRUE));

int ra_spare_col_count_get(RaSegment s,
BOOL usable DEFAULT_VALUE(TRUE));

where:

s identifies the segment of interest.

usable is optional and, if used, specifies whether the spares counted are in the Spares List
(TRUE, default) or Unusable List (FALSE).

ra_spare_row_count_get() returns the number of spare rows associated with segment
s. In Multi-DUT Test Programs, the value is returned for the first DUT in the Active DUTs Set
(ADS).

ra_spare_col_count_get() returns the number of spare columns associated with
segment s. In Multi-DUT Test Programs, the value is returned for the first DUT in the Active
DUTs Set (ADS).

Example
In the following example, the for() loop will sequentially return the 3 spare columns
associated with segment S1:
 2/27/09 Pg-1735

Redundancy Analysis (RA) RA Software
RaSegment S1 = ra_segment_make(); // Parameters not shown
RaSpareCol C1 = ra_spare_col_make();
RaSpareCol C2 = ra_spare_col_make();
RaSpareCol C3 = ra_spare_col_make();
ra_spare_add(S1, C1); // ra_spare_add()
ra_spare_add(S1, C2);
ra_spare_add(S1, C3);
// Other code to do other things...
for (int i = 0; i < ra_spare_col_count_get(S1); ++i){

RaSpareCol sparecol = ra_spare_col_get(S1, i);
// Do something with sparecol

}

5.3.4.7 ra_spare_row_get(), ra_spare_col_get()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_spare_row_get() function is used in conjunction with
ra_spare_row_count_get() to sequentially get the spare row(s), associated with a
specified segment, from the Spares List or Unusable List.

Similarly, the ra_spare_col_get() function is used in conjunction with
ra_spare_col_count_get() to sequentially get the spare column(s), associated with a
specified segment, from the Spares List or Unusable List.

The ra_repaired_row_get(), ra_repaired_col_get() functions may be used to
get spares from the pending Repair List or done Repair List.

Usage
RaSpareRow ra_spare_row_get(RaSegment s,

int index,
BOOL usable DEFAULT_VALUE(TRUE));
 2/27/09 Pg-1736

Redundancy Analysis (RA) RA Software
RaSpareCol ra_spare_col_get(RaSegment s,
int index,
BOOL usable DEFAULT_VALUE(TRUE));

where:

s identifies the segment of interest.

index is the zero-based index specifying which spare to return.

usable is optional and, if used, specifies whether the spares are retrieved from the Spares
List (TRUE, default) or Unusable List (FALSE).

ra_spare_row_count_get() returns the index’th spare row associated with segment
s. NULL is returned if the index is out of range. In Multi-DUT Test Programs, the spare row
is returned for the first DUT in the Active DUTs Set (ADS).

ra_spare_col_get() returns the index’th spare column associated with segment s.
NULL is returned if the index is out of range. In Multi-DUT Test Programs, the spare
column is returned for the first DUT in the Active DUTs Set (ADS).

Example
See Example.

5.3.4.8 ra_spare_id_get()
See RA Spares, RA Software.

Note: this function is not used in most redundancy applications. See Note:. It is
included for backwards compatibility with Maverick-I/-II RA. New programs
should use ra_spare_row_count_get() with ra_spare_row_get() or
ra_spare_col_count_get() with ra_spare_col_get().

Description
The ra_spare_id_get() function returns a spare row’s or spare column’s ID. Each RA
spare has an integer ID which is typically only useful to sequentially process every spare row
or spare column of a DUT. See ra_spare_row_lookup(), ra_spare_col_lookup().
 2/27/09 Pg-1737

Redundancy Analysis (RA) RA Software
Usage
int ra_spare_id_get(RaSpareRow r);

int ra_spare_id_get(RaSpareCol c);

where:

r and c identify the spare row or column of interest.

ra_spare_id_get() returns the integer ID of the specified row or column. In Multi-DUT
Test Programs, the information is returned for the first DUT in the Active DUTs Set (ADS).

Example
int id = ra_spare_id_get(R1);

5.3.4.9 ra_spare_row_lookup(), ra_spare_col_lookup()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_spare_row_lookup() function returns a pointer to a spare row given its ID.

The ra_spare_col_lookup() function returns a pointer to a spare column given its ID.

Each RA spare has an integer ID (see ra_spare_id_get()) which is typically only useful
to sequentially process every spare row or spare column of a DUT.

Usage
RaSpareRow ra_spare_row_lookup(int id);

RaSpareCol ra_spare_col_lookup(int id);

where:

id is the ID number of the spare row or column of interest.
 2/27/09 Pg-1738

Redundancy Analysis (RA) RA Software
ra_spare_row_lookup() returns a pointer to the spare row identified by ID. NULL is
returned if the id is invalid. In Multi-DUT Test Programs, the information is returned for the
first DUT in the Active DUTs Set (ADS).

Example
See Example

5.3.4.10 ra_spare_rows_get(), ra_spare_cols_get()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_spare_rows_get() function is used to get a list of the available spare row(s)
associated with a specified segment from the Spares List or the Unusable List.

The ra_spare_col_get() function is used to get a list of the available (unused) spare
column(s) associated with a specified segment from the Spares List or the Unusable List.

Usage
RaSpareRowArray& ra_spare_rows_get(

RaSegment s,
RaSpareRowArray& rows,
BOOL usable DEFAULT_VALUE(TRUE));

RaSpareColArray& ra_spare_cols_get(
RaSegment s,
RaSpareColArray& cols,
BOOL usable DEFAULT_VALUE(TRUE));

where:

s identifies the segment of interest.

rows and cols are a user-defined RaSpareRowArray or RaSpareColArray, used to
return the list of spare rows or columns associated with segment s. These arrays are
automatically resized by the system software as needed. Any prior contents are lost. The
 2/27/09 Pg-1739

Redundancy Analysis (RA) RA Software
size and individual elements in the RaSpareRowArray or RaSpareColArray can be
obtained using standard CArray member functions.

usable is optional and, if used, specifies whether the spare should be retrieved from the
Spares List (TRUE, default) or the Unusable List (FALSE).

Both functions return the array passed in. In Multi-DUT Test Programs, the list of spares is
returned for the first DUT in the Active DUTs Set (ADS).

Example
The following example uses ra_spare_rows_get() to get a list of the 3 spare rows
associated with segment S1:

RaSegment S1 = ra_segment_make(); // Parameters not shown
RaSpareRow R1 = ra_spare_row_make();
RaSpareRow R2 = ra_spare_row_make();
RaSpareRow R3 = ra_spare_row_make();
ra_spare_add(S1, R1);
ra_spare_add(S1, R2);
ra_spare_add(S1, R3);
// Other code to do other things...
RaSpareRowArray rows = ra_spare_rows_get(S1 , rows);
for(int r = 0; r< rows.GetSize(); ++r){

RaSpareRow my_row = rows[r]; // or = rows.GetAt(r);
// Do something with the my_row

}

5.3.4.11 ra_spare_colnum_set(), ra_spare_colnum_get()
See 5.3.4.12 (next).

5.3.4.12 ra_spare_rownum_set(), ra_spare_rownum_get()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:
 2/27/09 Pg-1740

Redundancy Analysis (RA) RA Software
Description
Each spare row and spare column stores the following information about what they repair:

• The row or column being replaced
• A Per-I/O Spare Mask indicating which data bits are being replaced

Note that these values are not normally useful until a given spare has been allocated by the
RA (ra_spare_use() via ra_execute()) to make a repair.

The ra_spare_rownum_set() function can be used to set the row being replaced by a
specified spare row. Similarly, ra_spare_colnum_set() can be used to set the column
being replaced by the specified spare column. In Multi-DUT Test Programs, the value is set
for all DUT(s) in the Active DUTs Set (ADS).

Note that ra_spare_position_set() and ra_spare_position_set() can be used
to set both the replaced row or column and the Per-I/O Spare Mask by a specified spare.

The ra_spare_rownum_get() and ra_spare_colnum_get() functions are used to
retrieve the replaced row or column for a specified spare. In Multi-DUT Test Programs, the
value is returned for the first DUT in the Active DUTs Set (ADS).

Usage
void ra_spare_rownum_set(RaSpareRow r, int rownum);

void ra_spare_colnum_set(RaSpareCol c, int colnum);

int ra_spare_rownum_get(RaSpareRow r);

int ra_spare_colnum_get(RaSpareCol c);

where:

r and c identify the target spare row or column.

rownum and colnum specify the row or column replaced by spare row r or spare column c.

ra_spare_rownum_get() returns the row replaced by spare row r.

ra_spare_colnum_get() returns the column replaced by spare row c.

Example
RaSpareRow r = ra_spare_row_make(...); // Details not included
ra_spare_rownum_set(r, 4);
int replaced_row = ra_spare_rownum_get(r);
 2/27/09 Pg-1741

Redundancy Analysis (RA) RA Software
5.3.4.13 ra_spare_position_set(), ra_spare_position_get()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description
Each spare row and spare column stores the following information about what they repair:

• The row or column being replaced
• A Per-I/O Spare Mask indicating which data bits are being replaced

The ra_spare_position_set() function can be used to set both the row or column
being replaced and the data bits being replaced by a specified spare row or column. The two
values are passed using an RaErrorPosition variable: see Example. In Multi-DUT Test
Programs, the value is set for all DUT(S) in the Active DUTs Set (ADS).

ra_spare_position_get() can be used to get both the row or column being replaced
and the data bits being replaced by a specified spare row or column. Note that these values
are not normally useful until a given spare has been allocated by the RA (ra_spare_use()
via ra_execute()) to make a repair.

Usage
RaSpareRow ra_spare_position_set(RaSpareRow r,

RaErrorPosition& pos);

RaSpareCol ra_spare_position_set(RaSpareCol c,
RaErrorPosition& pos);

RaErrorPosition ra_spare_position_get(RaSpareRow r);

RaErrorPosition ra_spare_position_get(RaSpareCol c);

where:

r and c identify the spare row or column of interest.

pos is a user-defined RaErrorPosition variable previously initialized with the desired
row or column and mask values being replaced by r or c.

ra_spare_position_set() returns the RaSpareRow or RaSpareCol with its
RaErrorPosition values set to the values in pos.
 2/27/09 Pg-1742

Redundancy Analysis (RA) RA Software
ra_spare_position_get() returns an RaErrorPosition with the values currently set
for r or c.

Example
The following example sets the replaced row and Per-I/O Spare Mask for spare row r:

RaSpareRow r = ra_spare_row_make(...); // Details not included
RaErrorPosition pos;
pos.mask = 0xFF;
pos.rcnum = 17;
ra_spare_position_set(r, pos);

The following example gets the replaced row and Per-I/O Spare Mask for spare row r:

RaErrorPosition pos = ra_spare_position_get(r);

5.3.4.14 ra_spare_mask_count_get()
See RA Spares, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_mask_count_get() function is used to return the number of valid Per-I/O
Spare Mask values for a specified spare row or spare column.

ra_spare_mask_count_get() can be used in conjunction with
ra_spare_mask_get() to sequentially obtain each valid Per-I/O Spare Mask value for a
specified spare row or spare column.

The value returned for a spare which replaces all data bits is 1.

Usage
int ra_spare_mask_count_get(RaSpareRow r);

int ra_spare_mask_count_get(RaSpareCol c);

where:

r and c identify the target spare row or column.
 2/27/09 Pg-1743

Redundancy Analysis (RA) RA Software
ra_spare_mask_count_get() returns the number of valid Per-I/O Spare Mask values
for r or c. In Multi-DUT Test Programs, the value is returned for the first DUT in the Active
DUTs Set (ADS) (although the value should be the same for all DUTs).

Example
The following example creates a 2-bit per-I/O spare row, which replaces 2 adjacent bits. It
then sequentially sets the Per-I/O Spare Mask for spare row r to the 4 legal spare mask
values for this spare (assuming row r is associated with a segment with an 8-bit data-
width). The value returned by ra_spare_mask_count_get() will be 4, representing 4
valid data masks: 0x03, 0x0C, 0x30 and 0xC0:

RaSpareRow r = ra_spare_row_make(0x3);
for(int c = 0; c < ra_spare_mask_count_get(r); ++c){

__int64 mask = ra_spare_mask_get(r, c);
output(" Mask Position %d => 0x%I64x", c, mask);

}

5.3.4.15 ra_spare_mask_get()
See RA Spares, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_mask_get() function is used in conjunction with
ra_spare_mask_count_get() to sequentially obtain each valid Per-I/O Spare Mask
value for a specified spare row or spare column.

Note: the Per-I/O Spare Mask value of the RaSpareRow or RaSpareRow argument to
ra_spare_mask_get() is modified by ra_spare_mask_get(), to the
index’th legal mask value.

Usage
__int64 ra_spare_mask_get(RaSpareRow r, int index);

__int64 ra_spare_mask_get(RaSpareCol c, int index);
 2/27/09 Pg-1744

Redundancy Analysis (RA) RA Software
where:

r and c identify the target spare row or column.

index is the zero-based index specifying which mask value to return.

ra_spare_mask_get() returns the index’th Per-I/O Spare Mask value for spare row r or
spare column c. NULL is returned if index is out of range. In Multi-DUT Test Programs, the
value is returned for the first DUT in the Active DUTs Set (ADS) (although the value should
be the same for all DUTs). See Note: above.

Example
The following example creates a 2-bit per-I/O spare row, with a 1-bit gap between bits being
replaced. Assuming this row is associated with a segment with an 8-bit data-width the
value returned by ra_spare_mask_count_get() will be 4 and
ra_spare_mask_get() will sequentially return the 4 mask values: 0x05, 0x0A, 0x50 and
0xA0. For each loop iteration, the Per-I/O Spare Mask of spare row R1 will be set to the
same mask value being returned by ra_spare_mask_get():

RaSpareRow R1 = ra_spare_row_make(0x5); // ra_spare_row_make()
for(int i= 0; i < ra_spare_mask_count_get(R1); ++i){

__int64 mask = ra_spare_mask_get(R1, i);
// Do something with the mask or the modified spare row ...

}

5.3.4.16 ra_spare_current_mask_set(), ra_spare_current_mask_get()
See Per-I/O Spare Mask, RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_spare_current_mask_set() function is used to set the Per-I/O Spare Mask for
one specified spare row or spare column.
 2/27/09 Pg-1745

Redundancy Analysis (RA) RA Software
Note: normally, the RA performed by ra_execute() sets the Per-I/O Spare Mask for
a given spare, as that spare is allocated to make a repair and moved from the
Spares List to the Repair List. ra_spare_current_mask_set() is available
for advanced users only.

The ra_spare_current_mask_get() function is used to get the current Per-I/O Spare
Mask for a specified spare row or column.

Usage
void ra_spare_current_mask_set(RaSpareRow r, __int64 mask);

void ra_spare_current_mask_set(RaSpareCol c, __int64 mask);

__int64 ra_spare_current_mask_get(RaSpareRow r);

__int64 ra_spare_current_mask_get(RaSpareCol c);

where:

r and c identify the target spare row or column.

mask is the desired Per-I/O Spare Mask value. Legal values are determined by the RA
software based on how the spare was defined, see ra_spare_row_make() or
ra_spare_col_make(), and Per I/O Spares. The legal mask values for a given spare can
be obtained using ra_spare_mask_get() and ra_spare_mask_count_get(). A
warning is issued if mask is not one of the legal masks for the specified spare row or column.
In Multi-DUT Test Programs the mask is set for all DUT(s) in the Active DUTs Set (ADS).

ra_spare_current_mask_get() returns the current Per-I/O Spare Mask for the
specified spare row or column. The low order mask bit represents D0, etc. Only the low 36
bits are used. In Multi-DUT Test Programs the mask for the first DUT in the Active DUTs Set
(ADS) is returned.

Example
RaSpareRow R1 = ra_spare_row_make(0x3);
__int64 mask = ra_spare_current_mask_get(R1); // Returns 0x3

// Lots of missing details re RA config, etc.
// Setup and Execute RA...
ra_execute(); // Args not shown
 2/27/09 Pg-1746

Redundancy Analysis (RA) RA Software
// If spare row R1 was allocated for a repair it was moved from
// the Spares List to the pending Repair List. The mask now reflects
// which data bits were actually repaired by R1:
__int64 mask = ra_spare_current_mask_get(R1);

5.3.4.17 ra_shortest_spare_row_get(), ra_shortest_spare_col_get()
See RA Spares, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_shortest_spare_row_get() function considers the spare row(s) currently
available in the Spares List and identifies and returns the spare row with the fewest linkages
beyond the specified segment. See Linked Segments. Similarly, the
ra_shortest_spare_col_get() function returns the spare column with the fewest
linkages beyond the specified segment.

In this context, spare elements are sorted from shortest to longest based upon linkage. In
the following example, spare row SR1 is the shortest spare row for Segment-1, but spare
row SR2 is the shortest for Segment-2:

Usage
RaSpareRow ra_shortest_spare_row_get(RaSegment s);

RaSpareCol ra_shortest_spare_col_get(RaSegment s);

where:

SR1

Segment-1 Segment-2

SR2

Segment-3

SR3
 2/27/09 Pg-1747

Redundancy Analysis (RA) RA Software
s identifies the segment of interest.

ra_shortest_spare_row_get() returns the shortest spare row associated with
segment s. In Multi-DUT Test Programs the spare for the first DUT in the Active DUTs Set
(ADS) is returned.

ra_shortest_spare_col_get() returns the shortest spare column associated with
segment s. In Multi-DUT Test Programs the spare for the first DUT in the Active DUTs Set
(ADS) is returned.

Example
RaSpareRow sr = ra_shortest_spare_row_get(s);

5.3.5 RA Execution And Results
See Redundancy Analysis (RA), RA Software.

The following functions are directly related to RA execution and obtaining RA results:

Commonly Used Rarely Used (see Note:)
ra_execute() ra_error_count_get()
ra_result_get() ra_must_repair()
ra_reset() ra_must_repair_needed()
ra_repaired_rows_get() ra_segment_reset()
ra_repaired_cols_get() ra_repair_done()

Used Mostly During Debug ra_bad_segments_count_get()
ra_dump() ra_bad_segment_get()
ra_segment_dump() ra_segment_repair_done()
ra_spare_dump() ra_error_add()

ra_scan_area_callback()
ra_scan_area_callback_func_set()
ra_scan_area_callback_func_get()

ra_scan_rc_func_set()
ra_scan_rc_func_get()
ra_worst_row_get()
ra_worst_col_get()
ra_best_row_wipeout()
ra_best_col_wipeout()
ra_wipeout_get()
ra_spare_rows_required()
 2/27/09 Pg-1748

Redundancy Analysis (RA) RA Software
ra_spare_cols_required()
ra_failed_rows_count_get()
ra_failed_cols_count_get()
ra_worst_rows_get()
ra_worst_cols_get()
ra_row_wipeout()
ra_col_wipeout()

5.3.5.1 ra_execute()
See RA Execution And Results, RA Software.

Note: this function is commonly used in redundancy applications. See Note:

Description
The ra_execute() function performs a redundancy analysis (RA) to determine whether
each active DUT is repairable given the available spare resources (Spares List). For
repairable DUT(s) ra_execute() moves the spare(s) allocated for repair from the Spares
List to the pending Repair List.

In Multi-DUT Test Programs, RA is performed concurrently on each DUT in the Active DUTs
Set (ADS) with separate results and Spares List/Repair List kept for each DUT. See RA vs.
Magnum 1/2 Parallel Test.

Note the following:

• ra_execute() is executed as part of a series of steps used to implement a
complete RA solution. The information below deals with how ra_execute()
operates and how this operation may be modified. Prior to using ra_execute()
the concepts and details of the entire RA process must be well known. Read and
understand Overview and Concepts, RA Pseudo-Code Example and Spares For
Repair.

• ra_execute() should be executed only after one or more functional memory test
patterns have been executed and logged errors to the ECR.

• Key RA functionality is implemented as Redundancy Call-back Functions. Default
call-back functions are built-in but, in special situations, can be replaced by user-
written functions.
 2/27/09 Pg-1749

Redundancy Analysis (RA) RA Software
• The following description outlines how ra_execute() operates and identifies the
various Redundancy Call-back Functions available to allow user code to affect RA:

foreach DUT(s) in the Active DUTs Set (ADS) (ADS)
foreach segment with an error in the ECR Mini-RAM:

Scan the main ECR for this segment, for all DUT(s) in the ADS,
and cache the errors in the Error List. For performance, this
step is done only once for each segment, with cached errors
used thereafter. While scanning, basic repair limits are
assessed to detect when a segment can’t be repaired because
gross limits are exceeded. Scanning for unrepairable
segment(s) is halted before all errors are cached.

foreach DUT in the ADS with errors in this segment:
Do Must-repair analysis on this segment for this DUT

Call-back:
RaMustRepairFunc: performs the Must-repair analysis and

allocates spare elements for repair
RaRowAvailableFunc: determines which spare rows are

usable to repair this segment.
RaColAvailableFunc: determines which spare columns are

usable to repair this segment

Must-repair analysis executes ra_spare_use() if a repair is
identified
Call-backs:

RaRepairFunc: selects which spare to use and moves it
from the Spares List to the Repair List

RaRowUseOK: approves use of a specific spare row
RaColUseOK: approves use of a specific spare column

If the segment is unrepairable and the maximum unrepairable
segments limit is reached, stop all RA for this DUT.

Do Sparse-repair analysis on this segment for this DUT
Call-back:

RaSparseFunc: performs the Sparse-repair analysis and
allocates spare elements for repair

RaEvalFunc(): indirectly determines which segment to
process next during Sparse-repair

Call ra_spare_use() if a repair is identified
Call-backs:

RaRepairFunc: selects which spare to use and moves it
 2/27/09 Pg-1750

Redundancy Analysis (RA) RA Software
from the Spares List to the Repair List
RaRowAvailableFunc: determines which spare rows are

usable to repair this segment.
RaColAvailableFunc: determines which spare columns

are usable to repair this segment
RaRowUseOK: approves use of a specific spare row
RaColUseOK: approves use of a specific spare column

If the segment is unrepairable and the maximum unrepairable
segments limit is reached, stop all RA for this DUT.

The ra_execute() process is as follows:

• If the ECR Mini-RAM is enabled (see ra_config_set()) it determines which
segments have errors which are to be scanned from the ECR. If not, the Row RAM
and Column RAM are used.

• Using ra_scan_area_callback(), errors are read from the ECR for all DUT(s)
in the ADS and cached in the Error List for each segment.

• While the ECR scan is occurring, basic repair limits are assessed to detect when
a segment can’t repaired because gross limits are exceeded. Scanning for
unrepairable segment(s) is halted before all errors are cached. This analysis has
two goals:
• Identify non-repairable devices as early as possible
• Identify any rows or columns which can only be repaired one way; i.e. using only

a spare row or only a column.
• The ra_execute() function will immediately stop analyzing errors for a given

DUT if, at any time, it determines that the device is unrepairable. This will occur
any time the number of unrepairable segments exceeds the maximum limit set
using ra_config_set(). Unrepairable segments are always added to the Bad
Segment List (see Spare Segments).

• No actual repairs are identified during the ECR scan process. Once the scan is
complete, errors for repairable segments are analyzed in two phases:
• Must-repair
• Sparse-repair (with Must-repair again as necessary). More below.

• Any time a repair is identified the ra_spare_use() function is called to move the
identified spare row or spare column from the Spares List to the Repair List. Before
this occurs, if user code has registered an RaRepairFunc call-back function it will
be executed to select which spare is to be used. And, if user code has registered
 2/27/09 Pg-1751

Redundancy Analysis (RA) RA Software
an RaRowUseOK and/or RaColUseOK call-back function one of these will be
executed to enforce spare usage rules; i.e. validate that the selected spare is
actually usable.

• Any time a repair is identified and a spare is allocated to make that repair, the
Must-repair analysis must be performed again because the consumption of a
spare element changes the conditions used to detect a Must-repair row or column.
The failures associated with the Must-repair just identified are removed from the
Error List and the remaining failures are re-analyzed.

• Once Must-repair has completed for all segments of all DUT(s) in ADS the Sparse-
repair analysis process executes, IF:
• Failures remain which were not repaired during Must-repair, and...
• The device is still repairable.
Each segment with unrepaired failures is processed again, with Must-repair and
Sparse-repair performed as needed.

• By default the built-in Sparse-repair software is executed. User code can replace
this operation by registering an RaSparseFunc Call-back Function. This is for very
advanced applications only.

• By default, Sparse-repair begins by identifying the worst segment. This default can
be modified using a user-written call-back function to replace the default
RaSparseFunc function (see Redundancy Call-back Functions).

• When Sparse-repair identifies a new repair, and a spare element is allocated to
make that repair, Must-repair analysis is done again. This is needed because the
consumption of a spare element may cause errors which previously had multiple
repair options to become Must-repair. Thus, Sparse-repair is interspersed with
Must-repair until all segments are error-free, or a segment is determined to be
unrepairable.

• During both Must-repair and Sparse-repair the Repair List keeps a record of which
spare elements were allocated to repair each error. Assuming the DUT had errors,
and the analysis determined that it is repairable, the Repair List holds the spare(s)
information needed to actually repair the device.

• When a repair involves Linked Segments, the use of a linked spare element
impacts multiple segments. The Error List, Spares List, Repair List, and Unusable
List for all segments linked by the spare are updated to reflect repairs made in the
current segment.

• Once RA has completed for all segments of all DUT(s) in the ADS, the
ra_execute() function returns. User code then executes ra_result_get() to
determine whether a given DUT had no failures (good), had failures and is not
repairable (bad), had failures and is repairable (needs repair), or was not analyzed.
 2/27/09 Pg-1752

Redundancy Analysis (RA) RA Software
Note: the actual device repair is not performed by the ra_execute() function. This
must be performed by user-written software. It is the contents of the pending
Repair List which contain the RA repair results; i.e. which spare rows and spare
columns were allocated to repair each segment of each DUT. Repair List
contents are accessed using Repair List Functions.

• The Repair List is maintained until ra_reset() is executed. This allows
test->repair->retest->re-repair... etc. to continue until either the device is
successfully repaired or all spare elements are consumed and the device is
considered unrepairable.

• During both Must-repair and Sparse-repair, user-written code may execute
ra_unusable_set() to move unusable spares from the Spares List to the
Unusable List and ra_usable_set() to move spares back from the Unusable
List to the Spares List. This is done using one of the Redundancy Call-back
Functions. Spares in the Unusable List are not considered available to repair the
DUT. The Unusable List list is cleared using ra_reset() or
ra_segment_reset().

Usage
void ra_execute(

RaSparseFunc sparse_func DEFAULT_VALUE(ra_row_first_sparse),
RaEvalFunc() eval_func DEFAULT_VALUE(ra_linear_eval()),
RaRepairFunc row_to_use_func DEFAULT_VALUE(ra_shortest_row_use),
RaRepairFunc col_to_use_func DEFAULT_VALUE(ra_shortest_col_use),
RaMustRepairFunc must_repair_func DEFAULT_VALUE(ra_must_repair));

where:

sparse_func is optional and registers a user-written call-back function that will be
executed instead of the default RaSparseFunc Call-back Function. See Redundancy Call-
back Functions. Setting the argument to 0 restores the default call-back
(ra_row_first_sparse) and un-registers any user-defined call-back function.

eval_func is optional and registers a user-written call-back function that will be executed
instead of the default RaEvalFunc Call-back Function. See Redundancy Call-back
Functions. Setting the argument to 0 restores the default call-back (ra_linear_eval())
and un-registers any user-defined call-back function.

row_to_use_func and col_to_use_func are optional and register a user-written call-
back function that will be executed instead of the default RaRepairFunc Call-back Functions.
See Redundancy Call-back Functions. Setting the argument to 0 restores the default call-
 2/27/09 Pg-1753

Redundancy Analysis (RA) RA Software
back (ra_shortest_row_use or ra_shortest_col_use) and un-registers any user-
defined call-back function.

must_repair_func is optional and registers a user-written call-back function that will be
executed instead of the default RaMustRepairFunc Call-back Function. See Redundancy
Call-back Functions. Setting the argument to 0 restores the default call-back
(ra_must_repair) and un-registers any user-defined call-back function.

Example
See RA Pseudo-Code Example

5.3.5.2 ra_result_get()
See RA Execution And Results, RA Software.

Note: this function is commonly used in redundancy applications. See Note:

Description
After ra_execute() has performed a redundancy analysis (RA), the ra_result_get()
function is used to retrieve the overall RA result for one DUT, or for a specified segment of
one DUT. The possible results are:

• The DUT or segment has no defects and needs no repair (t_ra_good)
• The DUT or segment has defects and is repairable (t_ra_repairable)
• The DUT or segment has defects but is not repairable (t_ra_unrepairable)
• The DUT or segment was not analyzed (t_ra_not_analyzed)

When getting results for a specific segment:

• The segment will be reported as good (t_ra_good) if no repairs are applied to it.
• A segment will be reported as repairable (t_ra_repairable) if one or more

spares have been allocated to repair it.
• A segment which itself has NO errors will be reported as repairable

(t_ra_repairable) when a spare which links the segment to another segment is
used to repair any of the other segments.
 2/27/09 Pg-1754

Redundancy Analysis (RA) RA Software
Usage
RaResult ra_result_get();

RaResult ra_result_get(RaSegment s);

where:

s identifies the segment of interest.

ra_result_get() returns an RaResult. In Multi-DUT Test Programs, the result is
returned for the first DUT in the Active DUTs Set (ADS).

Example
See RA Pseudo-Code Example.

5.3.5.3 ra_error_count_get()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_error_count_get() function is used to get a count of remaining failures (i.e.
unrepaired) for a DUT or a segment. Two versions are available:

• Get the number of failing addresses or failing data bits for one DUT
• Get the number of failing addresses or failing data bits for a specified segment

The values returned by these function represent the number of errors in the Error List for a
specified segment, not necessarily the number of errors currently in the ECR. If errors have
not yet been scanned (retrieved) from the ECR, the values returned by these functions will
be 0. The number of errors returned by these functions will differ from the number of errors
in the ECR for several reasons:

• The RA algorithm is optimized to minimize the number of errors read
(ra_scan_area_callback() via ra_execute()) from the ECR; i.e. don’t get
errors that aren’t needed. When the RA algorithm determines that the number of
errors in a row or column exceeds the number of available spare columns or rows,
no more errors are read/stored in the Error List for that row or column.
 2/27/09 Pg-1755

Redundancy Analysis (RA) RA Software
• As the RA proceeds, errors are removed from the Error List as the algorithm
allocates spares to repair bad row(s) and/or column(s).

Usage
int ra_error_count_get(BOOL bit_count DEFAULT_VALUE(FALSE))

int ra_error_count_get(RaSegment s,
BOOL bit_count DEFAULT_VALUE(FALSE));

where:

bit_count is optional and, if specified, determines whether the value returned is the
number of failing addresses (FALSE, default) or number of failing bits (TRUE).

s identifies a segment of interest.

ra_error_count_get() returns the remaining number (i.e. unrepaired) of failing
addresses or failing data bits for a DUT or the specified segment. In Multi-DUT Test
Programs, the value is returned for the first DUT in the Active DUTs Set (ADS).

Example
The following example returns the number of remaining error addresses for the first DUT in
the Active DUTs Set (ADS):

int count = ra_error_count_get();

The following example returns the number of remaining error bits for the first DUT in the
Active DUTs Set (ADS):

int count = ra_error_count_get(TRUE);

The following example returns the number of remaining error addresses for segment S1 of
the first DUT in the Active DUTs Set (ADS):

RaSegment S1 = ra_segment_make(); // Parameters not shown
// Lots of code not shown...
int count = ra_error_count_get(S1);

5.3.5.4 ra_dump()
See RA Execution And Results, RA Software.
 2/27/09 Pg-1756

Redundancy Analysis (RA) RA Software
Note: this function is commonly used in redundancy applications, during debug. See
Note:

Description
The ra_dump() function is used to output information about both the RA configuration and
RA results. The output is displayed in the controller output window of the site executing the
function.

In Multi-DUT Test Programs the output is from the first DUT in the Active DUTs Set (ADS).

Note that ra_dump() executes ra_segment_dump() for each segment of the DUT.

Usage
void ra_dump(BOOL hex DEFAULT_VALUE(FALSE));

where:

hex is optional and, if used, determines whether numerical values are output in decimal
(FALSE, default) or hexadecimal (TRUE). Mask values are always output in hexadecimal.

Example
The following is example ra_dump() output showing the various information generated:

--
Number of Segments Per DUT: 16
Number of Spare Rows Per DUT: 16
Number of Spare Columns Per DUT: 14
Dut #0: Repairable
 Unrepairable Segments Found = 0, Unrepairable Segments Allowed = 0
 Segment #1: Repairable
 rmin = 0, rmax = 1023, cmin = 0, cmax = 255
 Spare Rows - Unused:
 0 Remaining or Defined
 Spare Rows - Unusable:
 0 Remaining or Defined
 Row Repairs - Pending:
 Spare Row #1:
 Current Mask Position = 0xFF, R/C Number = 333
 Number of Mask Positions = 1
 Length in Segments = -1, Number of RUT/CUT = 1,
 2/27/09 Pg-1757

Redundancy Analysis (RA) RA Software
Blanks Between RUT/CUT = 0
 Row Repairs - Done:
 0 Remaining or Defined
 Spare Columns - Unused:
 Spare Column #1:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #9:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #10:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #13:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 4, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #14:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Columns - Unusable:
 Spare Column #2:
 Current Mask Position = 0x4, R/C Number = 800
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Column Repairs - Pending:
 0 Remaining or Defined
 Column Repairs - Done:
 0 Remaining or Defined
 Segment #2: Repairable
 rmin = 0, rmax = 1023, cmin = 256, cmax = 511
 2/27/09 Pg-1758

Redundancy Analysis (RA) RA Software
 Spare Rows - Unused:
 0 Remaining or Defined
 Spare Rows - Unusable:
 0 Remaining or Defined
 Row Repairs - Pending:
 Spare Row #2:
 Current Mask Position = 0xFF, R/C Number = 1023
 Number of Mask Positions = 1
 Length in Segments = -1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Row Repairs - Done:
 0 Remaining or Defined
 Spare Columns - Unused:
 Spare Column #1:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #9:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #10:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #13:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 4, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #14:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Columns - Unusable:
 Spare Column #2:
 Current Mask Position = 0x4, R/C Number = 800
 2/27/09 Pg-1759

Redundancy Analysis (RA) RA Software
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Column Repairs - Pending:
 0 Remaining or Defined
 Column Repairs - Done:
 0 Remaining or Defined
... snip ...
--

5.3.5.5 ra_segment_dump()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_dump() function is used to output information about the configuration
and RA results for a specified segment. The output is displayed in the controller output
window of the site executing the function.

In Multi-DUT Test Programs the output is from the first DUT in the Active DUTs Set (ADS).

Note that ra_dump() executes ra_segment_dump() for each segment of the DUT.

Usage
void ra_segment_dump(RaSegment s,

BOOL hex DEFAULT_VALUE(FALSE));

where:

s identifies the segment of interest.

hex is optional and, if used, determines whether numerical values are output in decimal
(FALSE, default) or hexadecimal (TRUE). Mask values are always output in hexadecimal.
 2/27/09 Pg-1760

Redundancy Analysis (RA) RA Software
Example
The following is example ra_segment_dump() output showing the various information
generated:

Segment #1: Repairable
 rmin = 0, rmax = 1023, cmin = 0, cmax = 255
 Spare Rows - Unused:
 0 Remaining or Defined
 Spare Rows - Unusable:
 0 Remaining or Defined
 Row Repairs - Pending:
 Spare Row #1:
 Current Mask Position = 0xFF, R/C Number = 333
 Number of Mask Positions = 1
 Length in Segments = -1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Row Repairs - Done:
 0 Remaining or Defined
 Spare Columns - Unused:
 Spare Column #1:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #9:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #10:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 2, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #13:
 Current Mask Position = 0x1, R/C Number = -1
 Number of Mask Positions = 8
 Length in Segments = 4, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Column #14:
 Current Mask Position = 0x1, R/C Number = -1
 2/27/09 Pg-1761

Redundancy Analysis (RA) RA Software
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Spare Columns - Unusable:
 Spare Column #2:
 Current Mask Position = 0x4, R/C Number = 800
 Number of Mask Positions = 8
 Length in Segments = 1, Number of RUT/CUT = 1,
Blanks Between RUT/CUT = 0
 Column Repairs - Pending:
 0 Remaining or Defined
 Column Repairs - Done:
 0 Remaining or Defined

5.3.5.6 ra_spare_dump()
See RA Spares, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_dump() function is used to output information about a specified spare row
or spare column, including which defective row(s) or column(s) were repaired by the spare
row or column. The output is displayed in the controller output window of the site executing
the function.

In Multi-DUT Test Programs the output is from the first DUT in the Active DUTs Set (ADS).

Each spare records the RaErrorPosition it is replacing; i.e. the bad row or column and the
Per-I/O Spare Mask indicating which data bits it is replacing.

Usage
void ra_spare_dump(RaSpareRow r);

void ra_spare_dump(RaSpareCol c);

where:

r and c identify the spare row or column of interest.
 2/27/09 Pg-1762

Redundancy Analysis (RA) RA Software
Example
The following is an example of ra_spare_dump() output showing the information
generated for two spare rows:

Spare Row #2:
Current Mask Position = 0xFFFF, R/C Number = 12
Number of Mask Positions = 1
Number of RUT/CUT = 1, Blanks Between RUT/CUT = 0

Spare Row #1:
Current Mask Position = 0xFFFF, R/C Number = 67
Number of Mask Positions = 1
Number of RUT/CUT = 1, Blanks Between RUT/CUT = 0

5.3.5.7 ra_must_repair()
See RA Execution And Results, Repair List Functions, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_must_repair() function performs RA on a specified segment and identifies the
spare(s) to repair all Must-repair rows and columns in the given segment.

ra_must_repair() is also the default RaMustRepairFunc Call-back Function executed
during the RA invoked using ra_execute(). ra_must_repair() executes
ra_spare_use() when a repair is identified to move the allocated spare from the Spares
List to the Repair List.

The ra_row_func and ra_col_func arguments allow user code to register
RaRepairFunc call-back functions (see Redundancy Call-back Functions) to be executed
instead of the built-in functions. These functions are used, when multiple row (column)
spares exist, to determine which specific spare row (column) is selected to make a given
repair.

In Multi-DUT Test Programs, the Must-repair analysis is performed on the first DUT in the
Active DUTs Set (ADS) only.
 2/27/09 Pg-1763

Redundancy Analysis (RA) RA Software
Usage
The following function is the built-in RaMustRepairFunc Call-back Function, executed during
ra_execute():

BOOL ra_must_repair(RaSegment s,
RaSpareRowArray& spare_rows_avail,
RaSpareColArray& spare_cols_avail,

RaRepairFunc row_to_use_func DEFAULT_VALUE(ra_shortest_row_use),
RaRepairFunc col_to_use_func DEFAULT_VALUE(ra_shortest_col_use)
);

where:

s identifies the segment to analyze.

spare_rows_avail and spare_cols_avail are arrays containing the spare rows and
columns that the Must-repair analysis can consider usable for repair during the analysis.

row_to_use_func is optional and, if used, specifies a user-written RaRepairFunc
call-back function which can be used to determine the strategy for deciding which spare row
is selected to make a given repair. See Description and Redundancy Call-back Functions. If
no argument (or NULL) is specified the built-in ra_shortest_row_use function is used.

col_to_use_func is optional and, if used, specifies a user-written RaRepairFunc call-
back function which can be used to determine the strategy for deciding which spare column
is selected to make a given repair. See Description and Redundancy Call-back Functions.
If no argument (or NULL) is specified the default call-back ra_shortest_col_use is
used.

ra_must_repair() returns FALSE if the segment is determined to be unrepairable,
otherwise TRUE is returned.

Example
???

5.3.5.8 ra_must_repair_needed()
See RA Execution And Results, Repair List Functions, RA Software.

Note: this function is not used in most redundancy applications. See Note:
 2/27/09 Pg-1764

Redundancy Analysis (RA) RA Software
Description
The ra_must_repair_needed() function performs a limited Must-repair analysis and
simly returns TRUE if a Must-repair condition exists in the specifed segment. In Multi-DUT
Test Programs, the analysis is performed on the first DUT in the Active DUTs Set (ADS) only.

Usage
The following function performs a limited Must-repair RA to determine whether a Must-repair
is required, given the specified spare rows and columns. It does not return any other
analysis results:

BOOL ra_must_repair_needed(RaSegment s,
RaSpareRowArray& spare_rows_avail,
RaSpareColArray& spare_cols_avail);

where:

s identifies the segment to analyze.

spare_rows_avail and spare_cols_avail are arrays containing the spare rows and
columns that the Must-repair analysis can consider usable for repair during the analysis.

ra_must_repair_needed() returns TRUE if a Must-repair is identified otherwise FALSE
is returned.

Example
???

5.3.5.9 ra_reset()
See RA Execution And Results, RA Software.

Note: this function is commonly used in redundancy applications. See Note:

Description
The ra_reset() function resets the Error List, Repair List, Spares List, Unusable List and
Bad Segment List, typically in preparation for testing a new set of DUT(s).
 2/27/09 Pg-1765

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs, by default, ra_reset() resets these lists for all DUTs in the
Pin Assignment Table; i.e. the Active DUTs Set (ADS) and Ignored DUTs Set (IDS) are
ignored. Setting the optional all_duts argument to FALSE can be used to reset the lists
for only the DUT(s) in the Active DUTs Set (ADS). See RA vs. Magnum 1/2 Parallel Test.

Note that ra_reset() executes ra_segment_reset() for each segment of the
appropriate DUT(s).

Note: any change made using ra_max_bad_segments_set() is temporary;
executing ra_reset() always restores the max_bad_segs value to the value
originally set using ra_config_set().

Usage
void ra_reset(BOOL all_duts DEFAULT_VALUE(TRUE));

where:

all_duts is optional and only useful in Multi-DUT Test Programs. If used, all_duts
determines whether the Error List, Repair List, Spares List, Unusable List and Bad Segment
List are reset for all DUTs in the program (TRUE, default) or for only the DUT(s) in the
Active DUTs Set (ADS) (FALSE).

Example
ra_reset();

5.3.5.10 ra_segment_reset()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_reset() function resets the Error List, Repair List, Spares List,
Unusable List and Bad Segment List for a specified segment.

In Multi-DUT Test Programs, by default, ra_segment_reset() reset the lists for only the
DUT(s) in the Active DUTs Set (ADS). Setting the optional all_duts argument to TRUE
 2/27/09 Pg-1766

Redundancy Analysis (RA) RA Software
can be used to resets these lists for all DUTs in the Pin Assignment Table; i.e. the Active
DUTs Set (ADS) and Ignored DUTs Set (IDS) are ignored. See RA vs. Magnum 1/2 Parallel
Test.

Note that ra_reset() executes ra_segment_reset() for each segment of the
appropriate DUT(s).

Usage
void ra_segment_reset(RaSegment s,

BOOL all_duts DEFAULT_VALUE(FALSE));

where:

s identifies the segment to be reset.

all_duts is optional and only useful in Multi-DUT Test Programs. If used, all_duts
determines whether the specified segment is reset for all DUTs in the program (TRUE,
default) or for only the DUT(s) in the Active DUTs Set (ADS) (FALSE).

Example
The following example resets every segment for all DUT(s) in the Active DUTs Set (ADS):

for(int i = 0; i < ra_segment_count_get(); ++i)
ra_segment_reset(ra_segment_get(i), FALSE);

5.3.5.11 ra_repair_done()
See RA Execution And Results, RA Software.

Note: this function is commonly used in redundancy applications. See Note:

Description
The ra_repair_done() function is used to advise the RA software that the pending
repairs in the Repair List have been made to the DUT. This moves these repairs from the
pending Repair List to the done Repair List. Note the following:
 2/27/09 Pg-1767

Redundancy Analysis (RA) RA Software
• ra_repair_done() is normally executed before re-testing a [previously] repaired
device, to prepare the Repair List for a new RA. Conversely, executing
ra_repair_done() is not useful except when a DUT is going to be retested and
re-repaired.

• ra_repair_done() has no effect on the Error List, Spares List, Unusable List or
Bad Segment List.

• Note that ra_repair_done() calls ra_segment_repair_done() for each
spare in each segment's Repair List.

• In Multi-DUT Test Programs, only the Repair List for the first DUT in the Active
DUTs Set (ADS) is processed.

Usage
BOOL ra_repair_done();

where:

ra_repair_done() returns TRUE if the Repair List was successfully updated, otherwise
FALSE is returned, which will occur in Multi-DUT Test Programs if the Active DUTs Set
(ADS) contains no DUTs.

Example
if(! ra_repair_done())

output(" ERROR: ra_repair_done() returned FALSE");

5.3.5.12 ra_spare_use()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_use() function performs several operations:

• Executes the RaRowUseOK or RaRowUseOK call-back function (if any) to
determine whether the specified spare may be used to make the target repair. If
the call-back returns FALSE ra_spare_use() immediately terminates, returning
FALSE>
 2/27/09 Pg-1768

Redundancy Analysis (RA) RA Software
• It moves a specified spare row or spare column from the Spares List to the Repair
List (pending) for a specified segment; i.e. use the specified spare to make a
repair.

• It updates the Spares List for any segment(s) which are linked by the specified
spare (see Linked Segments).

• It also removes the repaired errors from the Error List for the specified segment
and any segments linked by the spare (see Linked Segments).

Normally, ra_spare_use() is executed by ra_execute() as a given spare is identified,
during the RA, to make a repair. User code may use ra_spare_use() within an
RaRepairFunc Call-back Function and/or RaSparseFunc Call-back Function (see
Redundancy Call-back Functions).

Note: each spare associated with one or more segment(s) (see ra_spare_add())
stores an RaErrorPosition, used to record the bad row or column and Per-I/O
Spare Mask the spare is repairing. When user code executes
ra_spare_use(), these parameters must be set for the specified spare (using
ra_spare_position_set() or one of the other functions that set the spare’s
RaErrorPosition) BEFORE executing ra_spare_use(). Failure to do this will
likely result in improper RA operation elsewhere.

In Multi-DUT Test Programs, the operation applies only to the first DUT in the Active DUTs
Set (ADS).

Usage
BOOL ra_spare_use(RaSegment s, RaSpareRow r);

BOOL ra_spare_use(RaSegment s, RaSpareCol c);

where:

s identifies the segment of interest.

r and c identify the spare row or spare column to be used; i.e. moved from the Spares List to
the Repair List. IMPORTANT: see the Note: above.

ra_spare_use() returns TRUE if the spare was successfully used.

Example
See RaSparseFunc Call-back Function Example.
 2/27/09 Pg-1769

Redundancy Analysis (RA) RA Software
5.3.5.13 ra_bad_segments_count_get()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_bad_segments_count_get() function can be used to determine the number of
the bad segment(s) in the Bad Segment List. See Spare Segments and
ra_bad_segment_get().

Usage
int ra_bad_segments_count_get();

where ra_bad_segments_count_get() returns the number of bad segments in the Bad
Segment List. In Multi-DUT Test Programs the value is returned for the first DUT in the
Active DUTs Set (ADS).

Example
for(int i = 0; i < ra_bad_segments_count_get(); ++i){

RaSegment s = ra_bad_segment_get(i); // ra_bad_segment_get()
// Do something with the bad segment

}

5.3.5.14 ra_bad_segment_get()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_bad_segment_get() function can be used to retrieve a bad segment from the
Bad Segment List. See Spare Segments.
 2/27/09 Pg-1770

Redundancy Analysis (RA) RA Software
The number of bad segments in the Bad Segment List can be determined using
ra_bad_segments_count_get().

Usage
RaSegment ra_bad_segment_get(int index);

where:

index specifies the zero-based index into the Bad Segment List.

ra_bad_segment_get() returns an RaSegment from the index’th position of the Bad
Segment List or NULL if index is out of range. In Multi-DUT Test Programs, the value is
returned for the first DUT in the Active DUTs Set (ADS).

Example
See Example.

5.3.5.15 ra_segment_repair_done()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_segment_repair_done() function is used to move the specified spare from the
pending Repair List to the done Repair List for a specified segment.

In Multi-DUT Test Programs, the spare is moved for the first DUT in the Active DUTs Set
(ADS).

Normally, ra_segment_repair_done() is called by ra_repair_done() for each
segment of each active DUT. The ra_segment_repair_done() function is used when
user-written redundancy routines are used instead of the built-in versions.

ra_segment_repair_done() has no effect on the Error List, Spares List, Unusable List
or Bad Segment List.
 2/27/09 Pg-1771

Redundancy Analysis (RA) RA Software
Usage
BOOL ra_segment_repair_done(RaSegment s, RaSpareRow r);
BOOL ra_segment_repair_done(RaSegment s, RaSpareRow c);

where:

s identifies the target segment.

r and c identify the spare row or spare column to be changed from pending to done in the
Repair List.

ra_segment_repair_done() returns TRUE if the specified spare is successfully moved
from pending to done. A warning is issued if r or c is not in the pending Repair List for
segment s.

Example
RaSegment s = ra_segment_make(); // Details not included
RaSpareCol c = ra_spare_col_make();
// Assume c was allocated for a repair and placed in the Repair List
BOOL ok = ra_segment_repair_done(s, c);

5.3.5.16 ra_error_add()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_error_add() function is used to add errors to the Error List for a specified
segment.

In Multi-DUT Test Programs, the error is added to the Error List for the first DUT in the Active
DUTs Set (ADS).

Usage
BOOL ra_error_add(RaSegment s, int row, int col, __int64 data);

where:
 2/27/09 Pg-1772

Redundancy Analysis (RA) RA Software
s identifies the segment of interest.

row and col identify the target X and Y address in the Error List at which the error(s) are to
be added.

data specifies which data bits are to have errors. data operates like a bit-mask with a logic-
1 in the mask indicating an error on the corresponding data bit and a logic-0 indicating no
error on that data bit. The low order mask bit represents D0, etc. Only the low 36 bits are
used.

ra_error_add() returns FALSE if the row/col address does not fall within segment s or
if any of the specified data bits are not valid for segment s.

Example
BOOL ok = ra_error_add(S1, 10, 20, 0xA5);

5.3.5.17 ra_scan_area_callback()
See RA Execution And Results, RA Software.

Note: early Magnum RA software used the ra_scan() function. This was replaced
by the function documented here. Any use of the ra_scan() will be flagged
with a runtime warning and the desired RA operation will not occur.

Description
The ra_scan_area_callback() function is the built-in RaScanAreaCallbackFunc Call-
back Function which is executed by ra_execute() to scan (read) errors from the Error
Catch RAM (ECR) for a specified segment and put those errors into the Error List.

For special situations, it is possible for user code to register a user-written call-back function
which will be executed instead of ra_scan_area_callback(). Special rules apply - see
RaScanAreaCallbackFunc Call-back Function. A user call-back is registered using
ra_config_set() or ra_scan_area_callback_func_set().

In Multi-DUT Test Programs, the scan operation retrieves errors for the first DUT in the
Active DUTs Set (ADS) but the system software manages the Active DUTs Set (ADS) during
the execution of ra_execute().
 2/27/09 Pg-1773

Redundancy Analysis (RA) RA Software
Usage
BOOL ra_scan_area_callback(PointFailure* fails,

int count,
__int64& scanmask);

where:

failures is a pointer to an array of PointFailure(s) containing count elements. The
system allocates and manages memory for 16K PointFailure at a time, which is the
maximum number of errors scanned from the ECR at one time. If necessary,
ra_scan_area_callback() will be executed multiple times to process the errors for a
given segment.

scanmask is the addess of an __int64 variable which is not intended for user applications
and thus not documented further.

ra_scan_area_callback() returns TRUE as long as un-scanned errors remain in the
ECR for the given segment.

Example
None

5.3.5.18 ra_scan_area_callback_func_set() ,
ra_scan_area_callback_func_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description
By default, the ra_scan_area_callback() function is used, by ra_execute(), to read
(scan) errors from the Error Catch RAM (ECR). See Redundancy Call-back Functions.

The ra_scan_area_callback_func_set() function may be used to register a user-
written call-back function which will be executed instead of ra_scan_area_callback().
This allows user-written code to process/filter errors read from the ECR before they are
added to the Error List. See RaScanAreaCallbackFunc Call-back Function.
 2/27/09 Pg-1774

Redundancy Analysis (RA) RA Software
The ra_scan_area_callback_func_get() function will return the current
user-registered call-back function, if any, or 0.

In Multi-DUT Test Programs a single RaScanAreaCallbackFunc Call-back Function is
registered at any given time; i.e. the Active DUTs Set (ADS) or Ignored DUTs Set (IDS) have
no effect on which call-back is executed.

Usage
void ra_scan_area_callback_func_set(

RaScanAreaCallbackFunc area_func);

RaScanAreaCallbackFunc ra_scan_area_callback_func_get();

where:

area_func is the user-written call-back function to be executed in place of
ra_scan_area_callback(). A user-written RaScanAreaCallbackFunc call-back
function must conform to the prototype documented in RaScanAreaCallbackFunc Call-back
Function.

ra_scan_area_callback_func_get() returns the currently registered call-back
function, if any. 0 is returned if the user has not registered a RaScanAreaCallbackFunc
call-back function.

Example
The following code sets the call-back function to a user-written function named
myScanFunc():

ra_scan_area_callback_func_set(myScanFunc);

The following code restores operation to use the original built-in function:

ra_scan_area_callback_func_set(0);

5.3.5.19 ra_scan_rc_func_set(), ra_scan_rc_func_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:
 2/27/09 Pg-1775

Redundancy Analysis (RA) RA Software
Description

The ra_scan_rc_func_set() function may be used to register a user-written call-back
function which will be executed instead of the built-in function to read (scan) errors from the
ECR’s Row RAMs and Column RAMs. See Redundancy Call-back Functions and
RaScanRCFunc Call-back Function.

The ra_scan_rc_func_get() function will return the currently user-registered call-back
function, if any, or 0.

Note that the ECR’s Row RAMs and Column RAMs are not used when the ECR Mini-RAM
is enabled (see ra_config_set()).

In Multi-DUT Test Programs a single RaScanRCFunc Call-back Function call-back is
registered at any given time; i.e. the Active DUTs Set (ADS) or Ignored DUTs Set (IDS) have
no effect on which call-back is executed.

Usage
void ra_scan_rc_func_set(RaScanRCFunc rc_func);

RaScanRCFunc ra_scan_rc_func_get();

where:

rc_func is the user-written call-back function to be executed instead of the built-in function.
A user-written RaScanRCFunc call-back function must conform to the prototype
documented in RaScanRCFunc Call-back Function.

ra_scan_rc_func_get() returns the currently registered call-back function, if any. 0 is
returned if the user has not registered a RaScanRCFunc call-back function.

Example
The following code sets the RC scan call-back function to a user-written function named
myRCScanFunc():

ra_scan_rc_func_set(myRCScanFunc);

The following code restores operation to use the original built-in function:

ra_scan_rc_func_set(0);
 2/27/09 Pg-1776

Redundancy Analysis (RA) RA Software
5.3.5.20 ra_worst_row_get(), ra_worst_col_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

Given a list (array) of bad rows in a specified segment the ra_worst_row_get() function
will:

• Identify the (worst) bad row which, if replaced, will eliminate the maximum number
of column failures in the specified segment. Linked Segments are considered in the
evaluation.

• Consider the spare rows available in the Spares List and identify and return a
spare row which can be used to replace the worst bad row. The
RaRowAvailableFunc & RaColAvailableFunc Call-back Function are used during
the analysis.

• Return the number of RaErrorPosition(s) which would be partially or completely
repaired by replacing the identified worst row with the recommended spare row. If
the segment has per-I/O spare columns, this number may not be the number of
repaired columns and may also not be the number of data bits repaired; it is a
count of RaErrorPosition(s).

Also note:

• The list of bad rows to be analyzed must be defined, by user code, in an
RaErrorPosArray. See ra_failed_rows_get().

• The spare selection analysis does consider Rows-Used-Together(RUT), Columns-
Used-Together(CUT).

• The identified spare’s RaErrorPosition is updated:
- rcnum = the identified worst bad row
- mask = which bits the identified spare will replace
See RaErrorPosition and Per-I/O Spare Mask.

• The spare rows or columns considered by the analysis are filtered by the
RaRowAvailableFunc call-back function, if any, specified via
ra_segment_make(). See RaRowAvailableFunc & RaColAvailableFunc Call-back
Function.
 2/27/09 Pg-1777

Redundancy Analysis (RA) RA Software
• ra_worst_row_get() only performs an analysis and recommends a spare for
repair, it does not modify the Spares List or Repair List (see ra_spare_use()).

The function ra_worst_col_get() operates similarly on columns.

In Multi-DUT Test Programs, the analysis is performed to the first DUT in the Active DUTs
Set (ADS).

Note: two other functions named ra_worst_rows_get() and
ra_worst_cols_get() have very similar names, but have quite different
functionality.

Usage
RaSpareRow ra_worst_row_get(RaSegment s,

RaErrorPosArray &rows,
int *count);

RaSpareCol ra_worst_col_get(RaSegment s,
RaErrorPosArray &cols,
int *count);

where:

s identifies the segment of interest.

rows and cols are a user-defined RaErrorPosArray containing the bad row or column
information. The user code must have previously initialized the contents of rows or cols.
See Description.

count is the address of an existing int variable used to return the number of errors which
will be eliminated if the returned spare is actually used to repair the specified segment.

ra_worst_row_get() returns the spare row identified to repair the worst bad row
specified in rows. The spare’s RaErrorPosition is modified as noted in the Description
above.

ra_worst_col_get() returns the spare column identified to repair the worst bad column
specified in cols. The spare’s RaErrorPosition is modified as noted in the Description
above.
 2/27/09 Pg-1778

Redundancy Analysis (RA) RA Software
Example
int count;
RaErrorPosArray pos_array;
ra_failed_rows_get(S1, pos_array); // ra_failed_rows_get()
RaSpareRow r = ra_worst_row_get(S1, pos_array, &count);

5.3.5.21 ra_best_row_wipeout(), ra_best_col_wipeout()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_best_row_wipeout() function identifies the spare which completely repairs the
most columns in a specified segment.

The ra_best_col_wipeout() function identifies the spare which completely repairs the
most rows in a specified segment.

Two versions of these functions are provided. Only the row version is described, but the
operation is similar for columns:

• Given a segment and a target bad row RaErrorPosition identify which spare row
completely repairs the most columns.

• Given a segment and an array of bad column RaErrorPositions (e.g. an initialized
RaErrorPosArray identifying bad columns) identify which spare column
completely repairs the most rows. The list of bad columns to be analyzed must be
defined, by user code, in an RaErrorPosArray. See ra_failed_cols_get().

Also note:

• The spare rows or columns considered by the analysis are filtered by the
RaRowAvailableFunc call-back function, if any, specified via
ra_segment_make(). See RaRowAvailableFunc & RaColAvailableFunc Call-back
Function.

• Linked Segments and Rows-Used-Together(RUT), Columns-Used-Together(CUT)
are considered in the evaluation.
 2/27/09 Pg-1779

Redundancy Analysis (RA) RA Software
• The identified spare’s RaErrorPosition is updated:
- rcnum = the row or column which will be replaced by the recommended spare.
- mask = which data bits the identified spare will replace
See RaErrorPosition and Per-I/O Spare Mask.

• ra_best_row_wipeout() only performs an analysis and recommends a spare for
repair, it does not modify the Spares List or Repair List (see ra_spare_use()).

In Multi-DUT Test Programs, the analysis is performed on the first DUT in the Active DUTs
Set (ADS).

Usage
Given a bad row RaErrorPosition, identify the spare row which completely repairs the
most columns:

RaSpareRow ra_best_row_wipeout(RaSegment s,
RaErrorPosition rownum);

Given an RaErrorPosArray containing bad column RaErrorPositions, identify the
spare column which completely repairs the most rows:

RaSpareCol ra_best_row_wipeout(RaSegment s,
RaErrorPosArray &cols);

Given a bad column RaErrorPosition, identify the spare column which completely
repairs the most rows:

RaSpareCol ra_best_col_wipeout(RaSegment s,
RaErrorPosition colnum);

Given an RaErrorPosArray containing bad row RaErrorPositions, identify the spare
row which completely repairs the most columns:

RaSpareRow ra_best_col_wipeout(RaSegment s,
RaErrorPosArray &rows);

where:

s identifies the segment of interest.

rownum and colnum identify the bad row or column RaErrorPosition.

rows or cols are an array of bad rows or columns RaErrorPositions e.g. an
RaErrorPosArray.

The first version of ra_best_row_wipeout() returns the spare row (RaSpareRow) which
completely repairs the most columns in the specified bad row RaErrorPosition. The spare’s
RaErrorPosition is set as described in Description above.
 2/27/09 Pg-1780

Redundancy Analysis (RA) RA Software
The second version of ra_best_row_wipeout() returns the spare column
(RaSpareCol) which completely repairs the most rows in the specified array of bad
columns. The spare’s RaErrorPosition is set as described in Description above.

The first version of ra_best_col_wipeout() returns the spare column (RaSpareCol)
which completely repairs the most rows in the specified bad column RaErrorPosition. The
spare’s RaErrorPosition is set as described in Description above.

The second version of ra_best_col_wipeout() returns the spare row (RaSpareRow)
which completely repairs the most columns in the specified array of bad rows. The spare’s
RaErrorPosition is set as described in Description above.

Both functions return NULL and a warning is issued, in the following situations:

• s is NULL.
• If an RaErrorPosition rcnum value is out of range of the specified segment.
• If an RaErrorPosition mask position is invalid; i.e. it doesn’t match one of the valid

Per-I/O Spare Masks of the available spares.

Example
The following example shows 2 segments which share one spare row (SR3) and each have
a local spare row. Both segments store 8-bit data. Errors in both segments are indicated:

The following code would return SR3 with its RaErrorPosition rcnum value = 8 and its mask
= 0xFF:

RaErrorPosition bad_row;
bad_row.rcnum = 8;
bad_row.mask = 0xFF;
RaSpareRow r = ra_best_row_wipeout(S1, bad_row);

SR1

Segment S1 Segment S2

SR3

xxx xx x = failureRow R8

SR2
 2/27/09 Pg-1781

Redundancy Analysis (RA) RA Software
5.3.5.22 ra_wipeout_get()
See RA Execution And Results, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_wipeout_get() function is used to determine the number of RaErrorPosition(s)
which would be completely repaired in a specified bad row or bad column using a specified
spare column or row. This function only performs an analysis.

When evaluating the use of a spare row to repair a bad row, the number of column
RaErrorPosition(s) which would be completely repaired is returned. Conversely, when
evaluating the use of a spare column to repair a bad column, the number of row
RaErrorPosition(s) which would be completely repaired is returned.

Rows-Used-Together(RUT), Columns-Used-Together(CUT) are considered in the
evaluation. When the spare includes Rows-Used-Together(RUT), Columns-Used-
Together(CUT) the returned number of potential RaErrorPositions repaired includes those in
the second, third, etc. row or column replaced by the RUT or CUT.

Linked Segments are considered in the evaluation. When the spare spans more than one
segment the returned number of potential RaErrorPositions repaired includes those in the
second, third, etc. segment which shares the specified spare.

In Multi-DUT Test Programs, the analysis is performed on the first DUT in the Active DUTs
Set (ADS).

Usage
int ra_wipeout_get(RaSpareRow r, RaErrorPosition& rowpos);

int ra_wipeout_get(RaSpareCol c, RaErrorPosition& colpos);

where:

r and c identify the spare row or spare column to be considered in the evaluation.

rowpos identifies a bad row RaErrorPosition to be considered in the analysis.

colpos identifies a bad column RaErrorPosition to be considered in the analysis.
 2/27/09 Pg-1782

Redundancy Analysis (RA) RA Software
ra_wipeout_get() returns the number of RaErrorPosition(s) which would be completely
repaired if the specified spare were actually used to repair the specified RaErrorPosition.

Example
The following example shows 2 segments which are linked (see Linked Segments) by one
spare row (SR3) and each have a local spare row. Both segments store 8-bit data. Errors in
both segments are indicated:

Given the following RaErrorPosition...

RaErrorPosition bad_row;
bad_row.rcnum = 8; // R8
bad_row.mask = 0xFF;

The following would return 3 because spare SR1 would completely repair only 3 columns in
segment S1:

int c = ra_wipeout_get(SR1, bad_row);

The following would return 2 because spare SR2 would completely repair only 2 columns in
segment S2:

int c = ra_wipeout_get(SR2, bad_row);

The following would return 5 because spare SR3 would completely repair 5 columns in the
two segments linked by SR3:

int c = ra_wipeout_get(SR3, bad_row);

5.3.5.23 ra_spare_rows_required(), ra_spare_cols_required()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

SR1

Segment S1 Segment S2

SR3

xxx x x xx x = failureR8

SR2

xRow R5

R10 x

x
x

x

 2/27/09 Pg-1783

Redundancy Analysis (RA) RA Software
Description

The ra_spare_rows_required() function is used to determine the number of additional
spares needed to repair a specified (bad) row.

The ra_spare_cols_required() function is used to determine the number of additional
spares needed to repair a specified (bad) column.

These functions only perform an analysis.

When a given segment does not have per-I/O spare rows (see Per I/O Spares) each bad
row may be replaced by a single spare row. Similarly for columns. When a segment does
have per-I/O spare rows a given bad row may require several spare rows to repair all of the
bad data bits in that row. Similarly for columns. These functions may be used to determine
how many additional spares are needed to repair a specified row or column.

The term additional is used above to indicate that errors for which a repair has already been
identified (and for which a spare has been allocated) are not considered by
ra_spare_rows_required() or ra_spare_cols_required().

In Multi-DUT Test Programs, the information is returned for the first DUT in the Active DUTs
Set (ADS).

Usage
int ra_spare_rows_required(RaSegment s, int rownum);

int ra_spare_cols_required(RaSegment s, int colnum);

where:

s identifies the segment of interest.

rownum and colnum identify the target (bad) row or column.

ra_spare_rows_required() returns the number of spare row(s) required to repair all
remaining bad data-bits in rownum. The value returned will range from 0 (no errors in
rownum) to the total number of Per-I/O Spare Mask positions for rownum. Note that this
function can return a value which exceeds the number of spares currently available for
repair.

ra_spare_cols_required() returns the number of spare column(s) required to repair
all remaining bad data-bits in colnum. The value returned will range from 0 (no errors in
colnum) to the total number of Per-I/O Spare Mask positions for colnum. Note that this
function can return a value which exceeds the number of spares currently available for
repair.
 2/27/09 Pg-1784

Redundancy Analysis (RA) RA Software
Example
int spare_rows_reqd = ra_spare_rows_required(S1, 35);

5.3.5.24 ra_failed_rows_count_get(), ra_failed_cols_count_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_failed_rows_count_get() function returns the spare column that repairs the
most rows in a specified column, irrespective of whether the entire row is repaired. The
number of rows which the spare column repairs is returned in the count parameter.

The ra_failed_cols_count_get() function returns the spare row that repairs the most
columns in a specified row, irrespective of whether the entire column is repaired. The
number of columns which the spare row repairs is returned in the count parameter.

These functions only perform an analysis.

For example, assume row 6 has errors at column positions 9, 15, and 17. Executing
ra_failed_cols_count_get() on row 6 will return 3 in the count parameter, even if
columns 9, 15, and 17 have errors in other rows.

The returned RaSpareRow or RaSpareCol records the RaErrorPosition it would repair if
the spare was actually used to make the identified repair.

Linked Segments and Rows-Used-Together(RUT), Columns-Used-Together(CUT) are
considered in the evaluation. When the spare includes Rows-Used-Together(RUT),
Columns-Used-Together(CUT) the number of errors returned includes the errors replaced
by the second, third, etc. row or column in the RUT or CUT.

The spare rows or columns considered by these functions are first filtered by the
RaRowAvailableFunc or RaRowAvailableFunc call-back functions, if any, specified via
ra_segment_make(). See RaRowAvailableFunc & RaColAvailableFunc Call-back
Function.

In Multi-DUT Test Programs, the analysis is performed on the first DUT in the Active DUTs
Set (ADS).
 2/27/09 Pg-1785

Redundancy Analysis (RA) RA Software
Usage
RaSpareCol ra_failed_rows_count_get(RaSegment s,

RaErrorPosition& colpos,
int *count);

RaSpareRow ra_failed_cols_count_get(RaSegment s,
RaErrorPosition& rowpos,
int *count);

where:

s identifies the target segment.

rowpos and colpos identify the bad row or column RaErrorPosition to be considered in the
analysis.

count is the address of an existing int variable used to return the number of rows or
columns that would be repaired if the identified spare was actually used to make the repair.
See Description.

ra_failed_rows_count_get() returns the spare column identified to make the repair.
The returned RaSpareCol records the RaErrorPosition it would repair if the spare was
actually used to make the repair.

ra_failed_cols_count_get() returns the spare row identified to make the repair. The
returned RaSpareRow records the RaErrorPosition it would repair if the spare was actually
used to make the repair.

Both functions return NULL and a warning is issued, in the following situations:

• s or count is NULL.
• If an RaErrorPosition rcnum value is out of range of the specified segment.
• If an RaErrorPosition mask position is invalid; i.e. doesn’t match one of the valid

Per-I/O Spare Masks of the available spares.
 2/27/09 Pg-1786

Redundancy Analysis (RA) RA Software
Example
The following example shows 2 segments which are linked by spare row (SR3) and each
have a local spare row. Both segments store 8-bit data. Errors in both segments are
indicated:

The following code would return SR3 with its RaErrorPosition rcnum = 8 and value = 0xFF.
The returned count value will be 5:

RaErrorPosition bad_row;
bad_row.rcnum = 8;
bad_row.mask = 0xFF;
int count;
RaSpareRow r = ra_failed_cols_count_get(S1, bad_row, &count);

5.3.5.25 ra_failed_rows_get(), ra_failed_cols_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_failed_rows_get() and ra_failed_cols_get() functions are used to
retrieve various failed row and column information from the Error List. Errors are returned as
RaErrorPosition(s).

Several versions of these functions are provided (see Usage):

• The first versions below return the number of row RaErrorPosition(s) or column
RaErrorPosition(s) in the Error List for a specified segment.

SR1

Segment S1 Segment S2

SR3

xxx xx x = failureRow R8

SR2

x x

x

 2/27/09 Pg-1787

Redundancy Analysis (RA) RA Software
• The second version below returns an array containing all failing row or column
RaErrorPosition(s) in the Error List for a specified segment.

• The third version below returns the number of row RaErrorPosition(s) or column
RaErrorPosition(s) in the Error List for a specified segment, filtered by a specified
input RaErrorPosition.

• The last version below returns an array containing all failing row or column
RaErrorPosition(s) in the Error List for a specified segment, filtered by a specified
input RaErrorPosition.

These four versions can be further divided into two sets:

• The first two versions return information for all row RaErrorPosition(s) or column
RaErrorPosition(s) in the Error List for a specified segment.

• The second two versions return information which is filtered by a specified input
row RaErrorPosition or column RaErrorPosition.

In both cases, it is RaErrorPosition(s) which are retrieved and/or counted and it is the
Per-I/O Spare Mask of the spare row(s) and spare column(s) associated with the segment
which determines the (maximum) number of RaErrorPosition(s) which will be returned for
a given row or column.

For example, if the DUT has Per I/O column spares, the maximum number of errors
returned for each row equals the number of Per-I/O Spare Mask positions for the spare
column; e.g. in a segment with N rows and M column mask positions, the largest possible
number of failed rows returned is (N*M).

The following diagram is used to show the operation of the first two versions (see Usage
below) of ra_failed_rows_get() and ra_failed_cols_get(). Segment, S1, stores
a 4-bit data width (for diagram convenience). The example segment has four 1-bit per-I/O
 2/27/09 Pg-1788

Redundancy Analysis (RA) RA Software
spare columns and 2 full-data-width spare rows. The Error List for the segment contains the
errors noted below. For simplicity, all errors occur in column-33:

The first version of ra_failed_rows_get() returns 4, the second returns an
RaErrorPosArray containing the four row RaErrorPositions noted above.

The first version of ra_failed_cols_get() returns 3, the second returns an
RaErrorPosArray containing the three column RaErrorPositions noted above.

The other two versions of ra_failed_rows_get() and ra_failed_cols_get() filter
the values returned from the Error List by a specified row RaErrorPosition or column

0 33 n
0x2
0xE
0x0
0x8
0x6

Column

D
0

D
1

D
2

D
3

Bit Errors

1
0

2
3
4
n

Row

Row

Column 33

0
1
3
4

x x
x

x

Error List for
Segment S1

x
x

x

The (unfiltered) row RaErrorPositions are:

The (unfiltered) column RaErrorPositions are:

rcnum mask

0 0xF

1 0xF

3 0xF

4 0xF

The mask = 0xF because the row spares replace
the full 4-bit data width.

rcnum mask

33 0x2

33 0x4

33 0x8

The mask values reflect the Per-I/O Spare Mask
values for the spare columns available to replace
columns in this segment.
 2/27/09 Pg-1789

Redundancy Analysis (RA) RA Software
RaErrorPosition. The following diagram shows this operation. The errors in the Error List are
identical to the previous example:

The third version of ra_failed_rows_get() returns 3, the fourth returns an
RaErrorPosArray containing the three row RaErrorPositions noted above.

0 33 n
0x2
0xE
0x0
0x8
0x6

Column

D
0

D
1

D
2

D
3

Bit Errors

1
0

2
3
4
n

Row

Row

Column 33

0
1
3
4

x x
x

x

Error List for
Segment S1

x
x

x

Given:

RaErrorPosition col;
col.rcnum = 33;
col.mask = 0x2; // i.e. D1
RaErrorPosArray rows;
ra_failed_rows_get(S1, col, &rows);

The returned rows array will contain the following
RaErrorPosition values:

RaErrorPosition row;
row.rcnum = 1;
row.mask = 0xF; // All Databits
RaErrorPosArray cols;
ra_failed_cols_get(S1, row, &cols);

The returned cols array will contain the following
RaErrorPosition values:

rcnum mask

0 0xF

1 0xF

4 0xF

As in the previous example, the mask = 0xF
because the row spares replace the full 4-bit data
width.

rcnum mask

33 0x2

33 0x4

33 0x8

The mask values reflect the Per-I/O Spare Mask
values for the spare columns available to replace
columns in this segment.
 2/27/09 Pg-1790

Redundancy Analysis (RA) RA Software
The third version of ra_failed_cols_get() returns 3, the fourth returns an
RaErrorPosArray containing the three column RaErrorPositions noted above.

In Multi-DUT Test Programs, the information is returned for the first DUT in the Active DUTs
Set (ADS).

Usage
The following functions return the number of failing rows or columns in the specified column
or row:

int ra_failed_rows_get (RaSegment s);

int ra_failed_cols_get(RaSegment s);

The following functions return an array containing all failing rows or columns in the specified
segment:

void ra_failed_rows_get (RaSegment s, RaErrorPosArray& rows);

void ra_failed_cols_get (RaSegment s, RaErrorPosArray& cols);

The following functions return the number of failing row or column RaErrorPosition(s) in the
specified segment as filtered by a specified RaErrorPosition:

int ra_failed_rows_get (RaSegment s, RaErrorPosition col);

int ra_failed_cols_get (RaSegment s, RaErrorPosition row);

The following functions returns an array of failing row or column RaErrorPosition(s) in the
specified segment as filtered by a specified RaErrorPosition:

void ra_failed_rows_get(RaSegment s,
RaErrorPosition col,
RaErrorPosArray& rows);

void ra_failed_cols_get(RaSegment s,
RaErrorPosition row,
RaErrorPosArray& cols);

where:

s identifies the segment of interest.

rows and cols are an existing RaErrorPosArray array used to return zero or more row
RaErrorPosition(s) or column RaErrorPosition(s). The array will be automatically resized as
necessary. Any prior contents are lost. The number of elements and each element in the
RaErrorPosArray can be obtained using standard CArray member functions.

col specifies a column RaErrorPosition for which failed row errors are to be filtered.
 2/27/09 Pg-1791

Redundancy Analysis (RA) RA Software
row specifies a row RaErrorPosition for which failed column errors are to be filtered.

The versions of ra_failed_rows_get() and ra_failed_cols_get() which return an
int are returning the number of row RaErrorPosition(s) or column RaErrorPosition(s).

Example
See Description.

5.3.5.26 ra_worst_rows_get(), ra_worst_cols_get()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_worst_rows_get() function:

• Identifies the row(s) that have the most failures in the specified segment.
• Returns the number of failures in the identified worst row.
• Returns an array of RaErrorPosition(s) (RaErrorPosArray). Each element

represents a bad row + Per-I/O Spare Mask which has the number of failures
matching the most failures value.

The function ra_worst_cols_get() operates similarly on columns.

Rows-Used-Together(RUT), Columns-Used-Together(CUT) do not affect the evaluation
performed by ra_worst_rows_get() or ra_worst_cols_get().

Note: two other functions named ra_worst_row_get() and ra_worst_col_get()
have very similar names, but have quite different functionality.

Usage
int ra_worst_rows_get(RaSegment s, RaErrorPosArray &rows);

int ra_worst_cols_get(RaSegment s, RaErrorPosArray &cols);

where:
 2/27/09 Pg-1792

Redundancy Analysis (RA) RA Software
s identifies the segment of interest.

rows and cols are a user-defined RaErrorPosArray used to return a list of worst rows or
columns. See Description. The RaErrorPosArray is automatically sized by the system
software and any prior contents are lost. Standard CArray member functions can be used
to obtain the size and individual elements of rows and cols. See Example.

ra_worst_rows_get() and ra_worst_cols_get() return the number of errors in the
identified worst row or column (not the number of elements in the RaErrorPosArray). In
Multi-DUT Test Programs, the operation is performed only on the first DUT in the Active
DUTs Set (ADS).

Example
The following example gets a list of the worst row(s) for segment s, then retrieves each
element of the list:

RaErrorPosArray rows;
int count = ra_worst_rows_get(s, rows);
for(int i = 0; i < rows.GetSize(); ++i){

RaErrorPosition badrow = rows[i];
// Do something with badrow

}

5.3.5.27 ra_row_wipeout(), ra_col_wipeout()
See RA Execution And Results, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_row_wipeout() and ra_col_wipeout() functions target identifying how many
errors could be repaired using a specified spare row or spare column.

Two overloads of each function are available. The bulleted descriptions below refer to the
ra_row_wipeout() function only, but ra_col_wipeout() operates similarly for
columns (swap both the words row and column):
 2/27/09 Pg-1793

Redundancy Analysis (RA) RA Software
• Identify and return the number of row RaErrorPosition(s) which would be
completely repaired by replacing a specified (bad) column with a specified spare
column.

• Given an array of bad column RaErrorPosition(s) and an array of spare column(s)
analyze each combination of spare column vs. bad column RaErrorPosition to
identify which combination completely repairs the most row RaErrorPosition(s).
The identified combination is returned in the best_cols argument. If a tie exists,
best_cols contains all combinations which resulted in the same number of
completely repaired row RaErrorPosition(s). The function returns the total number
of row RaErrorPosition(s). which would be repaired if any one of the repairs in
best_cols was implemented.

Linked Segments are considered in the evaluation.

The spare rows or columns considered by these functions are first filtered by the
RaRowAvailableFunc or RaRowAvailableFunc call-back functions, if any, specified via
ra_segment_make(). See RaRowAvailableFunc & RaColAvailableFunc Call-back
Function.

In Multi-DUT Test Programs the analysis is performed for the first DUT in the Active DUTs
Set (ADS).

Usage
int ra_row_wipeout(RaSegment s,

RaSpareCol spare_col,
RaErrorPosition& bad_col);

int ra_row_wipeout(RaSegment s,
RaSpareColArray& spare_cols,
RaErrorPosArray& bad_cols,
RaSpareColPosArray& best_cols);

int ra_col_wipeout(RaSegment s,
RaSpareRow spare_row,
RaErrorPosition& bad_row);

int ra_col_wipeout(RaSegment s,
RaSpareRowArray& spare_rows,
RaErrorPosArray& bad_rows,
RaSpareRowPosArray& best_rows);

where:
 2/27/09 Pg-1794

Redundancy Analysis (RA) RA Software
s identifies the segment of interest.

spare_col and spare_row identify one spare column or spare row to be considered in the
analysis.

bad_col and bad_row identify one bad RaErrorPosition to be considered in the analysis.

spare_cols and spare_rows are an array identifying one or more spare column(s) or
spare row(s) to be considered in the analysis.

bad_cols and bad_rows are an array identifying one or more bad column or row
RaErrorPosition(s) to be considered in the analysis.

best_cols and best_rows are an existing array used to return the detailed results of the
analysis; i.e. one or more combinations of spare row + row RaErrorPosition or spare column
+ column RaErrorPosition identified during the analysis. See Descripion.

The first version of ra_row_wipeout() returns the number of rows which would be
completely repaired if the specified bad column RaErrorPosition were repaired using the
specified spare column.

The second version of ra_row_wipeout() returns the total number of row
RaErrorPosition(s). which would be completely repaired if any one of the repairs in
best_cols was implemented.

The first version of ra_col_wipeout() returns the number of columns which would be
completely repaired if the specified bad row RaErrorPosition were repaired using the
specified spare row.

The second version of ra_col_wipeout() returns the total number of column
RaErrorPosition(s). which would be completely repaired if any one of the repairs in
best_rows was implemented.
 2/27/09 Pg-1795

Redundancy Analysis (RA) RA Software
Examples

Example 1:
This example uses the first overload of ra_row_wipeout(). Replacing column 3 will
completely repair 2 rows (R2 & R3 but not R0 or R1). Assume this segment has an 8-bit data
width and each spare column replaces all 8 bits:

RaSpareCol SC2 = ra_spare_col_make(0xFF); // ra_spare_col_make()
ra_spare_add(S1, SC2); // ra_spare_add()
RaErrorPosition pos;
pos.rcnum = 3; // Column 3
pos.mask = 0xFF;
int rows_fixed = ra_row_wipeout(S1, SC2, pos); // rows_fixed = 2

Example 2:
This example uses the second overload of ra_row_wipeout():

RaSpareCol SC1 = ra_spare_col_make(0xFF); // ra_spare_col_make()
RaSpareCol SC2 = ra_spare_col_make(0xFF);
ra_spare_add(S1, SC1); // ra_spare_add()
ra_spare_add(S1, SC2);

Segment S1

x

x = failure

 R0

 R1

 R2

 R3

 C
0

 C
1

 C
2

x x x

 C
3

x

x

x

Segment S1

 R0

 R1

 R2

 R3

 C
0

 C
1

 C
2

x

x

x

 C
3

x

x R4

x = failure

x

 2/27/09 Pg-1796

Redundancy Analysis (RA) RA Software
RaSpareColArray spare_cols;
spare_cols.Add = SC1;
spare_cols.Add = SC2;

RaErrorPosArray bad_cols;
int num = ra_worst_cols_get(S1, bad_cols); // ra_worst_cols_get()

RaSpareColPosArray best_cols;
int count = ra_row_wipeout(S1, spare_cols, bad_cols, best_cols);

for(int i = 0; i < best_cols.GetSize(); ++i){
// Use each best col spare and bad RaErrorPosition pair

}

This example shows a tie; i.e. replacing C2 and C3 both result in completely repairing two
(different) rows. The function returns two things:

• count = 2; i.e. 2 rows can be completely repaired (R1 & R2 or R0 & R4)
• The number of elements in best_cols[] = 4:

• best_cols[0].colnum = 2; i.e. column 2
• best_cols[0].mask = 0xFF
• best_cols[0].col = SC1
• best_cols[1].colnum = 3; i.e. column 3
• best_cols[1].mask = 0xFF
• best_cols[1].col = SC1
• best_cols[2].colnum = 2; i.e. column 2
• best_cols[2].mask = 0xFF
• best_cols[2].col = SC2
• best_cols[3].colnum = 3; i.e. column 3
• best_cols[3].mask = 0xFF
• best_cols[3].col = SC2

5.3.6 Repair List Functions
See Redundancy Analysis (RA), RA Software.

The main output of the RA (ra_execute()) is a Repair List, containing a list of spare rows
and/or spare columns which have been allocated to repair a segment. Each spare in the
 2/27/09 Pg-1797

Redundancy Analysis (RA) RA Software
Repair List stores an RaErrorPosition used to record the bad row or column the spare is
replacing and the Per I/O Spares mask which identifies which data bits the spare is
replacing. In Multi-DUT Test Programs a separate Repair List is automatically maintained for
each DUT in the test program.

It is user-written code which either uses the Repair List to repair the DUT on-line, or to
export the Repair List for use in off-line repairs. The following functions are used to access
the Repair List:

Commonly Used Rarely Used (see Note:)
ra_repaired_row_count_get() ra_repaired_row_get()
ra_repaired_col_count_get() ra_repaired_col_get()
ra_repaired_rows_get() ra_what_repaired_row_get()
ra_repaired_cols_get() ra_what_repaired_col_get()

ra_spare_repaired_errors_get()

5.3.6.1 ra_repaired_row_count_get(), ra_repaired_col_count_get()
See RA Execution And Results, Repair List Functions, RA Software.

Note: these functions are used in most redundancy applications. See Note:

Description

The ra_repaired_row_count_get() function is used to get the number of row repairs
from the Repair List for a specified segment. The ra_repaired_col_count_get()
function is used to get the number of column repairs from the Repair List for a specified
segment.

These functions can be used in conjunction with ra_repaired_row_get(),
ra_repaired_col_get() to sequentially get all repairs from the Repair List. Or, all
repairs can be retrieved using ra_repaired_rows_get(),
ra_repaired_cols_get().

The Repair List contains information in two states: pending repairs and done repairs.
ra_repaired_row_count_get() and ra_repaired_col_count_get() have an
optional argument (pending) used to select which count is returned. See Repair List. Using
pending = FALSE it is possible to access previously made repairs from the done Repair
List (see ra_repair_done()).
 2/27/09 Pg-1798

Redundancy Analysis (RA) RA Software
Usage
int ra_repaired_row_count_get(

RaSegment s,
BOOL pending DEFAULT_VALUE(TRUE));

int ra_repaired_col_count_get(
RaSegment s,
BOOL pending DEFAULT_VALUE(TRUE));

where:

s is the segment if interest.

pending is optional and, if used, specifies whether the count of pending repairs (TRUE,
default) is returned or the count of done repairs (FALSE) is returned.

ra_repaired_row_count_get() returns the count of pending or done row repairs from
the Repair List for segment s. In Multi-DUT Test Programs the value returned is for the first
DUT in the Active DUTs Set (ADS).

ra_repaired_row_count_get() returns the count of pending or done columns repairs
from the Repair List for segment s. In Multi-DUT Test Programs the value returned is for the
first DUT in the Active DUTs Set (ADS).

Example
The following example sequentially returns all pending row repairs from the Repair List for
segment S1 of the first DUT in the Active DUTs Set (ADS):

RaSegment S1 = ra_segment_make(); // Params defined elsewhere
for(int i = 0; i < ra_repaired_row_count_get(S1); ++i)

RaSpareRow r = ra_repaired_row_get(S1, i);

The following example sequentially returns all done column repairs from the Repair List for
segment S1 of the first DUT in the Active DUTs Set (ADS):

for(int i = 0; i < ra_repaired_col_count_get(S1, FALSE); ++i)
RaSpareCol c = ra_repaired_col_get(S1, i, FALSE);

5.3.6.2 ra_repaired_row_get(), ra_repaired_col_get()
See RA Execution And Results, Repair List Functions, RA Software.
 2/27/09 Pg-1799

Redundancy Analysis (RA) RA Software
Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_repaired_row_get() function is used to retrieve one row repair (RaSpareRow)
from the Repair List for a specified segment. The ra_repaired_col_get() function is
used to retrieve one column repair (RaSpareCol) from the Repair List for a specified
segment.

Each returned spare row or column records the RaErrorPosition the spare is allocated to
repair.

These functions can be used in conjunction with ra_repaired_row_count_get(),
ra_repaired_col_count_get() to sequentially get all repairs from the Repair List. Or,
all repairs can be retrieved using ra_repaired_rows_get(),
ra_repaired_cols_get().

The Repair List contains information in two states: pending repairs and done repairs.
ra_repaired_row_get() and ra_repaired_col_get() have an optional argument
(pending) used to select which repair is returned. See Repair List.

Note: these function names are very similar to ra_repaired_rows_get(),
ra_repaired_cols_get().

Usage
The following function returns the index’th row repair (RaSpareRow) from the pending
Repair List or done Repair List for the specified segment:

RaSpareRow ra_repaired_row_get(
RaSegment s,
int index,
BOOL pending DEFAULT_VALUE(TRUE));

The following function returns the index’th column repair (RaSpareCol) from the pending
Repair List or done Repair List for the specified segment:

RaSpareCol ra_repaired_col_get(
RaSegment s,
int index,
BOOL pending DEFAULT_VALUE(TRUE));
 2/27/09 Pg-1800

Redundancy Analysis (RA) RA Software
where:

s identifies the segment of interest.

index is the zero-based index into the Repair List and identifies which repair is to be
returned.

pending is optional and, if used, specifies whether the repair from the pending Repair List
is to be returned (TRUE, default) or the repair from the done Repair List is returned (FALSE).

ra_repaired_row_get() returns the index’th RaSpareRow from the Repair List for
segment s. NULL is returned if index is out of range. In Multi-DUT Test Programs the value
is returned for the first DUT in the Active DUTs Set (ADS).

ra_repaired_col_get() returns the index’th RaSpareCol from the Repair List for
segment s. NULL is returned if index is out of range. In Multi-DUT Test Programs the value
is returned for the first DUT in the Active DUTs Set (ADS).

Example
See Example.

5.3.6.3 ra_repaired_rows_get(), ra_repaired_cols_get()
See RA Execution And Results, Repair List Functions, RA Software.

Note: these functions are used in most redundancy applications. See Note:

Description

The ra_repaired_rows_get() function is used to retrieve all row repair(s) from the
Repair List for a specified segment. The ra_repaired_cols_get() function is used to
retrieve all column repair(s) from the Repair List for a specified segment.

Each returned spare row or column records the RaErrorPosition the spare is allocated to
repair.

The Repair List contains information in two states: pending repairs and done repairs.
ra_repaired_rows_get() and ra_repaired_cols_get() have an optional
argument (pending) used to select which repairs are returned. See Repair List.
 2/27/09 Pg-1801

Redundancy Analysis (RA) RA Software
Note: these function names are very similar to ra_repaired_row_get(),
ra_repaired_col_get().

Usage
RaSpareRowArray& ra_repaired_rows_get(

RaSegment s,
RaSpareRowArray& rows,
BOOL pending DEFAULT_VALUE(TRUE));

RaSpareColArray& ra_repaired_cols_get(
RaSegment s,
RaSpareColArray& cols,
BOOL pending DEFAULT_VALUE(TRUE));

where:

s identifies the segment of interest.

rows and cols are a user-defined RaSpareRowArray or RaSpareColArray, used to
return the list of spare rows or columns used to repair segment s. These arrays are
automatically resized by the system software as needed. Any prior contents are lost. The
size and individual elements in the RaSpareRowArray or RaSpareColArray can be
obtained using standard CArray member functions. In Multi-DUT Test Programs the repairs
are returned for the first DUT in the Active DUTs Set (ADS).

pending is optional and, if used, specifies whether repairs from the pending Repair List are
to be returned (TRUE, default) or the repairs from the done Repair List are to be returned
(FALSE).

ra_repaired_rows_get() returns the RaSpareRowArray array passed in.

ra_repaired_cols_get() returns the RaSpareColArray array passed in.

Example
The following example gets all of the pending column repairs for segment S1 of the first DUT
in the Active DUTs Set (ADS) into the cols array then sequentially gets one repair at a time
from that array:

RaSegment S1 = ra_segment_make(); // Params defined elsewhere
RaSpareColArray cols = ra_repaired_cols_get(S1, cols);
for(int c = 0; c < cols.GetSize(); ++c){
 2/27/09 Pg-1802

Redundancy Analysis (RA) RA Software
RaSpareCol spare_col = cols[c];
// Do something with spare_col

}

5.3.6.4 ra_what_repaired_row_get(), ra_what_repaired_col_get()
See RA Execution And Results, Repair List Functions, RA Software.

Note: these functions are not used in most redundancy applications. See Note:

Description

The ra_what_repaired_row_get() function is used to access the Repair List to
determine which spare row(s) were allocated by the RA to repair a specified bad row of a
specified segment. The ra_what_repaired_col_get() function is used to access the
Repair List to determine which spare column(s) were allocated by the RA to repair a
specified bad column of a specified segment.

When the DUT has Per I/O Spares, a given bad row may have been repaired by multiple
spares, with each repair correcting defects for a subset of data bits. For this reason, two
versions of each function are provided:

• An RaErrorPosition is specified and the function returns a single spare which
repairs it. The spare’s RaErrorPosition is set to match the input.

• A bad row number only or bad column number only is specified and the function
returns an array containing all spares used to repair that row or column. The
RaErrorPosition rcnum value of the returned spare(s) is set to the bad row or
column number and the RaErrorPosition mask value is set to the appropriate Per-
I/O Spare Mask of the returned spare.

In Multi-DUT Test Programs, the operation returns information for the first DUT in the Active
DUTs Set (ADS).

Usage
The following functions return a single spare row or column, from the Repair List, used to
repair the specified row or column RaErrorPosition in the specified segment:
 2/27/09 Pg-1803

Redundancy Analysis (RA) RA Software
RaSpareRow ra_what_repaired_row_get(
RaSegment s,
RaErrorPosition row,
BOOL pending DEFAULT_VALUE(TRUE));

RaSpareCol ra_what_repaired_col_get(
RaSegment s,
RaErrorPosition col,
BOOL pending DEFAULT_VALUE(TRUE));

The following functions return an array containing all spare row(s) or column(s), from the
Repair List, used to repair the specified row or column of the specified segment:

void ra_what_repaired_row_get(RaSegment s,
int rownum,
RaSpareRowArray& rows,

BOOL pending DEFAULT_VALUE(TRUE));

void ra_what_repaired_col_get(RaSegment s,
int colnum,
RaSpareColArray& cols,

BOOL pending DEFAULT_VALUE(TRUE));

where:

s identifies the segment of interest.

row and col identify the bad row or column RaErrorPosition to be considered. Both
components are packaged in a user-defined RaErrorPosition variable.

rownum and colnum identify the bad row or column to be considered.

rows and cols are a user-defined array used to return a list of spare rows or spare columns
used to repair row or col. The array is automatically resized by the system software as
needed. Any prior contents are lost. The size and individual elements in the
RaSpareRowArray or RaSpareColArray can be obtained using standard CArray
member functions.

pending is optional and, if used, specifies whether the repair information is retrieved from
the pending Repair List (TRUE, default) or the done Repair List (FALSE).

ra_what_repaired_row_get() returns the spare row used to repair the specified
RaErrorPosition.

ra_what_repaired_col_get() returns the spare column used to repair the specified
RaErrorPosition.
 2/27/09 Pg-1804

Redundancy Analysis (RA) RA Software
Both functions return NULL, and issue a warning, when:

• s is NULL.
• The RaErrorPosition rcnum value does not reside in segment s.
• The RaErrorPosition mask value is not a valid mask position for the spare being

used for the repair.
• The RaSpareRow or RaSpareCol used to repair the specified RaErrorPosition is

not found in the Repair List list.

Example
The following example uses the first form of ra_what_repaired_row_get():

RaSegment S1 = ra_segment_make(); // Params defined elsewhere
RaErrorPosition bad_row;
bad_row.rcnum = 8;
bad_row.mask = 0xFF;
RaSpareRow r = ra_what_repaired_row_get(S1, bad_row);

The following example uses the second form of ra_what_repaired_row_get():

RaSpareRowArray rows;
ra_what_repaired_row_get(S1, 8, rows);

5.3.6.5 ra_spare_repaired_errors_get()
See RA Execution And Results, Repair List Functions, RA Software.

Note: this function is not used in most redundancy applications. See Note:

Description
The ra_spare_repaired_errors_get() function is used to determine if a specified
segment has errors which would be repaired by a specified spare row or spare column. This
is targeted at situations in which the specified spare row/column causes Linked Segments
and the spare can be selectively applied to each segment to which it is linked.
 2/27/09 Pg-1805

Redundancy Analysis (RA) RA Software
For example:

In this example, spare row SR1 can be used to replace one row in both segments S1 and S2
(spare row SR1 thus creates Linked Segments). However, since the DUT’s redundancy
architecture allows this spare row to be selectively applied to each segment it is desirable to
know which segment(s) have errors which would be repaired by the spare (normally, it is not
desirable to replace a row/column which doesn’t have errors). In this example, row R8 has
errors in segment S1 but not in segment S2. Thus, it is desirable to replace row R8 only in
segment S1. In this example, ra_spare_repaired_errors_get() will return TRUE for
segment S1 and FALSE for segment S2.

Usage
BOOL ra_spare_repaired_errors_get(RaSegment s, RaSpareRow r);

BOOL ra_spare_repaired_errors_get(RaSegment s, RaSpareCol c);

where:

s identifies the target segment.

r and c identify the spare row or spare column. A warning is issued if r or c is not
associated with segment s (see ra_spare_add()).

ra_spare_repaired_errors_get() returns TRUE if r or c would repair errors in
segment s.

Example
if(ra_spare_repaired_errors_get(S1, SR1))

output(" Segment S1 has errors repairable by SR1");

5.3.7 Redundancy Call-back Functions
See Redundancy Analysis (RA), RA Software.

Segment S1 Segment S2

SR1

xxx x = failureRow R8
x

x

 2/27/09 Pg-1806

Redundancy Analysis (RA) RA Software
Note: these functions are not used in most redundancy applications. See Note:

Overview
Call-back functions are C-functions, written by the user or by Nextest, which are not directly
called from user-written code.

Instead, a call-back function is registered with the system software and will be automatically
executed by a Nextest-written function at the appropriate time. The RA call-back functions
allow user code to customize the operation of certain built-in RA operations, by registering
user-written functions that will be executed at certain well-defined times during the execution
of Nextest-defined RA functions. In simple terms, this allows Nextest software to call user-
written C code.

Several key redundancy operations are implemented as call-back functions. Normally, the
built-in call-back functions, written by Nextest, are executed, but if necessary, to customize
the redundancy software, a user-written function can be registered to be executed instead.

The following redundancy call-backs are available for RA customization:

• RaRowAvailableFunc & RaColAvailableFunc Call-back Function
• RaSparseFunc Call-back Function
• RaEvalFunc Call-back Function
• RaRepairFunc Call-back Function
• RaRowUseOK & RaColUseOK Call-back Functions
• RaMustRepairFunc Call-back Function
• RaScanRCFunc Call-back Function
• RaScanAreaCallbackFunc Call-back Function

These are individually documented below (follow the links). In addition, review the pseudo-
code in ra_execute() to graphically view where these call-backs are invoked in the RA
process.

5.3.7.1 RaRowAvailableFunc & RaColAvailableFunc Call-back
Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.
 2/27/09 Pg-1807

Redundancy Analysis (RA) RA Software
Note: these functions are not used in most redundancy applications. See Note:

Description

These call-back functions are optionally registered using the ra_segment_make()
function. If registered, they are executed by ra_execute() during Must-repair (more
below).

If used, these call-backs allow a user-written call-back function to return an array of spare
rows and/or spare columns that are currently usable to repair the specified (bad) row or
column in the segment being processed. When not used, the available spares are obtained
from the Spares List. There are no default RaRowAvailableFunc or
RaColAvailableFunc call-back functions.

These call-backs execute during Must-repair and provide a method for user-written code to
implement spare usage constraints (rules) at a high level (the RaRowUseOK &
RaColUseOK Call-back Functions are used at a per-row or per-column level).

The call-back must return an array containing the available (usable) spare rows or columns
which can be used to repair the segment being processed.

For example, consider a device with 3 spare columns (C1, C2, C3 below) that are shared
among 2 segments, but are constrained such that only 2 spare columns can be used to
repair a given segment.

During Must-repair the default operation will allow all 3 columns in the Spares List to be
used. To implement the rule noted above requires a user-written RaColAvailableFunc
call-back function which would consider how many spare columns are currently available in
the Spares List but would only return a maximum of 2.

Note: the RA system software executes these call-backs. When executed during
Must-repair and Sparse-repair the pos argument is NULL. At other times
(ra_worst_row_get(), ra_best_row_wipeout(), etc.), the pos argument
identifies an RaErrorPosition being considered for repair. User written call-backs
must anticipate both applications.

Segment-1 Segment-2C1 C2 C3
 2/27/09 Pg-1808

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs a single RaRowAvailableFunc and a single
RaColAvailableFunc call-back is registered at any given time; i.e. the Active DUTs Set
(ADS) or Ignored DUTs Set (IDS) have no effect on which call-back is executed.

Usage
A user-written RaRowAvailableFunc call-back function must conform to the following
prototype design:

RaSpareRowArray& (*RaRowAvailableFunc)(
RaSegment s,
RaErrorPosition* pos,
RaSpareRowArray& rows);

A user-written RaColAvailableFunc call-back function must conform to the following
prototype design:

RaSpareColArray& (*RaColAvailableFunc)(
RaSegment s,
RaErrorPosition* pos,
RaSpareColArray& cols);

where:

s identifies the segment being processed when the call-back is invoked.

pos identifies the (bad) row RaErrorPosition or column RaErrorPosition to be considered.
User-written call-backs must handle a NULL pos value, see Note:.

rows and cols are an array created by the RA software. The call-back code must clear the
array, then add to it all of the spares that are available to repair pos, taking into account that
pos may be NULL.

The RaRowAvailableFunc() call-back function must return the RaSpareRowArray
passed as the rows argument.

The RaColAvailableFunc() call-back function must return the RaSpareColArray
passed as the cols argument.

5.3.7.2 RaSparseFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.
 2/27/09 Pg-1809

Redundancy Analysis (RA) RA Software
Note: this function is not used in most redundancy applications. See Note:

Description

This call-back function is optionally passed as an argument to the ra_execute() function.

If used, a user-written Redundancy Call-back Functions replaces the built-in default function
which performs Sparse-repair.

The call-back function determines the precedence and/or criteria for using spare elements
for a given repair, and when a spare is allocated for a repair executes ra_spare_use() to
move that spare from the Spares List to the Repair List.

Any time a Sparse-repair is identified and a spare allocated, the Sparse-repair call-back
executes a Must-repair analysis again.

The built-in RaSparseFunc call-back functions are shown in the table below, with the
default noted. The Examples below contain code which implements these call-backs, as
examples for user-written versions:

Usage
A user-written RaSparseFunc call-back function must conform to the following prototype
design:

BOOL (*RaSparseFunc)(RaSegment s);

Table 5.3.7.2-1 Built-in RaSparseFunc Functions

Option Comment

ra_row_first_sparse
Uses a spare row if any are available, otherwise uses a
spare column (default).

ra_col_first_sparse
Uses a spare column if any are available, otherwise uses a
spare row.

ra_row_pref_sparse
Identify the row or column with the maximum number of
failures, and use a spare row or column accordingly. Use a
spare row if there is a tie.

ra_col_pref_sparse
Identify the row or column with the maximum number of
failures, and use a spare row or column accordingly. Use a
spare column if there is a tie.
 2/27/09 Pg-1810

Redundancy Analysis (RA) RA Software
where:

s identifies the segment to process when the call-back is invoked.

The RaSparseFunc call-back function must return FALSE if the segment is not repairable
and TRUE if repairable.

Example
The following code shows the built-in RaSparseFunc call-back functions (last) and most
(but not all) supporting functions (first). These are included here as examples for design of a
user-written call-back function:

static RaSpareRow find_row_repair(RaSegment s, int &len){
RaErrorPosArray pos_array;
// Get the list of failing rows in the segment s
ra_failed_rows_get (s, pos_array); // ra_failed_rows_get()
// Use ra_worst_row_get() to identify and return the best spare
// row to fix it.
return ra_worst_row_get(s, pos_array, &len);

}

static RaSpareCol find_col_repair(RaSegment s, int &len){
RaErrorPosArray pos_array;
// Get the list of worst columns in the segment s
ra_failed_cols_get(s, pos_array); // ra_failed_cols_get()
// Use ra_worst_col_get() to identify and return the best spare
// column to fix it.
return ra_worst_col_get(s, pos_array, &len);

}

// This function is only called after a call to repair_col has
// failed. That failure means that a column repair wasn't possible
// (possibly due to an RaColUseOk function). This function will try
// to repair a row that has an error in the column that we just
// failed to repair.
static BOOL repair_row_in_col(RaSegment s) {

int len;
// Find the worst column and the spare to fix it
RaSpareCol spare_col = find_col_repair(s, len);
if (! spare_col) return FALSE;
// Find a row that fixes an error in spare_col
RaSpareRow spare_row =

find_row_in_col_repair(s, ra_spare_position_get(spare_col));
 2/27/09 Pg-1811

Redundancy Analysis (RA) RA Software
if (! spare_row) return FALSE;
// Use the spare just identified
return ra_spare_use(s, spare_row); // ra_spare_use()

}

// This function is only called after a call to repair_row has
// failed. That failure means that a row repair wasn't possible
// (possibly due to an RaRowUseOk function). This function will try
// to repair a column that has an error in the row that we just
// failed to repair.
static BOOL repair_col_in_row(RaSegment s) {

int len;
// Find the worst row and the spare to fix it
RaSpareRow spare_row = find_row_repair(s, len);
if (!spare_row) return FALSE;
// Find a column that fixes an error in spare_row
RaSpareCol spare_col =

find_col_in_row_repair(s, ra_spare_position_get(spare_row));
if (! spare_col) return FALSE;
// Use the spare just identified
return ra_spare_use(s, spare_col); // ra_spare_use()

}

static BOOL repair_row(RaSegment s) {
int len;
// Find the worst row and the spare to fix it.
RaSpareRow spare = find_row_repair(s, len);
// Use the spare just identified
return ra_spare_use(s, spare); // ra_spare_use()

}

static BOOL repair_col(RaSegment s) {
int len;
// Find the worst column and the spare to fix it.
RaSpareCol spare = find_col_repair(s, len);
// Use the spare just identified
return ra_spare_use(s, spare); // ra_spare_use()

}

DLL_PUBLIC BOOL ra_row_first_sparse(RaSegment s) {
// First, try to repair a row, if that fails, try to repair a
// column with a failure in the failing row. If THAT fails, just
 2/27/09 Pg-1812

Redundancy Analysis (RA) RA Software
// repair any column.
return repair_row(s) || repair_col_in_row(s) || repair_col(s);

}

DLL_PUBLIC BOOL ra_col_first_sparse(RaSegment s) {

// First, try to repair a column, if that fails, try to repair
// a row with a failure in the failing column. If THAT fails,
// just repair any row.
return repair_col(s) || repair_row_in_col(s) || repair_row(s);

}

5.3.7.3 RaEvalFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.

Note: this function is not used in most redundancy applications. See Note:

Description

This call-back function is optionally passed as an argument to the ra_execute() function.

If used, this user-written Redundancy Call-back Functions replaces the built-in default call-
back function (ra_linear_eval()) to indirectly determine which segment to process next
during Sparse-repair.

The call-back function does this by returning a positive floating point value representing the
badness of the specified segment, based on user-defined criteria. The worst such segment
will be the one next selected for repair. Note that only segments with errors remaining will be
passed to the RaEvalFunc.

The Example 2: below document the code implementing ra_linear_eval() as an
example call-back. ra_linear_eval() returns a larger float value according to the
following criteria:

• The segment has no spares left for repair; i.e. the segment is unrepairable and the
RA should likely stop.

• The segment with highest ratio of failed rows (R) and columns (C) to spare rows
(r) and columns (c); i.e. R+C/r+c.
 2/27/09 Pg-1813

Redundancy Analysis (RA) RA Software
Usage
A user-written RaEvalFunc call-back function must conform to the following prototype
design:

float (*RaEvalFunc)(RaSegment s);

where:

s identifies the segment to evaluate when the call-back is invoked.

The RaEvalFunc call-back function must return a value as described above.

Examples

Example 1:
This example shows the simplest possible RaEvalFunc, which would perform Sparse-
repair in the natural segment order:

float simplest_evalfunc(RaSegment s) { return 1.0; }

Example 2:
The following code implements the built-in ra_linear_eval() function, and is included
here as an example for design of a user-written function:

// This function is an example of an RaEvalFunc(). It rates the
// "badness" of a segment based upon the ratio of errors in the
// segment to the number of available spares.
DLL_PUBLIC float ra_linear_eval(RaSegment s) {

const float UNREPAIRABLE = 1000000.0;
int r = ra_spare_row_count_get(s); // ra_spare_row_count_get()
int c = ra_spare_col_count_get(s); // ra_spare_col_count_get()
int R = ra_failed_rows_get(s); // ra_failed_rows_get()
int C = ra_failed_cols_get(s); // ra_failed_cols_get()
if (R + C == 0) // No errors to repair

return -1;
if (r + c == 0) // No spares left

return UNREPAIRABLE;
return float(R + C) / float(r + c);

}

 2/27/09 Pg-1814

Redundancy Analysis (RA) RA Software
5.3.7.4 RaRepairFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.

Note: this function is not used in most redundancy applications. See Note:

Description

This call-back function is optionally passed as an argument to ra_execute() and
ra_must_repair().

If used, during Must-repair these Redundancy Call-back Functions determine the strategy
for deciding which spare element is selected to make a given repair and for moving that
spare from the Spares List to the Repair List (using ra_spare_use()).

Different call-back functions may be registered for rows vs. columns. The built-in default
RaRepairFunc call-back functions are: ra_shortest_row_use and
ra_shortest_col_use. These are documented in the Examples below.

This diagram shows how the term shortest is applied:

In this example, a bad row (failures shown as xxxxxxxx), in Segment-1 is a Must-repair
row. Spare rows R1, R2, and R3 are available to make this repair. If no user-written row
RaRepairFunc is registered the built-in ra_shortest_row_use() is used and spare row
R1 will be chosen to repair the bad row.

Note: if a user-written call-back successful identifies a spare row or spare column to
repair the specified error it must execute ra_spare_use() to move that spare
from the Spares List to the Repair List.

Segment-1

R1

Segment-2 Segment-3

R2
R3

xxxxxxx
 2/27/09 Pg-1815

Redundancy Analysis (RA) RA Software
Usage
A user-written RaRepairFunc call-back function must conform to the following prototype
design:

BOOL (*RaRepairFunc)(RaSegment s, RaErrorPosition &pos);

where:

s identifies the segment to process when the call-back is invoked.

pos specifies the bad row RaErrorPosition or column RaErrorPosition to be repaired.

The RaRepairFunc call-back function must return TRUE when the function succeeds in
allocating a spare to repair the specified error; otherwise FALSE must be returned.

Examples
The following examples implement the built-in ra_shortest_row_use() call-back
function and 2 supporting functions. This is included here as an example for design of a
user-written function:

// This function tries to repair "pos" with the shortest spare row
// available
static BOOL shortest_row_use(RaSegment s, RaErrorPosition &pos) {

RaSpareRow r = ra_shortest_spare_row_get(s);
return r ?

ra_spare_use(s, ra_spare_position_set(r, pos))
:
FALSE;

}

// This function tries to repair "pos" with ANY spare row
// available. Used when shortest_row_use() fails
static BOOL any_row_use(RaSegment s, RaSpareRow &pos) {

int num_rows = ra_spare_row_count_get(s);
for (int i = 0; i < num_rows; i++) {

RaSpareRow r;
r = ra_spare_row_get(s, i); // ra_spare_row_get()
r = ra_spare_position_set(r, pos); //ra_spare_position_set()
if(ra_spare_use(s, r)) // ra_spare_use()

return TRUE;
}
return FALSE;

}

 2/27/09 Pg-1816

Redundancy Analysis (RA) RA Software
// This function uses the "shortest" row to repair the error
// position "pos". RaRepairFunc call-back functions must only
// return FALSE if pos cannot be fixed by ANY spare row, thus we
// first try to use the shortest spare row. If that fails, we will
// try to repair it with other spare rows.
DLL_PUBLIC BOOL ra_shortest_row_use(RaSegment s,

RaSpareRow &pos) {
return shortest_row_use(s, pos) || any_row_use(s, pos);

}

5.3.7.5 RaRowUseOK & RaColUseOK Call-back Functions
See Redundancy Analysis (RA), Redundancy Call-back Functions.

Note: this function is not used in most redundancy applications. See Note:

Description

These call-backs are optionally passed as an argument to the ra_spare_row_make(),
ra_spare_col_make() functions.

If used, these user-written Redundancy Call-back Functions execute as the RA is about to
allocate a given spare to repair a specific bad row or column (i.e. move the spare from the
Spares List to the Repair List). This allows user code to decide if the selected spare row or
column should actually be used, typically to enforce DUT-specific repair constraints. A given
spare row or column will not be used (not moved to the Repair List) unless the RaRowUseOK
or RaColUseOK call-back returns TRUE.

The call-back is executed any time ra_spare_use() is called, which is typically done via
ra_execute(). More specifically, ra_spare_use() is executed in all of the built-in
RaSparseFunc and RaRepairFunc call-back functions (see RaSparseFunc Call-back
Function and RaRepairFunc Call-back Function).

The RaErrorPosition of the spare row or spare column passed in to the call-back must
already have been set.

A user call-back must also consider whether the specified spare has Rows-Used-
Together(RUT), Columns-Used-Together(CUT) and adapt accordingly.
 2/27/09 Pg-1817

Redundancy Analysis (RA) RA Software
No default call-back is registered however three built-in call-backs function are available as
examples (see below):

• ra_exclusive
• ra_single_spare_row_per_address
• ra_single_spare_col_per_address

Note that the RaRowAvailableFunc & RaColAvailableFunc Call-back Functions should be
used to affect when a spare is considered for a repair.

Usage
A user-written RaRowUseOK call-back function must conform to the following prototype
design:

BOOL (*RaRowUseOK)(RaSegment s, RaSpareRow row);

A user-written RaColUseOK call-back function must conform to the following prototype
design:

BOOL (*RaColUseOK)(RaSegment s, RaSpareCol col);

where:

s identifies the segment being processed when the call-back is invoked.

row and col are the spare row or spare column being considered for use to make a repair.
The spare’s RaErrorPosition values will be set to the proposed repair before the call-
back is executed.

The RaRowUseOK and RaColUseOK call-back function must return TRUE when the
proposed row or col is OK to use to repair the segment, otherwise FALSE must be
returned.

Example

Example 1:
The following example code implements the built-in
ra_single_spare_col_per_address() function. It is included here as an example of
the design of a user-written call-back function:

// This function is useful in devices that allow only a single spare
// column to be used to repair a given bad column. This implies
// Per I/O Spares. It returns FALSE if a spare column has already
// been allocated to fix the specified column.
 2/27/09 Pg-1818

Redundancy Analysis (RA) RA Software
BOOL ra_single_spare_col_per_address(RaSegment s, RaSpareCol c){
int colnum = ra_spare_colnum_get(c);) // ra_spare_colnum_get()
RaSpareColArray cols;
ra_what_repaired_col_get(s, colnum, cols);

// ra_what_repaired_col_get()
return (cols.GetSize() > 0) ? FALSE : TRUE;

}

5.3.7.6 RaMustRepairFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.

Note: this function is not used in most redundancy applications. See Note:

Description

This call-back is executed by ra_execute(), and ra_scan_area_callback() to
perform the Must-repair analysis. Arguments to these functions allow a user-written call-
back function to be executed instead of the built-in default function (ra_must_repair()).

The ra_row_func and ra_col_func arguments allow an RaRepairFunc call-back to be
registered for both spare row selection and spare column selection.

Note: a user-written RaRepairFunc must execute ra_spare_use() when a spare
row or column is allocated for a repair, to move the spare from the Spares List
to the Repair List.

Usage
A user-written RaMustRepairFunc call-back function must conform to the following
prototype design:

BOOL (*RaMustRepairFunc)(RaSegment s,
RaSpareRowArray& spare_rows_avail,
RaSpareColArray& spare_cols_avail,

RaRepairFunc ra_row_func DEFAULT_VALUE(ra_shortest_row_use),
RaRepairFunc ra_col_func DEFAULT_VALUE(ra_shortest_col_use));

where:
 2/27/09 Pg-1819

Redundancy Analysis (RA) RA Software
s identifies the segment being processed when the call-back is invoked.

spare_rows_avail and spare_cols_avail are arrays containing the spare rows and
columns that the Must-repair analysis can consider usable for repair during the analysis.

ra_row_func is optional and, if used, specifies a user-defined RaRepairFunc call-back
function which will determine the strategy for deciding which spare row is selected to make a
given repair. See Description and Redundancy Call-back Functions.

ra_col_func is optional and, if used, specifies a user-defined RaRepairFunc call-back
function which will determine the strategy for deciding which spare column is selected to
make a given repair. See Description and Redundancy Call-back Functions.

ra_must_repair() must return FALSE if the segment is determined to be unrepairable,
otherwise TRUE must be returned.

Example
This call-back is too complex to provide an example.

5.3.7.7 RaScanRCFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.

Note: this function is not used in most redundancy applications. See Note:

Description

This call-back is optionally registered by ra_config_set() or using
ra_scan_rc_func_set().

If registered, this call-back function will be used instead of the built-in method to scan (read)
the Row RAM or Column RAM during execution of ra_execute(). This allows the user to
design a custom scan function for reading these RAMs during RA.

This call-back is not executed when the ECR Mini-RAM is enabled (see
ra_config_set()); i.e. the ECR’s Row RAM or Column RAM are not used when the ECR
Mini-RAM is used.
 2/27/09 Pg-1820

Redundancy Analysis (RA) RA Software
In Multi-DUT Test Programs a single RaScanRCFunc call-back is registered at any given
time; i.e. the Active DUTs Set (ADS) or Ignored DUTs Set (IDS) have no effect on which call-
back is executed.

The currently registered call-back can be retrieved using ra_scan_rc_func_get().

Usage
A user-written RaScanRCFunc call-back function must conform to the following prototype
design:

int (*RaScanRCFunc)(RaSegment s,
BOOL by_row,
int min,
int max,
__int64 mask,
PointFailureArray &failures);

where:

s identifies the segment being processed when the call-back is invoked.

by_row specifies whether the ECR’s Row RAM (TRUE) or Column RAM (FALSE) is being
scanned.

min and max specify the starting and ending addresses to be read.

mask identifies which data bits are scanned. A logic-1 in a given bit position enables the
corresponding data bit to be scanned.

failures is a user-defined PointFailureArray used to return any failures read. The
system software will resize the array as necessary. Any prior array contents are over-
written.

The RaScanRCFunc call-back must return the number of elements in the failures array.

Example
???

5.3.7.8 RaScanAreaCallbackFunc Call-back Function
See Redundancy Analysis (RA), Redundancy Call-back Functions.
 2/27/09 Pg-1821

Redundancy Analysis (RA) RA Software
Note: this function is not used in most redundancy applications. See Note:

Note: early Magnum RA software used the RaScanAreaFunc call-back function. This
was replaced by the function documented here. Any use of the
RaScanAreaFunc will be flagged with a runtime warning and the desired RA
operation will not occur.

Description

This call-back is optionally registered by ra_config_set() and
ra_scan_area_callback_func_set().

If registered, the user’s call-back function will be executed during ra_execute() instead of
the built-in ra_scan_area_callback() function. Note the following:

• The call-back function receives errors scanned from the ECR by the system
software. User code may modify (filter) the errors received before they are added
to the Error List (more below).

• The user’s call-back may be executed more than once for a given segment. Up to
16K errors are received each time the call-back is executed by the system
software. The DWORD row/col parameters of each PointFailure element can
be used to determine which segment is being scanned.

• The __int64 data parameter of each PointFailure element includes errors
for any/all DUT(s) which have errors logged to a given ECR. In Multi-DUT Test
Programs, any DUT(s) in the Active DUTs Set (ADS) at the time a functional test
logged errors to the ECR may have errors in a given element. If necessary, user
code must shift/mask the appropriate bits for a given DUT.

• The user’s call-back MUST return using the following syntax (exactly as shown).
This causes the (potentially filtered) errors in the fails array to be properly
added to the Error List:

return ra_scan_area_callback(fails, count, scanmask);)

where:
fails is the PointFailure array containing the errors.
count specifies the number of elements in fails.
scanmask is the unmodified scanmask parameter passed into the user’s call-
back.
 2/27/09 Pg-1822

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
Note: proper RA operation REQUIRES that the user’s call-back function return by
calling ra_scan_area_callback() as noted above.

The currently registered call-back can be retrieved using
ra_scan_area_callback_func_get().

In Multi-DUT Test Programs a single RaScanAreaCallbackFunc call-back is registered at
any given time; i.e. the Active DUTs Set (ADS) or Ignored DUTs Set (IDS) have no effect on
which call-back is executed.

Usage
A user-written RaScanAreaCallbackFunc call-back function must conform to the
following prototype design:

BOOL ra_scan_area_callback(PointFailure* fails,
int count,
__int64& scanmask);

where:

fails is a pointer to an array of PointFailure(s) containing count elements.

scanmask is the addess of an __int64 variable which is not intended for user applications
but must be passed to ra_scan_area_callback() when executed from the user’s
call-back (which is required as noted in the Description).

ra_scan_area_callback() must return TRUE if un-scanned errors remain in the ECR
for the current segment.

Example
None

5.4 Magnum RA vs. Maverick-I/-II RA
See Redundancy Analysis (RA), RA Software.

This section outlines some key differences between Maverick RA and Magnum RA. This
should only be interesting to users who have used Maverick RA. Note that the topic of
Maverick-to-Magnum RA migration is too complex to provide a step-by-step tutorial; the user
 2/27/09 Pg-1823

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
must comprehend, in detail, both their device’s redundancy architecture and repair options
and the Maverick RA solution to comprehend the information in this section.

• The Maverick ECR does not have an ECR Mini-RAM. Thus, the ECR scan
performance using Maverick does not benefit from this hardware and support for
Spare Segments is totally implemented in user code and methods.

• Maverick RA does not include integrated parallel test support. Using Maverick,
user code is required to create an individual DIE object for each DUT and explicitly
invoke the RA process for each DIE.

• Maverick RA does not include Per I/O Spares support; i.e. Per I/O Spares on
Maverick is totally implemented by the user.

• Maverick RA does not include direct support for Rows-Used-Together(RUT),
Columns-Used-Together(CUT). Instead, ECR address compression is used, which
works well for RA applications but degrades the resolution when displaying errors
in BitmapTool.

• The Magnum RA software does not include or need the DIE or error_engine
data types seen in Maverick RA software. In Magnum, a DUT is mostly equivalent
to a Maverick DIE and all Maverick error_engine operations are integrated into
the Magnum segment object model.

• Using Magnum in Multi-DUT Test Programs the Active DUTs Set (ADS) affects RA
operations. In general, setter functions affect all DUT(s) in the ADS, whereas
getter functions retrieve information for the first DUT in the ADS.

• In Magnum in Multi-DUT Test Programs, the RA performed by ra_execute()
operates on all DUTs in the ADS. More importantly, the operations which scan
(read) errors from the ECR are optimized to read a given ECR address only once,
with any errors read cached as appropriate for each active DUT.

At the end of this section, a table of Magnum vs. Maverick RA Functions is provided. This
provides only the most basic function cross-reference information. As noted above, the user
must comprehend, in detail, both their device’s redundancy architecture and repair options
and the Maverick RA solution to comprehend the information in this section.

5.4.0.1 Magnum vs. Maverick RA Functions
See Magnum RA vs. Maverick-I/-II RA.

This section provides a very limited correlation of Maverick RA functions to Magnum RA
functions. See Magnum RA vs. Maverick-I/-II RA.
 2/27/09 Pg-1824

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
As stated at the start of this chapter:

• DO NOT mix the Maverick RA functions with the Magnum RA functions: they DO
NOT inter-operate.

• For all new Magnum test programs, it is highly recommended that the new RA
functions be used.

Maverick ECR Functions
The following table lists selected Maverick functions associated with the ECR. These are
now part of the RA software and become DUT-centric, not ECR-centric:

Maverick DIE Functions
The following table lists the Maverick RA DIE functions with the Magnum function which
performs an equivalent or related operation. Using Magnum, a DUT is equivalent to a
Maverick DIE, thus the DIE object is gone. Magnum DUT(s) are automatically created/
defined in the Pin Assignment Table. Since the DIE is gone, some Maverick functions below
do not have exact equivalents in Magnum RA:

Maverick
Function

Magnum
Function Notes

error_count() ra_error_count_get()

set_scan_area() ra_scan_area_callback_func_set()

set_scan_x() ra_scan_rc_func_set()

get_scan_area() ra_scan_area_callback_func_get()

get_scan_x() ra_scan_rc_func_get()

scan_area() ra_scan_area_callback()

error_count() ra_error_count_get()()

Maverick
Function

Magnum
Function Notes

reset() ra_reset()

repair() ra_execute()

no_repair() ra_result_get()
 2/27/09 Pg-1825

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
Maverick Segment Functions
The following table lists the Maverick RA Segment functions with the Magnum function
which performs an equivalent or related operation. Using Magnum, the Maverick
error_engine is merged into the segment object. Since the error_engine is gone,
some Maverick functions below do not have exact equivalents in Magnum RA:

repair_done() ra_repair_done()

segment_head() ra_segment_count_get()

segment_next() ra_segment_get()

segment_count() ra_segment_count_get()

dump() ra_dump()

add() None
No DIE equivalent. Spares are
added to segments using
ra_spare_add().

make_die() Obsolete Related parameters are set using
ra_config_set()

die_ecr() Obsolete

id() Obsolete

lookup_die() Obsolete

Maverick
Function

Magnum
Function Notes

make_segment() ra_segment_make()

add() ra_spare_add()

reset() ra_segment_reset()

scan() ra_scan_area_callback()

must_repair() ra_must_repair()

no_repair() ra_result_get()

repair_done() ra_segment_repair_done()

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-1826

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
unusable() ra_unusable_set()

usable() ra_usable_set()

error_count() ra_error_count_get()

linkage_count()
ra_segment_linkage_count_get(

)

failed_rows_count()
failed_cols_count()

ra_failed_rows_count_get()
ra_failed_cols_count_get()

spare_row_head()
spare_col_head()

ra_spare_row_count_get()
ra_spare_col_count_get()

Used with
ra_spare_row_
get()/
ra_spare_col_
get() to iterate
over all spare
rows/columns.

spare_row_next()
spare_col_next()

ra_spare_row_get()
ra_spare_col_get()

spare_row_count()
spare_col_count()

ra_spare_row_count_get()
ra_spare_col_count_get()

repaired_row_head()
repaired_col_head()

ra_repaired_row_count_get()
ra_repaired_col_count_get()

Used with
ra_repaired_r
ow_get()/
ra_repaired_c
ol_get() to
iterate over all
spare rows/
columns.

repaired_row_next()
repaired_col_next()

ra_repaired_row_get()
ra_repaired_col_get()

what_repaired_row()
what_repaired_col()

ra_what_repaired_row_get()
ra_what_repaired_col_get()

repaired_row_count()
repaired_col_count()

ra_repaired_row_count_get()
ra_repaired_col_count_get()

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-1827

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
Maverick Spare Functions
The following table lists the Maverick RA Spare functions with the Magnum function which
performs an equivalent or related operation. Using Magnum, the Maverick error_engine
is merged into the segment object. Since the error_engine is gone, some Maverick
functions below do not have exact equivalents in Magnum RA:

data_mask()
row_min()
row_max()
col_min()
col_max()

ra_segment_config_get()

shortest_spare_row()
shortest_spare_col()

ra_shortest_spare_row_get()
ra_shortest_spare_col_get()

best_row_wipeout()
best_col_wipeout()

ra_best_row_wipeout()
ra_best_col_wipeout()

worst_row()
worst_col()

ra_worst_row_get()
ra_worst_col_get()

dump() ra_segment_dump()

id() ra_segment_id_get()

lookup_segment() ra_segment_lookup()

segment_die() Obsolete

segment_engine() Obsolete

Maverick
Function

Magnum
Function Notes

make_spare_row()
make_spare_col()

ra_spare_row_make()
ra_spare_col_make()

use() ra_spare_use()

usable() ra_usable_set()

unusable() ra_unusable_set()

wipeout() ra_wipeout_get()

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-1828

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
Maverick error_engine Functions
The following table lists the Maverick RA error_engine functions with the Magnum
function which performs an equivalent or related operation. Using Magnum, the Maverick
error_engine is merged into the segment object. Since the error_engine is gone,
some Maverick functions below do not have exact equivalents in Magnum RA:

dump() ra_spare_dump()

id() ra_spare_id_get()

lookup_spare_row()
lookup_spare_col()

ra_spare_row_lookup()
ra_spare_col_lookup()

Maverick
Function

Magnum
Function Notes

reset() ra_segment_reset()

worst_rows()
worst_cols()

ra_worst_rows_get()
ra_worst_cols_get()

failed_rows()
failed_cols()

ra_failed_rows_get()
ra_failed_cols_get()

row_wipeout()
col_wipeout()

ra_row_wipeout()
ra_col_wipeout()

best_row_wipeout()
best_col_wipeout()

ra_best_row_wipeout()
ra_best_row_wipeout()

repair_row()
repair_col()

Obsolete

make_error_engine() Obsolete

add() Obsolete

total() Obsolete

must_repair() Obsolete

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-1829

Redundancy Analysis (RA) Magnum RA vs. Maverick-I/-II RA
dump() Obsolete

id() Obsolete

lookup_error_engine() Obsolete

Maverick
Function

Magnum
Function Notes
 2/27/09 Pg-1830

Chapter 6 Interactive Tools
• UI - User Interface UI Tool Persistence
• BitmapTool Breakpoint Monitor
• DBMTool DUT Manager
• ECRTool FrontPanelTool
• LEC Tool LVMTool
• PatternDebugTool Resource Manager
• ScanTool ShmooTool / SearchTool
• SummaryTool TimingTool
• User Variables Tool Voltage and Current Tool
• WafermapTool

6.1 UI - User Interface
This section covers the following topics:

• UI Overview
• Before Starting UI

- ui.ini File
• Starting UI from Windows
• Starting UI from a Command Line
• Magnum 1/2/2x Simulation Setup
• UI Initial Display
• UI Advanced Option Controls
 2/27/09 Pg-1831

Interactive Tools UI - User Interface
• UI Main Display
- UI File Menu
- UI Window Hide and Dock

• UI Sequence and Binning sub-window
- Modifying the Sequence and Binning Table
- Save/Load Sequence/Binning Table Modifications
- Executing the Sequence and Binning Table
- Starting the Breakpoint Monitor

• Ui View Menu
• Ui Tools Menu

- UI Output Window
- User Tool Debug

• User Menus in UI
• User Icons in UI Tool Bar
• Host/Site/Tool Debug Mode(s)

6.1.1 UI Overview
The User Interface (UI) is a graphical interface used to load, execute, and interact with test
programs.

6.1.2 Before Starting UI
There are several system level configurations and processes which must be set up correctly
before starting Ui.
 2/27/09 Pg-1832

Interactive Tools UI - User Interface
1. Ui requires the video display resolution setting to be at least 1024x768 for some of the
engineering tools to work properly. This is set up from Display Properties dialog, invoked
using the right-mouse button from the display background:

2. Ui requires the TCP/IP protocol to be installed during the Windows NT network
installation.
 2/27/09 Pg-1833

Interactive Tools UI - User Interface
3. Each test site controller must be executing the program MonitorApp. This is normally
started automatically when the user logs-in. Otherwise, you may see the following error
messages:

If either of the above error messages are displayed, confirm that MonitorApp is running on
each Site controller. On a personal tester (PT), this is done by pressing CTRL+ALT+DEL
key combination to invoke the Task Manager, and confirming that MonitorApp.exe is
seen in the process list. If MonitorApp is not running, it must be restarted; see Terminating &
Restarting MonitorApp.

6.1.2.1 ui.ini File
The ui.ini file stores various configuration states each time UI is terminated normally.
These states are used to configure UI the next time it is started: display size, location,
windows displayed, Controller List entries, etc. Controller List entries are manually
configured when using a multi-site systems (GT, VT, ST). Note the following:

• Any time UI is terminated, the ui.ini file is either created or updated if it already
exists.

• Deleting ui.ini file will reset the initial UI configuration to default values. This
must be done while UI is not running.

Executing UseRel will prompt the user with the following:

Copy previous_release\ui.ini to new_release\ui.ini? [n]

Entering Y (yes) will copy the existing ui.ini file, thus preserving the previous
configuration. Entering N or <Enter> will not copy the ui.ini file and operation will be the
same as prior releases.

This choice is not presented in the following situations:

• If the ui.ini file is already present in the software release being switched-to i.e.
the option is only presented the first time a given release is first used.

• There is no previously installed release from which to copy the ui.ini file.
 2/27/09 Pg-1834

Interactive Tools UI - User Interface
• The new release is same as the previous release.

6.1.3 Starting UI from Windows
UI can be started using several methods:

• Starting UI from a Command Line
• Clicking on the Ui icon in the Window’s Start Menu.
• Beginning in software release h1.1.23, executing the StartUI.exe program located

in the software release’s \Utils\ folder. This method only allows one instance of UI
to be started; it otherwise operates the same as UI, and is not further documented.

To start UI from Windows select the UI icon in the Start Menu, as show below
 2/27/09 Pg-1835

Interactive Tools UI - User Interface
Note: it is HIGHLY recommended that shortcuts to UI NOT be used, on the desktop or
elsewhere. When installing Nextest software or switching between software
releases shortcuts are NOT changed... but, the Start menu is modified to
execute the correct version of UI.

6.1.4 Starting UI from a Command Line
UI can be started using two methods:

• Starting UI from Windows : common method
• Starting UI from a command line : for special applications only

UI can be started from a Windows command line by typing UI<ret>.

This should always work correctly since the path to UI is automatically set up when the
Nextest software is installed.

To support test floor automation, a variety of input parameters can be passed to UI when it is
started from a command line. In simple terms, this allows a command line or for more
complex situations, a batch file, to start UI, load a test program, set user variable values,
start testing, unload the test program, and terminate UI. When testing is complete, control
will automatically return to the batch file. See UI User Variables

Usage
To start UI from a line command type:

UI<ret>

This starts UI the same as if it was started from the Windows Start menu.

6.1.5 Magnum 1/2/2x Simulation Setup

Note: the following information applies when using software releases h1.1.23 or later.

The following procedures may be used to setup the local computer in preparation for
executing a Magnum 1/2/2x test program in simulation mode i.e. without using actual test
 2/27/09 Pg-1836

Interactive Tools UI - User Interface
system hardware. See Simulation Configuration Errors for problem symptoms seen when
this procedure is not done correctly.

Three methods are documented:

• MagnumSimulation.bat Method: execute this batch file to interactively to set the
number of sites to be used and the Magnum system type to be simulated. The
batch file then deals with all the setup details (which are outlined in the Hostmon
Method, below).

• SIMULATED_SITES Method: pre-set the number of sites and Magnum system
type using environment variables. Recommended for use on computers which will
never be connected to actual hardware AND which always simulate the same
number of sites and same Magnum system type.

• Hostmon Method: this method is for those who prefer to manually perform the
steps automated using the MagnumSimulation.bat Method.

MagnumSimulation.bat Method
The MagnumSimulation.bat file may be executed to interactively select the Magnum system
type and the number of sites to be simulated. The batch file then deals with the other details
as outlined in the Hostmon Method. Note the following:

Note: as newer Magnum system types were developed the MagnumSimulation.bat file
was modified to prompt the user to select which system type is to be simulated:
1, 2 or 3, corresponding to Magnum 1, Magnum 2 and Magnum 2x.

• This procedure must be performed even when simulating a single site.
• As more sites are enabled computer performance may be noticeably impacted.
• MagnumSimulation.bat is located in the Nextest software release’s Utils\ directory.

It may be convenient to create a desktop shortcut to this file.
• MagnumSimulation.bat executes UseRel from the Nextest software release which

was last used. The release information is read from the Windows registry. If this
release is not located as specified in the registry MagnumSimulation.bat will fail.

• The Windows shell opened by MagnumSimulation.bat is terminated automatically.
A separate MonitorApp dialog, normally presended by UseRel, will be presented
for each site being simulated.

• MagnumSimulation.bat is not backwards compatible with software releases prior to
h1.1.23. UseRel was modified to support MagnumSimulation.bat.
 2/27/09 Pg-1837

Interactive Tools UI - User Interface
SIMULATED_SITES Method
This method preset the number of sites and Magnum system type using environment
variables. Recommended for use on computers which will never be connected to actual
hardware AND which always simulate the same number of sites and same Magnum
system type.

Before proceeding, note the following:

• This procedure should not be used on computers which are connected to Magnum
test system hardware.

• If used, this procedure must be performed even when simulating a single site.
Setup procedure:

• This method requires that 2 environment variables be configured before executing
UseRel. See Environmental Variables.
• Set the SIMULATED_SITES environment variable to the number of sites to be

simulated. Legal values are 1 to 10. As more sites are enabled computer
performance may be noticeably impacted.

• Set the SIMULATED_HD environment variable to the Magnum system type being
simulated:

• Execute UseRel from the target Nextest software release.

Hostmon Method
Before proceeding, note the following:

• Using this method the SIMULATED_SITES environment variable should not be set
as defined in SIMULATED_SITES Method above.

• This procedure will operate correctly on computers which are connected to
Magnum test system hardware. However, to revert to using the hardware requires
additional steps, as outlined in Reconfiguring for Hardware Use.

Magnum
System
Type SIMULATED_HD value

Magnum 1 1

Magnum 2 2

Magnum 2x 3
 2/27/09 Pg-1838

Interactive Tools UI - User Interface
• If used, this procedure must be performed even when simulating a single site.
• As more sites are enabled computer performance may be noticeably impacted.
• The steps below must be performed in the order noted.
• When executing the test program in Site Debug Mode (in Developer Studio)

step-1. through step-6. below must be performed before starting Developer Studio.
Setup procedure:

1. The environment variable SIMULATED_HD must NOT be set to 0. More below.

2. Execute UseRel.bat from the Nextest Magnum software release to be used. Note that
this is only required if UseRel was not already executed during the current logged-in
session.

3. Start a Windows command shell.

4. Change directory to the location of the Nextest software release being used, typically
something like: C:\Nextest\v2.10.1, etc.

5. Change directory to the Bin\Misc\ folder. The file of interest is named hostmon.exe.

6. Type the following command:

hostmon /e:SIMULATED_HD=t /n

where:

t represents the Magnum system type (1 = Magnum 1, 2 = Magnum 2, 3 = Magnum 2x).

n represents the number of sites to be used/enabled during the simulation.

For example: to simulate Magnum 1 with 1 site:

hostmon /e:SIMULATED_HD=1 /1

To simulate Magnum 2 with 3 sites:

hostmon /e:SIMULATED_HD=2 /3

To simulate Magnum 2x with 2 sites:

hostmon /e:SIMULATED_HD=3 /2

Executing hostmon as shown above does the following:

• Executes hostmon /halt. This terminates all instances of hostmon, sitemon and
monitorapp (more below).
 2/27/09 Pg-1839

Interactive Tools UI - User Interface
• If SIMULATED_HD is not currently set to 0, the following environment variables are
set/unset as shown. This is done in hostmon's environment (i.e. the system
environment variable settings are not modified). UI will inherit this environment
from hostmon:
• Set SIMULATED_HD=t
• Set SIMULATED_SITES=n
• Unset SIMULATED_PTI
• Unset SIMULATED_APG
• Unset SIMULATED_PE
Note that if SIMULATED_HD is set = 0 prior to executing hostmon the Nextest
software presumes that a Maverick simulation is desired and the environment
variables noted above are not modified.

• Starts one instance of the hostmon process, which will see the environment
variables as setup in the previous step. Only one hostmon process is ever needed.

• Starts n instances of the monitorapp process. One is needed for each site to be
simulated.

• Starts n instances of the sitemon process. One is needed for each site to be
simulated.

The following dialog will appear after 1-2 seconds. A separate dialog is presented for
each site being simulation. These dialogs may be displayed behind other windows:

Either click Hide Window or ignore this dialog, it will disappear after 10 seconds.
 2/27/09 Pg-1840

Interactive Tools UI - User Interface
7. Start UI and confirm the upper right display area contains an IP Address (127.0.0.1, etc.)
for each site to be used/enabled during the simulation. In the example below, 6 sites are
enabled:

Note: it is OK to modify this configuration, to use less sites. To use more sites
requires repeating the procedure above, starting with step-6.

Note: if the hostmon process is not running when UI is started, the Maverick-I/-II
version of UI will be started and all of the other graphic tools will be configured
for Maverick-I/-II use. The various graphic tools have different features when
using Magnum 1/2/2x vs. Maverick-I/-II.

Note: hostmon /halt may be used to terminate all hostmon, sitemon and monitorapp
processes executing on the current computer.

Reconfiguring for Hardware Use
When a computer which is connected to a Magnum 1/2/2x test system is configured for
simulation the following steps are required to revert to using the test system hardware:

1. Start a Windows command shell.

2. Change directory to the location of the Nextest software release being used, typically
something like: C:\Nextest\v2.10.1, etc.
 2/27/09 Pg-1841

Interactive Tools UI - User Interface
3. Change directory to the Bin\Misc\ folder. The file of interest is named hostmon.exe.

4. Type the following command:

hostmon /halt

This command terminates all instances of hostmon, sitemon and monitorapp on the local
computer.

5. Execute UseRel from the target Nextest software release.

6. Restart (reboot) the Site Assembly computers. This can normally be done by executing
StartServer from the RBOOT folder found on the desktop. However, if this fails to restart
all sites correctly it may be necessary to cycle the power to each system chassis.
 2/27/09 Pg-1842

Interactive Tools UI - User Interface
Simulation Configuration Errors
For reference, using the Windows Task Manager, the following processes are important to
Magnum simulation. This example shows 6 sites being simulated:

Note: if the hostmon process is not running when UI is started, the Maverick-I/-II
version of UI will be started and all of the other graphic tools will be configured
for Maverick-I/-II use. The various graphic tools have different features when
using Magnum 1/2/2x vs. Maverick-I/-II.
 2/27/09 Pg-1843

Interactive Tools UI - User Interface
If the steps noted above are not performed prior to starting UI some or all of the following
error symptoms may be seen.

• In the following image note that no valid IP addresses are shown in the upper right
area:

• If UI’s OK button is then clicked the following dialog will be displayed:

6.1.5.1 SimulationMode()

Description
The SimulationMode() function can be used to determine if the test program is executing
on hardware or in simulation mode.
 2/27/09 Pg-1844

Interactive Tools UI - User Interface
Usage
BOOL SimulationMode();

SimulationMode() returns TRUE if the program is executing in simulation mode (not on
hardware), otherwise FALSE is returned.

Example
if(! SimulationMode()){

// Code which requires actual hardware support
}

6.1.6 UI Initial Display
The initial Ui display is shown below:

Over time, the Version number and picture seen here will change. However, the controls
remain the same.

For production operations, click on the OK button, or press the Enter key on the keyboard
to continue. During program development, click the advanced button. This enables various
engineering and program debugging modes which may not be appropriate for production
 2/27/09 Pg-1845

Interactive Tools UI - User Interface
operations. Clicking Advanced>> also allows setting advanced host to test site controller
communication.

6.1.7 UI Advanced Option Controls
The advanced controls are shown below:

Engineering Mode
Check this item to enable various tools available in Ui to read and modify hardware values
such as voltage, current, timing or pattern generator registers.

Host Debug Mode
Check this item to enable execution of Host process code (i.e. CONFIGURATION(),
HOST_CONFIGURATION(), HOST_BEGIN_BLOCK(), HOST_END_BLOCK() and
INITIALIZATION_HOOK()) within the Microsoft Developer Studio debug environment.
See Host/Site/Tool Debug Mode(s).
 2/27/09 Pg-1846

Interactive Tools UI - User Interface
Site Debug Mode
Check this item to enable execution of Site process code (i.e. CONFIGURATION(),
SITE_CONFIGURATION(), SITE_BEGIN_BLOCK(), SITE_END_BLOCK(),
INITIALIZATION_HOOK(), SEQUENCE_TABLE(), and all TEST_BLOCK related code)
within the Microsoft Developer Studio debug environment. See Host/Site/Tool Debug
Mode(s).

The other input fields in the advanced section of the Ui startup are for changing the TCP/IP
parameters for test site controller connections.

6.1.8 UI Main Display

Note: each time Ui is terminated it records the size and position of the main window
and all sub-windows. This is done so that Ui appears the same the next time it
is started. These values are stored in the ui.ini file in the windows root
directory (C:\Windows for Windows 95, or C:\Winnt for Windows NT). This file
can be deleted to restore the default window configuration.
 2/27/09 Pg-1847

Interactive Tools UI - User Interface
For the first invocation of Ui, or if the file ui.ini is deleted, the Ui default window will
appear as shown below. This is the default display before a test program has been loaded.

6.1.8.1 UI File Menu
Test programs are loaded and unloaded from the File menu.

The Open Test Program menu item opens a standard file dialog for selecting the test
program to be loaded (see below). In addition, a list of the most recently loaded test
programs is maintained in the File menu. Double clicking a test program name in the list of
 2/27/09 Pg-1848

Interactive Tools UI - User Interface
recent programs will load that program. A test program may also be loaded with the
Ctrl+O keyboard shortcut:
 2/27/09 Pg-1849

Interactive Tools UI - User Interface
This will display the standard Microsoft file selection browser. Note in the File name cell that
Ui wants an executable file name (*.exe). Locate and select the folder containing the test
program to be loaded.

Then, select the Debug folder which contains the test program’s executable file (*.exe). If the
Debug folder doesn’t exist you must compile the test program to create it and the executable
file.
 2/27/09 Pg-1850

Interactive Tools UI - User Interface
After the test program is loaded, the program name is displayed on the title bar of Ui along
with the name of the CONFIGURATION().

The message “Warning: Unable to open PTI driver” is normal when using UI without a
connection to a test system.

While the program is loaded, the Sequence & Binning Table can be executed interactively
using several methods, including File: Start Testing. See Executing the Sequence
and Binning Table for more details.

An executing Sequence and Binning table can be aborted with the Stop Testing menu
item or by typing the Ctrl+S keyboard shortcut. These two methods for halting a running
test program are typically used as a last resort while debugging a test program stuck in an
endless loop.

Note: the Stop Testing function now works reliably if the program is set in an
infinite loop from the Breakpoint Monitor.
 2/27/09 Pg-1851

Interactive Tools UI - User Interface
The Close item unloads the test program from all active test site controllers which is
required before a new test program is loaded in the site controllers.

Exit (keyboard shortcut Alt+F4) will quit Ui altogether. If a test program is loaded, it will
unload the test program first before exiting Ui. However, it is always a good idea to unload a
test program using Close first before exiting Ui.

UI may be exited via the File: Exit menu item, by typing the Alt+F4 keyboard shortcut,
or by clicking on the window close button at the top right of the Ui window.

6.1.8.2 UI Window Hide and Dock
Using the right-mouse in one of the Ui sub-windows will display the menu below. Floating a
sub-window in the main display makes it movable and resizable independent of the main
display. Docking a sub-window causes it to lock in place relative to the main window.
Sometimes the state of these sub-windows can get confusing - delete C:\winnt\Ui.INI and
restart Ui to restore default operation,
 2/27/09 Pg-1852

Interactive Tools UI - User Interface
6.1.9 UI Sequence and Binning sub-window
Below, the Sequence & Binning Table table is minimized - double click on the folder symbol
to expose the details of the test sequence.

UI displays a separate table tab for each site controller. Test result pass/fail status is shown
as an indicator on the tab for each site. Simliar indicators are found each tab in the
Breakpoint Monitor display.
 2/27/09 Pg-1853

Interactive Tools UI - User Interface
The test flow implemented via the Sequence and Binning table is now graphically
represented. The small icons are further described below. Some of the icons shown were
first available in software release h2.2.7/h1.2.7:

The image above and those below reflect the Sequence and Binning table code below. Note
that the labels used in the code are translated into test blocks in the UI display and that the
FAIL branch from TB8 was manually modified in UI (the code and the display don’t match):

SEQUENCE_TABLE(mySeqBin){
SEQUENCE_TABLE_INIT
TEST(TB1, NEXT, STOP)
TEST(TB2, L5, L6)
TEST(TB3, STOP, STOP)
TEST4(TB4, NEXT, SKIP, L7, STOP)
CALLL(L5, TB5)
TESTL(L6, TB6, SKIP, SKIP)
TESTL(L7, TB7, NEXT, L10)
TEST(TB8, NEXT, NEXT)
TEST(TB9, NEXT, SKIP)
 2/27/09 Pg-1854

Interactive Tools UI - User Interface
BINL(L10, TBin1, STOP)
BIN(TBin2, STOP)

}

Icon Purpose

Sequence/Binning Table Symbol

Test block symbol

Test bin symbol

PASS branch action

FAIL branch action

Unconditional branch action

STOP branch action

CALL(TB5)// CALL always = unconditional branch

TEST(TB2, L5, L6) // Two branches = PASS/ FAIL
Same as TEST2(...).

TEST4(TB4, NEXT, SKIP, L7, STOP)// 4 branches
 2/27/09 Pg-1855

Interactive Tools UI - User Interface
6.1.9.1 Modifying the Sequence and Binning Table
It is possible to modify the Sequence and Binning table from Ui, if Engineering Mode is
enabled.

BINL(L10, TBin1, STOP) // Test bin with STOP
action

TEST(TB3, STOP, STOP) // All branches STOP

Test block execution is skipped. Caused by setting Skip
breakpoint using Breakpoint Monitor.

Test bin execution is skipped. Caused by setting Skip
breakpoint using Breakpoint Monitor.

Test block execution may stop due to breakpoint
(Break-Before, Break-After or Loop).

Test block branch was modified in UI. Note italicized label.

Icon Purpose

(new in software release h2.2.7 /h1.2.7)

(new in software release h2.2.7 /h1.2.7)

(new in software release h2.2.7 /h1.2.7)

(new in software release h2.2.7 /h1.2.7)

(new in software release h2.2.7 /h1.2.7)
 2/27/09 Pg-1856

Interactive Tools UI - User Interface
If a Test Block is selected, clicking the right mouse will display the following dialog, allowing
the Sequence and Binning table to be executed starting at the selected test, skipping earlier
tests in the sequence.

This does not modify the Sequence and Binning table.
 2/27/09 Pg-1857

Interactive Tools UI - User Interface
If a Bin is selected, the following dialog is displayed, allowing the branch target to be
modified, which modifies the test flow.
 2/27/09 Pg-1858

Interactive Tools UI - User Interface
If this option is selected an additional menu of existing test blocks and bins is displayed to
allow selection of the desired target.

This example shows the effect of selecting builtin_Pass and clicking OK.

The contents of the Test Block Name menu are listed in the order of the original Sequence
and Binning table. Since a given test block can occur multiple times in the sequence caution
must be used not to create an endless loop. If this occurs, select File: StopTesting to
interrupt the loop. The STOP action was added to the list in software release h2.2.7/h1.2.7.

Any number of changes can be made, but they are only valid for the duration of the program
load session. And, the Sequence and Binning table can be restored to the original compiled
configuration by using the right-mouse selecting Reset Sequence Table.
 2/27/09 Pg-1859

Interactive Tools UI - User Interface
6.1.9.2 Save/Load Sequence/Binning Table Modifications

Note: first available in software release h2.2.7/h1.2.7.
 2/27/09 Pg-1860

Interactive Tools UI - User Interface
In UI, it is possible to modify the Sequence & Binning Table at run-time, see Modifying the
Sequence and Binning Table. It is also possible to save and later reload these modifications,
as shown below:

Originally TB3 Change To TB7

Right-mouse
Context Menu

Select Save Sequence Table
Modifications... to save changes to disk file.
 2/27/09 Pg-1861

Interactive Tools UI - User Interface
Once the Sequence & Binning Table is modified using the controls noted above it is possible
to save the changes to a file on disk. Then, later, the saved file can be loaded to reproduce
the edits saved earlier. Note the following:

• After the test program is initially loaded, the Save Sequence Table
Modifications menu selection is disabled until the Sequence & Binning Table is
actually modified, either by using the Modify Pass/Fail Branch... control or by
loading a previously saved file using the Load Sequence Table
Modifications... menu selection.

• The Save Sequence Table Modifications menu selection is also disabled any
time the Reset Sequence Table selection is invoked, to restore the Sequence &
Binning Table to the original as-loaded configuration.

• Any time the Save Sequence Table Modifications selection is used all of the
modifications made since the program was loaded or since the last Reset
Sequence Table are captured to the specified disk file.

• Invoking Save Sequence Table Modifications displays a standard Windows
file browser. The default location is the current test program’s Debug\ folder:

• The file created by Save Sequence Table Modifications file is an ASCII (.txt)
file. However, the format of this file is not documented and may change in future
software releases.
 2/27/09 Pg-1862

Interactive Tools UI - User Interface
• To load a previously saved file, use the Load Sequence Table
Modifications... menu selection, and select the desired save file via the
browser:

Note that one or more warning dialogs will be displayed in the following situations:

• If a file is loaded which contains format errors. This can occur if a saved file
contains components which were subsequently deleted or renamed in the test
program, or if the user has manually edited the file and introduced errors.

• If a file is loaded which does not result in any changes to the Sequence & Binning
Table:
 2/27/09 Pg-1863

Interactive Tools UI - User Interface
6.1.9.3 Executing the Sequence and Binning Table
The Sequence and Binning table can be interactively executed using several methods:

• Select File: Start Testing
• Typing the Ctrl+T keyboard shortcut
• Clicking the Start Test button from the Breakpoint Monitor.
• Using the right-mouse in the UI Sequence and Binning window. See Modifying the

Sequence and Binning Table.
• A start test signal from external equipment (handler or prober).

When external handlers or probers are used, they generate the start test signal, which must
be handled by C-code resident in (or called from) the Host Begin Block. This auto start
signal initiates the start test directly bypassing UI.

Generating start test using UI’s File: Start Testing menu option:
 2/27/09 Pg-1864

Interactive Tools UI - User Interface
An executing Sequence and Binning table can be aborted with the Stop Testing menu
item or by typing the Ctrl+S keyboard shortcut. These are typically used as a last resort
while debugging a test program stuck in an endless loop.

6.1.9.4 Starting the Breakpoint Monitor
From the UI Sequence View, the user can now invoke the Breakpoint monitor by right-
clicking on a Test Blocks and selecting Breakpoint from the pop up menu. This will
display the Breakpoint monitor with the selected test inserted into the test block field. The
user can then choose the desired Breakpoint Actions on that test.

6.1.10 Ui View Menu
The View menu of Ui will look like the following, when Ui is invoked for the first time before
any test program is loaded. All the items in the View menu are read-only except the clear
 2/27/09 Pg-1865

Interactive Tools UI - User Interface
button in the default summary, which is available only in engineering mode. The grayed out
items are not available until a test program is loaded.:

Items can be check-marked or unmarked by selecting the item from the menu or by using
the keyboard shortcut. The output window for example, will toggle between hiding and
reappearing when Alt+2 keys are pressed together repeatedly.

Toolbar: Has an icon for each item in the Tools menu (default is ON).

Status Bar: The bar at the bottom of the Ui window to display program status information
such as Ready, Running, stopped at a Breakpoint etc. on the right hand side of the status
window. Status bar also displays the test time in the box at the left hand side of the status
bar if Test Time option is checked menu (default is ON).

Sequence Table: This option is turned on (default is OFF) after a test program is loaded.
The shortcut key for this option is Alt+0.

Output Window: This option is to turn on/off (default is ON) the console window for test
program output, system errors and warning messages. There is one tab for the Host window
and one per test site controller. The context menu (available by right clicking on the window)
allows the user to clear, print or save the content of the window to a file. It is also possible to
 2/27/09 Pg-1866

Interactive Tools UI - User Interface
hide the window from the context menu. However, the window reappears when new text
arrives from the test program. . The shortcut key for this option is Alt+2.

In the example below, the output from the Host Begin Block is displayed in the Host output
window (note the Host tab is selected):

Front Panel: see FrontPanelTool. The shortcut key for this option is Alt+1.

Default Summary: see SummaryTool. The shortcut key for this option is Alt+3.
 2/27/09 Pg-1867

Interactive Tools UI - User Interface
Test Time: This option toggles the running test time display in the status bar (default is
OFF). The resolution of this stopwatch is 500ms.

Note the following:

• These time values are not very accurate. Ui starts the timer with Start Testing
and stops it when the test done signal is received from all active site controllers.

• To get an accurate test time, the Elapsed Time facilities should be used from
within the test program.

6.1.10.1 UI Output Window
The following standard Windows features are usable in UI’s output window:
 2/27/09 Pg-1868

Interactive Tools UI - User Interface
• Select text to be copied, printed, or saved to file. Use the mouse, or standard
Windows keyboard shortcuts (Ctrl-A, shifted arrows, control-shift Home/End, etc.).
Select all text in the output window using Select All via the right-mouse button,
or Ctrl-A.

• Copy selected text to the clipboard, using the right-mouse button, or Ctrl-C.
• Search in the output window using Find... via the right-mouse, or using Ctrl-F.

Find Next uses the F3 button, Find Previous uses the Shift-F3 key.
• Print all or selected text using the Print... right-mouse button.
• As before, it is remains possible to Save the entire output window to a disk file.

Now, if text is selected, only that text is saved to the disk file.
• By default, invoking Save or Save-all saves the selected information a text

(.txt.) Beginning in software release h3.3.xx, some font attributes may be
manipulated (color, font size, bold, italic, underline, etc.), see Output/Warning/Fatal
Text Format Options. And, messages generated by warning() and fatal() will
be displayed using red text. Beginning in this release the Save and Save-all
selections allow saving messages in Rich-text format (.rtf) to allow the saved text
to include these font attributes (saving as plain text does not).

Note: it is not possible to Cut text from the output window. And, Clear Window only
clears the entire window.

6.1.11 Ui Tools Menu
The Tools Menu on the Ui menu bar has the engineering tools necessary for debugging
test programs. All of the menu items except Option are disabled in the normal mode. All of
the tools are available in the engineering mode once a test program is successfully loaded.
In some cases, optional hardware has to be present for the tool to be enabled (DBMTool for
example). Each tool is also represented as an icon on the Ui toolbar. There are three ways
to invoke a tool:

• Use the mouse to select the appropriate item from the Tools pull down menu.
• Click on the tool icon on the Ui toolbar.
• Use the keyboard shortcut. For example, Ctrl+K for the Breakpoint Monitor.
 2/27/09 Pg-1869

Interactive Tools UI - User Interface
6.1.12 User Menus in UI

The menu_add() function is used to add a user-defined icon to UI - User Interface menu
bar. Clicking on the menu item will invoke the body code of an associated
CSTRING_VARIABLE User Variables.

The menu_add() function also supports the following optional features:

• Initial enable/disable state of the menu item
• user-defined accelerator key specification
• Timeout

These are described in more detail in the Usage section.

Clicking on the menu item does not disable it. The menu_enable() function can be used to
both enable and disable a menu item. See Example.

The menu_delete() function can be used to remove the menu item from the tool bar.

Note: once a menu item is deleted any code which attempts to access that item will
no longer function correctly (program may crash).

The C code which adds/deletes a menu item to UI - User Interface can execute in a Host,
Site, or User Tools process.

Usage
BOOL menu_add(LPCTSTR menu_description,

VariableProxy variable,
DWORD timeout DEFAULT_VALUE(INFINITE),
BOOL enable DEFAULT_VALUE(TRUE),
LPCTSTR accel DEFAULT_VALUE(0));

BOOL menu_add(LPCTSTR menu_description,
VariableProxy variable,
LPCTSTR accel,
BOOL enable DEFAULT_VALUE(TRUE),
DWORD timeout DEFAULT_VALUE(INFINITE));

BOOL menu_delete(LPCTSTR menu_description);
 2/27/09 Pg-1870

Interactive Tools UI - User Interface
BOOL menu_enable(LPCTSTR menu_description,
BOOL enable);

where:

menu_add() will add menu_description to UI’s menu bar.

menu_enable() will enable or disable menu_description in UI’s menu bar.

menu_delete()will delete menu_description from UI’s menu bar.

menu_description is a string describing the desired menu or submenu name. The ‘/’
character may be used in the string to delimit menu vs. sub-menu relationship. The ‘-’
character can be used in the string as a separator between menu items. The Ampersand ‘&’
can be added in front of any given letter to underline that character indicating a short-cut
key.

variable is a user-created CSTRING_VARIABLE. When a particular menu item is selected
it is the body code of the corresponding CSTRING_VARIABLE which is executed, in the
process which added the menu to UI. The value of this user variable will be the actual item
selected in the user menu, as a string. The prompt for the user variable is displayed in the UI
status bar.

timeout is optional, and is the amount of time to wait before notifying the user that the user
variable body code execution did not complete.

enable is optional, and specifies whether the menu item is enabled (TRUE) or disabled
(FALSE).

accel is optional, and if used specifies an acceleration key to be linked to the menu item.
The format must be:
[C][A]-key, where C (Control) and A (Alt) are optional and key is a case-sensitive
alphanumeric character. The - (dash) delimits the C/A keys from the following key, and must
be included in the definition but is not typed to invoke the accelerator. Invalid character
combinations are reported as a warning in the UI Host output window. See Example 2:

All 3 functions return TRUE if the operation was successful and FALSE if any errors occur.
 2/27/09 Pg-1871

Interactive Tools UI - User Interface
Example

Example 1:
The following user menus will be added to UI using the C-code which follows:

CSTRING_VARIABLE(csv, "", "Select user item") {
if (csv == "Item1") {} // Execute this code if Item1 is selected
if (csv == "Item2") {} // Execute this code if Item2 is selected
if (csv == "Item3") {} // Execute this code if Item3 is selected

}

HOST_BEGIN_BLOCK(your_host_block_name) {
... other code here ...
// Ampersand(&) can be added in front of a letter to specify a
// mnemonic key. In the following example, Alt+M will select
// MyMenu from Ui top menu. Care should be taken in choosing a
// mnemonic key, to avoid collision with existing mnemonic keys
// from Ui
menu_add("&MyMenu/MySubMenu/Item1", csv);
menu_add("&MyMenu/MySubMenu/Item2", csv);
menu_add("&MyMenu/MySubMenu/-", csv);
menu_add("&MyMenu/MySubMenu/Item3", csv);
... other code here ...

}

 2/27/09 Pg-1872

Interactive Tools UI - User Interface
Example 2:
The following example uses the accelerator features:

CSTRING_VARIABLE(UV2, "?", "UV2") {output(" UV2 => %s", UV2);}
CSTRING_VARIABLE(UV3, "?", "UV3") {output(" UV3 => %s", UV3);}
CSTRING_VARIABLE(UV4, "?", "UV4") {output(" UV4 => %s", UV4);}
CSTRING_VARIABLE(UV5, "?", "UV5") {output(" UV5 => %s", UV5);}
CSTRING_VARIABLE(UV6, "?", "UV6") {output(" UV6 => %s", UV6);}

HOST_BEGIN_BLOCK(your_host_block_name) {
... other code here ...
menu_add ("UV2 (Ctl-2)", UV2, INFINITE, TRUE, "C-2");
menu_add ("UV3 (Ctl-Alt-3)", UV3, INFINITE, TRUE, "CA-3");
menu_add ("UV4 (Ctl-a)", UV4, INFINITE, TRUE, "C-a");
menu_add ("UV5 (Ctl-Alt-A)", UV5, INFINITE, TRUE, "C-A");
menu_add ("UV6", UV6, INFINITE, TRUE, "C-@"); // Bad
... other code here ...

}

Typing the following key combinations will execute the body code of the associated user
variable. Keys must be pressed at the same time. The - (dash) is not typed. Note that the
accelerator specified for UV6 is invalid (as an example):

Control-2 invokes UV2 body code

Control-Alt-3 invokes UV3 body code

Control-a invokes UV4 body code

Control-Alt-Shift-A invokes UV5 body code

Control-Shift-2 does nothing. A warning is issued during program
load.
 2/27/09 Pg-1873

Interactive Tools UI - User Interface
6.1.13 User Icons in UI Tool Bar

Description

The toolbar_add() function is used to add a user-defined icon to UI’s tool bar. Clicking
on the icon will invoke the body code of an associated CSTRING_VARIABLE User
Variables.

One or two bitmap images may be defined to represent an icon. These are identified as Cold
and Hot where the cold image is the default display and is replaced by the hot image when
the mouse focus moves to the icon.

The toolbar_add() function also supports the following optional features:

• user-defined accelerator key
• Initial enable/disable state of the icon
• Timeout

These are described in more detail in the Usage section.

If defined, the prompt argument (parameter 3) of the CSTRING_VARIABLE definition is
displayed as a tool-tip when the mouse focus moves to the icon.

Clicking on the icon does not disable it. The toolbar_enable() function can be used to
both enable and disable a user icon. See Example.

The toolbar_delete() function can be used to remove the icon from the tool bar.

Note: once an icon is deleted any code which attempts to access the icon will no
longer function correctly (program may crash). See example.

The C code which adds/deletes an icon to the toolbar can execute in a Host, Site, or User
Tools process.

Usage
BOOL toolbar_add(LPCTSTR toolbar_description,

VariableProxy variable,
int hot DEFAULT_VALUE(0),
int cold DEFAULT_VALUE(0),
 2/27/09 Pg-1874

Interactive Tools UI - User Interface
LPCTSTR accel DEFAULT_VALUE(0),
BOOL enable DEFAULT_VALUE(TRUE),
DWORD timeout DEFAULT_VALUE(INFINITE));

BOOL toolbar_enable(LPCTSTR toolbar_description, BOOL enable);

BOOL toolbar_delete(LPCTSTR toolbar_description);

where:

toolbar_add() will add an icon to UI’s tool bar.

toolbar_enable() will enable or disable the specified icon in UI’s tool bar.

toolbar_delete() will remove an icon from UI’s tool bar. Once an icon is deleted any
code which attempts to access the icon will no longer function correctly (program may
crash). See example.

toolbar_description identifies the icon and is the label displayed under the icon.

variable is a user-defined CSTRING_VARIABLE. When the icon is clicked the body code
is executed, in the process which added the icon to UI. The value of this user variable is not
affected by clicking on the icon. The prompt for the user variable is displayed as the tool-tip
for the icon.

hot and cold are both optional, and identify one or two bitmaps which are displayed as
icons in the tool bar. Each bitmap must be 16 pixels wide, 15 pixels tall, and the number of
colors must be 16 (these can be set using the icon properties using the bitmap editor). The
first bitmap is the default icon, the second bitmap is displayed, replacing the first, when the
mouse focus is put on the icon.

accel is optional, and if used specifies an acceleration key to be linked to the tool bar item.
The format must be:
[C][A]-key, where C (Control) and A (Alt) are optional and key is a case-sensitive
alphanumeric character. The - (dash) delimits the C/A keys from the following key, and must
be included in the definition but is not typed to invoke the accelerator. Invalid character
combinations are reported as a warning in the UI Host output window.

enable is optional, and specifies whether the icon is enabled (TRUE) or disabled (FALSE).
Clicking on a disabled icon has no affect.

timeout is optional, and is the amount of time to wait before notifying the user that the user
variable body code execution did not complete.

All 3 functions return TRUE if the operation was successful and FALSE if any errors occur.
 2/27/09 Pg-1875

Interactive Tools UI - User Interface
Example
The code adds an icon to UI’s tool bar. The icon is labeled Icon Label. When mouse focus is
placed on the icon the user-defined tool-tip (Tool-tip Text) is displayed. The graphic dialog
resource definition and the two bitmap definitions are up to the user.

The code also implements a simple user tool containing a dialog with 4 buttons:

• Cancel - built-in button which terminates the dialog
• OK - built-in button which terminates the dialog
• Delete Icon - removes the icon from the tool bar. Note the icon_valid variable is

used to prevent subsequent attempts to access the deleted icon. This is the
responsibility of the user’s code.

• Kill Tool - user-defined button which terminates the tool:

User-defined Cold Icon User-defined Hot Icon

Tool-Tip
 2/27/09 Pg-1876

Interactive Tools UI - User Interface
#include "tester.h"
#include "resource.h"
EXTERN_DIALOG(D1)

static BOOL icon_valid = FALSE;

// Body code executes when icon is clicked
CSTRING_VARIABLE(InvokeDialog,"","ToolTip Text") {

run_modeless(D1);
icon_valid = TRUE;
BOOL ok = toolbar_enable("Icon Label", FALSE);
if(! ok) output("ERROR: toolbar_add() returned FALSE");

}

// Handle Cancel button. Order of body code is important.
VOID_VARIABLE(MyCancelFunc,"") {

if(! icon_valid) return;
BOOL ok = toolbar_enable("Icon Label", TRUE);
if(! ok) output("ERROR: toolbar_add() returned FALSE");
focus(variable); // Terminate dialog, must be last

}

// Handle OK button. Order of body code is important.
VOID_VARIABLE(MyOkFunc,"") {

if(! icon_valid) return;
BOOL ok = toolbar_enable("Icon Label", TRUE);
if(! ok) output("ERROR: toolbar_add() returned FALSE");
focus(variable); // Terminate dialog, must be last

}

// Delete icon
VOID_VARIABLE(MyDelIcon,"") {

BOOL ok = toolbar_delete("Icon Label");
if(! ok) output("ERROR: toolbar_delete() returned FALSE");
icon_valid = FALSE;

}

// Terminate tool
VOID_VARIABLE(MyKillTool,"") { testprogexit(); }

DIALOG(D1) {
CONTROL(IDCANCEL, MyCancelFunc);
CONTROL(IDOK, MyOkFunc);
 2/27/09 Pg-1877

Interactive Tools UI - User Interface
CONTROL(IDC_DELICON, MyDelIcon);
CONTROL(IDC_KILLTOOL, MyKillTool);

}

TOOL_BEGIN_BLOCK(my_TBB_name) {
BOOL ok = toolbar_add("Icon Label",

InvokeDialog,
IDB_HOT,
IDB_COLD,
"C-1",
TRUE);

if(! ok) output("ERROR: toolbar_add() returned FALSE");
}

6.1.14 Host/Site/Tool Debug Mode(s)

Note: on 10/1/01 information in the section titled was
moved to this section.

Description
Microsoft Developer Studio (MsDev) provides powerful source debug facilities, none of
which are documented here. What is covered here are the basic steps used to enable
debugging a Magnum 1/2/2x test program using Developer Studio.

Note: the information included here regarding Site debug applies to PT only i.e. a
single site system. Contact your Nextest Applications Support specialist for
information on debugging Site code on multi-site test systems (ST, VT, GT),
including all Magnum 1/2/2x system configurations.

Debugging With Developer Studio
 2/27/09 Pg-1878

Interactive Tools UI - User Interface
The process of enabling MsDev debug begins when UI is first started, using UI Advanced
Option Controls to enable Host Debug Mode, Site Debug Mode, or both:

A separate instance of MsDev must be running for each process (Host and/or Site) which is
to be debugged.

When a test program is loaded in UI the following steps must be followed to complete the
enabling process.

Note: the following steps assume both Host and Site Debug Modes are enabled.
When only one is enabled, ignore the steps which apply to the other process.

Instructions are also included to perform User Tool Debug.

1. Note the following dialog is created (sometimes it starts minimized or hidden behind
other windows). This dialog is from UI, and is referring to a Host Debug Mode step:

Host Debug
Site Debug
 2/27/09 Pg-1879

Interactive Tools UI - User Interface
Read these instructions but DO NOT click OK yet. Note that some very useful
information has been copied to the clipboard, for use in the following step. To reduce
confusion, you should complete the following step before copying anything else to the
clipboard.

2. Locate the instance of MsDev which is to be used to debug Host process code. Click on
Project > Settings... and select the Debug tab. In this dialog, click in the
Program arguments window and invoke paste (^v). Confirm that the information
noted in the previous dialog is correctly pasted into this window (as shown). Click OK..

3. Before proceeding, set any breakpoints in Host code as needed. The basic method is to
click on the desired line of source code and press the F9 key to insert a breakpoint. Read
the MsDev documentation for details on using and managing breakpoints.

Note: do not confuse breakpoints used when debugging source code with those set
using the Breakpoint Monitor - they serve completely different purposes.

Paste Here

Debug Tab
 2/27/09 Pg-1880

Interactive Tools UI - User Interface
4. When ready to proceed select Build > Start Debug -> Go. Or, press the F5 key:

5. Next, locate the dialog shown in step-1, and click OK. This completes the setup of the
Host Debug steps. The test program will begin to load and execute in the Host process
(but not the Site yet), which includes all code in CONFIGURATION(),
HOST_CONFIGURATION(), HOST_BEGIN_BLOCK(), and INITIALIZATION_HOOK().

Note: if source debug breakpoints are set, Host code execution may stop at one of
these breakpoints. When this ocurs, it may appear as a non responsive test
program i.e. hung, frozen, etc. Look at the upper border of MsDev to determine
the execution state of the Host process. To restart (i.e. not single step) press
the F5 key:

Not stopped

Stopped at
a breakpoint
 2/27/09 Pg-1881

Interactive Tools UI - User Interface
6. The Site Debug set up process begins when the following dialog is displayed (sometimes
it starts minimized or hidden behind other windows). This dialog is from UI, and is
referring to a Site Debug Mode step. Note that it is very similar to that seen in step-1, but
that the text copied to the clipboard is quite different:

Read these instructions but DO NOT click OK yet. As before, some very useful
information has been copied to the clipboard, for use in the following steps. To reduce
confusion, you should complete the following steps before copying anything else to the
clipboard.

7. Locate the instance of MsDev which is to be used to debug Site process code. Click on
Project > Settings... and select the Debug tab.

Paste Here

Debug Tab
 2/27/09 Pg-1882

Interactive Tools UI - User Interface
In this dialog, click in the Program arguments window and invoke paste (^v). Confirm
that the information noted in the previous dialog is correctly pasted into this window (as
shown). Click OK.

8. Before proceeding, set any breakpoints in Site code as needed.

Note: as before, do not confuse breakpoints used when debugging source code with
those set using the Breakpoint Monitor - they serve completely different
purposes.

9. When ready to proceed select Build > Start Debug -> Go. Or, press the F5 key.

10.Then locate the dialog shown in step-6, and click OK. This completes the setup of the
Site Debug steps. The test program will begin to load and execute in the Site process,
which includes all code in CONFIGURATION(), SITE_CONFIGURATION(), and
SITE_BEGIN_BLOCK(), and INITIALIZATION_HOOK(). When Start Testing is
invoked the Sequence & Binning Table will execute which causes TEST_BLOCKs to
execute, etc. Unloading the test program causes the SITE_END_BLOCK() to execute.
 2/27/09 Pg-1883

Interactive Tools UI - User Interface
Note: if source debug breakpoints are set, Site code execution may stop at one of
these breakpoints. When this occurs, it can appear as a non responsive test
program i.e. hung, frozen, etc. Look at the upper border of MsDev to determine
the execution state of the Site process. To restart (i.e. not single step) press the
F5 key:

11. This completes the setup of both Host and Site Debug Modes. MsDev has extensive
debug capabilities which are not documented here, including:

• Setting and managing breakpoints
• Stepping through source code
• Examining and modifying variable values
• Skipping code execution
• etc.

12.Unloading the test program will terminate the debug session for the test program
currently loaded. Note however that the debug modes set when UI was started remain in
effect until UI is terminated.

Not stopped

Stopped at
a breakpoint
 2/27/09 Pg-1884

Interactive Tools UI - User Interface
6.1.14.1 User Tool Debug
These steps are performed prior to starting the User Tools. The method documented here to
invoke the user tool can be used even in situations where the tool would normally be started
from a User Menus in UI.

Debugging User Tool code applies to code executing in the tool process, but not to code
which is executed in a Site or Host process.

1. Locate the instance of MsDev which is to be used to debug Tool process code. Click on
Project > Settings... and select the Debug tab.

In this dialog, click in the Program arguments window and invoke type -t. Click OK.

2. Before proceeding, set any breakpoints in Tool code as needed. The basic method is to
click on the desired line of source code and press the F9 key to insert a breakpoint. Read
the MsDev documentation for details on using and managing breakpoints.

3. When ready to proceed select Build > Start Debug -> Go, or press the F5 key.

4. The user tool code will load and execute in the tool process, which includes all code in
CONFIGURATION(), TOOL_CONFIGURATION(), TOOL_BEGIN_BLOCK(), and
INITIALIZATION_HOOK().
 2/27/09 Pg-1885

Interactive Tools UI - User Interface
Note: if source debug breakpoints are set, Tool code execution may stop at one of
these breakpoints. When this ocurs, it may appear as a non responsive tool i.e.
hung, frozen, etc. Look at the upper border of MsDev to determine the
execution state of the tool process. To restart (i.e. not single step) press the F5
key:

Not stopped

Stopped at
a breakpoint
 2/27/09 Pg-1886

Interactive Tools UI Tool Persistence
6.2 UI Tool Persistence
See Interactive Tools.

Note: this release continues adding support for persistent attributes for the various UI
tools. The initial release only supported WafermapTool. Support for additional
tools are added in this release and additional tools will be added in future
releases.

When UI is terminated (normally) the following attributes may be recorded (made persistent)
for each UI tool which was started in the current session. Later, when UI and these tools are
restarted, the tool will be automatically configured with these recorded values. This is
commonly known as tool attribute persistence:

Tool Saved Attributes

BitmapTool1 Location, Advanced State

BreakpointTool1 Location, Display X/Y Size

DBMTool1 Location, Display X/Y Size

ECRTool1 Location, Display X/Y Size

PatternTool1 Location

SearchTool1
ShmooTool1

Location
(these are the same tool)

LVMTool1 Location, Display X/Y Size

Voltage/Current
Tool1 Location, Display X/Y Size

TimingTool1 Location, Display X/Y Size
 2/27/09 Pg-1887

Interactive Tools UI Tool Persistence
UI’s tool display paradigm is somewhat different than other Windows applications. UI's tools
will always be in one of the following states:

• Not started: the tool process is not running
• Started: the tool process is running. The tool is in one of the following states:

• Tool is visible
• Tool is visible but minimized; it is seen in the taskbar
• Tool is hidden; i.e. not displayed and not seen in the taskbar

In normal use, the latter state is entered by first starting the tool and then clicking the cancel
button (the in the upper-right corner of the tool). As indicated, this does not terminate the
tool process. Instead, it hides the display; the tool does not appear in the task bar nor on the
display. Starting the tool again makes it visible again. This operation allows the tool to be
hidden without losing any information.

When UI is terminated, the persistence facility notes which tool(s) are running and may
record the attributes noted above. This will occur even if the tool is hidden. It does not occur
for any tool which does not have a currently running process.

Note that a given tool’s hide/show state is not persistent.

When UI is terminated (normally) the persistence facility records a given tool’s persistent
attributes (see table above). At this time, some tools use the legacy method for recording
persistence (Bin/ui.ini file, see Note-1 in the table above) but newer tools use a more
versatile method (see Note-2 in the table above) which uses two possible file locations:

1. The current test program’s Debug\uiconfig***.ini file, if the file exists and is not read-only.

2. The current Nextest software release’s Bin\uiconfig***.ini file, if the file is not read-only
and the previous file does not exist.

Note the following:

UserVariableTool1 Location, Display X/Y Size

WafermapTool2 Location, Display X/Y Size, Display Mode, Cross-hair and Marked-
Die mode, Zoom factor.

Note-1: the persistent attributes for these tools are recorded in the Bin/ui.ini file.
Note-2: the persistent attributes for these tools are recorded in the Bin/uiconfig/*.ini file
 (more below).
Other tools will be added in the future.

Tool Saved Attributes
 2/27/09 Pg-1888

Interactive Tools UI Tool Persistence
• The Debug\uiconfig\ and Bin\uiconfig\ folders and .ini files are new, more below.
• Only one file is accessed, per UI tool.
• The order the files are listed above is the order in which the persistence facility

looks for an .ini file. The first file located is the file accessed.
• The file order shown above is the order used to save persistent attributes AND to

configure a given UI tool when it is first started.
• The first option above is only used if the specified uiconfig\ folder AND

appropriately named ***.ini file exists. This folder and these .ini files are never
created by the Nextest software. The folder\file of the second option are initially
configured by the software installation (more below).

• Using either option, a tool’s ***.ini file is actually named after the tool:
• WafermapTool.ini
Note that this list will get larger in future software releases, see Note:.

• To enable the first option above, the user must create both the uiconfig\ folder and
the desired .ini file(s) in that folder. The folder name and the .ini file name are not
case sensitive. However, it is recommended that the initial file(s) be copied from
the software release’s Bin\uiconfig\ folder, to ensure a valid file is created.

• Using the first option, the test program’s owner has control over the write
permission for each ***.ini file. Using the second option (i.e. the
(SWrelease\Bin\uiconfig***.ini) only the system administrator can change an .ini
file’s write permission. In all cases, if a given .ini file is set to read-only that file will
not be updated when UI terminates and no warning is issued. This mechanism
can be used to prevent each user from modifying any of the persistent attribute
values recorded in a given .ini file.

• Regardless of which method is used, when UI is terminated normally, if a given
tool’s .ini file is not read-only it will be updated with each running tool’s current
persistent attribute values.

• The ui.ini file, located in each Nextest software release’s Bin\ folder, will continue
to record persistent attributes for some tools, until all are migrated to the new
methods. It also continues to record UI’s window size and location, site IP
addresses, etc.

• It is expected that some tools (most?) will use the second option (i.e. the
SWrelease\Bin\uiconfig***.ini) and a few selected tools will use the first option. The
second option should be used for tools which are to be displayed the same,
regardless of which test program is in use. The first option is useful when a given
 2/27/09 Pg-1889

Interactive Tools UI Tool Persistence
tool’s initial configuration needs to change based on the test program
configuration. For example, different die or wafer sizes when using WafermapTool,
different pin usage when using FrontPanelTool, etc.

• Waveftool’s (MSWT) persistence file (mswt.ini) was in use before this unified tool
persistence facility was invented. The existing paradigm will continue to operate as
previously designed. However, if the existing mswt.ini file is deleted the new
methods will be utilized.

Beginning with this release, as a new Nextest software release is installed (UseRel) it will
perform the following actions related to the persistence facility:

• Add the uiconfig\ folder to the release’s Bin\ folder.
• Add the appropriate tool ***.ini file to this uiconfig\ folder, one for each of the tools

noted above. Each file’s content will be the tool’s default attribute values.
• As in all Nextest software installations, the user (installer) will then be prompted

whether the ui.ini file from the current Nextest software release should be copied
to the release being installed, to replace the default file. If the user responds YES
the ui.ini file from the previous release is copied to the Bin\ folder, over-writing the
default file.

• In the future, the previous step will also copy the entire Bin\uiconfig\ folder, and all
of the .ini files in that folder, from the existing release to the new release, thus
copying any per-tool .ini file(s) which exist in the previous release.
 2/27/09 Pg-1890

BitmapTool
6.3 BitmapTool
BitmapTool allows the user to analyze memory device failures by visually displaying an
accurate representation of the topology of the device’s passing/failing data bits on the
computer monitor.

Note: the optional Error Catch RAM (ECR) must be installed in each site controller for
BitmapTool to function - all pass/fail information and APG X/Y address
information is read from the ECR for display in BitmapTool .

By default, BitmapTool does not modify the ECR information before generating the display.
This normally results in displaying a logical view of the DUT (see Logical vs. Physical, vs.
Electrical Addresses). To obtain a physical view additional software must be written to define
a Bitmap Schemes which describes the desired physical topology.
 2/27/09 Pg-1891

BitmapTool
The BitmapTool example display below shows failures from 2 ECRs (2 sites)..

Figure-71: BitmapTool Display
Each ECR has its own display window, which is divided into two resizable panes. The left
pane shows a whole device view. The right pane is a scrollable zoomed view of the zoom/
pan box seen in the whole device view.

The Bitmap uses color to represent various states:

• Red = failed databits
• Black = passed databits
• Grey represents view area outside the device boundary.

The colors used for pass/fail can be changed. See BitmapTool Control Dialog.

Row, Column, Databit at cursorNumber of failing databits

Zoom Window ECR-1

Scrollbar: line targets

Zoom Window ECR-2

Cursor Failing Bit InfoFull View
ECR-2

Full View
ECR-1

Zoom/Pan
Box

Scrollbar: analog target
 2/27/09 Pg-1892

BitmapTool
The zoom/pan box can be used to either change the zoom factor or to pan the display. See
BitmapTool Control Dialog for controls. In either case, the right portion of the screen is the
zoom window, which represents the contents of the zoom/pan box.

The following controls are enabled by click-and-hold the right-mouse button within the full
view window:

Changes the mode of the zoom/pan box. When Pan mode is selected
the zoom/pan box can only be moved, which causes the view in the
zoom window to pan accordingly. When Zoom mode is selected only
the size of the zoom/pan box can be changed which then sets the zoom

factor. Also see BitmapTool Control Dialog and ui_BitmapPan.

Controls enabled by click-and-hold the right-mouse button within the full view window:

Select and release the Update in Entire mode option
causes the entire contents of the ECR to be re-displayed in
BitmapTool.

Select and release the Update in Entire XL mode option
causes selected contents of the ECR to be re-displayed in
BitmapTool. See BitmapTool Display Mode.

Select and release the Clear ECR control to clear the ECR. This does not cause
BitmapTool to update its display.

Controls enabled by click-and-hold the right-mouse button within the zoom window:

Select and release the Update Visible option causes the
selected contents of the ECR to be re-displayed in BitmapTool.
See BitmapTool Display Mode.

Select and release the Clear ECR control to clear the ECR.
This does not cause BitmapTool to update its display.

Select and release the MoveTo... option causes the following
dialog to be displayed:
 2/27/09 Pg-1893

BitmapTool
The MoveTo dialog provides a method for moving
(scrolling) the zoom window to a specific row, column, and
databit. In general terms, the zoom/pan box will be moved
such that its upper/left corner is located at the specified
row, column, and I/O (databit), provided that the bottom
and right borders of the box have room to move within the
display. The zoom window tracks the zoom/pan box.
In other words, the display will only move to the extent
that the zoom/pan box can move; once the box reaches

the right or bottom display limits no further movement will occur. The position of a given
row, column, and databit in the display is determined by the currently selected Bitmap
Schemes.

Select and release The Next Error option causes zoom/pan box to move to the next
failing databit in the display. As noted for MoveTo, this occurs only to the extent that the
zoom/pan box has room to move.

At the bottom/left of each ECR window, the status bar displays the total failed bit count (not
the failed address count).

At the bottom/right of each ECR window the status bar always displays row, column, and
databit corresponding to the cursor position in the zoom window. This information is
displayed for both passing and failing bits. As the cursor is moved to a failed bit, a popup
window displays the corresponding device row, column, and output information. Both sets of
values are affected by the currently selected Bitmap Schemes. In addition, user-written code
can affect the row, column, and data values displayed in the status bar, as the cursor is
moved in BitmapTool. See BitmapTool Callback Macros.

6.3.1 ECR Setup
The ECR must be set up from the test program before BitmapTool can be used from UI. See
Error Catch RAM (ECR) for details.

In Memory Test Patterns applications the ECR accumulates failure information, even
across funtest() executions. Therefore, it is necessary to explicitly clear the ECR as
needed. Then, executing funtest() using the fullec argument will cause the ECR to
capture failure information. For example:

clear(my_ecr);

BOOL status = funtest(pattern, fullec)
 2/27/09 Pg-1894

BitmapTool
Note that there are other argument options to funtest() which affect the use of the ECR.
See Pattern Execution Stop Condition Options for details.

6.3.2 Invoking BitmapTool
BitmapTool is typically invoked:

• At a UI Breakpoint after a functional test (see Breakpoint Monitor)
• From a Breakpoint after a Test Blocks
• After an execution of the Sequence & Binning Table.

To start BitmapTool:

• Click on the BitmapTool icon from the UI toolbar
• Type keyboard shortcut Ctrl+B
• Choose Tools: BitmapTool…
• From user C-code. See BitmapTool UI Variables
 2/27/09 Pg-1895

BitmapTool
6.3.3 BitmapTool Control Dialog
The BitmapTool control panel appears when BitmapTool is invoked from UI’s tool bar:

The controls in this dialog are described below:

 Hex / Decimal selection. This determines whether various integer values
displayed in both BitmapTool and the control dialog use a hexadecimal or
decimal radix. Also see ui_BitmapDialogDecMode.

 Default / Advanced selection. Determines whether the advanced options
are displayed in the control panel. The Advanced button is displayed when
the default control panel is displayed; clicking it causes the advanced
options to be displayed.

Default Controls Advanced Controls

Note: dialog shown was using software release v.2.6.3
 2/27/09 Pg-1896

BitmapTool

ECR selection tab, and associated controls.
When using a single site system only one tab will be
displayed (as shown = ECR 1). When using a multi-site
system multiple tabs will be displayed allowing selection of
the ECR from one site. The other controls in this display
then only affect information displayed from that site.

Bitmap Scramble Select pull-down menu. This control is
used to select one Bitmap Schemes, which then determines how
ECR information is translated (scrambled) before being

displayed in BitmapTool. The built-in schemes provide for displaying a logical view of the
Bitmap data (see Logical vs. Physical, vs. Electrical Addresses). User-defined Bitmap
schemes, documented in Bitmap Schemes, can be used to create a physical view of the
Bitmap data. The default built-in builtin_col_data scheme named is shown.

These are read-only values indicating the minimum/maximum
ECR rows and columns affecting the display, and the number
of databits displayed at each display row/column. Note that if
the currently selected Bitmap Schemes does not display a
contiguous series of rows and columns that the amount of
data displayed in BitmapTool may not correlate with

calculations performed using these values.

DUT number selection pull-down menu. This control allows selection of
which DUT will affect the information displayed in BitmapTool. In Multi-DUT
Test Programs, the number of DUTs selectable is determined by the number

of DUTs defined in the Pin Assignment Table. If > 1, failures for only the selected DUT will be
displayed in BitmapTool. Also see ui_BitmapdutNo.

Bitmap update button. This button updates the Bitmap display. See
BitmapTool Display Mode for deails of different update mode options. Also
see ui_BitmapDisplay.

The following controls appear in the Advanced section of the dialog, when the Advanced
button is selected.
 2/27/09 Pg-1897

BitmapTool
 Color selection controls. These controls can be used to change the
default colors used to display passing and failing databits in
BitmapTool. Due consideration must be given to color interactions
when using Bitmap Overlays (see Bitmap Overlay Colors).
Clicking on either of these controls will display the basic color
palette, shown on the left below. Clicking on the Other button in that
dialog will display the advanced color palette shown on the right

below.

Controls several display update related features. See BitmapTool
Display Mode.

Controls whether the total failed bit count and visible failed bit count
values are collected and displayed. See Fail Count Enable Controls.

Controls whether the two BitmapTool display windows are connected
or displayed separately. See BitmapTool Separate Window Option.

Controls which affect only the right window in BitmapTool (the zoomed
view), or only the left window (the full DUT view).

Enable or disable the display of rulers in the zoom window (only) (see
Example BitmapTool Display with Overlays). To take effect
BitmapTool must be closed and restarted. Rulers allow more exact

positioning of the cursor within the window. Ruler scale values represent a count of databits
 2/27/09 Pg-1898

BitmapTool
in each axis. The data association (with columns or rows) as specified by the currently
selected Bitmap Schemes will affect one axis. Also see ui_BitmapRulers.

Enable or disable cross hairs in the zoom window (only). Cross hairs
allow more exact positioning of the cursor within the window. Also see
ui_BitmapCrossHair.

Enable or disable the Power of 2 zoom mode. When enabled, the
zoom factor can only be changed as a power of 2. When disabled the
zoom factor is an analog value.Also see ui_BitmapZoom2.

Set the mode of the zoom/pan box in the left window (full DUT view).
When Pan mode is selected the zoom/pan box can only be moved,
which causes the view in the zoom window to pan accordingly. When
Zoom mode is selected only the size of the zoom/pan box can be

changed which then determines the zoom factor. Also see ui_BitmapPan.

Used to specify the amount the zoom window will scroll when the left
mouse is clicked in the page area of a scroll bar. The value is in
databits, which are displayed using a different number of pixels
depending on the current zoom factor. Default values are shown. Also
see ui_BitmapPageHScroll and ui_BitmapPageVScroll.

Used to specify the amount the zoom window will scroll when the left
mouse is clicked on either line scroll target of a scroll bar. The value is
in databits, which are displayed using a different number of pixels
depending on the current zoom factor. Default values are shown. Also
see ui_BitmapLineHScroll and ui_BitmapLineVScroll.

6.3.3.1 BitmapTool Display Mode
In general, the BitmapTool display mode determines how failure information is read from the
ECR, processed, and displayed in BitmapTool. The following options are provided:

Entire Mode

Entire XL Mode

Visible Mode
 2/27/09 Pg-1899

BitmapTool
The following model is used to describe the three modes:

Note the following:

1. In all update modes, fail data is read (scanned) from the ECR and transferred from the
site computer to a software bitmap object on the host computer. The bitmap object
represents fail data for 1 DUT from 1 ECR, massaged into 1 bitmap scheme.

2. The bitmap object is populated differently based on the selected update mode. This
affects update performance and the completeness of the data in the bitmap object (more
below).

3. Information from the bitmap object is used to paint the two bitmap displays.

4. In the full view window, for most memory devices, the video display isn’t large enough to
display a unique pixel for each databit. Thus, the bitmap software must determine which
bits from the bitmap object are compressed into a given display pixel. If any one or more
of those bits = FAIL the pixel is shown as a fail. This is called display compression.

5. In Entire mode, the contents of the ECR for an entire DUT is scanned, and all failures are
merged into the bitmap object, organized for the currently selected Bitmap Schemes. .

ECR

Site Computer

Bitmap Object

Bitmap Scheme

Host Computer

Full View Window
Zoom Window

Compressed

Scan & Merge

100% DUT Size
Host Computer

Host Computer

Update

Zoom Window*

* the zoom window shown above is
symbolic.

The full view and zoom windows are
shown separated.
 2/27/09 Pg-1900

BitmapTool
This mode ensures that the full view window and the zoom window always display a
complete and current view of the fail data, including the Total and Visible count values if
enabled (see BitmapTool Visible Fail Count Display). Since the bitmap object is
complete, scrolling or panning the zoom window does not require accessing the ECR for
additional fail data.

6. In Visible mode, only the area of the ECR represented by the zoom window is scanned,
thus only failures from that area are merged into the bitmap object. This improves update
performance because less processing is involved and less data is handled. Both the full
view window and the zoom window are updated but only the failures in the zoom/pan box
are updated in the full view window. Since the bitmap object is incomplete, scrolling or
panning the zoom window does require accessing the ECR for additional fail data.

Note: using Visible Mode mode and Entire XL Mode, when the ECR contents change
it is HIGHLY recommended that the Bitmap button be clicked, to update both
the full view and zoom windows, and the Total and Visible fail data bit count(s).

7. In Entire XL Mode the entire full view window and the zoom window are updated, but the
ECR scan algorithm operates differently than that Entire mode. In simple terms, a map is
made of which ECR bits can affect a given full view window pixel. Using this map, the
ECR scan software can stop as soon as the first failure affecting a given pixel is
identified. This has several effects:

• Bitmap update performance is improved when the size of the full view window is
relatively small, the DUT is large, and has many failing bits. Entire mode may be
faster if failures are sparse, and when a very complex bitmap scheme is in use.

• The creation of the map consumes time which is not required in Entire or Visible
mode. However, the map is cached, and only needs to be updated when the full
view window is resized, the zoom window is panned/or scrolled, or when the
pan/scroll box is changed in the full view window.

• For pixels outside the zoom window, only the first fail detected per-pixel is
merged into the bitmap object. This means the bitmap object may not contain
every failure captured in the ECR. This is important as noted blow. For pixels
within the zoom window, all failures are merged from the ECR to the bitmap
object.

• Because bitmap object may be incomplete, if the zoom/pan box is changed in
the full view window, or if the zoom window is scrolled, the ECR must be partially
scanned again, to obtain a complete picture of failures to be displayed in the
 2/27/09 Pg-1901

BitmapTool
zoom window. And, when a partial scan is performed, if the ECR contents have
changed since the previous scan, the resulting display will be invalid (and the
user will not know it).

• Because the bitmap object may be incomplete, to obtain an accurate Total fail
count (see Fail Count Enable Controls) requires additional time, which reduces
the benefit of Entire XL Mode, .

• The ui_BitmapDisplayMode user variable (see UI User Variables) can be
used to programmatically set this mode. It must be used prior to starting
BitmapTool.

• The ui_BitmapVisibleSize user variable is available to programmatically set
the size of the zoom window. It must be used prior to starting BitmapTool.

Note: the BitmapTool Display Mode controls and ui_BitmapDisplayMode set a
static display mode, whereas using the right mouse in the BitmapTool zoom
window is a transient event.

8. As noted above, the time spent scanning the ECR to obtain the total fail bit count
(displayed in the bottom edge of the BitmapTool display) can be substantial. It is possible
to disable this, using the Fail Count Enable Controls. It is also possible for user code to
determine the count value displayed (see ui_BitmapTotalFailBitCount) or the
entire string displayed (see ui_BitmapTotalVisibleFailBitString,
ui_BitmapTotalFailBitString, or ui_BitmapVisibleFailBitString).

6.3.4 BitmapTool Zoom Controls
BitmapTool has the following controls used to afffect the display Zoom settings:
 2/27/09 Pg-1902

BitmapTool
• BitmapTool Zoom selections::

• The plus and minus buttons zoom in/out one increment.
• The right button can be used two ways:

- Left-click to unconditionally return to 100% view.
- Right mouse to display the menu shown above.

• The left arrow is used to zoom to the previous zoom value. The right arrow to
zoom back. These arrows are initially disabled, until a zoom-in or zoom-out is
performed. The arrows may be disabled when the BitmapTool is resized or
anytime either scroll bar is removed from BitmapTool (which occurs when it is
resized). The arrows are enabled again when a zoom-in or zoom-out is performed.

• The ui_BitmapVisibleSize user variable is available to programmatically set
the size of the zoom window. It must be used prior to starting BitmapTool.
 2/27/09 Pg-1903

BitmapTool
6.3.5 BitmapTool Separate Window Option
BitmapTool has two graphic display windows, the full view window and the zoom window.
These can now be resized, positioned (within UI), and updated independently. The image
below shows separate full view and zoom windows:

Note the following:

• By default, BitmapTool will start in the original configuration, with the full view and
zoom windows tiled into a single GUI display. To separate the windows, in the
BitmapTool Control Dialog select the Separate Zoom view check box. Then,
terminate and restart BitmapTool. The selection is persistent, saved in the UI.ini
file.

• BitmapTool windows which are already open are not affected when the Separate
Zoom view check box is modified.

• When Separate Zoom view is enabled, a new set of windows will be created any
time one of the following is changed and the Bitmap button is clicked:

- ECR tab selection

Full View
Window

Zoom
Window

Total Fail
Bit Count

Total Visible
Fail Count

Header
Label
 2/27/09 Pg-1904

BitmapTool
- DUT #
- Bitmap scheme selection

This allows multiple sets of windows to be displayed simultaneously.
• When the Bitmap button is clicked only those window(s) which match the currently

selected ECR/DUT/Bitmap Scheme are updated.
• The header title of each window will include related information. For example:

• As before, resizing, panning, or scrolling the zoom window, or moving the zoom/
pan box in the full view window, will re-read the pertinent sections of the ECR and
update the failures displayed in the zoom window, the failures displayed in the
zoom/pan box, and the Visible fail count value (see BitmapTool Visible Fail Count
Display).

• When Separate Zoom view is enabled, the visible fail count string can be modified
using ui_BitmapVisibleFailBitString and the total fail count string can be
modified using ui_BitmapTotalFailBitString. When Separate Zoom view is
disabled, the total/visible fail count string can be modified using
ui_BitmapTotalVisibleFailBitString.

• When Separate Zoom view is enabled and the Zoom window is closed, the zoom/
pan box normally seen in the full view window disappears.

• When Separate Zoom view is disabled, both Total fail count and Visible fail count
values are displayed in the same location, at the bottom left of the window border.
When Separate Zoom view is enabled, the full view window will only display the
Total fail count, and the zoom window will only display the Visible fail count. See
BitmapTool Visible Fail Count Display and Fail Count Enable Controls.

• When Separate Zoom view is enabled, if either or both windows are closed, and
the Bitmap button is clicked, both windows will be re-displayed. To update a single
window without updating (or opening) the other window, use the right mouse
button to select Update in the desired window. Note that the full view window has
two update options: Entire Mode and Entire XL Mode display modes (see
BitmapTool Display Mode).

• When Separate Zoom view is enabled, the size of the full view window directly
affects the update performance in Entire XL Mode. Similarly, the size of the zoom
window affects performance of Visible Mode and Entire XL Mode (although not as
much as the size of the full view window). This also applies when the window
display is combined, but since resizing affects both the full view and zoom
windows it is less useful as a performance improvement technique.
 2/27/09 Pg-1905

BitmapTool
6.3.6 BitmapTool Visible Fail Count Display
Two fail count values are displayed simultaneously:

• Total = all fails
• Visible = fails bounded by the zoom window

Note the following:

• Total count is displayed when enabled via the Fail Count Enable Controls. Total
count is accurate when the display is updated in either Entire Mode or Entire XL
Mode. Conversely, when the display is updated in Visible Mode mode, the Total
count may not be correct, depending on whether the contents of the ECR have
changed since the last time the main window was updated in Entire Mode or Entire
XL Mode.

• Visible count is displayed when enabled via the Fail Count Enable Controls. Visible
count is always accurate.

• Resizing, panning, or scrolling the zoom window will re-read the pertinent sections
of the ECR and update the Visible count but not the Total count. This is important
when the contents of the ECR have changed since the last time the Total count
was updated i.e. the value may be stale.

6.3.7 Fail Count Enable Controls
The BitmapTool Control Dialog has added controls which can disable the collection and
display of Total and Visible fail count values:

More important than the display aspect is the performance improvement obtained when the
count values are not collected. In particular, disabling the Total fail count option will

Windows
Combined

Separate Main
 Window = total

Separate Zoom
 Window = visible
 2/27/09 Pg-1906

BitmapTool
noticeably reduce display update time in Entire Mode and Entire XL Mode. Disabling Visible
fail count has less impact on update performance.

When a given count is disabled the associated FailBitCount value is not displayed in the
BitmapTool display.

6.3.8 BitmapTool Callback Macros
The TRANSLATE_BITMAP_INFO(), TRANSLATE_BITMAP_INFO_5() and
TRANSLATE_BITMAP_INFO_7() macros are BitmapTool call-back macros are available to:

• Modify the row/column/data coordinate values displayed in BitmapTool
corresponding to the mouse position in BitmapTool zoom window.

• Capture these row/column/data value(s) when the mouse is left clicked in the
BitmapTool zoom window.
 2/27/09 Pg-1907

BitmapTool
The default row, column and data coordinate values are seen below, in the lower right corner
of the BitmapTool display:

The BitmapTool call-back macros are tied to mouse cursor movement, and left-button
mouse clicks in the BitmapTool zoom window. If either macro is defined, the macro body
code executes automatically as the cursor is moved, or the left mouse button is clicked in
the BitmapTool zoom display area. Code within the macro body can be used as noted
above.

Only one of these macros should be defined in any given test program. They must be
declared at a global level i.e. not within a function or within the body code of another macro.

A new call-back event is not sent to a site (to execute the macro body code) until execution
of the previous event was complete. This has the effect of discarding those events which
occur during that time. This improves performance, prevents overwhelming the call-back,
and makes mouse-to-site synchronization reliable, at the expense of missing some events
when the mouse is moved quickly.

Default row, Column, and Data coordinates corresponding
to mouse position in zoom window
 2/27/09 Pg-1908

BitmapTool
Usage
TRANSLATE_BITMAP_INFO(DWORD row,

DWORD col,
DWORD data,
DWORD clicked) {}

TRANSLATE_BITMAP_INFO_5(DWORD row,
DWORD col,
DWORD data,
DWORD clicked,
CString message) {}

TRANSLATE_BITMAP_INFO_7(DWORD row,
DWORD col,
DWORD databit,
DWORD clicked,
CString message,
DWORD bitmap_row,
DWORD bitmap_col)

where:

TRANSLATE_BITMAP_INFO is a Test System Macro used to denote the start of the code
block.

TRANSLATE_BITMAP_INFO_5 is similar to TRANSLATE_BITMAP_INFO except that it
requires 5 arguments.

TRANSLATE_BITMAP_INFO_7 is similar to TRANSLATE_BITMAP_INFO except that it
requires 7 arguments.

row, column, and data are variables used within the macro body code to represent the
row/column/data coordinate values corresponding to the mouse position in the BitmapTool
zoom display area. The values actually displayed in BitmapTool are the final values
assigned to these variables within the macro body code.

clicked is TRUE any time the left mouse button is clicked in the BitmapTool zoom display.

message allows the entire value displayed in BitmapTool to be defined within the macro
body code. When not used, the structure of the displayed message is the default row,
column, and data values. When message is used it completely replaces the display values.

bitmap_row and bitmap_col are read-only and represent the cursor position within the
BitmapTool zoom display area. Values are in screen-space context with the upper left corner
 2/27/09 Pg-1909

BitmapTool
= 0/0. Resolution is one databit which, depending on the current zoom factor, can represent
one or many pixels.

None of the argument variables exist outside the scope of the macro body code. The user
does determine the name of each variable, but no other special declarations are required.

Examples

Example 1:
The following example alters the row value displayed in BitmapTool. The column and data
values are not changed. When the mouse is left clicked in the BitmapTool zoom area the
coordinates are captured (saved) in user-defined variables:

int save_row_coord, save_col_coord, save_databit;

TRANSLATE_BITMAP_INFO(row_coord, col_coord, databit, clicked) {

// Any modifications done here to the DWORDS row_coord, and/or
// col_coord, and/or databit will be reflected in the coordinate
// values displayed by BitmapTool

row_coord = 10; // BitmapTool will only ever display 10 as the
// row coordinate. Not very useful, but does
// demonstrate the use of this macro.

// Capture mouse coordinate values here when the mouse is clicked
// in the BitmapTool display

if (clicked) {
save_row_coord = row_coord;
save_col_coord = col_coord;
save_databit = databit;

}
}

Example 2:
This example completely replaces the default row/column/data values displayed in
BitmapTool’s. Instead, the user code below creates a block number using two bits of the row
 2/27/09 Pg-1910

BitmapTool
address. Then, a new display value is created to include block, row, column, and data, as
shown below:

See comments in the code below.

// BitCount() used in TRANSLATE_BITMAP_INFO_5() example below.
// Return a count of bits set in arg1 = mask.
// Only counts low contiguous bits in mask
int BitCount(int mask) {

int count = 0;
for (int index =0; mask != 0; ++index, mask >>= 1)

if (mask & 1) ++count;
return count;

}

// As cursor moves in BitmapTool generate a new row/col/data
// display. This example displays Blk 0..3 plus row/col/data.
// High 2 bits of row value determine the block address.
// BLOCK_MASK definition assumes numx(9).
// INV_BLOCK_MASK is inverse of BLOCK_MASK
// Calls BitCount() function.

#define BLOCK_MASK 0x180// Assumes numx(9)
#define INV_BLOCK_MASK (xmax() ^ BLOCK_MASK)

TRANSLATE_BITMAP_INFO_5(row, col, data, clicked, str) {
// Determine block ID = 0..3.
DWORD blk = (row & BLOCK_MASK) >> BitCount(int INV_BLOCK_MASK);

// Remaining row bits are displayed as row address
row = (row & INV_BLOCK_MASK);

// Create entire display string seen in BitmapTool.
str = vFormat("Blk:%d Row:%d Col:%d Data:%d", blk,row,col,data);

}

 2/27/09 Pg-1911

BitmapTool
6.3.9 BitmapTool UI Variables
The following built-in UI variables are provided for programatic control of BitmapTool. These
are documented in detail in UI User Variables.

Variable Name Purpose

ui_BitmapCrossHair Set the initial crosshair display mode.

ui_BitmapDialogDecMode
Toggle between decimal and hexadecimal
values for display (default is FALSE), -1
for Ui

ui_BitmapDisplay
Invoke or update the display if already
running. No BitmapTool dialog appears for
programmatic invocation of BitmapTool.

ui_BitmapDisplayMode
Set the initial display mode. See
BitmapTool Display Mode.

ui_BitmapDisplaySeparateZoomWindow

Control whether the full view and zoom
windows are displayed together or
separately. See BitmapTool Separate
Window Option.

ui_BitmapDisplayTotalCount

Enable or disable collection and display
of total fail count value. See Fail Count
Enable Controls and BitmapTool Visible
Fail Count Display.

ui_BitmapDisplayVisibleCount

Enable or disable collection and display
of visible fail count value. See Fail
Count Enable Controls and BitmapTool
Visible Fail Count Display.

ui_BitmapdutNo
Set which DUT# to bitmap(DUT0 is
bitmapped by default).

ui_BitmapMainSize
Set the size of the full view window. See
BitmapTool Separate Window Option.

ui_BitmapMaxErrors

Limits the number of failures displayed.
Result is approximate, based on
ui_BitmapRowsChunk. BitmapTool will stop
displaying errors when the max error
count is reached, but errors are read
from the ECR in chunks.
 2/27/09 Pg-1912

BitmapTool
6.3.10 Bitmap Schemes
This section includes the following:

• Overview
• Built-in Bitmap Schemes
• Bitmap Segment Positioning
• Bitmap Scheme Functions and Data Types
• bitmap_scheme Data Type
• make_bitmap_scheme()
• add_segment()
• register_bitmap_scheme()
• dump()
• permutation Data Type
• Permutation Memory Management

ui_BitmapMoveTo

Moves zoom/pan box to a specified row/
column/data position in the full view
BitmapTool display. Zoom window tracks
the zoom/pan box.

ui_BitmapPageHScroll,
ui_BitmapPageVScroll,
ui_BitmapLineHScroll,
ui_BitmapLineVScroll

Set the initial values for Page and Line
horizonal and vertical scroll size.

ui_BitmapPan Set the state of the zoom/pan option.

ui_BitmapRowsChunk

Maximum number of rows read from the ECR
in a single chunk. Default is 512 rows.
Affects resolution of
ui_BitmapMaxErrors.

ui_BitmapRulers Set the initial ruler display mode.

ui_BitmapVisibleSize
Set the size of the zoom window. See
BitmapTool Separate Window Option.

ui_BitmapZoom2
Set the initial state of the power of 2
zoom option.

Variable Name Purpose
 2/27/09 Pg-1913

BitmapTool
• make_permutation()
• reverse()
• rotate()
• swap()
• append()
• insert()
• set()
• for_each()
• filter()
• get()
• size()
• bitmap_scheme_translate()
• bitmap_scheme_lookup()

6.3.10.1 Overview
See Bitmap Schemes.

As noted earlier, by default, BitmapTool does not modify the ECR information before
generating the bitmap display. The resulting display is a logical view of the DUT (see Logical
vs. Physical, vs. Electrical Addresses).

To obtain a physical view, user code must define a bitmap scheme, which describes the
desired physical topology. Creative users may find other applications for the bitmap scheme
capability, to display different views of the same ECR failure information with each view
defined by creating an additional bitmap scheme. It is possible to create any number of
schemes.

Using BitmapTool, one bitmap scheme is selected from the Bitmap Scramble Select
pull-down menu in the BitmapTool control dialog. By default, this menu displays the Built-in
 2/27/09 Pg-1914

BitmapTool
Bitmap Schemes, plus the names of any registered user-defined bitmap scheme. The
example below shows the builtin_col_data scheme is selected:

A bitmap scheme describes, in software, a model used to convert the raw ECR failure data
from the default logical view to the desired (physical) view. The model describes how the
device is partitioned, into a number of bitmap segments which, in the logical-to-physical
conversion application, correlates with the device’s physical topology.

A bitmap segment is defined to be a contiguous rectangular area of the device (and the
bitmap display) in which the data permutation is constant (more below).
 2/27/09 Pg-1915

BitmapTool
For example, the following model shows a physical device topology containing 8 rows
(R0-R7), 8 columns (C0-C7), and 4 data bits (D0-D3).

Note the following;

• The device is partitioned into four bitmap segments which, in this example, is
dictated by a basic rule: the data permutation must be constant within a bitmap
segment. It is the uniqueness of data bit organization that dictates that four
segments are needed for this example.

• The data bits change in the column direction, but not in the row direction. This
means data is associated with columns, which must be specified when creating
the bitmap scheme (make_bitmap_scheme()).

• The order of rows is different between upper and lower halves but are otherwise
identical between left/right segments. This will allow the four bitmap segments to
be defined using only 2 row permutation definitions.

• The order of columns is different in all four segments thus four column permutation
definitions will be needed.

D0 D2

Columns

Rows

D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

D0 D2 D0 D2 D0 D2 D0 D2

C0 C1 C2 C4

R0

R1

R2

R3

R7

R6

R5

R4

D2 D0

Columns

Rows

C3 C5 C6 C7

R0

R1

R2

R3

R7

R6

R5

R4

D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

D2 D0 D2 D0 D2 D0 D2 D0

Segment
(0,0)

Segment
(0,1)

D3 D1

Columns

Rows

R0

R1

R2

R3

R7

R6

R5

R4 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

D3 D1 D3 D1 D3 D1 D3 D1

C7 C6 C5 C4

D1 D3

Columns

Rows

R0

R1

R2

R3

R7

R6

R5

R4

C3 C2 C1 C0

D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

D1 D3 D1 D3 D1 D3 D1 D3

Segment
(1,1)

Segment
(1,0)
 2/27/09 Pg-1916

BitmapTool
It is the definitions of the row, column and data permutations which describe the order rows
and columns will be displayed for each bitmap segment, which data bits appear in each
segment, and in which order data bits are displayed. The code used to define the
permutations for this example device is shown in Example 2:

The following steps describe the process of creating a new bitmap scheme:

• Create a new bitmap scheme object, using make_bitmap_scheme().
• Evaluate the device’s physical topology to determine row and column ordering and

variations of that ordering. Also determine how the data bits are distributed and
ordered. The result is a diagram of bitmap segments (see the example on
page 1916).

• Using make_permutation(), and the other functions which operate on
permutations documented in Bitmap Scheme Functions and Data Types, define the
row, column and data permutations needed to describe each bitmap segment. In
the bitmap scheme software, the term permutation is used to define a unique row
configuration, or column configuration, or data bit configuration within a bitmap
segment.

• Using add_segment(), define and add each bitmap segment to the bitmap
scheme. Each bitmap segment is described with a X/Y size and with one row,
column, and data permutation.

• Using register_bitmap_scheme(), register the bitmap scheme with UI. This
makes the scheme usable in BitmapTool

Each bitmap segment is created (add_segment()) by specifying its X/Y position and one
row, one column, and one data permutation. In the example on page 1916, four bitmap
segments are needed: (0,0), (0,1), (1,0), (1,1). By default, Bitmap segments are numbered
by their coordinate position on the screen; this is using the original automated positioning
methods, called tile-mode. However, it is possible to overlay segments by specifying an
absolute screen location rather than tile-mode. See Bitmap Segment Positioning.

By default, the divisions shown between segments in the example do not appear in the
bitmap display. They are shown here for clarity. Using Bitmap Overlays it is possible to add
visible segmentation to the display.

Each bitmap scheme description specifies whether the data permutation for that scheme is
to be associated with rows or columns. This is required because the data permutation
only describes the quantity and order of data bits, but not how they are organized within a
segment i.e. whether they change in the row direction or column direction. By definition, they
can’t change in both directions, and the direction can’t change within a bitmap scheme.
 2/27/09 Pg-1917

BitmapTool
In software, each row, column, or data permutation to be created is declared as a variable of
type permutation, a Nextest-defined data type. In some applications, to simplify the creation
of bitmap segments, it is common to declare arrays of permutation. This supports the
following software construct:

permutation rowperm[2]; // Array of two row permutations
permutation colperm[2][2]; // Array of four column permutations
permutation dataperm[2][2]; // Array of four data permutations

// ... Permutation definitions go here ... see Example 2:
for(int horiz_seg_pos=0; horiz_seg_pos < 2; ++horiz_seg_pos)

for(int vert_seg_pos=0; vert_seg_pos < 2; ++vert_seg_pos)
add_segment(scheme, horiz_seg_pos, vert_seg_pos,

rowperm [horiz_seg_pos],
colperm [horiz_seg_pos] [vert_seg_pos],
dataperm [horiz_seg_pos] [vert_seg_pos]);

}

6.3.10.2 Built-in Bitmap Schemes
See Bitmap Schemes.

BitmapTool has 8 built-in bitmap schemes:

1. builtin_col_data: display a logical view of the ECR data. Data is associated with
Columns and Data is fast i.e. data bits are grouped together displaying D0..Dn for
column 0, followed by D0..Dn for column 1, etc. This is the default.

D0 D1... Dn

C0

D0 D1... Dn

C1

D0 D1... Dn

Cm

R0
R1
...
Rp
 2/27/09 Pg-1918

BitmapTool
2. builtin_col_rdata : is the same as the previous except that Data is reversed.

3. builtin_data_col : display a logical view of the ECR data. Data is associated with
Columns and Columns are fast i.e. columns are displayed grouped together with all
columns for D0, followed by all columns for D1, etc.

4. builtin_rdata_col : this is the same as the previous except that Data is reversed.

Dn ... D1 D0

C0

Dn ... D1 D0

Cm0

Dn ... D1 D0

C1

R0
R1
...
Rp

C0 C1... Cm

D0

C0 C1... Cm

D1

C0 C1... Cm

Dn

R0
R1
...
Rp

C0 C1... Cm

D7

C0 C1... Cm

D0

C0 C1... Cm

D1

R0
R1
...
Rp
 2/27/09 Pg-1919

BitmapTool
5. builtin_data_row : display a logical view of the ECR data. Data is associated with
Rows and Rows are fast i.e. Rows are displayed grouped together with all Rows for D0,
followed by all Rows for D1, etc.

6. builtin_rdata_row : is the same as the previous with Data reversed.

R0
R1
...
Rp

C0 C1... Cm

D1

R0
R1
...
Rp

D0

R0
R1
...
Rp

Dn

C0 C1... Cm
R0
R1
...
Rp

Dn

R0
R1
...
Rp

D0

R0
R1
...
Rp

D1
 2/27/09 Pg-1920

BitmapTool
7. builtin_row_data : display a logical view of the ECR data. Data is associated with
Rows and Data is fast i.e. data bits are grouped together displaying D0..Dn for Row 0,
followed by D0..Dn for Row 1, etc.

8. builtin_row_rdata : this is the same as the previous with Data reversed.

D0
D1
...
Dn

C0 C1... Cm

R1

D0
D1
...
Dn

R0

D0
D1
...
Dn

Rp

Dn

D1
...

D0
R0

Dn

D1
...

D0
R1

Dn

D1
...

D0
Rp

C0 C1... Cm
 2/27/09 Pg-1921

BitmapTool
In the builtin schemes above:

• m = the number of Columns per DUT, and is determined by the smaller of numy()
and the ECR Y-width as set using ecr_config_set().

• p = the number of Rows per DUT, and is determined by the smaller of numx() and
the ECR X-width as set using ecr_config_set().

n = number of Data bits per DUT, and is determined by the data width as set using
ecr_config_set() divided by the number of DUT(s) defined in the Pin Assignment
Table.

6.3.10.3 Bitmap Segment Positioning
See Bitmap Schemes.

Normally, each segment added to a Bitmap Schemes was automatically positioned in the
display based on the segment coordinate values specified using the rowseg and colseg
arguments to add_segment(). This is called tile-mode. In this mode, the rowseg and
colseg values identify a segment’s tile position, which cannot overlap with other segments,
and there can’t be gaps between segments. In this mode, all the Rules noted in Bitmap
Scheme Functions and Data Types apply.

An optional mode allows bitmap segments to be positioned using an absolute screen-space
mode. This allows segments to overlap, there can be gaps between seqments, etc.

The new mode is enabled using the optional auto_arrange argument to
make_bitmap_scheme(). In this mode, when defining bitmap segments
(add_segment()), the values specified for rowseg or colseg now define the absolute
position of the segment in screen-space terms, relative to 0,0 (upper left corner).

Using the new mode, when defining row or column permutations (see permutation Data
Type) the value -1 can be used to indicate no value for a component of that permutation.
Once all segments are defined, any place a given row/column coordinate is still defined as
-1 will not have any fail data displayed i.e. a hole in the bitmap display is created.

The example below should help to clarify this.
 2/27/09 Pg-1922

BitmapTool
Example
As an example, consider the following device scrambling, which has data associated with
columns and data shown fast. Row information is not shown because it doesn’t improve this
example:

Using the default tile-mode display option, a device with this layout would require 8
segments, because the data permutation changes in every column:

Using the new mode, the same device can be defined using 2 overlapping segments. Both
will be located at (0,0). Use -1 to create holes in each segment definition:

This example can be coded as shown below:

// Data associated with columns, data fast, auto_arrange = FALSE
// See make_bitmap_scheme()
scheme = make_bitmap_scheme(TRUE, TRUE, FALSE)

// Define 2 column permutations, using -1 to create overlap holes

// See make_permutation()
static int EvenCols[] = { 0, -1, 2, -1, 4, -1, 6, -1 };
permutation Ceven = make_permutation(*EvenCols, 8);

static int OddCols[] = { -1, 1, -1, 3, -1, 5, -1, 7 };
permutation Codd = make_permutation(*OddCols, 8);

// Define 2 data permutations

static int EvenData[] = { 0, 2, 4, 6 };
permutation Codd = make_permutation(*EvenData, 4);

Column: 0 1 2 3 4 5 6 7
Data: 0246 1357 0246 1357 0246 1357 0246 1357

Seg
(0,7)

Seg
(0,6)

Seg
(0,1)

Seg
(0,2)

Seg
(0,3)

Seg
(0,4)

Seg
(0,5)

Seg
(0,0)

0 1 2 3 4 5 6 7
Data: 0246 1357 0246 1357 0246 1357 0246 1357

Column:

0 2 4 6
Data: 0246 -1 0246 -1 0246 -1 0246 -1

Column:

1 3 5 7
Data: -1 1357 -1 1357 -1 1357 -1 1357

Column:

Seg
(0,0)

Seg
(0,0)
 2/27/09 Pg-1923

BitmapTool
static int OddData[] = { 1, 3, 5, 7 };
permutation Codd = make_permutation(*OddData, 4);

// Row info is distracting...
permutation Rows = make_permutation(...);

// Locate segment in upper-left (0,0) of bitmap display
add_segment(scheme, 0, 0, Rows, EvenCols, EvenData)

// Overlay 2nd segment on top of the 1st, this fills the holes
add_segment(scheme, 0, 0, row, OddCols, OddData)

// Register the scheme to be useable
// See register_bitmap_scheme()
register_bitmap_scheme("Physical Map", scheme);

The following example delivers the same results and helps to demonstrate how the screen-
space coordinate system works:

// The even-column segment definition doesn’t change from above

// Note that the odd column segment definition now starts with the
// column 1 (the previous -1 is missing). Below, to properly use
// this segment to overlay the other one, it must be offset by one
// data width (4) in screen-space.
static int OddCols[] = { 1, -1, 3, -1, 5, -1, 7 };
permutation Codd = make_permutation(*OddCols, 7);

// Row and data permutations don’t change

// Locate 1st segment in upper-left (0,0) of bitmap display
// This is the same as the previous example.
add_segment(scheme, 0, 0, Rows, EvenCols, EvenData)

// Offset the overlay segment by 4 (one data width)
add_segment(scheme, 0, 4, row, OddCols, OddData)

6.3.10.4 Bitmap Scheme Functions and Data Types
See Bitmap Schemes.

A set of data structures and functions are provided to create bitmap scheme(s), create
bitmap segments, define the row, column, and data permutations, and register the bitmap
scheme.

The functions are organized under the following data type definitions:
 2/27/09 Pg-1924

BitmapTool
• bitmap_scheme Data Type
• permutation Data Type

The following rules must be followed to obtain a useful display when using a user-defined
bitmap scheme:

Rules
1. An ECR is required to perform bitmapping, and the ECR must be correctly configured

(ecr_config_set()) to match the device’s logical geometry.

2. To log errors to the ECR, funtest() must be executed using the fullec argument.

3. Normally, bitmap scheme code should be executed in the Host process, after all sites
have loaded the test program. The simplest method is to define the ui_ProgLoaded
user variable and put bitmap scheme code in the body of the variable. Also see Host
Waiting for Site to Load example code. When bitmap scheme code is executed in a site
process, the scheme can only affect those site(s).

4. Once a user-defined bitmap scheme is created, it is necessary to register it with UI
before BitmapTool will display that scheme for selection. See
register_bitmap_scheme().

5. Each bitmap scheme defines whether the data bits are associated with rows or columns
This association is constant for all segments.

6. Every row, column, and data bit coordinate must represent a unique value read from the
ECR.

6.3.10.5 bitmap_scheme Data Type
See Bitmap Schemes.

The purpose and application of a bitmap scheme is discussed in Bitmap Schemes.

The Nextest software provides the functions noted below to:

• Create a bitmap scheme
• Define the Bitmap Segment Positioning mode
• Add bitmap segments to the scheme
• Name and register the scheme with UI; BitmapTool can only use bitmap schemes

registered with UI.
 2/27/09 Pg-1925

BitmapTool
• dump() the definition of a bitmap scheme for review.
The functions, macros, and key data structures related to the bitmap_scheme data type
are:

make_bitmap_scheme()

add_segment()

register_bitmap_scheme()

dump()

6.3.10.6 make_bitmap_scheme()
See Bitmap Schemes.

Description
The make_bitmap_scheme() creates a new bitmap scheme object, which must be done
before any bitmap segments can be created (added).

Each bitmap scheme description specifies whether the data permutations used in the
scheme are associated with rows or columns. This is required because the data permutation
only describes the order of data bits, but not how they are organized within a segment i.e.
whether they change in the row direction or column direction. They can’t change in both
directions, and the direction can’t change within a bitmap scheme.

Eight Built-in Bitmap Schemes are available to switch between row/column association and
whether data or row/column is displayed fast.

Usage
bitmap_scheme make_bitmap_scheme(BOOL colData);

bitmap_scheme make_bitmap_scheme(
BOOL data_with_col,
BOOL data_fast DEFAULT_VALUE(TRUE));

bitmap_scheme make_bitmap_scheme(
BOOL data_with_col,
BOOL data_fast DEFAULT_VALUE(TRUE),
BOOL auto_arrange DEFAULT_VALUE(TRUE));

where:
 2/27/09 Pg-1926

BitmapTool
data_with_col is TRUE if the data permutations are associated with columns, and FALSE
if associated with rows.

data_fast is optional, and determines whether BitmapTool displays data fast (see above).
Default is TRUE.

auto_arrange is optional, and determines whether Bitmap segments are automatically
positioned (tiled, the original method), or positioned explicitly by the user. Specifying TRUE
enables the original tile-mode operation, FALSE enables the new method. See Bitmap
Segment Positioning.

The returned value is a bitmap_scheme object, usable as an argument to related
functions.

Example
#define COLDATA TRUE // Data associated with columns
bitmap_scheme scheme = make_bitmap_scheme(COLDATA);

6.3.10.7 add_segment()
See Bitmap Schemes.

Description
The add_segment() function adds a new bitmap segment to an existing Bitmap Schemes.

Arguments define the coordinate position of the bitmap segment in the overall scheme, and
which row, column, and data permutations describe the segment architecture.

All bitmap segments within a given bitmap scheme must be the same shape and size.

Usage
void add_segment(bitmap_scheme scheme,

int rowseg,
int colseg,
permutation rowperm,
permutation colperm,
permutation dataperm);

where:
 2/27/09 Pg-1927

BitmapTool
scheme is an existing bitmap scheme created using make_bitmap_scheme(). This
identifies to which bitmap scheme the new bitmap segment is being added.

rowseg and colseg identify the coordinates of the bitmap segment being added in the
overall scheme, and determines the position of each segment in the BitmapTool display. The
upper left bitmap segment is identified as (0,0) i.e. rowseg = 0, rowseg = 0.

rowperm identifies the row permutation for this bitmap segment, previously created
using make_permutation().

colperm identifies the column permutation for this bitmap segment, previously created
using make_permutation().

dataperm identifies the data permutation for this bitmap segment, previously created using
make_permutation().

Example
This example is a portion of the code used to describe the example device shown on
page 1916. The row, column, and data permutation definitions are not shown here; see
Example 2: for the complete solution.

#define COLDATA TRUE // Data associated with columns

bitmap_scheme scheme = make_bitmap_scheme(COLDATA);

// Add 4 segments to the scheme using nested loops

for(int horiz_seg_pos=0; horiz_seg_pos < 2; ++ horiz_seg_pos)

for(int vert_seg_pos=0; vert_seg_pos < 2; ++ vert_seg_pos)

add_segment(scheme, horiz_seg_pos, vert_seg_pos,
rowperm[horiz_seg_pos],
colperm[horiz_seg_pos][vert_seg_pos],
dataperm[horiz_seg_pos][vert_seg_pos]);

6.3.10.8 register_bitmap_scheme()
See Bitmap Schemes.
 2/27/09 Pg-1928

BitmapTool
Description
The register_bitmap_scheme() function assigns a bitmap scheme a name, and
registers it with UI. This makes the bitmap scheme selectable (and usable) in BitmapTool by
adding the specified name to BitmapTool’s Bitmap Scramble Select dialog menu.

Note: the register_bitmap_scheme() frees the memory used to store any and all
permutations which were used directly, or indirectly, to define the bitmap
segments which comprise the scheme being registered. This has some
important side effects. See Permutation Memory Management.

Usage
void register_bitmap_scheme(LPCTSTR name, bitmap_scheme scheme);

where:

name is the name to appear in the BitmapTool controls dialog used to select a bitmap
scheme.

scheme identifies bitmap scheme being registered.

Example
register_bitmap_scheme("Physical Map", scheme);

6.3.10.9 dump()
See Bitmap Schemes.

Description
In the context of BitmapTool, the dump() function has two overloads used for validation and
debugging bitmap schemes.

• Output the description of the specified bitmap scheme.
• Output the description of the specified permutation.

Usage
void dump(bitmap_scheme scheme);
 2/27/09 Pg-1929

BitmapTool
permutation dump(permutation p);

where:

scheme is the bitmap scheme of interest.

p is a row, column, or data permutation of interest.

Example
bitmap_scheme scheme = make_bitmap_scheme(TRUE);

... other code to describe permutations and bitmap segments

dump(scheme);

6.3.10.10 permutation Data Type
See Bitmap Schemes.

The purpose and application of permutations is discussed in Bitmap Schemes.

The functions documented in this section are used to define the row, column, and data
permutations used to specify a bitmap segments.

In general, a permutation has two attributes:

• Permutation size i.e. how many elements (rows or columns or data bits) are
represented by the permutation.

• Permutation values i.e. an integer value identifying which row(s), column(s), or
data bit(s) are included in the permutation.

For example, a permutation is created with a permutation size of 4, and containing
permutation values of 0, 2, 4, 6. This could be used to define a permutation of 4 rows, or
4 columns, or 4 data bits. If the permutation represented rows it would order 4 rows as R0,
R2, R4, and R6, in that order. If the permutation represented data bits it would order 4 data
bits as D0, D2, D4, and D6, in that order.

Each permutation is created by declaring a variable of type permutation, a Nextest-
defined data type. In some applications, to simplify the creation of bitmap segments, it is
common to declare arrays of permutation. This can be seen in Example 2:.

Each of the functions which create or modify a permutation have a permutation return value.
This supports nesting or cascading these functions. For example, the following two
statements can be replaced by a single statement as shown;
 2/27/09 Pg-1930

BitmapTool
permutation p = make_permutation(8);

permutation n = reverse (p);

Both p and n permutations exist and are each available to define a bitmap segment.

permutation n = reverse (make_permutation(8));

This example creates the same permutation n as the above, however, permutation p is not
created and thus not available for use to specify a bitmap segment.

The following style is also legal:

permutation p = make_permutation(8);

p = reverse (p);

Which results in the single permutation p.

The number and variety of functions provided which create or modify a permutation is
related to software efficiency. The example on page 1916 is quite simple, and can be
described quite easily (see Example 2:). However, when describing the physical topology for
large devices, often the number of bitmap segments can be quite large, with a
correspondingly large number of row, column and data permutations. With some creativity,
the functions noted below can be combined to simplify creating these permutations. See
Examples.

The functions, macros, and key data structures related to the permutation data type are:

make_permutation()

append()

dump()

filter()

for_each()

get()

insert()

reverse()

rotate()

set()

size()

swap()
 2/27/09 Pg-1931

BitmapTool
6.3.10.11 Permutation Memory Management
See Bitmap Schemes.

Only make_permutation() actually allocates memory for permutation use. The other
functions which return a permutation are returning the original permutation. Some functions
can modify the size of an existing permutation, which requires the use of dynamic memory
management methods, to allocate and free memory as needed. To keep this transparent to
the user, the underlying code has a simple paradigm:

• The make_permutation() function allocates memory.
• For any permutations added to a segment all additional memory management is

handled by system software.
This has two important side effects:

• Any permutations used to define a bitmap segment are destroyed after
register_bitmap_scheme() returns, and thus do not exist to create additional
schemes.

• Any permutation which is created but otherwise not used to define a bitmap
segment will not have its associated memory freed.

6.3.10.12 make_permutation()
See Bitmap Schemes.

Description
The make_permutation() function has 5 overloads, any of which can be used to create a
row, column or data permutation to be used when describing a bitmap segment.

Usage
permutation make_permutation(int size,

int start DEFAULT_VALUE(0),
int inc DEFAULT_VALUE(1));

permutation make_permutation(int *data, int count);

permutation make_permutation(CArray< int, int > &array);

permutation make_permutation(permutation p);
 2/27/09 Pg-1932

BitmapTool
permutation make_permutation(permutation p, int start, int end);

where:

size specifies the permutation size. This represents the number of rows or columns or data
bits in the permutation being created. When no additional arguments are specified, the first
permutation value is 0, and the value is incremented by 1.

In the 1st function above, start is optional, and defaults to 0. If used, start specifies the
first permutation value.

inc is optional, and defaults to 1. If used, inc specifies how permutation values are
incremented. When using this argument also requires using the optional start argument.

*data is a user-defined array of integers to be used as explicit permutation values for the
permutation being created. count is the permutation size, and specifies the number of
values in the array which are used. The array is accessed starting with the first element.

&array allows the use of an MFC CArray to store an array of integers to be used as
explicit permutation values for the permutation being created. The number of permutation
values is derived from the size of the CArray.

p identifies another permutation, which will be copied into the new permutation being
created. This supports copy/modify methods to leverage an existing permutation.

In the last function above, start and end specify the first and last permutation values to be
copied from the permutation specified by p. The new permutation is sized to match the
number of values copied.

Note: the make_permutation() function allocates memory for storing the
permutation being created. See Permutation Memory Management.

Examples

Example 1:
// First function overload with no optional arguments
permutation p = make_permutation(16); // p = { 0, 1, 2, …, 15 }

// First function overload using the optional start argument
permutation p = make_permutation(16, 1); // p = { 1, 2, 3, …, 16 }

// First overload using both optional arguments
permutation p = make_permutation(16, 1, 2); // p = { 1,3,5,…,31 }
 2/27/09 Pg-1933

BitmapTool
// Specify an explicit list of permutation values using an array
// but only use 4 of 5 values from the array.
static int data[] = { 1, 2, 4, 8, 16 };
permutation p = make_permutation(*data, 4); // p = { 1, 2, 4, 8 }

// Copy permutation p to create new permutation c
permutation c = make_permutation(p); // c = { 0, 1, 2, …, 15 }

// Copy part of permutation p to create new permutation d
permutation d = make_permutation(p, 2, 3); // c = { 2, 3 }

// Specify an explicit list of permutation values using an MFC
// CArray. Note there are many other ways to size/init a CArray.
CArray < int, int > a; // Create the array object
a.SetSize(16); // Set the size of the array
for(int i = 0; i < a.GetSize(); ++i) // Put 0..15 in the array

a[i] = i;
permutation p = make_permutation(a) // p = { 0, 1, 2, …, 15 }

Example 2:
This code describes the physical topology for the example device model shown on
page 1916.

permutation rowperm[2];// Two row permutations

// For segments (0,0) (0,1) = row order {0,1,2,3,7,6,5,4}
rowperm[0] = reverse(make_permutation(8), 4, 7);

// For segments (1,0) (1,1) = row order {4,5,6,7,3,2,1,0}
rowperm[1] = reverse(reverse(make_permutation(8)), 0, 3);

permutation colperm[2][2];// Four column permutations

// For segmentS (0,0) = column order {0,1,2,4}
colperm[0][0] = set(make_permutation(4), 3, 4);

// For segment (0,1) = column order {3,5,6,7}
colperm[0][1] = set(make_permutation(4,4), 0, 3);

// For segment (1,0) = column order {7,6,5,4}
colperm[1][0] = reverse(make_ permutation(4,4));

// For segment (1,1) = column order {3,2,1,0}
colperm[1][1] = reverse(make_ permutation(4));

permutation dataperm[2][2];// Four data permutation

// For segment (0,0) = data order {0,2}
dataperm[0][0] = make_permutation(2, 0, 2);
 2/27/09 Pg-1934

BitmapTool
// For segment (0,1) = data order {2,0}
dataperm[0][1] = make_permutation(2, 2, -2);

// For segment (1,0) = data order {3,1}
dataperm[1][0] = make_permutation(2, 3, -2);

// For segment (1,1) = data order {1,3}
dataperm[1][1] = make_permutation(2, 1, 2);

#define COLDATA TRUE // Data associated with columns

bitmap_scheme scheme = make_bitmap_scheme(COLDATA);

// Add 4 segments to the scheme using nested loops

for (int horiz_seg_pos=0; horiz_seg_pos < 2; ++ horiz_seg_pos)
for (int vert_seg_pos=0; vert_seg_pos < 2; ++ vert_seg_pos)

add_segment(scheme, horiz_seg_pos, vert_seg_pos,
rowperm[horiz_seg_pos],
colperm[horiz_seg_pos][vert_seg_pos],
dataperm[horiz_seg_pos][vert_seg_pos]);

dump(scheme); // For review and debugging

// Name and register the scheme with UI to enable use in BitmapTool
register_bitmap_scheme("Physical Map", scheme);
 2/27/09 Pg-1935

BitmapTool
Example 3:
The example below is identical to that on page 1916 except that the data changes in the row
direction

The software used to create a bitmap scheme for this device is identical except for one
statement:

// Data is associated with rows
bitmap_scheme scheme = make_bitmap_scheme(FALSE);

6.3.10.13 reverse()
See Bitmap Schemes.

D0

Columns

Rows

D2

C0 C1 C2 C4

R0

R1

R2

R3

R7

R6

R5

R4

D2

Columns

Rows

C3 C5 C6 C7

R0

R1

R2

R3

R7

R6

R5

R4

D0

Segment
(0,0)

Segment
(0,1)

D3

Columns

Rows

R0

R1

R2

R3

R7

R6

R5

R4

D1

C7 C6 C5 C4

D1

Columns

Rows

R0

R1

R2

R3

R7

R6

R5

R4

C3 C2 C1 C0

D3

Segment
(1,1)

Segment
(1,0)

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D2

D0

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3

D1

D3
 2/27/09 Pg-1936

BitmapTool
Description
The reverse() function modifies an existing permutation by reversing the order of
permutation values.

Two overloads exist:

• Reverse the values in the complete permutation.
• Reverse a range of values in the permutation.

Usage
permutation reverse(permutation p);

permutation reverse(permutation p, int start, int end);

where:

p identifies the permutation being modified.

start and end specify a range of value positions (inclusive) to be reversed.

This function returns the modified permutation, which is convenient when cascading
(nesting) the various permutation functions to obtain complex results in terse software
statements.

Examples

Example 1:
To reverse the order of an entire permutation:

permutation p = make_permutation(8);// p = { 0, 1, 2, …, 7 }

p = reverse(p); // p = { 7, 6, 5, …, 0 }

The two statements above can be combined:

permutation p = reverse(make_permutation(8));

Example 2:
To reverse a range of values in the permutation:

permutation p = make_permutation(8);// p = { 0, 1, 2, …, 7 }

p = reverse(p, 0, 2); // p = {{ 2, 1, 0, …, 7 }

The statements above can be combined:

permutation p = reverse(make_permutation(8), 0, 2);
 2/27/09 Pg-1937

BitmapTool
6.3.10.14 rotate()
See Bitmap Schemes.

Description
The rotate() function modifies an existing permutation by rotating the order of
permutation values. Both right-rotation and left-rotation is possible.

Usage
permutation rotate(permutation p, int amount);

where:

p identifies the permutation being modified.

amount specifies how much rotation is performed. A negative value causes left-rotation.

This function returns a permutation, which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.

Examples

Example 1:
To rotate the values in a permutation right by 2 positions:

permutation p = make_permutation(8);// p = { 0, 1, 2, …, 7 }

p = rotate(p, 2); // p = { 6, 7, 0, 1, …, 5}

The statements above can be combined:

p = rotate(make_permutation(8), 2);

Example 2:
To rotate the values in a permutation left by 2 positions:

permutation p = make_permutation(8);// p = { 0, 1, 2, …, 7 }

p = rotate(p, -2); // p = { 2, 3, 4, …, 0, 1}

The statements above can be combined:

permutation p = rotate(make_permutation(8), -2);
 2/27/09 Pg-1938

BitmapTool
6.3.10.15 swap()
See Bitmap Schemes.

Description
The swap() function modifies an existing permutation by swapping a range of permutation
values

Usage
permutation swap(permutation p, int start1,

int end1, int start2, int end2);

where:

p identifies the permutation being modified.

start1 and end1 specify a range of permutation values to be swapped with the range of
values specified by start2 and end2.

This function returns a permutation , which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.

Example
permutation p = make_permutation(16);

p = swap(p , 1, 6, 9, 14);

The statements above result in the following permutations:

6.3.10.16 append()
See Bitmap Schemes.

Original Permutation p:

Specified swap() ranges:

Resulting Permutation p:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1 2 3 4 5 67 89 10 11 12 13 14 15 16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
 2/27/09 Pg-1939

BitmapTool
Description
The append() function modifies an existing permutation by inserting one permutation into
to another permutation. The function prototype is used to describe its operation:

permutation append(permutation p, int index, permutation more);

• The more permutation is inserted into the p permutation at the index position
+1.

• Any previous values in the p permutation at index +1 or beyond are moved to
positions after the inserted elements. No holes are created. No values are lost.

• If the value of index is < 0 it is set = 0.
• If the value of index is beyond the original end of permutation p, empty values

(0?) are inserted into permutation to fill the gap.
• The modified permutation p is returned by the append() function.

Note: the insert() function operates identically except that the insertion is made at
the index value, not at index +1.

Usage
permutation append(permutation p, int index, permutation more);

where:

p identifies the permutation being modified.

index identifies the location in the permutation copy after which the permutation identified
by more will be inserted. The index number of the first value in a permutation is 0.

This function returns a permutation, which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.

Note: the append() function may allocate memory for storing the permutation being
created. See Permutation Memory Management.

Example
The permutation n is appended to permutation p:

permutation p = make_permutation(8); // p = {0, 1, 2, …, 7}

permutation n = make_permutation(2, 9);// n = {9, 10}
 2/27/09 Pg-1940

BitmapTool
p = append(p, 7, n); // p = {0, …, 7, 9, 10}

6.3.10.17 insert()
See Bitmap Schemes.

Description
The insert() function modifies an existing permutation by effectively inserting one
permutation into to another permutation. The function prototype is used to describe its
operation:

permutation insert(permutation p, int index, permutation more);

• The more permutation is inserted into the p permutation at the index position.
• Any previous values in the p permutation at index or beyond are moved to

positions after the inserted elements. No holes are created. No values are lost.
• If the value of index is < 0 it is set = 0.
• If the value of index is beyond the original end of permutation p, empty values

(0?) are inserted into permutation to fill the gap.
• The modified p permutation is returned by the append() function.

Note: the append() function operates identically except that the insertion is made at
the index value +1.

Usage
permutation insert(permutation p, int index, permutation more);

where:

p identifies the permutation being modified.

index identifies the location in permutation p at which the permutation identified by more
will be inserted. The index number of the first value in a permutation is 0.

This function returns a permutation, which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.
 2/27/09 Pg-1941

BitmapTool
Note: the insert() function may allocate memory for storing the permutation being
created. See Permutation Memory Management.

Example
To insert a permutation before the specified index of a permutation:

permutation p = make_permutation(8); // p = {0, 1, 2, …, 7}

permutation n = make_permutation(2, 9); // n = {9, 10}

p = insert(p, 2, n); // p = { 0, 1, 9, 10, 3, …, 7}

6.3.10.18 set()
See Bitmap Schemes.

Description
The set() function modifies an existing permutation by changing the value at the specified
index position to a specified value. The function prototype is used to describe its operation

permutation set(permutation p, int index, int value);

• The previous value at the index position in permutation p is replaced with
value.

• If the value of index is < 0 it is set = 0.
• If the value of index is beyond the original end of permutation p, empty values

(0?) are inserted into permutation to fill the gap.
• The modified p permutation is returned by the append() function.

Usage
permutation set(permutation p, int index, int value);

where:

p identifies the permutation being modified.

index identifies which position is to be modified. The index number of the first value in a
permutation is 0.

value is the new value.
 2/27/09 Pg-1942

BitmapTool
This function returns a permutation, which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.

Example
In this example, the value in permutation p is modified at position 2 from 2 to 9:

permutation p = make_permutation(8); // p = {0, 1, 2, …, 7)

p = set(p, 2, 9); // p = {0, 1, 9, …, 7)

The statements above can be combined:

permutation p = set(make_permutation(8), 2, 9);

6.3.10.19 for_each()
See Bitmap Schemes.

Description
The for_each() function modifies an existing permutation by calling a user-written
callback function once for each value in the permutation. Each execution passes an index
into the user callback function to indicate which value is currently being processed.

Note: the for_each() function is similar to filter(). The for_each() callback
function returns void, and any manipulations of the permutation only occur from
within the callback code. The filter() callback function returns BOOL, and in
addition to any manipulations done in the callback code, if the callback returns
FALSE the filter() function removes the permutation value from the
permutation.

Usage
permutation for_each(permutation p,

void (*func)(permutation p,
int index));

where:

p identifies the permutation being modified.

*func is a user-written function conforming to the following function prototype:
 2/27/09 Pg-1943

BitmapTool
void f(permutation p, int index);

where:

p is the permutation copy being processed.

index is initially = 0, and is subsequently incremented by for_each() on each execution
of the callback function i.e. the index value increments from the first value to the last value.
This allows the user callback to process each value in the permutation as a function of its
position in the permutation.

This function returns a permutation, which is convenient when cascading (nesting) the
various permutation functions to obtain complex results in terse software statements.

Example
To apply a function to each element of a permutation:

// user-written callback function. Prototype is documented above.
void triple(permutation p, int index) {

set(p, index, get(p, index) * 3); // Any user code desired
}

permutation p = make_permutation(8); // p = { 0, 1, 2, …, 7 }

p = for_each(p, triple); // p = { 0, 3, 6, …, 21 }

6.3.10.20 filter()
See Bitmap Schemes.

Description
The filter() function processes and modifies an existing permutation by calling a user-
written callback function once for each value in the copied permutation. Each execution
passes an index into the user callback function to indicate which value is currently being
processed.

The callback function can manipulate the permutation copy as desired. In addition, the
BOOL return value may cause filter() to remove a value from the permutation copy as
follows:

• Callback returns FALSE: filter() deletes the permutation value at the index
position, and other values are shifted to fill the gap.
 2/27/09 Pg-1944

BitmapTool
• Callback returns TRUE: filter() ignores the permutation value at the index
position.

Note: the for_each() function is similar to filter(). The for_each() callback
function returns void, and any manipulations of the permutation only occur
from within the callback code. The filter() callback function returns BOOL,
and in addition to any manipulations done in the callback code, if the callback
returns FALSE the filter() function removes the permutation value from the
permutation.

Usage
permutation filter(permutation p,

BOOL (*func)(permutation p,
int index));

where:

p identifies the permutation being modified.

*func is a user-written function conforming to the following function prototype:

BOOL f(permutation p, int index);

where:

p is the permutation copy being processed.

index is initially = 0, and is subsequently incremented by filter() on each execution of
the callback function i.e. the index value increments from the first value to the last value.
This allows the user callback to process each value in the permutation copy as a function of
its position in the permutation.

The BOOL return value from the callback function directs the filter() function to delete
(FALSE) or ignore (TRUE) the permutation value referenced by the current index value.

The filter() function returns a permutation (the copy), which is convenient when
cascading (nesting) the various permutation functions to obtain complex results in terse
software statements.

Example
The code below will remove even values from the permutation:
 2/27/09 Pg-1945

BitmapTool
// user-written callback function. Prototype is documented above.
BOOL IsOdd(permutation p, int index) {

return get(p, index) % 2; // Return FALSE if value is even
}

permutation p = make_permutation(8);// p = { 0, 1, 2, …, 7 }

permutation p = filter(p, IsOdd); // p = { 1, 3, 5, 7 }

6.3.10.21 get()
See Bitmap Schemes.

Description
The get() function returns the permutation value from the specified permutation at the
specified index position.

Usage
int get(permutation p, int index);

where:

p identifies the permutation of interest.

index specifies which position in the permutation is being read. The index number of the
first value in a permutation is 0.

Example
permutation p = make_permutation(8, 5);// p = { 5, 6, 7, …, 12 }

int v = get(p, 2); // v = 7

6.3.10.22 size()
See Bitmap Schemes.

Description
The size() function returns the count of values in the specified permutation.
 2/27/09 Pg-1946

BitmapTool
Usage
int size(permutation p);

where:

p identifies the permutation of interest.

Example
permutation p = make_permutation(8);

int s = size(p); // s = 8

6.3.10.23 bitmap_scheme_translate()
See Bitmap Schemes.

Description
The bitmap_scheme_translate() function can be used to translate one or more bitmap
rectangles defined in the terms of ECR-space (typically a logical view of the DUT) to
equivalent rectangles after being processed by a specified Bitmap Schemes.

Note: bitmap_scheme_translate() does not return useful values if either
rectangle axis is zero-size. This is because it is in effect not selecting one or
more BitmapTool atoms to be translated.

Usage
int bitmap_scheme_translate(CString scheme,

RECT ecr_rect,
__int64 mask,
RectArray *screen_rects);

int bitmap_scheme_translate(CString scheme,
RectArray &ecr_rects,
__int64 mask,
RectArray *screen_rects);

where:
 2/27/09 Pg-1947

BitmapTool
scheme is the name of an existing Bitmap Schemes used to make the translation. If a NULL
string is specified the currently selected Bitmap scheme is used.

ecr_rect specifies one rectangle, using ECR-space values, which identifies which rows/
columns are to be included in the translation. Note that data is not included in this rectangle.

ecr_rects specifies multiple rectangles, each using ECR-space values, which identifies
which rows/columns are to be included in the translation. Again, data is not included in this
rectangle.

mask is a bit mask used to identify which data bits are to be included in the translation. The
mask specification must be consistent with the specified scheme to obtain useful results.

screen_rects is a pointer to an existing RectArray variable used to return one or more
rectangles resulting from the translation. This is suitable as an argument to
bitmap_overlay_add(), used to create Bitmap Overlays.

bitmap_scheme_translate() returns the number of rectangles being returned in
screen_rects. Any error returns -1.

Example
See Using Overlays to Locate Information in BitmapTool and the code below.

This example implements a click-to-highlight feature:

// Placing the code below in the test program enables the
// the following: when left-mouse is clicked in the BitmapTool zoom
// display, record screen Row/Col coords (ignore data). Use
// bitmap_scheme_translate() with mask = 0xFF to create rectangles
// around low 8 databits of Row/Col. Create a Bitmap overlay using
// those rectangles and display in BitmapTool.

TRANSLATE_BITMAP_INFO_7(row, col, databit,
clicked, message,
bitmap_row, bitmap_col) {

if (! clicked) return;
RectArray screen;
bitmap_scheme_translate("",

CRect(col, row, col + 1, row + 1), 0xff, &screen);
bitmap_overlay_add("8 Data", screen, PS_SOLID, TRUE,

RGB(0,255,0));
}

 2/27/09 Pg-1948

BitmapTool
6.3.10.24 bitmap_scheme_lookup()
See Bitmap Schemes.

Description
Given the screen-space coordinates (logical view) of a databit in BitmapTool the
bitmap_scheme_overlay() function can be used to return the corresponding (physical)
row, column, and databit after the specified Bitmap scheme is considered.

Usage
BOOL bitmap_scheme_lookup(CString scheme,

DWORD screen_row,
DWORD screen_col,
DWORD *row,
DWORD *col,
DWORD *io);

where:

scheme is the name of the Bitmap scheme of interest. If a NULL string is passed the
currently selected Bitmap scheme is used.

screen_row and screen_col specify the screen-space row/column coordinates to be
looked-up. Screen coordinates begin at 0/0 in the upper left corner of the BitmapTool
display.

row, col, and io are the addresses of existing DWORD variables used to return the physical
row, column, and databit values of the specified screen_row and screen_col, after being
processed by the specified Bitmap scheme.

If either value specified for screen_row or screen_col falls outside the physical size of
the device bitmap_scheme_lookup() returns FALSE, otherwise TRUE is returned.

Example
See the BMT_print_ECR_space() function in the example for
bitmap_overlay_add().
 2/27/09 Pg-1949

BitmapTool
6.3.11 Bitmap Overlays
This section includes the following:

• Overview
• Creating Bitmap Overlays
• Bitmap Overlay Colors
• Bitmap Overlay Penstyles
• Using Overlays to Locate Information in BitmapTool
• Bitmap Overlay Example Device
• bitmap_overlay_names()
• bitmap_overlay_add()
• bitmap_overlay_delete()
• bitmap_overlay_lookup()
• bitmap_overlay_setup()
• bitmap_overlay_enable()
• bitmap_overlay_draw()
• bitmap_scheme_translate()
• bitmap_scheme_lookup()

6.3.11.1 Overview
See Bitmap Overlays.

A Bitmap overlay is a user-defined graphic rectangle drawn in the BitmapTool display. Each
time the BitmapTool display is updated, all defined Bitmap overlays are drawn, in the order
created, after the initial BitmapTool display is painted and after failures are displayed.

Bitmap overlays have the following applications:

• Outline device physical attributes: memory segmentation, boot blocks, etc.
• Indicate areas of the BitmapTool display which don’t represent valid memory

addresses or otherwise need to be highlighted.
 2/27/09 Pg-1950

BitmapTool
• Visibly indicate the location of specific row(s), and/or column(s), and/or data bit(s).
This can be useful when complex Bitmap Schemes are used and the screen
location of a specific row/column/data value is difficult to locate. See Using Overlays
to Locate Information in BitmapTool.

Below is an example BitmapTool image showing 16 overlays generated by the code
included in Example:

Figure-72: Example BitmapTool Display with Overlays
Note the following:

• Each overlay uses a different color.
• They all use a solid pen style (line type)
• One overlay (grey) is filled, the rest are not filled.
• The right screen is zoomed-in to enlarge a portion of the left display. Several

failures are seen in the zoom window, displayed in red (default failure color).
• The optional BitmapTool rulers are displayed. See above

6.3.11.2 Creating Bitmap Overlays
See Bitmap Overlays.
 2/27/09 Pg-1951

BitmapTool
Each Bitmap overlay is created using bitmap_overlay_add() to define one rectangle.
Any number of Bitmap overlays can be defined, each with the following user specified
attributes, specified as arguments to bitmap_overlay_add():

• Overlay name, used to subsequently control or modify the overlay
• Rectangle size, which can also be a line or single point. More below.
• Filled or not filled (hollow). See bitmap_overlay_add()
• Color, specified as RGB values. See Bitmap Overlay Colors.
• Pen style (line type): SOLID, DASH, DOT, DASHDOT, DASHDOTDOT. See

Bitmap Overlay Penstyles
• Enabled or disabled state i.e. visible or invisible. See bitmap_overlay_enable()

An overlay rectangle’s size and location is specified using 4 position values corresponding to
the left, top, right, and bottom sides of the rectangle. These are specified using screen-
space values i.e. values which do not consider how the DUT row, column, and databit
information is displayed in BitmapTool.

A rectangle specified with one zero-width axis creates a line. A rectangle specified with both
axis as zero-width creates a point.

From the user viewpoint, the basic unit of display in BitmapTool is one databit, positioned at
one row/column location. Depending on the current BitmapTool zoom factor BitmapTool
draws each databit using one or many pixels. Changing the zoom factor only changes the
number of pixels used to draw each databit.

Bitmap overlays are always drawn using single pixels, regardless of the current BitmapTool
zoom factor. The following images show an exaggerated view of one databit and how each
variation of overlay is drawn:

Figure-73: BitmapTool Atom vs. Overlay Rectangle Size
Bitmap overlay rectangles, and lines are not constrained to single databits, but if so
specified would appear as above if BitmapTool could zoom-in to the extent shown.

Rectangle top and left values position the upper left corner of the overlay rectangle in the
BitmapTool screen, relative to the upper left corner (0/0) of the display. Rectangle right and

right = left

Overlay pixels = black

Point

bottom = top

Line

right = left + 1

Rect.

right = left + 1 bottom = top + 1bottom = top
right = left

Line

bottom = top +1
right = left + 1

Filled Rect.

bottom = top + 1

Not Filled
 2/27/09 Pg-1952

BitmapTool
bottom values determine the size of the rectangle relative to the left and top values
respectively. When specifying right and bottom values two considerations exist:

• Rectangles have width, as noted above.
• Normally, one axis of the rectangle must be sized to account for displaying bitmap

data.
Regarding the latter, BitmapTool typically displays information for multiple databits for each
device row/column in the display. The currently selected Bitmap Schemes determines both
how data is displayed, either associated with rows (data displayed vertically) or with columns
(data displayed horizontally), and whether data is displayed fast or not (see Built-in Bitmap
Schemes for examples clarifying these issues). Based on whether data is associated with
rows or columns, and regardless of whether data is fast or not, an overlay rectangle must be
sized to accommodate data in the appropriate axis. The diagram below shows both cases
(both assuming data fast for simplicity). If the goal is to draw an overlay rectangle around all
databits at one row/column address the required rectangle size will differ depending on
whether data is associated with rows or columns:

6.3.11.3 Bitmap Overlay Colors
See Bitmap Overlays.

Note: this information only applies when the default Windows color pallet is in effect.
Nextest can not support customized color pallets.

8 data associated with Columns

One Column

One Row

8 data associated with Rows

One Column

One Row

Overlay Rectangle
right = left + 8

top = bottom + 1

Overlay Rectangle
bottom = top + 8
right = left + 1

with data fast

with data fast
 2/27/09 Pg-1953

BitmapTool
Bitmap overlay rectangles, lines, and points are drawn using a user-defined color, specified
as 3 argument values (RGB) to the bitmap_overlay_add() function.

Overlays are drawn after the BitmapTool display is painted and after failures are added.
Overlay lines are drawn by XOR’ing the specified line color with the existing color at any
given point. This raises several issues:

• Overlay lines (points, etc.) occupy the same space as the pass/fail information
normally displayed by BitmapTool. In particular, it is possible (likely) that a failure
and an overlay line will partially or completely overlay the same screen space.

• When a failure and an overlay line do overlay the same screen space the XOR of
the two colors will result in a third color, EXCEPT when the overlay color is the
same as that used to display failures (normally red), in which case they cancel
(the resulting color is black). This suggest that it is not wise to use the color red as
an overlay color.

• Similarly, when portions of two overlays occupy the same space the resulting color
will be different than that specified for the individual overlays (see Note on
page 1955).

The following image is greatly (and artificially) enlarged, to show how colors will interact in
common overlay scenarios:

Figure-74: Bitmap Overlay Color XOR Example
Note the following:

Overlay = YellowOverlay = Magenta
Overlay = GreyOverlay = Cyan

XOR red + yellow
= green

XOR red + grey
= darker grey

XOR red + cyan
= white

XOR red +
magneta = blue
 2/27/09 Pg-1954

BitmapTool
• The colored lines entering the image at top-center, bottom-center, left-center, and
right-center are portions of 4 separate Bitmap overlays, drawn with the colors
specified by the overlay definitions (magenta, yellow, cyan, grey).

• The 4 red squares represent 4 discrete failing databits. Due to the extreme
enlargement, each failing databit is drawn using many pixels. Overlay lines are
always drawn using single pixels, which are exaggerated in this image.

• Note that portions of each failing bit occupy the same screen space as portions of
the overlay lines. The resulting colors are the XOR of red (default failing bit color)
and the overlay color.

• This type of interaction will also occur when overlays collide.

Note: the previous bullet is important. When overlays collide the only indication is that
the expected colors do not appear. Conversely, when defining overlays, when
the expected colors do not appear, it is likely the overlays are colliding.

The bitmap_overlay_draw() function can be used to cause a specified Bitmap overlay
to flash. When an overlay is XOR’ed with itself the result is black, thus repeatedly executing
bitmap_overlay_draw() of the same overlay will cause it to flash. See Example.

6.3.11.4 Bitmap Overlay Penstyles
See Bitmap Overlays.

Bitmap overlay rectangles, and lines are drawn with user specified pen style (line type),
specified as an argument to the bitmap_overlay_add() function. The following options
are available:

PS_SOLID a solid line

PS_DASH -------

PS_DOT

PS_DASHDOT _._._._

PS_DASHDOTDOT _.._.._
 2/27/09 Pg-1955

BitmapTool
6.3.11.5 Using Overlays to Locate Information in BitmapTool
For applications where overlay(s) are used to highlight a device’s physical layout
(segmentation, etc.) the rectangle values are easily specified using screen-space values.
However, another useful application of Bitmap overlays is to visually highlight specific row,
column, and data bits when the BitmapTool display has been mapped using [complex]
Bitmap Schemes.

A Bitmap scheme determines the mapping of data bits in the ECR to pixels on the screen.
There is always a Bitmap scheme in effect. By default it is one of the Built-in Bitmap
Schemes, named builtin_col_data, which associates data with columns and displays
data fast.

The most common application for user-defined Bitmap schemes is to cause BitmapTool to
display a physical view of ECR topological data i.e. display rows, columns and databits as
they are physically located in the DUT rather than as a logical view of the ECR. See Logical
vs. Physical, vs. Electrical Addresses. In these situations, it is common for rows and/or
columns and/or databits to be displayed such that ordering in the display is not linear i.e. the
screen position of a given row/column/databit in the BitmapTool display is sometimes not
easy to locate. Often, all databits of a given row/column address may not be displayed
contiguously or adjacently, even when data is displayed fast. In these situations, a Bitmap
overlay can be used to highlight the screen position(s) of the desired information in the
BitmapTool display (see example This example implements a click-to-highlight feature:).

Note: Bitmap schemes can be used for applications other than converting a logical
view into a physical view. However, to aid comprehension of these concepts,
this terminology is used consistently in this section.
 2/27/09 Pg-1956

BitmapTool
To use this technique, the bitmap_scheme_translate() function is used to translate
rectangle(s) specified in ECR-space to rectangles defined in screen-space. For example:

Figure-75: Overlay using bitmap_scheme_translate()
Referring to the images above, note the following:

• The ECR is a 3 dimensional array of row, column and pin (databit) information. To
keep things manageable this example shows only 4 columns (C0..C3), four rows
(R0..R3), and 4 databits (D0..D3).

• The ECR view highlights 2 databits in ECR-space. To select which information is
processed by bitmap_scheme_translate()a rectangle is defined which
encompasses the desired rows and columns in ECR-space. Note that in databits
are selected using a bit mask argument to bitmap_scheme_translate(), thus
the rectangle used to select the 2 databits noted above will have a width of 1,
selecting column-3, and a height of 1, selecting row-1. The data mask = 0x6 to
select databit-1 and databit-2.

• The currently selected Bitmap Schemes used for this example has data associated
with columns, and data displayed fast, plus the row, column, and databit ordering
seen in the lower BitmapTool image.

Rectangle(s) after being
translated using

bitmap_scheme_translate()

R0
R1
R2
R3

C0 C1 C2 C3

ECR

D3
D2

D1
D0

2 ECR databits specified
(logical view)

R1, C3, D1
R1, C3, D2

left = 3 (Col-3)
top = 1 (Row-1)

right = 4 (Width=1)
bottom = 2 (Height=1)
mask = 0x6 (D1 & D2)

Rectangle Inputs

D2 D0 D1 D3
D2 D0 D1 D3
D2 D0 D1 D3

D0 D3

R2
R3
R0
R1

C2

D1D2

D2 D0 D1 D3
D2 D0 D1 D3
D2 D0 D1 D3

D0 D3

C0

D1D2

D2 D0 D1 D3
D2 D0 D1 D3
D2 D0 D1 D3

D0 D3

C3

D1D2

D2 D0 D1 D3
D2 D0 D1 D3
D2 D0 D1 D3

D0 D3

C1

D1D2

BitmapTool
physical view

bitmap_scheme_translate("", CRect(left, right, bottom, right), 0x6,...);
 2/27/09 Pg-1957

BitmapTool
Note: bitmap_scheme_translate() does not return useful values if either input
rectangle axis is zero-size. This is because the rectangle is, in effect, not
selecting one or more databits to be translated.

Given the screen-space coordinates (logical view) of a databit in BitmapTool the
bitmap_scheme_lookup() function can be used to return the corresponding (physical)
row, column, and databit after the current Bitmap scheme is considered.

6.3.11.6 Bitmap Overlay Example Device
See Bitmap Overlays.

The following device architecture is used in this section to demonstrate various Bitmap
overlay features. The code for both the Bitmap scheme used to set up this segmentation
and set up these overlays is included in the Example for bitmap_overlay_add():

Figure-76: Bitmap Overlay Example Device Scheme
Note the following:

180, 180, 180

180, 180, 180

180, 180, 180

180, 180, 180

D0..D7

Screen CoordsR0

R63

0 512 512 1024 1024 1536 1536 2048

D7..D0 D7..D0

D7..D0 D7..D0

D7..D0 D7..D0

D7..D0D7..D0

D0..D7

D0..D7 D0..D7

D0..D7D0..D7

D0..D7 D0..D7

64
64

128
128

192
192

256

DUT Rows
Screen Coords

Data order
in segment

0, 255, 0 0, 0, 255 255, 0, 255 255, 255, 0

255, 255, 0 0, 255, 255

0, 0, 255 255, 0, 255 255, 255, 00, 255, 0

255, 0, 255 0, 255, 255

Color Value

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

Details of one segment

Each Column
Each

showing all data within
segment (3,3)

C0 C63 C127 C127 C128 C191 C192 C255 DUT Columns

R64

R127
R128

R191
R192

R255

Row
 2/27/09 Pg-1958

BitmapTool
• This model represents both the device physical segmentation and the desired
BitmapTool display.

• This example device has 16 segments. Each segment will be outlined using a
Bitmap overlay, using the color values shown.

• In the example Bitmap scheme, data is associated with columns, and for
bitmapping purposes data will be fast. The ordering of data in each segment is the
reverse of the adjacent segments. This data ordering does not impact how Bitmap
overlays are defined but would affect how rectangles are drawn if
bitmap_scheme_translate() were used. See Using Overlays to Locate
Information in BitmapTool.

• The Screen Coords values shown above are those used to specify the overlay
rectangles, for each segment’s overlay. Note that right and bottom values of each
overlay are always +1, thus the right value of one overlay may also appear as the
left value of the next. Similarly, the bottom value of one overlay may also appear as
the top value of the next.

6.3.11.7 bitmap_overlay_names()
See Bitmap Overlays.

Description
The bitmap_overlay_names() function can be used to obtain a list of all Bitmap
Overlays currently defined in the test program.

Usage
void bitmap_overlay_names(CStringArray *names);

where:

*names is a pointer to an existing CStringArray used to return the names. This array will
be zero-size if the test program does not define any Bitmap overlays.

Example
CStringArray names;
bitmap_overlay_names(&names);

for (int i = 0; i < names.GetSize(); ++i)
output("%s", names[i]);
 2/27/09 Pg-1959

BitmapTool
6.3.11.8 bitmap_overlay_add()
See Bitmap Overlays.

Description
The bitmap_overlay_add() function is used to create Bitmap Overlays.

Most of the important information about using bitmap_overlay_add() is covered in
Creating Bitmap Overlays, Bitmap Overlay Colors, and Bitmap Overlay Penstyles.

Usage
Two versions (overloads) of bitmap_overlay_add are available. The first is used to
create a single rectangle, the second multiple rectangles all of which share the same name
and attributes.

void bitmap_overlay_add(LPCTSTR name,
RECT rect,
int penStyle,
BOOL filled,
COLORREF color,
BOOL enabled DEFAULT_VALUE(TRUE));

void bitmap_overlay_add(LPCTSTR name,
RectArray &rects,
int penStyle,
BOOL filled,
COLORREF color,
BOOL enabled DEFAULT_VALUE(TRUE));

where:

name specifies the name of the overlay being created.

rect is a (Microsoft) RECT structure containing left, top, right, bottom elements of type
LONG. rects is an array of RECT structures used to define multiple rectangles to be created
using the same name and attributes. Single overlays are easily defined by initializing the
rect argument using the Microsoft CRect() function as in:

RECT r = CRect (0, 0, 1, 1);
 2/27/09 Pg-1960

BitmapTool
The multiple rectangle version of bitmap_overlay_add() was added to support
bitmap_scheme_translate(). See Using Overlays to Locate Information in BitmapTool.
Also see the usage examples in Bitmap Overlay Code:

penStyle is one of the following manifest values:

PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT

See Bitmap Overlay Penstyles.

color is a DWORD value which is best initialized using the RGB() macro, which takes three
arguments, each in the range of 0-255, to define the red (R), green (G), and blue (B) values
used to draw the overlay line(s). RGB(255,255,255) results in white, RGB(0,0,0) results
in black.

enabled controls whether the overlay is initially enabled (TRUE) or disabled (FALSE). When
disabled the overlay is not displayed.

Example
This example is rather large, and was included because (a) this is an advanced topic for
experiences users and (b) simple examples are easy to create and experiment with. This
example includes the following:

• Bitmap Scheme Code representing the Bitmap Overlay Example Device.
• Bitmap Overlay Code which results in the overlays seen in Example BitmapTool

Display with Overlays.
• Example Output using Screen-space Coordinates
• Example Output using Screen-space Coordinates

The resulting BitmapTool image is shown in Example BitmapTool Display with Overlays.

Bitmap Scheme Code
This code defines the 16 segments with the row, column, and data permutations shown in
the Bitmap Overlay Example Device. It is included here to aid in understanding the
relationship between bitmap scheme and bitmap overlays. This example code uses the
following functions: make_bitmap_scheme(), add_segment(),
make_permutation(), reverse(), register_bitmap_scheme()

void BMT_set_scheme() {
 2/27/09 Pg-1961

BitmapTool
bitmap_scheme scheme = make_bitmap_scheme(TRUE, TRUE);

add_segment(scheme, 0, 0,
make_permutation(64, 0, 1), // Rows: 0..63
make_permutation(64, 0, 1), // Cols: 0..63
make_permutation(DWID));

add_segment(scheme, 0, 1,
make_permutation(64, 0, 1), // Rows: 0..63
make_permutation(64, 127, -1), // Cols: 127..64
reverse(make_permutation(DWID)));

add_segment(scheme, 0, 2,
make_permutation(64, 0, 1), // Rows: 0..63
make_permutation(64, 128, 1), // Cols: 128..191
make_permutation(DWID));

add_segment(scheme, 0, 3,
make_permutation(64, 0, 1), // Rows: 0..63
make_permutation(64, 192, 1), // Cols: 192..255
reverse(make_permutation(DWID)));

add_segment(scheme, 1, 0,
make_permutation(64, 127, -1), // Rows: 127..64
make_permutation(64, 0, 1), // Cols: 0..63
reverse(make_permutation(DWID)));

add_segment(scheme, 1, 1,
make_permutation(64, 127, -1), // Rows: 127..64
make_permutation(64, 127, -1), // Cols: 127..64
make_permutation(DWID));

add_segment(scheme, 1, 2,
make_permutation(64, 127, -1), // Rows: 127..64
make_permutation(64, 128, 1), // Cols: 128..191
reverse(make_permutation(DWID)));

add_segment(scheme, 1, 3,
make_permutation(64, 127, -1), // Rows: 127..64
make_permutation(64, 192, 1), // Cols: 192..255
make_permutation(DWID));

add_segment(scheme, 2, 0,
make_permutation(64, 191, -1), // Rows: 191..128
make_permutation(64, 0, 1), // Cols: 0..63
make_permutation(DWID));
 2/27/09 Pg-1962

BitmapTool
add_segment(scheme, 2, 1,
make_permutation(64, 191, -1), // Rows: 191..128
make_permutation(64, 127, -1), // Cols: 127..64
reverse(make_permutation(DWID)));

add_segment(scheme, 2, 2,
make_permutation(64, 191, -1), // Rows: 191..128
make_permutation(64, 128, 1), // Cols: 128..191
make_permutation(DWID));

add_segment(scheme, 2, 3,
make_permutation(64, 191, -1), // Rows: 191..128
make_permutation(64, 192, 1), // Cols: 192..255
reverse(make_permutation(DWID)));

add_segment(scheme, 3, 0,
make_permutation(64, 192, 1), // Rows: 192..255
make_permutation(64, 0, 1), // Cols: 0..63
reverse(make_permutation(DWID)));

add_segment(scheme, 3, 1,
make_permutation(64, 192, 1), // Rows: 192..255
make_permutation(64, 127, -1), // Cols: 127..64
make_permutation(DWID));

add_segment(scheme, 3, 2,
make_permutation(64, 192, 1), // Rows: 192..255
make_permutation(64, 128, 1), // Cols: 128..191
reverse(make_permutation(DWID)));

add_segment(scheme, 3, 3,
make_permutation(64, 192, 1), // Rows: 192..255
make_permutation(64, 192, 1), // Cols: 192..255
make_permutation(DWID));

register_bitmap_scheme("SixteenSegs", scheme);
}

Bitmap Overlay Code
This code defines the 16 overlay rectangles using the attributes shown in the Bitmap
Overlay Example Device. Because the associated bitmap scheme allows it, this code can
define the 16 overlays using either screen coordinates or using ECR coordinate values. This
is controlled by the boolean argument passed to BMT_set_overlays() which affects
conditional code within BMT_set_overlays()():
 2/27/09 Pg-1963

BitmapTool
#include "tester.h"

#define DWID 8 // Width of data used in screen-space

struct BMT_olay { LPCSTR id; BOOL fill; int pen;
int R; int G; int B; };

BMT_olay BMT_olays[] = {
// ID Fill Pen R G B
// ------ ----- -------- ---- ---- ----
 {"Olay0", FALSE, PS_SOLID, 0, 255, 0 },
 {"Olay1", FALSE, PS_SOLID, 0, 0, 255 },
 {"Olay2", FALSE, PS_SOLID, 255, 0, 255 },
 {"Olay3", FALSE, PS_SOLID, 255, 255, 0 },
 {"Olay4", FALSE, PS_SOLID, 255, 255, 0 },
 {"Olay5", FALSE, PS_SOLID, 180, 180, 180 },
 {"Olay6", FALSE, PS_SOLID, 0, 255, 255 },
 {"Olay7", TRUE , PS_SOLID, 180, 180, 180 },
 {"Olay8", FALSE, PS_SOLID, 0, 255, 0 },
 {"Olay9", FALSE, PS_SOLID, 0, 0, 255 },
 {"Olay10", FALSE, PS_SOLID, 255, 0, 255 },
 {"Olay11", FALSE, PS_SOLID, 255, 255, 0 },
 {"Olay12", FALSE, PS_SOLID, 180, 180, 180 },
 {"Olay13", FALSE, PS_SOLID, 255, 0, 255 },
 {"Olay14", FALSE, PS_SOLID, 0, 255, 255 },
 {"Olay15", FALSE, PS_SOLID, 180, 180, 180 }
};

// Create overlay using passed args. Arg-2 determines if
// bitmap_scheme_translate() will process coords before overlay is
// created.
void BMT_add_olay(LPCTSTR id, BOOL ECR_space,

int left, int top, int right, int bottom,
int mask, int pen, BOOL fill,
int r, int g, int b) {

output(" %6s => %4d, %3d, %4d, %3d\\", id, left, top,
right, bottom);

RectArray screen;
int num_rects = 0;
// Translate to screen coords if O'lay set using ECR-space rect.
if (ECR_space)

num_rects = bitmap_scheme_translate("",
 2/27/09 Pg-1964

BitmapTool
CRect(left, top, right, bottom), mask, &screen);
 else screen.Add (CRect(left, top, right, bottom));

for (int i = 0; i < screen.GetSize(); ++i) {
if ((i > 10) && (i < 254)) continue;
RECT rect = screen[i];
if (i==0)

output(": [%2d] %4d, %4d, %4d, %4d",
i, rect.left, rect.top,
rect.right, rect.bottom);

else
output("%31s [%2d] %4d, %4d, %4d, %4d", ":",

i, rect.left, rect.top,
rect.right, rect.bottom);

}
bitmap_overlay_add(id, screen, pen, fill, RGB(r, g, b));

}

// Print the physical R/C/D values for the passed top/left and
// bottom/right corners of each overlay. bitmap_scheme_lookup() is
// only valid when O'lays are set up using screen coords w/o
// bitmap_scheme_translate()
void BMT_print_ECR_space(int left, int top,

int right, int bottom) {
DWORD row, col, io;
output(" L/T:R/B = %4d/%-3d : %4d/%-3d\\",

left, top, right, bottom);
BOOL ok = bitmap_scheme_lookup("", top, left, &row, &col, &io);
output(" = ECR T/L D%d/R%3d/C%-3d\\", io, row, col);
// Adjust bottom and right vals -1 to remain within valid ECR
// space
ok = bitmap_scheme_lookup("", (bottom - 1), (right - 1), &row,

&col, &io);
output(" B/R = D%d/%R%3d/C%-3d", io, row, col);

}

// Set up overlays. Arg determines if ECR rect. or screen coords are
// used. ECR rect. uses values without factoring in where the data
// goes. In BMT_add_olay(), called here, bitmap_scheme_translate()
 2/27/09 Pg-1965

BitmapTool
// is called to translates ECR rect. to the screen coords required
// by bitmap_overlay_add(), which is also executed in
// BMT_add_olay(). This code ASSUMES data with columns !!!

void BMT_set_overlays(BOOL ECR_space) {
output("\n BMT_set_overlays(%s)",

ECR_space ? "ECR" : "Screen");
output(" (LTRB) Inputs : Rectangle");
// Set new scheme in BitmapTool
remote_set("ui_CurrentBitmapScheme", "SixteenSegs", -1);
int dwidth;
if(! ECR_space) dwidth = DWID;
else dwidth = 1;
int rows_per_seg = 64;
int cols_per_seg = 64;
int num_V_segs = 4;
int num_H_segs = 4;
int i = 0; // Array index to info for each segment
int row_start = 0; int col_start = 0;
for(int segrow = 0; segrow < num_V_segs; segrow++) {

col_start = 0; // Reset @ start of each vertical segment
for(int segcol = 0; segcol < num_H_segs; segcol++) {

BMT_add_olay(BMT_olays[i].id,
ECR_space,
col_start, row_start,
(col_start + (cols_per_seg * dwidth)),
(row_start + rows_per_seg),
0xFF,
BMT_olays[i].pen,
BMT_olays[i].fill,
BMT_olays[i].R,
BMT_olays[i].G,
BMT_olays[i].B);

col_start += (cols_per_seg * dwidth);
i++;

}
row_start += rows_per_seg;

}

// If screen coords were used, call bitmap_scheme_lookup() to
// print the screen R/C/D values at the top/left and bottom/right
// corners of each overlay.
 2/27/09 Pg-1966

BitmapTool
if(! ECR_space) {
output("\n Overlays were set using Screen coords.\\");
output(" Print ECR R/C/D of T/L and B/R corners");
row_start = 0;
for(int segrow = 0; segrow < num_V_segs; segrow++) {

col_start = 0;
for(int segcol = 0; segcol < num_H_segs; segcol++) {

BMT_print_ECR_space(col_start,
row_start,

(col_start + (cols_per_seg * dwidth)),
row_start + rows_per_seg);

col_start += (cols_per_seg * dwidth);
}
row_start += rows_per_seg;

}
}

}

SITE_BEGIN_BLOCK(SB1) {
// ... other code here

BMT_set_scheme();
BMT_set_overlays(TRUE); // TRUE = use DUT coords

// ... other code here
}

Example Output using Screen-space Coordinates
This output is generated by code in both BMT_set_overlays() and BMT_add_olay()
above.

BMT_set_overlays(Screen)
 (LTRB) Inputs : Rectangle
 Olay0 => 0, 0, 512, 64: [0] 0, 0, 512, 64
 Olay1 => 512, 0, 1024, 64: [0] 512, 0, 1024, 64
 Olay2 => 1024, 0, 1536, 64: [0] 1024, 0, 1536, 64
 Olay3 => 1536, 0, 2048, 64: [0] 1536, 0, 2048, 64
 Olay4 => 0, 64, 512, 128: [0] 0, 64, 512, 128
 Olay5 => 512, 64, 1024, 128: [0] 512, 64, 1024, 128
 Olay6 => 1024, 64, 1536, 128: [0] 1024, 64, 1536, 128
 Olay7 => 1536, 64, 2048, 128: [0] 1536, 64, 2048, 128
 Olay8 => 0, 128, 512, 192: [0] 0, 128, 512, 192
 Olay9 => 512, 128, 1024, 192: [0] 512, 128, 1024, 192
 2/27/09 Pg-1967

BitmapTool
 Olay10 => 1024, 128, 1536, 192: [0] 1024, 128, 1536, 192
 Olay11 => 1536, 128, 2048, 192: [0] 1536, 128, 2048, 192
 Olay12 => 0, 192, 512, 256: [0] 0, 192, 512, 256
 Olay13 => 512, 192, 1024, 256: [0] 512, 192, 1024, 256
 Olay14 => 1024, 192, 1536, 256: [0] 1024, 192, 1536, 256
 Olay15 => 1536, 192, 2048, 256: [0] 1536, 192, 2048, 256

This output is generated primarily by code in BMT_print_DUT_coords() above.

Overlays were set using Screen coords. Print ECR R/C/D of T/L and
B/R corners
 L/T:R/B = 0/0 : 512/64 = ECR T/L D0/R 0/C0 B/R = D7/R 63/C63
 L/T:R/B = 512/0 : 1024/64 = ECR T/L D7/R 0/C127 B/R = D0/R
63/C64
 L/T:R/B = 1024/0 : 1536/64 = ECR T/L D0/R 0/C128 B/R = D7/R
63/C191
 L/T:R/B = 1536/0 : 2048/64 = ECR T/L D7/R 0/C192 B/R = D0/R
63/C255
 L/T:R/B = 0/64 : 512/128 = ECR T/L D7/R127/C0 B/R = D0/R
64/C63
 L/T:R/B = 512/64 : 1024/128 = ECR T/L D0/R127/C127 B/R = D7/R
64/C64
 L/T:R/B = 1024/64 : 1536/128 = ECR T/L D7/R127/C128 B/R = D0/R
64/C191
 L/T:R/B = 1536/64 : 2048/128 = ECR T/L D0/R127/C192 B/R = D7/R
64/C255
 L/T:R/B = 0/128 : 512/192 = ECR T/L D0/R191/C0 B/R = D7/
R128/C63
 L/T:R/B = 512/128 : 1024/192 = ECR T/L D7/R191/C127 B/R = D0/
R128/C64
 L/T:R/B = 1024/128 : 1536/192 = ECR T/L D0/R191/C128 B/R = D7/
R128/C191
 L/T:R/B = 1536/128 : 2048/192 = ECR T/L D7/R191/C192 B/R = D0/
R128/C255
 L/T:R/B = 0/192 : 512/256 = ECR T/L D7/R192/C0 B/R = D0/
R255/C63
 L/T:R/B = 512/192 : 1024/256 = ECR T/L D0/R192/C127 B/R = D7/
R255/C64
 L/T:R/B = 1024/192 : 1536/256 = ECR T/L D7/R192/C128 B/R = D0/
R255/C191
 L/T:R/B = 1536/192 : 2048/256 = ECR T/L D0/R192/C192 B/R = D7/
R255/C255
 2/27/09 Pg-1968

BitmapTool
Example Output using ECR Rectangle Coordinates
BMT_set_overlays(ECR)
 (LTRB) Inputs : Rectangle
 Olay0 => 0, 0, 64, 64: [0] 0, 0, 512, 64
 Olay1 => 64, 0, 128, 64: [0] 512, 0, 1024, 64
 Olay2 => 128, 0, 192, 64: [0] 1024, 0, 1536, 64
 Olay3 => 192, 0, 256, 64: [0] 1536, 0, 2048, 64
 Olay4 => 0, 64, 64, 128: [0] 0, 64, 512, 128
 Olay5 => 64, 64, 128, 128: [0] 512, 64, 1024, 128
 Olay6 => 128, 64, 192, 128: [0] 1024, 64, 1536, 128
 Olay7 => 192, 64, 256, 128: [0] 1536, 64, 2048, 128
 Olay8 => 0, 128, 64, 192: [0] 0, 128, 512, 192
 Olay9 => 64, 128, 128, 192: [0] 512, 128, 1024, 192
 Olay10 => 128, 128, 192, 192: [0] 1024, 128, 1536, 192
 Olay11 => 192, 128, 256, 192: [0] 1536, 128, 2048, 192
 Olay12 => 0, 192, 64, 256: [0] 0, 192, 512, 256
 Olay13 => 64, 192, 128, 256: [0] 512, 192, 1024, 256
 Olay14 => 128, 192, 192, 256: [0] 1024, 192, 1536, 256
 Olay15 => 192, 192, 256, 256: [0] 1536, 192, 2048, 256

6.3.11.9 bitmap_overlay_delete()
See Bitmap Overlays.

Description
The bitmap_overlay_delete() function is used to delete a named Bitmap overlay.

Usage
void bitmap_overlay_delete(CString name);

where name specified the Bitmap overlay to be deleted.

Example
bitmap_overlay_add("myOverlay",...); // Create it

bitmap_overlay_delete("myOverlay"); // Delete it
 2/27/09 Pg-1969

BitmapTool
6.3.11.10 bitmap_overlay_lookup()

Description
The bitmap_overlay_lookup() function can be used to look-up the following attributes
of a named Bitmap overlay:

• Pen style (line type). See Bitmap Overlay Penstyles.
• Filled or not-filled. See Creating Bitmap Overlays.
• Color. See Bitmap Overlay Colors
• Enabled state. See Creating Bitmap Overlays.

Note that it is not possible to lookup the location/size attributes of an overlay because it may
consist of many rectangles described in screen-space, which is not particularly useful
information.

Usage
void bitmap_overlay_lookup(LPCTSTR name,

int *penStyle,
BOOL *filled,
COLORREF *color,
BOOL *enabled);

where:

name specifies the Bitmap overlay of interest.

penStyle is a pointer to an existing integer variable used to return the pen style
attribute, which will be one of:

PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT

See Bitmap Overlay Penstyles.

filled is a pointer to an existing BOOL variable used to return whether the overlay was
drawn filled or not-filled.
 2/27/09 Pg-1970

BitmapTool
color is a pointer to an existing COLORREF variable used to return the attribute of the
overlay. The returned value can best be decomposed by referring to the definition of the
RGB() macro in Visual C++ wingdi.h include file.

enabled is a pointer to an existing BOOL variable used to return the enabled state of the
overlay.

Example
bitmap_overlay_add("myOverlay",

CRect(0,0,1,1),
PS_SOLID, TRUE, RBG(255,255,255));

int penStyle;
BOOL filled;
COLORREF color;
BOOL enabled;
bitmap_overlay_lookup("myOverlay", &penStyle, &filled,

&color, &enabled);

output("penStyle = %d, filled = %d, color = 0x%x, enabled = %d",
penStyle, filled, color, enabled);

6.3.11.11 bitmap_overlay_setup()
See Bitmap Overlays.

Description
The bitmap_overlay_setup() function is used to modify the following attributes of an
existing Bitmap overlay.

• Pen style (line type). See Bitmap Overlay Penstyles.
• Filled or not-filled. See Creating Bitmap Overlays.
• Color. See Bitmap Overlay Colors
• Enabled state. See Creating Bitmap Overlays.

Note that it is not possible to modify the location/size attributes of an overlay.
 2/27/09 Pg-1971

BitmapTool
Usage
void bitmap_overlay_setup(LPCTSTR name,

int penStyle,
BOOL filled,
COLORREF color,
BOOL enabled);

where:

name specifies the Bitmap overlay of interest.

penStyle is the desired pen style attribute, which must be one of:

PS_SOLID
PS_DASH
PS_DOT
PS_DASHDOT
PS_DASHDOTDOT

See Bitmap Overlay Penstyles.

filled specifies whether the overlay was drawn filled (TRUE) or not-filled (FALSE).

color is a DWORD value which is best initialized using the RGB() macro, which takes three
arguments, each in the range of 0-255, to define the red (R), green (G), and blue (B) values
used to draw the overlay line(s). RGB(255,255,255) results in white, RGB(0,0,0) results
in black.

enabled controls whether the overlay is in it ally enabled (TRUE) or disabled (FALSE).
When disabled the overlay is not displayed.

Example
This example first creates a Bitmap overlay named "myOverlay", then modifies the
attributes noted above:

bitmap_overlay_add("myOverlay",
CRect(0,0,1,1),
PS_SOLID, TRUE, RBG(255,255,255));

bitmap_overlay_setup("myOverlay", PS_DOT, FALSE,
RBG(255,127,127), FALSE);
 2/27/09 Pg-1972

BitmapTool
6.3.11.12 bitmap_overlay_enable()
See Bitmap Overlays.

Description
The bitmap_overlay_enable() function is used to enable (display) or disable (hide) an
existing Bitmap overlay.

Usage
void bitmap_overlay_enable(LPCTSTR name, BOOL enabled);

where:

name specifies the Bitmap overlay of interest.

enabled controls whether the overlay is enabled (TRUE) or disabled (FALSE).

Example
bitmap_overlay_add("myOverlay",

CRect(0,0,1,1),
PS_SOLID, TRUE, RBG(255,255,255));

bitmap_overlay_enable(" myOverlay", FALSE);

6.3.11.13 bitmap_overlay_draw()
See Bitmap Overlays.

Description
The bitmap_overlay_draw() function is used to cause a named Bitmap overlay to flash,
by repeatedly causing just the specified overlay to be painted. Since no attributes are
changed, each time the overlay is painted the color used is XOR’ed with the previous image,
and since any given color XOR’ed with itself results in black the affect is to cause the overlay
to flash. See Bitmap Overlay Colors.

Usage
void bitmap_overlay_draw(LPCTSTR name);
 2/27/09 Pg-1973

BitmapTool
where name is the Bitmap overlay to draw.

Example
The following code can be included in the test program to support flashing multiple Bitmap
overlays.

// CList used to store O'lay names to be flashing.
// Use BMT_set_olay_flash_mode() to change the contents
// of this flasher_list to change which O'lays flash.
// Any O'lay name in this list will flash. Must be global.
CList< CString, LPCTSTR > flasher_list;

// Invoke this using remote_set() to start thread to flash O'lays
VOID_VARIABLE(BMT_olay_flasher, "") {

while (1) { // No need to terminate once started.
// For each O'lay in this list, make it flash in BMT
for (POSITION pos = flasher_list.GetHeadPosition(); pos;)

bitmap_overlay_draw(flasher_list.GetNext(pos));
Sleep(500); // Time constant = 0.5 seconds

}
}

// Add/remove one named O'lay from flasher_list.
// If in the list, that O'lay will flash. Also starts
// the thread which causes the flashing.
void BMT_set_olay_flash_mode (CString overlay, BOOL enable) {

// Only Start the flash thread once !!! IMPORTANT
static BOOL started = FALSE;
if (! started) {

remote_set(BMT_olay_flasher, "", site_num());
started = TRUE;

}

// Always remove specified O'lay from the list first
// This disables it.
POSITION pos = flasher_list.Find(overlay);
if (pos) flasher_list.RemoveAt(pos);

 2/27/09 Pg-1974

BitmapTool
// Put it back in list only if enabled
if (enable) flasher_list.AddTail(overlay);

}

SITE_BEGIN_BLOCK(SB1) {

// ... other code here

BMT_set_olay_flash_mode("myOverlay", TRUE);// Do flash

BMT_set_olay_flash_mode("otherOverlay", FALSE); // No flash

// ... other code here

}

 2/27/09 Pg-1975

Breakpoint Monitor
6.4 Breakpoint Monitor
This section includes the following:

• Overview
• Starting the Breakpoint Monitor
• Breakpoint Attributes
• Breakpoint Actions
• Breakpoint Removal
• Breakpoint Definition File
• Single-stepping
• Run to Fail
• Breakpoint Usage

- Breakpoints on Test Functions
- Breakpoints on C Functions
- Breakpoint Macros
- Looping and Single-stepping

• Run Buttons

Note: the Run Buttons were added in software release h2.2.7/h1.2.7.

6.4.1 Overview
See Breakpoint Monitor.

The Breakpoint monitor is one of the most commonly used tools for test program debugging.
Quite often, other interactive tools such as Voltage and Current Tool or TimingTool are
usable only after setting a breakpoint using the Breakpoint monitor.

The Breakpoint monitor allows the user to set one or more breakpoints in the test program
under different conditions, execute the Sequence & Binning Table, and perform various
 2/27/09 Pg-1976

Breakpoint Monitor
actions when a breakpoint is reached:

The Block Name combo box contains a list of all the test block names in the order they
appear in the sequence table. It is possible for the same name to appear more than once if
the same test block is performed multiple times in the test flow.

Test# is an editable field used to enter a Test Numbers (0-999). The test number value is
incremented by any of the Nextest functions which execute a test i.e. funtest(),
partest(), ac_partest(), test_supply(), ac_test_supply().

Note: the first test in Test Blocks has a test number of 1, regardless of whether a
breakpoint is set to break Before or not.

Setup# is an editable field used to enter a Setup Numbers (0-999). Setup numbers are
incremented by any Nextest function (as documented in this manual) except the test
functions. Examples of setup functions are vih(), cycle(), edge_strobe(), etc.

Note: the first setup number in Test Blocks is 1, regardless of whether a breakpoint is
set to break Before or not.

Breakpoints can be set at Test Blocks, Test Numbers, and Setup Numbers.

Run
Buttons
 2/27/09 Pg-1977

Breakpoint Monitor
• To set a breakpoint at a test block, choose the appropriate test block name. Set
both Test# and Setup# to 0.

• To set a breakpoint at a test in a test block, choose the appropriate test block
name. Set Test# to a number greater than 0, and set Setup# to 0.

• To set a breakpoint at a setup in a test block, choose the appropriate test block
name. Set Setup# to a number greater than 0. Each time a Test# is incremented
the Setup# is reset to 0, thus it may be necessary to set the Test# to a value
greater than one also.

The DUT manager button is used to invoke the DUT Manager dialog, which can be used in
Magnum 1/2/2x Multi-DUT Test Programs to interactively move DUT(s) in or out of the
Ignored DUTs Set (IDS). See Magnum 1, 2 & 2x Parallel Test.

6.4.2 Starting the Breakpoint Monitor
See Breakpoint Monitor.

To start the Breakpoint monitor:

• Click on the Breakpoint monitor icon from the Ui toolbar
• Type keyboard shortcut Ctrl+K
• Choose Tools: Breakpoint…
• From the Sequence View in UI. See Starting the Breakpoint Monitor.

6.4.3 Breakpoint Attributes
See Breakpoint Monitor.

Attributes are the conditions under which the breakpoint is set. This is dependent on the
scope of the breakpoint. For example, a setup breakpoint does not have a break after on
pass or break after on fail context, since setup does not have any pass/fail outcome.

The Breakpoint attributes are:

Before the test block / Test# / Setup# depending on the scope.

After the test block / Test# On Pass.

After the test block / Test# On Fail.
 2/27/09 Pg-1978

Breakpoint Monitor
After the Setup#.

None of the attributes are set by default.

The Breakpoint monitor supports breaking on an integer value test result, in addition to On
Pass (1) and On Fail (0). This supports the macros TEST3, TEST4, etc. to make it
possible to break only when a test block returns integer values other than (for example: 0
through 4). It is now possible to choose any combination of numbers between 0 and 63
inclusive. For example, it is possible to set Break After on integer return values of 4, 7, 9,
and 63.

It is possible to set Break After and Loop on a TestBin just as you can do with a TestBlock.
The Break Before option also continues to work as expected. Looping on a TestBin causes
any body code of that bin to execute repeatedly.

6.4.4 Breakpoint Actions
See Breakpoint Monitor.

Actions are things the user wants the breakpoint monitor to perform once the test flow
reaches the breakpoint. The actions are:

Force Pass / Fail if the scope is a test block /Test#. None is the default.

Enable Skip / Loop. The default is Exec (normal execution). The scope is test block / Test#
/ Setup#. For example, you can Loop on a test or an entire test block depending on the kind
of breakpoint.

A breakpoint is added to the Breakpoint List automatically if it has a node number
(invisible to the user), indicated by the test block name, Test# and Setup# combination.
Breakpoint should have at least one non-default attribute or action.

Multiple breakpoints can be added or removed from the list. Once you select a breakpoint
from the list, the display is updated with the proper Block Name, Test#, Setup#, Break
Condition, Force and Enable actions. The attribute and action fields could be modified
and the list item will be updated accordingly.

It is possible to set Break After and Loop on a TestBin just as you can do with a TestBlock.
The Break Before option also continues to work as expected. Looping on a TestBin causes
any body code of that bin to execute repeatedly.
 2/27/09 Pg-1979

Breakpoint Monitor
6.4.5 Breakpoint Removal
See Breakpoint Monitor.

A single, several or all set breakpoints can be removed. There are three ways to remove
breakpoints.

• Select one or more breakpoints and click on the Remove button.
• Select a breakpoint from the list and modify the attribute and action to be the

default one.
• Click the Remove All button to remove all breakpoints.

A breakpoint can be temporarily disabled by un-checking the checkbox in the
corresponding list entry. To enable the breakpoint, simply check it again. This avoids the
necessity of recreating the breakpoint from scratch. For example, you are looping on a test
unconditionally and you want to get out of the loop. Un-checking the checkbox will stop the
loop. The box could be checked again if looping is necessary later.

6.4.6 Breakpoint Definition File
See Breakpoint Monitor.

Note: the location of these controls were changed in software release h2.2.7/h1.2.7.
The images below show the later locations. The operation of the controls did
not change.

The Breakpoint Monitor tool provides a method for saving breakpoint definitions to a file on
disk.

Note: changes made using the DUT Manager dialog, are not saved.
 2/27/09 Pg-1980

Breakpoint Monitor
A breakpoint definition file is created, or replaced, using the Save button in Breakpoint
Monitor. A breakpoint definition file is loaded into the Breakpoint Monitor using the Load
button:

In either case, a standard Windows file browser is displayed, and used to select the desired
disk, path, and file.

The ui_BreakPointFile UI user variable (see UI User Variables) can be used to specify
a breakpoint definition file when using a command line or batch file (see ui_BatchFile).

Note the following:

• The information is stored in ASCII files (*.txt), which are readable using any text
editor.

Note: Nextest reserves the right to modify the format of these files at any time.
Manually editing these files is therefore discouraged.

• The Save operation saves all the definitions shown in the Breakpoint List box. It is
not possible to save a subset.

• The Load operation loads the entire contents of the selected file.
When Load is invoked, the user is prompted for additional inputs under the following
conditions:

Load an existing
breakpoint

definition file.

Save the list of
breakpoint

definitions to a file.
 2/27/09 Pg-1981

Breakpoint Monitor
• The Breakpoint List already contains a breakpoint which conflicts with one in the
specified breakpoint definition file. A dialog similar to the following will be
displayed:

Selecting Yes causes the breakpoint in the definition file to be used. Selecting No
causes the breakpoint in the Breakpoint List be to be used.

• When the breakpoint definition file references one or more test blocks which do
not exist in the test program. A dialog similar to the following will be displayed:

This is not fatal, but Breakpoint List should be reviewed and validated.

6.4.7 Single-stepping
See Breakpoint Monitor.

Using Breakpoints, single-stepping through program code and tests can be enabled at any
time by checking either or both of the Single step by check boxes.

Block: Same as setting Break Before attribute for all test blocks.

Test/Setup: Same as setting Break Before attribute for all Test# and Setup#.
 2/27/09 Pg-1982

Breakpoint Monitor
6.4.8 Run to Fail
See Breakpoint Monitor.

Block: Same as setting the Break After On fail attribute for all test blocks.

Test: Same as setting the Break After On fail attribute for all Test#.

Start Testing button can be clicked to start the test flow. This button is identical to the
Start Testing item in the File menu. The keyboard shortcut is also the same (Ctrl+T).
Once the test program reaches a breakpoint, the following things will happen:

1. It will select the appropriate breakpoint from the list.

2. The sequence table view will highlight the appropriate test block.

3. The output window will display a notification message in the appropriate controller
window, indicating the nature of the breakpoint the test program has reached.

4. The Start Testing button will change to Continue Testing button and the Stop
Testing button will be enabled:

5. The status bar of Ui and Breakpoint monitor will indicate that the test program is at a
breakpoint.

6. The test time stopwatch, if previously enabled from the View menu, will stop.

To continue execution from the breakpoint, click the Continue Testing button. This will
start the test time stopwatch if Test Time option was enabled from the View menu. The Stop
Testing button is the same as in the File menu.

Notes:

1. Breakpoints set in this manner have no bearing on, and are not to be confused with, the
source line breakpoint set in the debugging session from Microsoft Developer Studio.

2. Breakpoints are remembered in the current loading of the test program. The Breakpoint
monitor can be dismissed after the breakpoints are set. The Breakpoint monitor pops up
automatically when a breakpoint is reached, during the execution of the test program.
 2/27/09 Pg-1983

Breakpoint Monitor
3. Using controller tabs to set different breakpoints in different controllers may cause
unpredictable results in the case of multiple test site controllers. It is recommended to
debug one controller at a time. Other controllers can be disabled through the Option
item of the Tools menu as described later.

4. The Stop Testing button is active if the test program state (indicated in the status bar)
is Running or Looping. At present, clicking this button may cause unpredictable results, if
the program is not looping.

6.4.9 Breakpoint Usage
See Breakpoint Monitor.

This section includes the following:

• Breakpoints on Test Functions
• Breakpoints on C Functions
• Breakpoint Macros
• Looping and Single-stepping

6.4.9.1 Breakpoints on Test Functions
See Breakpoint Usage, Breakpoint Monitor.

Breakpoints, single-stepping, and looping can be performed on all Nextest-created C
functions described in this manual. Breakpoints are treated slightly differently for C functions
that execute actual tests of the DUT. These functions are:

funtest()

partest()

ac_partest()

test_supply()

ac_test_supply()

hv_test_supply()

hv_ac_test_supply()
 2/27/09 Pg-1984

Breakpoint Monitor
ptu_partest()

ptu_partest()

Breakpoints can be set on any of the above functions, to halt execution either just before or
just after the function executes. These Breakpoints are identified by Test Block name and
Test Numbers.

6.4.9.2 Breakpoints on C Functions
See Breakpoint Usage, Breakpoint Monitor.

Set-up of DUT conditions (timing, voltage, etc.) is done by calling Nextest-created C-
functions, and is typically done prior to executing a test function. Breakpoints can be set on
these non-test C-functions to halt execution either just before or just after the function
executes.

These Breakpoints are identified by Test Block name and Setup Numbers. The setup
number counter starts at zero when a test block is entered and increments each time a
Nextest-created (non-test) C-function executes. User-created C-functions do not increment
the set-up counter. Also, each time one of the test functions executes, the set-up counter is
set to zero by the system software. Setup C-functions are identified for breakpointing based
on:

• Test block name
• Test number
• Setup number

where:

Test block name is the user-defined name for the test block

Test number is an integer representing the test number for the most recently executed
test function

Setup number is an integer for the set-up function number defined by the set-up function
counter. The test number is zero until the first test function is executed in the test block.

Example
Assume the following test block is from a user test program.
 2/27/09 Pg-1985

Breakpoint Monitor
TEST_BLOCK(speed_test) {
dps(3.3 V, vcc);
vih(2.0 V);
vil(0.8 V);
cycle(TSET2, 40 NS);
settime(TSET2, io_pins, STROBE, 28 NS, 36 NS);
if (funtest(minmax, error) == FAIL) return FAIL;
lport(0, 4);
user_written_function();
lbdata(5);
dps(2.7 V, vcc);
return (funtest(minmax, error));

}

The C-functions in the example test block above are listed below along with their identifiers
that are used for breakpointing.

Note that the user_written_function() does not appear in this list. It is not possible to
set a breakpoint at a user-written function using Breakpoint Monitor. A more advanced (and
complex) breakpoint capability allows setting breakpoints on any C-function. This is a
standard part of the Microsoft Developer Studio capabilities. See Debugging With Developer
Studio.

Table 6.4.9.2-1 Example Breakpoint Test/Setup Numbers

Function Test Block Test # Setup #

dps() speed_test 0 1

vih() speed_test 0 2

vil() speed_test 0 3

cycle() speed_test 0 4

settime() speed_test 0 5

funtest() speed_test 1 n/a (gets set to zero though)

lport() speed_test 1 1

lbdata() speed_test 1 2

dps() speed_test 1 3

funtest() speed_test 2 n/a (gets set to zero though)
 2/27/09 Pg-1986

Breakpoint Monitor
6.4.9.3 Breakpoint Macros
See Breakpoint Usage, Breakpoint Monitor.

Two macros, TEST_BREAKPOINT(), and SETUP_BREAKPOINT(), allow user-written
C-code to interact with the Breakpoint Monitor and ShmooTool / SearchTool.

These macros are the same ones used by Nextest software. When a test (funtest(),
partest(), etc.) increments a test_number() it is using the TEST_BREAKPOINT()
macro. Similarly, when the other Nextest functions increments a setup_number() it is
using the SETUP_BREAKPOINT() macro. Basically, using these macros allows user-
written code to interact with the Breakpoint Monitor and ShmooTool / SearchTool the same
as Nextest-written software.

These macros have the following key features

• User-written body code is wrapped by the macro. This body code will execute
normally (unconditionally), but can also be executed under control of the Breakpoint
Monitor. When used with ShmooTool / SearchTool, the body code executes for each
shmoo plot point, and determines whether each point passes or fails.

• Some of the Nextest functions which access hardware will not trigger a breakpoint
in simulation mode. However, user-written code in the body of these macros will
execute in simulation mode.

• Like funtest(), partest(), etc. the TEST_BREAKPOINT() macro causes the
test_number() to be incremented. This allows the Breakpoint Monitor to
conditionally stop program execution before the macro body code executes (Break
before test number n), or based on the value of an integer control variable set within
the macro body code (Break after on pass, fail, or value n). This control variable is
specified as an argument to the macro, which creates the variable and initializes it to
0. The last value assigned to the control variable within the macro body code is
evaluated by the Breakpoint Monitor. When ShmooTool / SearchTool is used at a
breakpoint controlled by TEST_BREAKPOINT(), it is the last value assigned to the
control variable which determines whether a given point in a shmoo is displayed as
fail (0) or pass (not 0);

• Like all Nextest-written functions (except test functions) the
SETUP_BREAKPOINT() macro causes the setup_number() to be incremented.
This allows the Breakpoint Monitor to conditionally stop program execution before or
after the macro body code executes.
 2/27/09 Pg-1987

Breakpoint Monitor
• Using either macro, it is possible to execute the macro body code in a loop.
Options set in the Breakpoint Monitor make it possible to loop continuously
(unconditionally) or, if using TEST_BREAKPOINT(), to loop until the control
variable matches pass, fail, or a specific value.

• Unlike other Nextest-defined macros, these macros are not global in scope, and
are only usable within Test Blocks, or functions called from test blocks.

• It is legal to nest these macros, however, a somewhat unusual, but simple, syntax
is needed. See next item.

Usage

TEST_BREAKPOINT(control_var) {
// Optional macro body code here
 control_var = 0; // Last value set can trigger breakpoint
// or determine shmoo pass/fail per-point
// Optional macro body code here
}
SETUP_BREAKPOINT {
// Macro body code here
}
Examples

Example 1:
The test block below is designed to support looping the commands. This allows using an
oscilloscope to view the resulting LPORT output waveforms as they occur.

TEST_BLOCK(TB3) {
dps (5 V, vcc);
TEST_BREAKPOINT(val){ // test number = 1

output (" val => %d", val);
val = 10; // Set breakpoint count to any value >0.

}
return (funtest (patname, error));

}

The way the val control variable is used allows Breakpoint Monitor to be set to break on
any number of loop iterations. Or, the loop can be executed continuously.

In normal use, the macro body code executes once. Using the Breakpoint Monitor, if a
breakpoint is set on test number = 1, break on 10, Loop, when Start Test is invoked the
macro body code will execute 9 times, then halt. The loop stops on entry to the 10th
 2/27/09 Pg-1988

Breakpoint Monitor
iteration. If the breakpoint is set as test number = 1, Loop, Start Test will continuously loop
the macro body code until the Stop Testing button is clicked.

Note that to loop on any single function the TEST_BREAKPOINT macro is not really needed;
use a standard breakpoint triggered on Setup Numbers instead. Conversely, the only way to
loop on just the three lport() commands requires that either TEST_BREAKPOINT or
SETUP_BREAKPOINT be used.

Example 2:
In this example the SETUP_BREAKPOINT macro body code calls both a Nextest function
and a user-written C function. In normal use, the macro body code executes once. However,
using the Breakpoint Monitor it is possible to halt execution before or after the macro body
code executes, or to loop on the macro body code. When setting the breakpoint the
setup_number() of the macro will be 1 because the previous funtest() reset the setup
number to 0.

TEST_BLOCK(speed_test) {
dps(3.3 V, vcc);
vih(2.0 V);
vil(0.8 V);
cycle(TSET2, 40 NS);
settime(TSET2, io_pins, STROBE, 28 NS, 36 NS);
if (funtest(minmax, error) == FAIL) return FAIL;

SETUP_BREAKPOINT {
user_written_function(); // Optional

}
lbdata(5);
dps(2.7 V, vcc);
return (funtest(minmax, error));

}

The various C functions in the example above are shown below along with the test numbers
and setup numbers which can be used to control breakpoint execution:

Table 6.4.9.3-1 Example Test/Setup Numbers

Function Test block Test # Setup #

dps() speed_test 0 1

vih() speed_test 0 2

vil() speed_test 0 3
 2/27/09 Pg-1989

Breakpoint Monitor
6.4.9.4 Looping and Single-stepping
See Breakpoint Usage, Breakpoint Monitor.

Breakpoints, single-stepping, and looping can be performed on all user level C-functions
described in this manual.

This includes the test execution functions like funtest() and partest() as well as setup
functions like settime(), vih(), lbdata(), etc. C-functions written by the user do not
automatically have breakpoint, single-step, or looping capability. These capabilities can be
added to user-written functions by adding the Breakpoint Macros to user-written functions.

Using the Breakpoint dialog, a breakpoint can be set on C-functions described in this
manual. Once execution stops at the breakpoint, C-function single-step may be selected.
The modes available for C function single-step are:

• Break before the C-function executes
• Break after the C-function executes
• Break both before and after the C-function executes

Each time the Single Step button is pushed in the Breakpoint dialog, test program
execution continues from the current location to the next single-step break location, as
defined by the single-step mode. This allows the user to step from one tester C function to
the next at the push of a button.

cycle() speed_test 0 4

settime() speed_test 0 5

funtest() speed_test 1 Reset to zero

SETUP_BREAKPOINT speed_test 1 1

lbdata() speed_test 1 3

dps() speed_test 1 4

funtest() speed_test 2 Reset to zero

Next Test Block block name 0 0

Table 6.4.9.3-1 Example Test/Setup Numbers (Continued)

Function Test block Test # Setup #
 2/27/09 Pg-1990

Breakpoint Monitor
While stopped at a Breakpoint, the Loop button can be pushed in the Breakpoint dialog to
initiate continuous looping on the current function. Pushing the Stop Looping button
causes looping to stop. The Single Step button can be pushed to continue single-
stepping through tester C-functions from the current location. If looping is active when the
Single Step button is pushed, looping is automatically terminated before stepping to the
next single-step break location.

When a functional pattern is looping two signals are available on the DUT Board which are
useful when using an oscilloscope to evaluate timing signals and failing strobes.

6.4.10 Run Buttons

Note: first available in software release h2.2.7/h1.2.7.

The three Run buttons each cause the execution of some portion of the Sequence & Binning
Table. These are the same options available using the right-mouse context menu in the UI
Sequence and Binning sub-window.

All three options begin with the test block currently selected in the Block Name menu:
 2/27/09 Pg-1991

Breakpoint Monitor
• Run Only This - execute the selected test block.
• Run From Here - execute the Sequence & Binning Table starting with the

selected test block.
• Run To Here - execute the Sequence & Binning Table up to and including the

selected test block.
Note the following:

• All three options always execute the specified test block.
• Test block execution begins with the first line of user-written code in the block,

regardless of any values selected for Test# or Setup#.
• Breakpoint operation is the same regardless of how a given test block execution is

invoked.
 2/27/09 Pg-1992

DBMTool
6.5 DBMTool

Note: the information here includes changes to DBMTool which were first available in
software release h2.2.7/h1.2.7.

This section includes the following:

• Overview
• Starting DBMTool
• DBMTool Controls
• DBM Data Modification
• DBM File Read/Write
 2/27/09 Pg-1993

DBMTool
6.5.1 Overview
See DBMTool.

DBMTool is used to display and modify the contents of one or more Data Buffer Memory
(DBM) segments. The image below shows a typical DBMTool image:

Figure-77: DBMTool
In this example, DBMTool displays two controller tabs and two DBM tabs, representing a
4-site test system with Sites-per-Controller = 2; i.e. each controller represents 2 sites, each
with two DBMs (one per APG). See DBM & Multiple Sites-per-controller.

The various display features and controls are described in DBMTool Controls. DBM data
can be modified using DBMTool, see DBM Data Modification.

Main Display Area

See DBMTool Controls and DBM Data Modification

Selected Cells
 2/27/09 Pg-1994

DBMTool
6.5.2 Starting DBMTool
See DBMTool.

Three methods are available to start DBM tool:

• Click on the DBM icon in the Ui toolbar
• Type keyboard shortcut Ctrl+D
• Choose Tools: DBM…

5. Beginning in software release h2.xx.yy, DBMTool can be resized and the final size can
be persistent (see UI Tool Persistence).
 2/27/09 Pg-1995

DBMTool
6.5.3 DBMTool Controls
See DBMTool.

DBMTool has the following displays and controls:

Figure-78: DBMTool Controls

Controller Select

DBM Select Tabs

Select Display
Segment Button

Row/Col Labels Hex/Dec

Select Hardware
Segment Edit Box

GoTo
Controls

Read From Hardware
Write To Hardware

Load to All Controllers
Load To Selected...

Save From Selected...DBM Size/Configuration

Select Display
Segment Edit Box

Set Hardware Segment
Button

Currently
Displayed
DBM Segment

Current DBM
Hardware
Segment
 2/27/09 Pg-1996

DBMTool
The following table describes the various DBMTool controls:

Control Purpose

Controller Select Tabs
Used to select the site controller which contains the
DBM to display. When Sites-per-Controller > 1, only
tabs for the master controllers are displayed.

DBM Select Tabs

Used to select which DBM is to be displayed. These
tabs are only displayed when Sites-per-Controller > 1.
These tabs were previously labeled APG# (where # = 1
to n).

Select
Display
Segment
Button

Clicking this button causes the value entered in the
Select Display Segment Edit Box to be read
and used to select which DBM segment is being
displayed. Takes effect immediately. The number of
selectable segments is determined by the size of the
installed DBM vs. the size of the DBM configuration,
set using dbm_config_set(). Both Read From
Hardware and Write To Hardware access this segment.
Does NOT change DBM segment selection in
hardware.

Select
Display
Segment
Edit Box

Edit box used to enter the segment number to be
displayed. Has no effect until the Select Display
Segment Button is clicked.

Currently Displayed
DBM Segment

Indicates which DBM segment is currently being
displayed.

Row/Col Labels Hex/Dec

Use to select the mathematical base used to display
DBMTool’s Row/Column header values. Also affects
values entered using the GoTo Controls. Does not
affect Main Display Area (cell values) which are always
Hex values.

(new in software release h2.2.7/h1.2.7)
 2/27/09 Pg-1997

DBMTool
Set Hardware Segment
Button

Clicking this button causes the value entered in the
Select Hardware Segment Edit Box to be read
and used to change the DBM segment selection in
hardware. Takes effect immediately. Also sets the
Select Display Segment Edit Box value. The
number of selectable segments is determined by the
size of the installed DBM vs. the size of the DBM
configuration, set using dbm_config_set(). Updated
by Read From Hardware.

Select Hardware
Segment Edit Box

Edit box used to enter the segment number to be
selected in hardware. Has no effect until the Set
Hardware Segment Button is clicked.

Current DBM
Hardware Segment

Indicates which DBM segment is currently selected in
hardware for the DBM being displayed.

GoTo Controls
Used to explicitly select a cell in the Main Display Area.
Scrolls the display as necessary. GoTo value entry is
affected by the Row/Col Labels Hex/Dec selection.

Read From Hardware

Reads hardware values from the currently selected
controller, DBM and segment. Updates the Main
Display Area, the value displayed for Select
Hardware Segment Edit Box and the
DBM Size/Configuration.

Write To Hardware

Writes the specified value to the cells currently
selected in the Main Display Area, see DBM Data
Modification. Writes only to the currently selected
controller, DBM and segment. Note that at least one
cell is always selected, thus clicking this button will
always modify at least one DBM data value.

Load to All
Controllers

Loads all DBMs on all controllers from a specified disk
file. See DBM File Read/Write.

Control Purpose

(new in software release h2.2.7/h1.2.7)

(new in software release h2.2.7/h1.2.7)
 2/27/09 Pg-1998

DBMTool
6.5.4 DBM Data Modification
See DBMTool.

DBMTool can be used to modify the data stored in the currently selected DBM segment:

1. Depending on the configuration of the system in use, one or more controller and APG
tabs are presented in DBMTool. These are used to select the DBM to be viewed and
modified. See DBMTool Controls (Controller Select Tabs, DBM Select Tabs,
etc.).

2. The DBM addresses to be modified are selected using various methods

• Only adjacent addresses can be selected for editing.
• Left-click the mouse in the Main Display Area to select one DBM address.
• Left-click and drag the mouse in the Main Display Area to select multiple DBM

addresses.
• Use the GoTo Controls to select one DBM address. This will also scroll the

display as necessary.

Load To Selected...

Loads the currently selected segment in the currently
selected DBM and controller from a specified disk file.
See DBM File Read/Write.

Save From Selected...

Saves the currently selected segment from the
currently selected DBM and controller to a specified
disk file. See DBM File Read/Write.

DBM Size/Configuration

Displays the size of the installed DBM and the current
DBM configuration as previously set using
dbm_config_set().
Also displays the number of available DBM segments
which is determined by the size of the installed DBM
vs. the size of the DBM configuration. Updated by
Read From Hardware.

Control Purpose

(new in software release h2.2.7/h1.2.7)

(new in software release h2.2.7/h1.2.7)
 2/27/09 Pg-1999

DBMTool
• Left-click the mouse in the Main Display Area to select the upper-left corner of a
region of DBM addresses (cells), hold the shift button and left-click to select the
lower-right corner.

• An entire row or column can be selected by clicking on the appropriate row or
column label.

• The entire DBM can be selected by clicking on the upper-left cell labeled “X\Y”.
3. Before or after making the desired selection, the value to be written is entered in the edit-

box next to the Write To Hardware button.

4. Click the Write To Hardware button to write the value to the selected DBM addresses.

Note: at least one cell is always selected in DBMTool, thus clicking the Write To
Hardware button will always modify at least one DBM data value. Beware!

6.5.5 DBM File Read/Write
See DBMTool.

Beginning in software release h2.2.7/h1.2.7, DBMTool can be used to save DBM data to a
disk file or load DBM data from a disk file. Note the following:

• The Save From Selected... button will put data from the currently selected DBM
segment to a specified disk file. The entire segment is saved.

• The Load To Selected... button will load data from a specified disk file into to the
currently selected DBM segment in the currently selected controller. The entire
segment is loaded.

• The Load to All Controllers button will load data to the currently selected DBM
segment of in all controllers from a specified disk file. The entire segment is
loaded.

• A standard Windows file browser is presented to select the file to be loaded or
written.

• The dbm_file_image_write() and dbm_file_image_read() functions are
also available to write and read a DBM image to/from a disk file.

• The DBM file on disk is in a binary format, as described in DBM Data File Format.
This format includes a DBM configuration, in the form of a header. Load To
Selected... will only load the file into the DBM if the current DBM configuration
matches the configuration saved in the file header.
 2/27/09 Pg-2000

DBMTool
 2/27/09 Pg-2001

DUT Manager
6.6 DUT Manager
The DUT Manager dialog is used in Magnum 1/2/2x Multi-DUT Test Programs to
interactively move DUT(s) into or out of the Ignored DUTs Set (IDS) and/or Ignored DUTs
Set (IDS). See Magnum 1, 2 & 2x Parallel Test.

The DUT Manager is started from Breakpoint Monitor, using the DUT manager button:
 2/27/09 Pg-2002

DUT Manager
The DUT Manager has the following displays and controls:

Note the following:

• The list of DUTs defined in the Pin Assignment Table is display only i.e. it can’t be
modified.

• The Ignored DUTs Set (IDS) can only be modified between Sequence & Binning
Table executions. It is not possible to modify the IDS when stopped at a
breakpoint.

• The Active DUTs Set (ADS) can only be modified when the Sequence & Binning
Table is being executed while execution is stopped at a breakpoint. Breakpoints
are managed using the Breakpoint Monitor.

• Changes to the Active DUTs Set (ADS) are scoped to the test block being
executed at the time the ADS is modified. Detailed rules are described in Active
DUTs Set (ADS).

• When a DUT is added to the IDS it is removed from the ADS. This is done
immediately.

• When a DUT is removed from the IDS, it is added to the ADS, but this does not
occur until the next time the Sequence & Binning Table executes.

• Changes to the ADS while looping take effect just like changes to voltages, timing,
etc.

• Multi-DUT Test Results are updated while looping, but only for DUT(s) in the ADS.

List of all DUTs defined in the
Pin Assignment Table.

DUTs currently in the
Ignored DUTs Set

 DUTs currently in
the Active DUTs Set

Test results. Valid if stopped
after a test has executed

(Break After) otherwise = -1.
 2/27/09 Pg-2003

DUT Manager
The following images were taken using a test program which defined 4 DUTs.:

Initially, all DUTs in the test program are in the
Active DUTs Set (ADS) i.e. enabled for testing.
See Magnum 1, 2 & 2x Parallel Test. The Result
values (-1) are invalid unless testing is stopped
after a test has executed (Break After).

In this example, the user has put t_dut2 into
the Ignored DUTs Set (IDS), which removes it
from the Active DUTs Set (ADS). If the
Sequence & Binning Table is executed, only
t_dut1, t_dut3 and t_dut4 will be tested.

In this example, the user removed t_dut2 from
the Ignored DUTs Set (IDS) but has not yet
executed the Sequence & Binning Table. It is
not until the Sequence & Binning Table is
executed that t_dut2 will reappear in the
Active DUTs Set (ADS).
 2/27/09 Pg-2004

DUT Manager
In this example, the test program is stopped at a
breakpoint (Break After) and the user has
removed t_dut2 and t_dut3 from the Active
DUTs Set (ADS). Note that this does not add
them to the Ignored DUTs Set (IDS) and once
Sequence & Binning Table execution is
resumed these DUTs may reappear in the ADS
as controlled by the test program. Note the
Result values are now valid since the values
were read after a test had executed (Break
 2/27/09 Pg-2005

ECRTool
6.7 ECRTool
ECRTool is used to examine and modify the contents of an ECR.

ECRTool cannot be started when:

• The ECR hardware (RAMs) are not installed
• The ECR is currently configured for Logic Error Catch use. See Logic Error Catch

(LEC).
To start ECRTool:

• Click on the ECRTool icon from the Ui tool-bar
• Type keyboard shortcut Ctrl+E
• Choose Tools: ECR…
 2/27/09 Pg-2006

ECRTool
The following image shows ECRTool for Magnum 1/2/2x:
 2/27/09 Pg-2007

ECRTool
The Magnum 1/2/2x ECRTool has the following displays and controls:

Table 6.7.0.0-1 Magnum 1/2/2x ECRTool Controls

Control Type Purpose

CPU Write Mode
Accumulate

Absolute

Radio
Button

Affects the operation of the Write to
Hardware button. Accumulate means that
new errors (1’s) are added to existing errors;
i.e. accumulate 1’s. Absolute causes the
contents of the selected ECR cells to be
completely replaced with the specified
value.

Controller
Tab Tab

Used in conjunction with Site# to select the
ECR to be read (Site# is only pertinent when
sites-per-controller > 1). For example, in a
system containing 8 Site Assembly Boards,
with sites-per-controller = 2 there will be 4
master sites and 4 contoller tabs, labeled
Controller 1, 3, 5, and 7. To read the ECR
from the slave site of Controller 3 select the
second Controller Tab (Controller 3) and
select Site# 2. To read the ECR on the
master select Site# 1.

DUT Tabs Tab
In Multi-DUT Test Programs ECRTool will
display errors for only the selected DUT.
Also see ecr_config_set().

Site# Combo
Box

Displayed only when sites-per-controller > 1.
Used in conjunction with Controller Tab to
select the ECR to be read. See Controller
Tab.

Row/Col
Hex
Dec

Radio
Buttons

Determines whether the X/Y row/column
labels are displayed as decimal or
hexadecimal values.

Note: only the ECR selected using the Controller Tab and, when sites-per-controller > 1,
the Site# selection, is accessed. Beginning in software release h2.2.7/h1.2.7, ECRTool
can be resized and the final size can be persistent (see UI Tool Persistence).
 2/27/09 Pg-2008

ECRTool
X/Y
Row/Column

Labels
Label

Displays the logical ECR address of each
row (X) and column (Y) in the display. This
equates to the logical X and Y address
output from the APG when the logging
information to the ECR.

RE/CE Label
Displays values read from the Row RAM
and Column RAM (CE). See Magnum ECR
Block Diagram.

GoTo
X
Y

Button
Edit Box
Edit Box

Used to move the ECRTool display to a
specified location. Enter the row (X) and
column (Y) address values and click the
GoTo button to scroll the main display to the
specified X/Y addresses.

Next Error
Next Error Search Value

Next Error Search
Direction

Button
Edit Box
Combo

Box

Used to locate and display the next error.
See ECRTool Next Error Search.

Read from Hardware Button

Used to retrieve and display information
from the ECR. This affects the entire ECR
display, regardless of any cells which are
currently selected.

Table 6.7.0.0-1 Magnum 1/2/2x ECRTool Controls (Continued)

Control Type Purpose

Note: only the ECR selected using the Controller Tab and, when sites-per-controller > 1,
the Site# selection, is accessed. Beginning in software release h2.2.7/h1.2.7, ECRTool
can be resized and the final size can be persistent (see UI Tool Persistence).
 2/27/09 Pg-2009

ECRTool
Note: proper Redundancy Analysis (RA) and BitmapTool operation depends upon
synchronization between the contents of the main ECR RAM and values in all
ECR RAMs and counters. These values are guaranteed to be valid after funtest()
is executed. Conversely, these values are suspect ANY time user-code or
ECRTool modifies some values in the ECR hardware. Beware! See
ecr_rams_update().

Write to Hardware
Write Value

Button
Edit Box

The value entered in the edit box (right of
the Write to Hardware button) is written
to the cell(s) currently selected in the
ECRTool display. Also updates the row RAM
(RE) and column RAM (CE).

Note: IMPORTANT: the RE/CE values
are not modified and may be
wrong after using Write to
Hardware. See Note:.

Clear Area Button

Clears errors from the area of the ECR
selected in the main display (using the
left-mouse button).

Note: IMPORTANT: the RE/CE values
are not modified and may be
wrong after using Clear Area.
See Note:.

Clear Entire Button
Clears all errors from the ECR, including
Row RAM (RE) and Column RAM (CE).
See Magnum ECR Block Diagram.

Table 6.7.0.0-1 Magnum 1/2/2x ECRTool Controls (Continued)

Control Type Purpose

Note: only the ECR selected using the Controller Tab and, when sites-per-controller > 1,
the Site# selection, is accessed. Beginning in software release h2.2.7/h1.2.7, ECRTool
can be resized and the final size can be persistent (see UI Tool Persistence).
 2/27/09 Pg-2010

ECRTool
6.7.1 ECRTool Next Error Search
In software release h1.1.23 The operation of ECRTool’s Next Error button was enhanced,
as follows:

• The Next Error Search String edit box was added to the right of the Next Error
button. This allows a search string to be entered, the value of which modifies the
operation of the Next Error button (more below).

• The Next Error Search Direction combo-box was added to select between
X Fast and Y Fast search direction.

As indicated, the operation of ECRTool’s Next Error button depends on the value entered
(if any) in the Next Error Search String and the selection of the X Fast and Y Fast search
direction:

• If the search string value is empty the Next Error operation remains unchanged
from that in previous software releases; i.e. locate and display the next failing
address in the ECR, regardless of which data bit(s) failed.

• Entering 0 causes the Next Error operation to locate the next address in the ECR
which has no errors.

• Any other search string value is treated as the search target when the Next
Error button is clicked. During the search, the search value will only be tested
against the value in a single cell in ECRTool; i.e it is not possible to search for
values which span more than one cell in ECRTool.

• The search direction can be set as X Fast (row fast = search downwards) or Y
Fast (column fast = search right wards) using the combo-box to the right of
search string edit box.

Next Error
Next Error Search String
Next Error Search Direction
 2/27/09 Pg-2011

FrontPanelTool
6.8 FrontPanelTool
UI - User Interface provides a built-in Front Panel tool, displaying various indicators and
counts related to previously executed tests (more below).

To start FrontPanelTool:

• Type keyboard shortcut Alt+1
• Choose View: Front Panel

The image below shows FrontPanelTool displaying 17 Controller tabs (of potentially 32
possible using Magnum 1/2/2x):

In this example, note the following:

• Since there are multiple Controller tabs, the program is currently executing on a
multi-site system. Additional Controller tabs would be displayed if running on a
multi-site system (SV, SSV, GV. etc.).

• Since 128 pins are displayed (64 A pins and 64 B pins) the program is using
Sites-per-Controller = 1. If Sites-per-Controller = 2 256 pins would be displayed,
etc.

• Not all pins are being used by the test program. Those not used are greyed-out
i.e. a_3, b_2, etc.

• Four DUTs have been tested, and all four failed (0 Units Passed).
• The last executed test failed (Test Pass/Fail = Red) and only signal pins failed (no

DPS indicators or HV indicators are on)
• The test program only uses DPS-1 and DPS-2; the other DPS are greyed-out).
• The test program does not use any High Voltage Source/Measure Unit (HV) i.e. all

are greyed-out).
In the Front Panel display:

• The pin numbers represent used tester pin numbers.
 2/27/09 Pg-2012

FrontPanelTool
• Red on the Test Pass/Fail indicates an overall FAIL, green indicates an overall
PASS.

• Red on the PE, HV, and DPS pins indicate FAIL; dark gray indicates PASS or
UNTESTED.

• The Units Passed count display will only be updated if the test program defines a
Test Bin Group named units_passed (case insensitive). For example, to add
myBin1 and myBin2 to the units_passed group, add the following line to your test
program:

TEST_BIN(myBin1) {}
TEST_BIN(myBin2) {}
TEST_BIN_GROUP(units_passed) { BINS2(Bin1, Bin2) }

FrontPanelTool is quite useful when a test is looping (see Breakpoint Monitor). The Test
Pass/Fail indicator and failing PE pins/dps indicators can be used to observe stable or
intermittent pass/fail results as the test loops. While a test is looping the effect on pass/fail
results can be observed using FrontPanelTool while modifying voltages/currents (see
Voltage and Current Tool) and timing (see TimingTool).

FrontPanelTool is for display only i.e. it is not possible to control any hardware or software
features using FrontPanelTool.
 2/27/09 Pg-2013

LEC Tool
6.9 LEC Tool
Logic Error Catch Tool (LECTool) can be used to examine the contents of the optional Logic
Error Catch (LEC) RAM, which is the Error Catch RAM (ECR) being used in logic error catch
mode. The image below is an example of the LECTool display:

Note the following:

• It is not possible to modify Logic Error Catch (LEC) contents using LECTool.
• The No. column indicates the position (address) of the LEC which is displayed in

each row.
• The VAR column displays the logic vector address (VAR) of each failing vector

read from the Logic Error Catch (LEC). This is an absolute VAR (not pattern
relative).

• When failing scan vectors are logged, the The SAR column displays the scan
vector address (SAR) of each failing vector read from the Logic Error Catch (LEC).
See VAR/SAR Description. This is an absolute SAR (not pattern relative).
 2/27/09 Pg-2014

LEC Tool
• Failing pins are indicated by a red F. Passing pins with a green P.
• Pins are displayed in the order of the pin list specified when lec_config_set()

was last executed. See below.
• The example above was captured using:

funtest(LogicPat1, LEC_only_errors); // funtest()

The LEC_only_errors option captures the first 2Meg (221-6) failing vectors.
• Clicking the NextFail button or PreviousFail button moves the selection box

(shown on the first pin of the first vector above) to the next or previous failing pin.
The LECTool display will scroll up or down as necessary. Clicking these buttons
sends information to LVMTool, causing it to move its selection box to the same pin/
vector coordinate. This can be seen in the images below:

• Using the mouse to manually select a failing pin (F) also causes LVMTool to move
its selection box to the same pin/vector coordinate.

LECTool can be used in two ways:

• Invoked from LVMTool using the Run with LEC button.
• Invoked from UI’s Tool menu.

When LECTool is invoked from LVMTool, the system software does the following to capture
errors to the Logic Error Catch (LEC):

• Executes lec_config_set() to specify which pin(s) are to be captured in the
LEC. The pin list selected in LVMTool is used. Note that this also changes the
operating mode of the ECR.
 2/27/09 Pg-2015

LEC Tool
• Executes funtest() using the pattern stop option selected in LVMTool. The
default is LEC_only_errors.

Note: when LECTool is invoked from LVMTool using the Run with LEC button the
system software does NOT restore the state set by prior executions of
lec_config_set() from user code.

When LECTool is to be invoked from UI’s Tool menu, the user’s test program must do the
following to obtain useful results:

• Execute lec_config_set() to specify which pin(s) are to be captured in the
LEC.

• Execute funtest() using one of the LEC pattern stop options. i.e.
LEC_first_vectors, LEC_last_vectors, LEC_before_error,
LEC_after_error, LEC_only_errors, LEC_center_error.

If any of these steps is skipped, LECTool will start but no pin/vector information will be
displayed.
 2/27/09 Pg-2016

LVMTool
6.10 LVMTool
LVMTool is used to display and modify the contents of the optional Logic Vector Memory
(LVM) and Scan Vector Memory (SVM). LVMTool will also display failing pins and failing
vector address (VAR) or failing scan vector address (SAR) from the first failing cycle:

This section covers the following topics:

• Starting LVMTool
• LVMTool Tool-bar
• LVMTool Use
• PINFUNC Field Display & Edit
• Copy/Paste LVM Pattern Data
• DDR LVMTool
• LVMTool in Simulation Mode
• LVMTool Limitations
 2/27/09 Pg-2017

LVMTool
6.10.1 Starting LVMTool
See LVMTool.

LVMTool can be started several ways:

• Click on the LVMTool button in Ui’s tool-bar:
• In UI, choose Tools: LVM...
• Type the keyboard shortcut Ctrl+L

These controls are disabled if the currently loaded test program did not load one or more
Logic Test Patterns.

Using Magnum, LVMTool may be used in simulation mode by setting the environment
variable SIMULATED_LVM. See LVMTool in Simulation Mode.

6.10.2 LVMTool Tool-bar
See LVMTool.

LVMTool has the following tool-bar menu options:

File->Reset LVM From Disk. This reloads ALL
logic and scan patterns from disk into the LVM. It
also updates the pattern currently displayed in
LVMTool:
 2/27/09 Pg-2018

LVMTool

Edit->Copy and Edit->Paste. Used to copy and
paste values from like areas in LVMTool. See Copy/
Paste LVM Pattern Data. The Paste option is not
enabled until a Copy operation has been performed.

View->TSET, View->PS, VIEW->VIHH. Used to
hide or display the specified columns in LVMTool.

Options->Grid Size.... Invokes the Grid Size
dialog, which can be used to modify the size of the
LVMTool display, in the terms of rows (Num Vars)
and columns (Num Pins).

6.10.3 LVMTool Use
See LVMTool.
 2/27/09 Pg-2019

LVMTool
LVMTool displays the contents of logic vector memory (LVM) i.e. the per-pin per-cycle
pattern information. The same Logic Vector Bit Codes used in the pattern source file are
displayed. See LVMTool Limitations.

The image below has LVMTool displaying the Logic Test Pattern named LogicPat1. It is also
showing failing pins from the first failing cycle for the first DUT (t_dut1):

Note the following:

• Beginning in software release h2.2.7/h1.2.7, LVMTool can be resized and the final
size can be persistent (see UI Tool Persistence).

• The main area of the tool display shows the contents of LVM for the selected pin
list of the selected pattern. Initially, the display will show the first vector (VAR 0) of
the selected pattern in the top row. The characters displayed are the same Logic
Vector Bit Codes used in the pattern source file.

• When first invoked, LVMTool displays the first Logic Test Patterns loaded. The
Pattern Name menu allows selection of a different Logic Test Pattern for display.
The list of patterns shown in this menu will not include Memory Test Patterns.
However, since Scan Test Patterns are normally combined with Logic Test Patterns
they will be displayed.
 2/27/09 Pg-2020

LVMTool
• Selecting a new pattern using the Pattern Name menu immediately reads the
pattern from the Logic Vector Memory (LVM) and displays it in LVMTool. The pattern
is not executed, and any previously displayed PASS/FAIL information is discarded.

• The Dut # menu is used, in Multi-DUT Test Programs, to select a DUT. This only
affects the display of failing pin information generated using the Run to First
Error button. More below.

• The Pinlist menu allows selection of the pin list used to determine the columns
of pattern information to be displayed. The selected pin list controls how many
columns (pins) are displayed and the order in which pins are displayed. The first
pin in the pin list is the left-most column, etc. Both user-defined pin lists and the
built-in pin lists are selectable using this menu, however only pin lists which
contain pins which are mapped to t_lvm in at least one Pin Scramble Map are
displayed for selection. Selecting a new pin list immediately reads the appropriate
pattern information from LVM and displays it in LVMTool. The pattern is not
executed, and any previously displayed PASS/FAIL information is discarded. Only
pattern information from pins of the currently selected Site are displayed (see
Controller tab below).

• Each row of displayed pattern information represents one LVM address. See
LVMTool Limitations for information about RPT, STARTLOOP, GOSUB/RETURN, etc.
In DDR mode each row displays either the A-cycle or B-cycle LVM content. See
DDR LVMTool.

• The LVMTool display size is not user adjustable. Scroll bars will appear if the
amount of information to be displayed exceeds the size of the display. It is
possible to resize the VAR number column and the pin name row using the left
mouse.

• The Reset LVM from Disk button causes ALL logic patterns to be reloaded
from the disk into LVM. And, LVMTool is updated to display the reloaded
information from LVM. Use this button to un-do manual edits to LVM contents
made using LVMTool (see below).

• The Read from Hardware button re-reads LVM into the LVMTool display. This
may be desirable after executing C-code which modifies LVM.

LVM content can be edited using two basic techniques, described below. The process
begins using the left mouse button in the main LVMTool display to select one or more cells
of the pattern is to be modified. Single cells, whole rows (vectors) or columns (pins), or an
arbitrary rectangular region can be selected. Then, either:
 2/27/09 Pg-2021

LVMTool
• Use the Write to Hardware menu and button, to select a single new value to
replace the value in all selected cells. For example, the following changes the
selected cells from their original value to X:

• Select the Advanced Write button to display the LVM Write dialog:

Using this dialog, after selecting the desired value changes click the Write to
Hardware button to change LVM contents for the selected cells. This dialog
allows multiple changes to be made, but they are only applied to the cells
previously selected in the LVMTool display. In the example above the following
changes were made: 0→1, 1→0, V→X, Z→V, H→L.

The Run to First Error button executes the test pattern currently selected in LVMTool. If
the pattern fails, the display is updated to show the first failing vector with failing pins
displayed using RED characters. In Multi-DUT Test Programs, only failures for the DUT
selected in the DUT # menu are displayed. Note that LVMTool has no control over the state
of the tester’s timing, PE voltages/currents, or DPS status, thus meaningful PASS/FAIL
operation will normally require setting a breakpoint, using the Breakpoint Monitor, and

Before After
New

Value

Original
Values

Before After
 2/27/09 Pg-2022

LVMTool
executing the Sequence & Binning Table to properly configure the tester before executing
the pattern using LVMTool.

Clicking the Run with LEC button causes LEC Tool to be used to potentially display mulitple
failing cycles/pins. Operation is as follows:

• The Logic Error Catch (LEC) is configured using the pins in the pin list selected in
LVMTool. For reference see lec_config_set().

• If the pattern selected in LVMTool is a non-DDR pattern the LEC configuration
uses t_single, if the pattern is a DDR pattern the LEC configuration uses
t_double.

• The pattern selected in LVMTool is then executed with the LEC option selected via
the menu to the right of the Run with LEC button. These options are documented
in LEC Capture Options.

• LEC Tool is then displayed and directed to read errors from the Logic Error Catch
(LEC). Any errors displayed in LEC Tool are also indicated, using red tokens, in
LVMTool.

The Controller tabs seen in the upper portion of the LVMTool display are used to select
which Site is currently being displayed. Selecting a new controller tab causes LVMTool to
read and display fresh information from the appropriate LVM hardware, similar to what
occurs when LVMTool is first started. This means that the display will show VAR 0, with no
PASS/FAIL information i.e. any scrolling or failing pin information seen when the previous
tab was selected is discarded.

6.10.4 PINFUNC Field Display & Edit
See LVMTool, PINFUNC Instruction.

The PINFUNC fields in LVMTool supports the following features:
 2/27/09 Pg-2023

LVMTool
• Display and edit the per-vector Time-set(TSET), Pin Scramble Map(PS), and VIHH
Map(VIHH) selections. These are seen in the right columns of the LVMTool display
below:

The menu located to the right of the Write to Hardware button is used to select
the desired value which is written to the selected cells by clicking the Write to
Hardware button.

6.10.5 Copy/Paste LVM Pattern Data
See LVMTool.

LVMTool allows modification of Logic Vector Memory (LVM) contents using the Edit-
>Copy and Edit->Paste operations.

Note the following:

• The mouse is used to select a region of pattern data to copy. Several options are
available:

PINFUNC FieldsEdit Value Selection
 2/27/09 Pg-2024

LVMTool
• Select one or more entire columns (pins) using the pin name field.
• Select one or more entire rows (vectors) using the Var/pin field.
• Select one cell (1 pin @ 1 vector).
• Select a rectangle of cells spanning multiple pins and/or multiple vectors. This is

done by locating the upper left and bottom right corners of the desired region.
The left-mouse button can be clicked and dragged or two cells can be selected
while holding the shift key down.

• The copy operation is invoked using Edit->Copy or typing Ctrl+C.
• Selection of the paste destination is similar to selecting the copy region. By

design, the paste region is constrained:
• When using the first 3 selection options noted above the dimensions of the paste

region must exactly match the copy region. For example, if two entire columns
are selected and copied, it is necessary to select two entire columns before
pasting.

• When using the last selection option above, the destination can be chosen by
selecting one cell, to locate the upper-left corner of the paste range, or an range
identical to that copied can be selected. More below.

• The warning dialog shown in the diagram below is displayed any time a paste
operation is attempted with an incorrectly selected destination range.

• The paste operation is invoked using Edit->Paste or typing Ctrl+V.
 2/27/09 Pg-2025

LVMTool
• As noted above, when selecting the paste destination the user must ensure that
the entire region copied fits. In the example below, the paste targets labeled
Invalid are not legal since some of the copied pattern will not fit. When this is
attempted the dialog shown below is displayed:

• Copy/Paste copies logic pattern information in the context of Logic Vector Bit
Codes (H, L, 0, 1, X, etc.) or PINFUNC information as an integer value. It is the
user’s responsibility to ensure that the resulting operation is appropriate for the
DUT being tested. The Copy/Paste software cannot prevent a tester pin from
driving (1,0) a DUT output which is also driving, or to prevent strobing (H/L) a DUT
input pin, etc.

LVMTool Vector Data Area Invalid
Paste Target

Invalid
Paste Target

Invalid
Paste Target

Invalid
Paste Target

Invalid
Paste Target

Invalid
Paste Target

Copy Region
 2/27/09 Pg-2026

LVMTool
6.10.6 DDR LVMTool
See LVMTool, PINFUNC Instruction.

LVMTool supports DDR logic patterns. The image below is used to describe how a DDR
logic pattern is displayed:

Note the following:

• In DDR mode, the first row is the first DDR A-cycle, the second row is the first
DDR B-cycle, etc. This is consistent with the typical pattern source file.

• Failures are only displayed for the first failing DDR cycle i.e. if, in a given tester
cycle, both the DDR A-cycle and B-cycle contain failures, only those in the A-cycle
are displayed (in RED).

• The PINFUNC area displays information aligned with the A-cycle, which is
somewhat different than seen in the pattern source file (which requires PINFUNC
information after the B-cycle vector tokens).

• Editing pattern data remains unchanged. See Copy/Paste LVM Pattern Data.
 2/27/09 Pg-2027

LVMTool
6.10.7 LVMTool in Simulation Mode
See LVMTool.

To use LVMTool without hardware requires setting the environment variable
SIMULATED_LVM = 1, see Setting Environment Variables. Then, computer RAM is used to
emulate the hardware LVM, allowing the user to interact with LVMTool. Note that the
interface with LEC Tool is not operational in simulation mode.

6.10.8 LVMTool Limitations
See LVMTool.

LVMTool has the following limitations:

1. LVMTool displays only LVM contents, thus:

• The execution order of logic vectors is not visible in LVMTool.
• RPT, STARTLOOP, ENDLOOP, GOSUB, or RETURN display or editing is not supported.

A RPT vector displays as a single vector, with no indication that the vector is a
RPT. The other instructions are totally invisible.

2. Logic Error Catch (LEC) use is supported via LEC Tool. LEC Tool can display multiple
failing vectors and, when a given failure is selected (clicked), the LVMTool display will be
updated to indicate the location in LVM of the logic instruction and pin which failed.

3. LVMTool does not consider the order pins were defined in the test pattern source file
using the VECDEF Compiler Directive. By default, pins are initially displayed in the order
pins were added, by the system software, to the built-in pin list named
builtin_UsedLVM. A user defined pin list may then be selected to determine which
pins are displayed and the order pins are displayed in LVMTool.

 2/27/09 Pg-2028

WaveformTool (MSWT)
6.11 WaveformTool (MSWT)

6.11.1 Overview
This section documents the following MSWT features:

• MSWT Usage Model outlines the target MSWT usage.
• MSWT Look & Feel defines current waveform, and describes how MSWT’s

waveform windows operate.
• MSWT Toolbar File Menu describes the following menu items:

- File->Generate
- File->Compare Waveforms
- File->Open
- File->Close
- File->Save, File->Save As
- File->Print

• MSWT Toolbar View Menu describes the following controls:
- View->Calculator
- View->Compare Controls
- View->Cursor Controls
- View->Graph Controls
- View->Toolbar
- View->Properties
- View->Always On Top
- View->Angles as Degrees
- View->AutoSynchronize

• MSWT Toolbar Tester Menu describes the following controls:
- Tester->Read Waveform
- Tester->Read ACI
- Tester->Read ADC
- Tester->Read AWI
- Tester->Read DCI
- Tester->Read Modulator
- Tester->Set Waveform
- Tester->Synchronize
 2/27/09 Pg-2029

WaveformTool (MSWT)
• MSWT Toolbar Window Menu describes the standard windows management
options.

• Waveform Synchronization describes how MSWT’s waveform display(s) may be
refreshed as waveform attributes change in the tester hardware and/or test
program Waveform* variables.

• Waveform Calculator documents the features of MSWT’s waveform calculator.
• Response to UI User Variable Signals describes how MSWT reacts to selected

signals from UI.
• MSWT Programming Functions describes a set of functions which can be used to

control various MSWT features.

6.11.2 MSWT Usage Model

Note: the information documented here was added to the Magnum 1 software
beginning in software release h2.2.7/h1.2.7. These features were developed for
the Lightning Test System, which contains waveform generation and capture
hardware not available using Magnum 1/2/2x, thus, Magnum 1/2/2x applications
must synthesize waveform contents using other methods. References to
Lightning hardware were removed from this section, to reduce confusion. Refer
to the Lightning Programmer’s Manual for more information.

MSWT may be used to create and display waveforms commonly used by most mixed signal
tests. Waveforms can be saved to disk, loaded from disk, read or written to test program
waveform variables, etc.

MSWT has the ability to create waveforms, using the same waveform generation functions
available from test program code. MSWT also has waveform editing features. A waveform
generated in MSWT can be loaded to a test program waveform variable (Waveform*) which
is used in a test block being debugged.

This section describes the Mixed Signal Wavetool (MSWT) used by test and product
engineers to interact with waveforms. See Waveform Overview.
 2/27/09 Pg-2030

WaveformTool (MSWT)
6.11.3 MSWT Look & Feel

Figure-79: MSWT Main Display
MSWT follows the Microsoft MDI application model where one or more waveform views can
be displayed, but only one waveform view may be selected at one time. The selected
waveform view is considered the current waveform; most MSWT operations apply to the
current waveform:

• The current waveform can display a waveform read from or stored to an existing
waveform variable (Waveform*) in the test program. See Tester->Read
Waveform and Tester->Set Waveform.

• Using File->Save, and File->Save As the current waveform can be stored to
a file on disk.
 2/27/09 Pg-2031

WaveformTool (MSWT)
• Using File->Open, the current waveform can be read from a file on disk. See
Waveform File Formats.

• The current waveform can be manipulated and analyzed using features accessed
using the MSWT’s Waveform Calculator. Many of the associated operations are
based on various Waveform Functions.

• A waveform created using File->Generate will be displayed in a newly created
current view.

Each waveform window retains its association with it's resource i.e. where the waveform
was originally obtained for display. Each displayed waveform has a time stamp, which
MSWT uses to know if the displayed version of the waveform is current. For waveforms
which are associated with test program variables, Waveform Synchronization can be used
to update the waveform display in MSWT.

6.11.4 MSWT Toolbar File Menu
See WaveformTool (MSWT).

The File menu provides standard Windows file controls plus the items noted below:

File->Generate Opens the File->Generate Menu, used to create a new
waveform in MSWT.

File->Compare Waveforms Displays the waveform File->Compare Waveforms Dialog.
Also see View->Compare Controls.

File->Open Read and display a waveform read from a file on disk. The
standard file browser is used. MSWT supports reading
several waveform formats, more below. Also see
Waveform File Formats.
 2/27/09 Pg-2032

WaveformTool (MSWT)
When saving a waveform to a file on disk, the desired file format is selected using the Save
as type menu in the file browser (see Waveform File Formats):

6.11.4.1 File->Generate Menu
See MSWT Toolbar File Menu.

File->Close Closes the current waveform without saving or updating
original waveform source.

File->Save

File->Save As

MSWT will save the waveform in the current view to a file
on disk, in the format selected. A standard file browser is
used, with the desired format selected in the browser.
More below. Also see Waveform File Formats.

File->Print Prints the current waveform using the standard print
mechanisms.

File->Exit Terminates MSWT.
 2/27/09 Pg-2033

WaveformTool (MSWT)
The File->Generate dialog is used to create a new waveform within MSWT.

Figure-80: File->Generate Menu
Selecting any of the File->Generate menu options will display a dialog which is used to
specify the various waveform attributes particular to the type of waveform selected. If OK is
then clicked the new waveform will be created and displayed as the current waveform in
MSWT:

Note that the generated waveform initially only exists within MSWT i.e. additional actions
must be taken to save the waveform (File->Save, File->Save As), or make it available
to the test program (Tester->Set Waveform).

The following waveform types can be created using the File->Generate menu. Note that
each has a corresponding Waveform Generate Functions, which documents the parameters
used to properly define that waveform type:

Type Reference

Constant
See waveform_constant_fill(),
waveform_generate_DC() and
File Generate Constant Dialog.

Gaussian Noise See waveform_generate_gaussian_noise() and
File Generate Gaussian Noise Dialog.

Multitone Sine See Generating Multi-tone Waveforms.

Periodic Pink Noise See waveform_generate_periodic_pink_noise() and
File Generate Pink/White Noise Dialog.

Periodic White Noise See waveform_generate_periodic_white_noise()
and File Generate Pink/White Noise Dialog.

Ramp See waveform_generate_ramp() and
File Generate Ramp/Triangle Dialog.
 2/27/09 Pg-2034

WaveformTool (MSWT)
6.11.4.2 File Generate Constant Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

This dialog is used to complete the definition of a constant value waveform, see
waveform_generate_DC():

Figure-81: Generate Constant Waveform Dialog

Sine See waveform_generate_sine_wave() and
File Generate Sine Waveform Dialog.

Square See waveform_generate_square_wave() and
File Generate Square Waveform Dialog.

Triangle See waveform_generate_triangle_wave() and
File Generate Ramp/Triangle Dialog.

White Noise See waveform_generate_white_noise() and
File Generate Pink/White Noise Dialog.

Wave Name Used to specify the name of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

Sample Rate Used to specify the sample rate of the waveform being created.

Type Reference
 2/27/09 Pg-2035

WaveformTool (MSWT)
6.11.4.3 File Generate Gaussian Noise Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

This dialog is used to complete the definition of a gaussian noise waveform, see
waveform_generate_gaussian_noise():

Figure-82: Generate Gaussian Noise Waveform Dialog

Level Used to specify the DC level of the constant waveform being created.

Level is
Voltage

When enabled, uses waveform_generate_DC() to generate the
waveform, otherwise uses waveform_constant_fill() to generate the
waveform.

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to accept and apply
the values in the dialog. Cancel discards any changes made using the
dialog.

Wave Name Used to specify the name of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

DC Offset Used to specify the DC offset of the waveform being created.

Sample Rate Used to specify the sample rate of the waveform being created.

StdDev See waveform_generate_gaussian_noise().

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to accept and apply
the values in the dialog. Cancel discards any changes made using the
dialog.
 2/27/09 Pg-2036

WaveformTool (MSWT)
6.11.4.4 Generating Multi-tone Waveforms
See File->Generate Menu, MSWT Toolbar File Menu.

Some mixed signal tests require a waveform consisting of two or more test frequencies i.e. a
multi-tone waveform. MSWT supports generating multi-tone waveforms using the
File->Generate->Multitone Sine dialog.

Two algorithms are available to generate multitone waveforms:

• Accuracy method, which optimizes the accuracy of the test tones, i.e. minimal
difference between programmed vs. actual values.

• Speed method which optimizes UTP = Unit Test Period, i.e. the smallest increment
of time in which the signal is coherent.

Some of the controls change based on which mode is selected:

Figure-83: Create MultiTone Waveform Dialog

Dialog Control Usage Purpose

Signal Computed Arbitrary reference name for the sub
waveform

Ft desired (Hz) User Input Desired test frequency, in Hz

Ft actual (Hz) Computed Actual test frequency, in Hz
 2/27/09 Pg-2037

WaveformTool (MSWT)
Bin Computed

FFT bin is the bin number of the signal in
the frequency domain. It can occur in a bin
other than bin-1 if the signal repeats in the
UTP = Unit Test Period.

Cycles Computed Number of cycles in UTP = Unit Test
Period.

Mag User Input Desired signal amplitude (magnitude) in
Volts.

Phase Computed Relative signal phase, in degrees.

Name User Input The waveform name to be displayed in the
MSWT.

Speed/Accuracy Selection User Input

Two algorithms are available to generate
multitone waveforms:

- Accuracy method, which optimizes the
accuracy of the test tones, i.e. minimal
difference between programmed vs. actual
values.

- Speed method, which optimizes UTP =
Unit Test Period, i.e. the smallest increment
of time in which the signal is coherent.

Sample Frequency Maximum User Input

Maximum desired sample frequency. Used
in Speed mode (see Speed/Accuracy
Selection and Sample Frequency
Exact)

Sample Frequency Exact User Input

Maximum desired sample frequency. Used
in Accuracy mode (see Speed/Accuracy
Selection and Sample Frequency
Maximum)

Sample Frequency Actual Computed Actual sample frequency

UTP Maximum User Input Longest desirable UTP = Unit Test Period.

UTP Actual Computed Actual UTP = Unit Test Period.

Samples User Input Desired number of sample values to be
generated

Dialog Control Usage Purpose
 2/27/09 Pg-2038

WaveformTool (MSWT)
Note: the created waveform only exists within MSWT. To use it outside MSWT, it can
be saved to disk (File->Save, File->Save) or loaded to a Waveform*
(Tester->Set Waveform), etc.

A multi-tone waveform is created by specifying parameters using the dialog.

The user fills in some the fields associated with each signal by clicking on the field and
typing in an appropriate value. Values that apply to all signals are specified using the other
controls.

Once the desired number of tones are present, and the required values have been specified,
clicking the Solve button triggers the waveform generation algorithm and updates the
computed values (adjusting the Ft Actual values, if necessary). Once the desired results are
obtained, clicking the OK button will generate the composite waveform and update the
display. The waveform can be viewed, saved to disk, saved to a waveform variable, and/or
loaded into the tester hardware.

6.11.4.5 File Generate Pink/White Noise Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

This dialog is used to complete the definition of a periodic pink noise waveform (see
waveform_generate_periodic_pink_noise()), a periodic white noise waveform
(see waveform_generate_periodic_white_noise()), or a white noise waveform

Vp-p Computed Actual peak-to-peak voltage amplitude

Solve User Control

Executes the waveform generation
algorithm and updates the computed
values. Does not generate the waveform
(use OK).

OK
Cancel User Control

Standard control to close the dialog. OK
causes MSWT to generate and display the
waveform. Cancel discards any changes
made using the dialog.

Dialog Control Usage Purpose
 2/27/09 Pg-2039

WaveformTool (MSWT)
(see waveform_generate_white_noise()). Only the periodic pink noise dialog is
shown:

Figure-84: Generate Pink/White Noise Waveform Dialog

6.11.4.6 File Generate Ramp/Triangle Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

Wave Name Used to specify the name of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

DC Offset Used to specify the DC offset of the waveform being created.

Sample Rate Used to specify the sample rate of the waveform being created.

P-P Amplitude Used to specify the peak-to-peak amplitude of the waveform being
created.

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to generate and
display the waveform. Cancel discards any changes made using the
dialog.
 2/27/09 Pg-2040

WaveformTool (MSWT)
This dialog is used to complete the definition of a ramp waveform (see
waveform_generate_ramp()) or a triangle waveform (see
waveform_generate_triangle_wave()). Only the ramp waveform dialog is shown:

Figure-85: Generate Ramp/Triangle Waveform Dialog

Wave Name Used to specify the name of the waveform being created.

Frequency Used to specify the frequency of the waveform being created.

Cycles Used to specify the number of ramp cycles in the waveform being
created.

Sample Rate Used to specify the sample rate of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

Low Level Used to specify the minimum voltage of the waveform being created.

High Level Used to specify the maximum voltage of the waveform being created.

Phase Used to specify the phase of the waveform being created, in degrees.
 2/27/09 Pg-2041

WaveformTool (MSWT)
6.11.4.7 File Generate Sine Waveform Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

Solve For

Given the specified inputs can rarely all be perfectly obtained the
Solve For selection sets the priority:

Sample - Given the frequency, number of cycles and sample rate,
calculate the number of samples values in the waveform.

Frequency - Given the number of samples, number of cycles and
sample rate, calculate the frequency of the waveform.

Cycles - Given the number of samples, frequency and sample rate,
calculate the number of cycles in the waveform.

Sample Rate - Given the frequency, number of cycles and number of
samples, calculate the sample rate of the waveform.

Solve Executes the waveform generation algorithm and updates the
computed values. Does not generate the waveform (use OK).

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to generate and
display the waveform. Cancel discards any changes made using the
dialog.
 2/27/09 Pg-2042

WaveformTool (MSWT)
This dialog is used to complete the definition of a sine waveform, see
waveform_generate_sine_wave():

Figure-86: Generate Sine Waveform Dialog

Wave Name Used to specify the name of the waveform being created.

Frequency Used to specify the frequency of the waveform being created.

Cycles Used to specify the number of ramp cycles in the waveform being
created.

Sample Rate Used to specify the sample rate of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

P-P Amplitude Used to specify the peak-to-peak amplitude of the waveform being
created.

DC Offset Used to specify the DC offset of the waveform being created.

Phase Used to specify the phase of the waveform being created, in degrees.
 2/27/09 Pg-2043

WaveformTool (MSWT)
6.11.4.8 File Generate Square Waveform Dialog
See File->Generate Menu, MSWT Toolbar File Menu.

Solve For

Given the specified inputs can rarely all be perfectly obtained the
Solve For selection sets the priority:

Sample - Given the frequency, number of cycles and sample rate,
calculate the number of samples values in the waveform.

Frequency - Given the number of samples, number of cycles and
sample rate, calculate the frequency of the waveform.

Cycles - Given the number of samples, frequency and sample rate,
calculate the number of cycles in the waveform.

Sample Rate - Given the frequency, number of cycles and number of
samples, calculate the sample rate of the waveform.

Solve Executes the waveform generation algorithm and updates the
computed values. Does not generate the waveform (use OK).

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to generate and
display the waveform. Cancel discards any changes made using the
dialog.
 2/27/09 Pg-2044

WaveformTool (MSWT)
This dialog is used to complete the definition of a square wave waveform, see
waveform_generate_square_wave():

Figure-87: Generate Square Waveform Dialog

Wave Name Used to specify the name of the waveform being created.

Frequency Used to specify the frequency of the waveform being created.

Cycles Used to specify the number of ramp cycles in the waveform being
created.

Sample Rate Used to specify the sample rate of the waveform being created.

Samples Used to specify the number of sample values in the waveform being
created.

Low Level Used to specify the minimum voltage of the waveform being created.

High Level Used to specify the maximum voltage of the waveform being created.

Duty Cycle Used to specify the duty cycle of the waveform being created.
 2/27/09 Pg-2045

WaveformTool (MSWT)
Solve For

Given the specified inputs can rarely all be perfectly obtained the
Solve For selection sets the priority:

Sample - Given the frequency, number of cycles and sample rate,
calculate the number of samples values in the waveform.

Frequency - Given the number of samples, number of cycles and
sample rate, calculate the frequency of the waveform.

Cycles - Given the number of samples, frequency and sample rate,
calculate the number of cycles in the waveform.

Sample Rate - Given the frequency, number of cycles and number of
samples, calculate the sample rate of the waveform.

Solve Executes the waveform generation algorithm and updates the
computed values. Does not generate the waveform (use OK).

OK, CANCEL
Standard control to close the dialog. OK causes MSWT to generate and
display the waveform. Cancel discards any changes made using the
dialog.
 2/27/09 Pg-2046

WaveformTool (MSWT)
6.11.4.9 File->Compare Waveforms Dialog
See File->Compare Waveforms, MSWT Toolbar File Menu.

It is often useful to view two or more waveforms in the same window, at the same time, using
the same relative X and Y axis scales. MSWT’s Compare Waveforms window is used for
this purpose, which provides a primarily visual comparison capability.

When File->Compare Waveforms is selected, the dialog shown below is displayed:

Figure-88: File->Compare Dialog
The user selects one or more waveforms by moving the desired waveform name(s) from the
Available list to the Selected list, using the dialog’s arrow controls. Up to 4 waveforms
can be added to the Selected list. When OK is clicked the Selected waveforms will be
displayed in MSWT’s Compare Waveforms window.

The controls displayed by invoking View->Compare Controls can be used to individually
manipulate each waveform displayed in the Compare Waveforms window.

Before Selection After Selection
 2/27/09 Pg-2047

WaveformTool (MSWT)
Using the example above results in the following:

Figure-89: Compare Waveform Result
In the example above the waveforms in the Compare Waveforms window are displayed with
default settings but can be independently moved in the X-axis and/or Y-axis using the
Compare Controls, which are displayed by selecting View->Compare Controls.

The two cursors seen in the Compare Waveforms window are added using the mouse:

• Left-mouse click inserts cursor 1.
• Shift-left-mouse click inserts cursor 2.

The Cursor Controls are displayed by selecting View->Cursor Controls. When two
cursors are displayed the delta X/Y values indicate the offset between the cursors and the
controls can be used to move a cursor to a specific value, etc.
 2/27/09 Pg-2048

WaveformTool (MSWT)
6.11.5 MSWT Toolbar View Menu
See WaveformTool (MSWT).

These options are used to hide or display selected controls or to enable operating
modes:

Figure-90: File->View Menu
The following menu items are available in the MSWT Toolbar View Menu:

View->Calculator Displays Waveform Calculator controls.

View->Compare Controls
Displays controls which are used to manipulate the
waveforms displayed in MSWT’s Compare Waveforms
window. See View->Compare Controls

View->Cursor Controls
Displays controls which are used to manipulate a user
inserted cursor displayed in the current waveform
window. See View->Cursor Controls

View->Graph Controls
Displays controls which are used to control display
options for the current waveform window. See
View->Graph Controls

View->Toolbar Controls display of the MSWT’s main tool bar.

View->Properties
Displays the Waveform Properties dialog, which
describes the current waveform. See View->Properties
Dialog.
 2/27/09 Pg-2049

WaveformTool (MSWT)
6.11.5.1 View->Compare Controls
See MSWT Toolbar View Menu.

Displayed using View->Compare Controls. Used to manipulate the display of
waveforms in MSWT’s Compare Waveform window, which must be selected as the active
window. Also see File->Compare Waveforms, and Calculator Compare Menu:

Figure-91: View->Compare Controls

View->Always On Top Controls whether other graphic tools may be placed on top
of MSWT

View->Angles as Degrees
Controls whether [phase] angle values are displayed in
degrees or radians. Does not affect waveforms already
displayed.

View->AutoSynchronize Used to enable/disable auto synchronization. See
Waveform Synchronization.

X Offset

Y Offset

Moves the selected waveform in the X/Y axis. Values can be
incremented/decremented using the arrow controls or a literal value can be
entered.
 2/27/09 Pg-2050

WaveformTool (MSWT)
X Gain

Changes the frequency of the selected waveform. Value can be
incremented/decremented using the arrow controls or a literal value can be
entered.

Y Gain
Changes the amplitude of the selected waveform. Value can be
incremented/decremented using the arrow controls or a literal value can be
entered.

Waveform
Selection

Menu

Used to select one of the waveforms currently displayed in MSWT’s
Compare Waveform window. Changing any of the gain or offset values
(above) modifies the display of the currently selected waveform.
 2/27/09 Pg-2051

WaveformTool (MSWT)
6.11.5.2 View->Cursor Controls
See MSWT Toolbar View Menu.

Displayed using View->Cursor Controls. Used to interact with cursors interactively
inserted into waveform displays using the mouse :

Figure-92: View->Cursor Controls

Data Cursor
Used to select the cursor to manipulate. A 2nd cursor is added to a
waveform using shift-left-mouse.

X Value

Y Value

X/Y axis value at selected cursor’s position. Can be used to move the
cursor to a specified value or to increment/decrement the cursor position by
one resolution point

Max
Min

Position the selected cursor at the maximum/minimum value in the
waveform. If that position is out of the window, the display will scroll to
display the cursor position in the waveform.

Wave Displays the name of the current waveform.

X Delta

X Units
Displays the difference, in X Units, between two cursor positions in the X
axis. Disabled until a 2nd cursor is added using shift-left-mouse.

Y Delta

Y Units
Displays the difference, in Y Units, between two cursor positions in the Y
axis. Disabled until a 2nd cursor is added using shift-left-mouse.

Grid On/Off
control

Name of current
waveform

Cursor
Selection
 2/27/09 Pg-2052

WaveformTool (MSWT)
6.11.5.3 View->Graph Controls
See MSWT Toolbar View Menu.

Displayed using View->Graph Controls. Used to manipulate the display of waveforms in
MSWT :

Figure-93: View->Graph Controls

Value Base
Selects the numerical base being used to display the X/Y cursor position
values. Options include: Double, Integer, Hex. Note that this affects the
values displayed in the Cursor Controls dialog only.

Grid This is an On/Off control, used to show/hide the grid in the current
waveform.

Left
When a waveform window contains two sets of data (for example, polar
notation), controls whether the cursor is attached to data values displayed
on the left side or right side of the display.

X Scale Used to change the displayed X Scale value, effectively zooming in/out on
X axis of the current waveform. Scroll-bars will appear if appropriate.

Y Scale Used to change the displayed Y Scale value, effectively zooming in/out on
Y axis of the current waveform. Scroll-bars will appear if appropriate.

X Mode Used to select the mode in which X axis values are displayed. Options
are: Native and Samples, see below.

Y Mode Used to select the mode in which Y axis values are displayed. Options are:
Native, Magnitude, dbAuto and dbAbsolute. See below.

Plot Used to select the line type used to plot the waveform sample data. Options
include: Line, LineMark, Sample, Staircase, Bar.
 2/27/09 Pg-2053

WaveformTool (MSWT)
Graph mode options determine the mode in which X and Y axis values are displayed.
The X Mode options are:

Ref

When Y Mode = dbAuto, MSWT sets this field after calculating the DB
reference (locating the bin with the highest magnitude).
When Y Mode = dbAbsolute mode, the user enters the desired DB
reference.

Y Minimum See Y Ranging below.

Y Maximum See Y Ranging below.

Y Ranging

Normally the plotting software auto ranges. Sometimes when waveforms
are being compared, it is useful to fix the axis ranges, which is done using
the Y Ranging selections:

Auto - auto ranging

Fixed Left - the left axis range is controlled by Y Minimum and
Y Maximum.

Fixed Right - the right axis range is controlled by Y Minimum and
Y Maximum.

Trace Width Used to select the line width used to plot the waveform sample data.
Options include: 1, 2 and 4.

Reset Resets all View->Graph Controls to default values.

Left Toggles display mode between Left, Right, and Both. Useful when a
given window displays multiple plots, to control which plot(s) are displayed.

Apply Used when Y Mode = dbAbsolute to apply a user specified dB reference
value.

Native The X axis label is set from the waveform's X_units value. See Waveform
Units.

Samples The X axis label is sample count (SCALE_SAMPLES), regardless of the
waveforms X_units value.
 2/27/09 Pg-2054

WaveformTool (MSWT)
The Y Mode options are:

6.11.5.4 View->Properties Dialog
See MSWT Toolbar View Menu.

The View->Properties dialog is used to display key information about the current
waveform. This dialog can be invoked two ways:

• Using the right mouse button on the current waveform
• Using View->Properties from the MSWT Toolbar View Menu:

Native The Y axis label is set from the waveform's Y_units value. See Waveform
Units.

Magnitude
The Y axis label and plotted values are determined by processing the
waveform through the waveform_magnitudes() function. This is useful
to display the magnitudes of an FFT.

dbAuto Automatically calculates the waveform's Y axis label and displayed values
by finding the highest bin magnitude, then calculating dB from that value.

dbAbsolute The user provides the reference used to establish the Y axis label and
displayed values i.e. dB relative to a user supplied reference value.
 2/27/09 Pg-2055

WaveformTool (MSWT)
Either method will display the WaveProperties dialog:

Figure-94: View->Properties Dialog
 2/27/09 Pg-2056

WaveformTool (MSWT)
If View->Properties is invoked when MSWT’s Compare Waveform window is selected
the Scope Properties dialog is displayed:

Figure-95: Scope Properties Dialog
This allows the user to view information about the waveforms displayed in the Compare
Window. The Hide control is a toggle which can be used to hide/show the waveform.

6.11.6 MSWT Toolbar Tester Menu
See WaveformTool (MSWT).

The Tester menu is used to:

• Select waveforms to be displayed in MSWT, either from test program variables or
from hardware which stores waveforms.

• Send the current waveform to an existing waveform variable in the test program,
or tester hardware which stores waveforms.

• Update (synchronize) the waveforms
• Update any waveforms displayed in MSWT which were read from test program

variables from hardware.
• Execute a selected test block.
 2/27/09 Pg-2057

WaveformTool (MSWT)
The Tester menu contains the following options:

Figure-96: Tester Menu

6.11.6.1 Tester->Read Waveform Dialog
See MSWT Toolbar Tester Menu.

Displayed using Tester->Read Waveform. Displays all currently defined waveforms
(Waveform*) in the loaded test program. Selecting a waveform and clicking OK causes

Tester->Read Waveform
Displays the Tester->Read Waveform Dialog which is used
to select a waveform (Waveform*) from the test program
to be displayed.

Tester->Set Waveform

Displays the Tester->Set Waveform Dialog which is used to
select a waveform (Waveform*) to be updated from the
current waveform. This CAN over-write existing waveform
parameters. This option is not shown unless MSWT has at
least one waveform displayed.

Tester->Synchronize

Refreshes the display of waveforms which were read from
the test program (using Tester->Read Waveform) . No
additional dialogs are used. See Waveform
Synchronization.

Note: the disabled controls in the dialog are only enabled when using Lightning hardware.
 2/27/09 Pg-2058

WaveformTool (MSWT)
that waveform to be read from the test program and displayed in MSWT as the current
waveform:

Figure-97: Tester->Read Waveform Dialogs
If the selected waveform has not been initialized or contains bad data the error dialog shown
above is displayed and no waveform will be displayed in MSWT.
 2/27/09 Pg-2059

WaveformTool (MSWT)
6.11.6.2 Tester->Set Waveform Dialog
See MSWT Toolbar Tester Menu.

Displayed using Tester->Set Waveform. Used to set (write) a waveform in the test
program from the current waveform displayed in MSWT. Note the following:

• Displays all waveforms (Waveform*) currently defined in the loaded test program
(whether initialized/valid or not).

• Selecting a waveform and clicking OK causes that waveform to be updated from
MSWT’s current waveform.

• If the selected waveform already contains sample values the user will be prompted
to confirm over-writing of the selected waveform. Clicking OK over-writes any
existing waveform parameters of the selected waveform.

• The Tester->Set Waveform is not displayed until MSWT displays at least one
waveform:

Figure-98: Tester->Set Waveform Dialog & Confirmer
 2/27/09 Pg-2060

WaveformTool (MSWT)
6.11.7 MSWT Toolbar Window Menu
See WaveformTool (MSWT).

The MSWT Windows menu provides standard Windows options used to tile, cascade,
arrange icons, etc. This menu is not displayed until a MSWT displays at least one
waveform:

Figure-99: Window Menu

6.11.8 Waveform Synchronization
See WaveformTool (MSWT).

Some waveforms displayed in MSWT will represent volatile data. Software waveform
definitions are also subject to change, from executing test program code.

When using MSWT, if the test program or hardware state changes, it may be necessary to
update (synchronize) the appropriate MSWT waveform display windows. Synchronization
will occur when:

• In MSWT, Tester->Synchronize is selected.
• UI sends the ui_TestDone signal (see Response to UI User Variable Signals) and

auto-synchronization is enabled (default, or using View->AutoSynchronize).
Synchronization causes MSWT to update any waveforms which were displayed by reading:

• A waveform variable (Waveform*) using Tester->Read Waveform.
For each of these, the original waveform source is read to update its corresponding
waveform window. This may or may not result in a change in the waveform being displayed,
depending on whether the waveform source has been modified since the last
synchronization occurred.
 2/27/09 Pg-2061

WaveformTool (MSWT)
The following waveforms will not be updated:

• Waveforms displayed by reading a waveform file using File->Open.
• Waveforms created using File->Generate.
• Waveforms generated by the Waveform Calculator.

6.11.9 Waveform Calculator
See MSWT Toolbar View Menu.

MSWT’s waveform calculator can be used to perform various mathematical and DSP
operations, conversions, user defined operations, etc. on waveforms displayed in MSWT.

This section is divided into the following subsections:

• Overview
• Calculator Controls
• Calculator Math Menu
• Calculator DSP Menu
• Calculator Convert Menu
• Calculator Compare Menu
• Calculator Stack Menu
• Calculator Encode Menu
• Calculator Twiddle Menu
• Calculator Dialogs/RPN Option

6.11.9.1 Overview
See Waveform Calculator.

In general, using MSWT’s waveform calculator, the sample values of a specified waveform
are processed by a selected operation. The available operations include many of the same
Waveform Functions usable in test program code.
 2/27/09 Pg-2062

WaveformTool (MSWT)
For example, below, the upper waveform is a 3-tone sine wave (1.02KHz, 1.04KHz, 1.0KHz,
1024 samples), generated using Generating Multi-tone Waveforms. Below it is the result of
performing a Real FFT, using the Calculator DSP Menu RealFFT option:

Figure-100: Waveform Calculator Example
Using a stack paradigm, MSWT’s waveform calculator can use RPN or standard operations.
Stack operations are displayed in a panel, to show waveforms and/or values to be used by
an operation selected using the adjacent buttons.

The basic operational model is as follows:

1. The user pushes one or more items onto the stack and clicks an operation button.

2. MSWT performs the operation and pushes the result onto the stack.
 2/27/09 Pg-2063

WaveformTool (MSWT)
3. If a calculator operation result is a Waveform, MSWT opens a new waveform window to
display the new waveform. Not all operations result in a waveform (THD calculations for
example). The calculator will provide an output window for displaying numerical results.

The available controls and operations are described in the following sections.

6.11.9.2 Calculator Controls
See Waveform Calculator.

Each of the buttons available in the Waveform Calculator panel invoke a menu of additional
calculator options:

Figure-101: Calculator Controls

Math Displays the Calculator Math Menu, which is used to select mathematical
operations to be performed on the value/waveform at the top of the stack.

DSP Displays the Calculator DSP Menu, which is used to select DSP operations to
be performed on the value/waveform at the top of the stack.

Convert Displays the Calculator Convert Menu, which is used to select conversion
operations to be performed on the value/waveform at the top of the stack.

Compare Displays the Calculator Compare Menu, which is used to manipulate the X/Y
Offset and Gain parameters affecting waveforms displayed in the Compare
Waveforms window.

Stack Displays the Calculator Stack Menu, which is used to directly interact with the
calculator stack.
 2/27/09 Pg-2064

WaveformTool (MSWT)
6.11.9.3 Calculator Math Menu
See Waveform Calculator, Calculator Controls.

Encode Displays the Calculator Encode Menu, which is used to compress (encode) on
the value/waveform at the top of the stack.

Twiddle Displays the Calculator Twiddle Menu, which is used to select boolean and
other operations to be performed on the value/waveform at the top of the stack.

Dialogs Displays the Calculator Dialogs/RPN Option, which is used to select MSWT’s
calculator operating mode.
 2/27/09 Pg-2065

WaveformTool (MSWT)
These operations each generate and display a new waveform, using sample values taken
from a specified waveform (default = current waveform) and modified based on the selected
operation, which is based on the Waveform Functions usable in test program code:

Figure-102: Calculator Math Menu

Absolute Value See waveform_absolute_value()

Add

AddScalar
See waveform_add()

Arithmetic Mean See waveform_arithmetic_mean()

Average See waveform_average()

Clamp See waveform_clamp().
 2/27/09 Pg-2066

WaveformTool (MSWT)
Clip Lower

Clip Upper
See waveform_clip_upper(), waveform_clip_lower()

Differencing See waveform_differencing()

Divide

DivideScalar
See waveform_divide()

Exp

Exp10
See waveform_exp(), waveform_exp10()

Geometric Mean See waveform_geometric_mean()

Linear Regression See waveform_linear_regression()

Log

Log10
See waveform_log(), waveform_log10()

Max

Min
See waveform_min_max()

Median See waveform_median()

Multiply

MultiplyScalar
See waveform_multiply()

Negate See waveform_negate()

Power (double)

Power (integer)
See waveform_power()

Reciprocal See waveform_reciprocal()

Rescale See waveform_rescale()

RMS See waveform_rms()

Sort See waveform_sort()

Standard Deviation See waveform_standard_deviation()

Subtract

SubtractScalar
See waveform_subtract()

Sum See waveform_sum()
 2/27/09 Pg-2067

WaveformTool (MSWT)
6.11.9.4 Calculator DSP Menu
See Waveform Calculator, Calculator Controls.

These operations each generate and display a new waveform, using sample values taken
from a specified waveform (default = current waveform) and processed based on the

Sum Of Squares See waveform_sum_of_squares()

Summing See waveform_summing()

Variance See waveform_variance()
 2/27/09 Pg-2068

WaveformTool (MSWT)
selected operation, which is based on the Waveform Functions usable in test program
code:

Figure-103: Calculator DSP Menu

Adc Ramp Dnl

Adc Ramp Inl
See waveform_adc_ramp_inl_dnl()

Adc Sine Dnl

Adc Sine Inl
See waveform_adc_sine_inl_dnl()

AutoCorrelate
Circular See waveform_autocorrelate_circular()

ComplexFFT See waveform_complex_fft()

ComplexIFFT See waveform_complex_ifft()

Convolve Circular See waveform_convolve_circular()

Convolve Linear See waveform_convolve_linear()
 2/27/09 Pg-2069

WaveformTool (MSWT)
Convolve Partial See waveform_convolve_partial()

Correlate Circular See waveform_correlate_circular()

Correlate Linear See waveform_correlate_linear()

Covariance See waveform_covariance()

Dac Ramp Dnl

Dac Ramp Inl
See waveform_dac_ramp_inl_dnl()

ENOB See waveform_enob()

Histogram See waveform_histogram().

Quantize See waveform_quantize()

RealFFT See waveform_real_fft().

RealIFFT See waveform_real_ifft().

SFDR See waveform_sfdr().

SINAD See waveform_sinad().

SNR See waveform_snr().

THD See waveform_thd().

Apply Window See waveform_apply_window()

Blackman Window
Coeffients

See waveform_blackman_window_coefficients() and
Waveform Window Functions

Blackman Harris
Window Coeffients

See waveform_blackman_harris_window_coefficients()
and Waveform Window Functions

DolphChebyshev
Window Coeffients

See waveform_dolph_chebyshev_window_coefficients()
and Waveform Window Functions

Hamming Window
Coeffients

See waveform_hamming_window_coefficients() and
Waveform Window Functions

Hanning Window
Coeffients

See waveform_hanning_window_coefficients() and
Waveform Window Functions

Triangle Window
Coeffients

See waveform_triangle_window_coefficients() and
Waveform Window Functions
 2/27/09 Pg-2070

WaveformTool (MSWT)
6.11.9.5 Calculator Convert Menu
See Waveform Calculator, Calculator Controls.

These operations each generate and display a new waveform, using sample values taken
from a specified waveform (default = current waveform) and modified based on the selected
operation, which is based on the Waveform Functions usable in test program code:

Figure-104: Calculator Convert Menu

Concatenate See waveform_concat().

Decimate See waveform_decimate()

Deinterleave See waveform_deinterleave()

Double Strided Copy See waveform_double_strided_copy()

Integerize See waveform_integerize()

Interleave See waveform_interleave()

JoinPolar See waveform_join_polar().

JoinComplex See waveform_join_complex().

Magnitudes See waveform_magnitudes().

MakeComplex See waveform_make_complex().
 2/27/09 Pg-2071

WaveformTool (MSWT)
RectToPolar See waveform_rectangular_to_polar()

PolarToRect See waveform_polar_to_rectangular().

Resample See waveform_resample()

Reorder See waveform_reorder()

Reverse See waveform_reverse()

Select Elements See waveform_select_elements()

Select Indices See waveform_select_indices()

Selective Merge See waveform_selective_merge()

Split See waveform_split().

Strided Copy See waveform_strided_copy()

Subset See waveform_subset().

Zero Pad See waveform_zero_pad()
 2/27/09 Pg-2072

WaveformTool (MSWT)
6.11.9.6 Calculator Compare Menu
See Waveform Calculator, Calculator Controls.

These operations are used to perform various value or waveform comparisons. Each option
presents a dialog used to enter value(s) or select waveform(s) consistent with the waveform
function noted, which is based on the Waveform Functions usable in test program
code:

EQ Scalar

EQ
Equality test. See waveform_eq()

GE Scalar

GE
Greater-than or equal-to test. See waveform_ge()

GT Scalar

GT
Greater-than test. See waveform_gt()

LE Scalar

LE
Less-than or equal-to test. See waveform_le()

LT Scalar

LT
Less-than test. See waveform_lt()

Within Bounds SS

Within Bounds WS

Within Bounds SW

Within Bounds WW

Within-bounds test. See waveform_within_bounds().

S = Scalar
W = Waveform
i.e. WS = Waveform to Scalar evaluation
 2/27/09 Pg-2073

WaveformTool (MSWT)
6.11.9.7 Calculator Stack Menu
See Waveform Calculator, Calculator Controls.

These operations directly interact with the Waveform Calculator stack:

Figure-105: Calculator Stack Menu

Clear Clears all values from the stack.

Dup Pushes the previous stack value onto the stack (duplicate)

Drop Removes only the last value on the stack (pop).

Over Pushes the 2nd value on the stack onto the top of the stack.

Pick Pushes value at the indexth position on the stack onto the top of
the stack. See Calculator Stack Pick Dialog.

PushActive Pushes the current waveform onto the stack.

PushDoubleVariable See Calculator Stack PushDoubleVariable Dialog. Presents a
dialog displaying all DOUBLE_VARIABLE user variables. A test
program must be loaded. When OK is clicked, the value of the
selected variable is pushed onto the stack.

PushIntVariable See Calculator Stack PushIntVariable Dialog. Presents a dialog
displaying all INT_VARIABLE user variables. A test program
must be loaded. When OK is clicked, the value of the selected
variable is pushed onto the stack.
 2/27/09 Pg-2074

WaveformTool (MSWT)
6.11.9.8 Calculator Stack Pick Dialog
See Calculator Stack Menu.

PushResource See Calculator Stack PushResource Dialog. Presents a dialog
displaying all Waveform* variables. A test program must be
loaded. When OK is clicked, the selected waveform is pushed
onto the stack

PushWaveform See Calculator Stack PushWaveform Dialog. Presents a dialog
displaying all the waveforms currently displayed in MSWT. When
OK is clicked, the selected waveform is pushed onto the stack and
made the current window.

Roll Removes the value at the indexth position in the stack and pushes
it onto the top of the stack. See Calculator Stack Roll Dialog.

Rot Rotates the values currently on the stack, which must contain at
least 3 values. The last value on the stack becomes the first
value. No dialog is presented for this option.

RRot Reverse rotates the values currently on the stack, which must
contain at least 3 values. The first value on the stack becomes the
last value. No dialog is presented for this option.

Swap Reverses the last two entries on the stack. No dialog is presented
for this option.

Display Top Causes the first waveform on the stack to become the current
waveform. No dialog is presented for this option.
 2/27/09 Pg-2075

WaveformTool (MSWT)
Pushes value at the indexth position on the stack onto the top of the stack:

Figure-106: Calculator Stack Pick Dialog
 2/27/09 Pg-2076

WaveformTool (MSWT)
6.11.9.9 Calculator Stack PushDoubleVariable Dialog
See Calculator Stack Menu

This dialog displays a list of double User Variable(s) defined in the currently loaded test
program. When OK is clicked the value from the selected variable is pushed onto the stack

Figure-107: Calculator Stack Push Double Variable Dialog
 2/27/09 Pg-2077

WaveformTool (MSWT)
6.11.9.10 Calculator Stack PushIntVariable Dialog
See Calculator Stack Menu

This dialog displays a list of integer User Variable(s) defined in the currently loaded test
program. When OK is clicked the value from the selected variable is pushed onto the stack:

Figure-108: Calculator Stack Push Integer Variable Dialog
 2/27/09 Pg-2078

WaveformTool (MSWT)
6.11.9.11 Calculator Stack PushResource Dialog
See Calculator Stack Menu

This dialog displays a list of waveform resources (Waveform*) in the currently loaded test
program. When OK is clicked the selected waveform resource is displayed in MSWT, made
the current waveform, and is pushed onto the stack:

Figure-109: Calculator Stack Push Resource Variable Dialog

6.11.9.12 Calculator Stack PushWaveform Dialog
See Calculator Stack Menu
 2/27/09 Pg-2079

WaveformTool (MSWT)
This dialog displays a list of waveforms currently displayed in MSWT. When OK is clicked the
selected waveform is pushed onto the stack:

Figure-110: Calculator Stack Push Waveform Dialog

6.11.9.13 Calculator Stack Roll Dialog
See Calculator Stack Menu.
 2/27/09 Pg-2080

WaveformTool (MSWT)
Removes the value at the indexth position in the stack and pushes it onto the top of the
stack:

Figure-111: Calculator Stack Roll Dialog
 2/27/09 Pg-2081

WaveformTool (MSWT)
6.11.9.14 Calculator Encode Menu
See Waveform Calculator, Calculator Controls.

These operations are used to compress (encode) a waveform, see Waveform Compression
Functions. Each option below refers to the associated waveform function used to perform
the same operation in test program code:

Figure-112: Calculator Encode Menu

A Law Decode See waveform_a_law_decode()

A Law Encode See waveform_a_law_encode()

BCD To Binary See waveform_bcd_to_binary()

Binary To Gray
Code See waveform_binary_to_gray_code()

Binary To BCD See waveform_binary_to_bcd()

Binary To Offset
Binary See waveform_binary_to_offset_binary()

Binary To Ones
Complement See waveform_binary_to_ones_complement()

Binary To Sign and
Magnitude See waveform_binary_to_sign_and_magnitude()

Binary To Twos
Complement See waveform_binary_to_twos_complement()
 2/27/09 Pg-2082

WaveformTool (MSWT)
6.11.9.15 Calculator Twiddle Menu
See Waveform Calculator, Calculator Controls.

These operations each generate and display a new waveform, using sample values taken
from a specified waveform (default = current waveform) and modified based on the selected

Gray Code To
Binary See waveform_gray_code_to_binary()

Lookup See waveform_lookup()

Mu Law Decode See waveform_mu_law_decode()

Mu Law Encode See waveform_a_law_encode()

Offset Binary To
Binary See waveform_offset_binary_to_binary()

Ones Complement to
Binary See waveform_ones_complement_to_binary()

Sign and Magnitude
To Binary See waveform_sign_and_magnitude_to_binary()

Twos Complement to
Binary See waveform_twos_complement_to_binary()
 2/27/09 Pg-2083

WaveformTool (MSWT)
function. Each option below refers to the associated waveform function used to perform the
same operation in test program code:

Figure-113: Calculator Twiddle Menu

Bitwise AND

Bitwise AND Scalar
See waveform_bitwise_and() and
Calculator Twiddle Bitwise/Logical Dialogs

Bitwise OR

Bitwise OR Scalar
See waveform_bitwise_or() and
Calculator Twiddle Bitwise/Logical Dialogs

Bitwise Reorder See waveform_bitwise_reorder() and
Calculator Twiddle Rotate/Shift Dialogs

Bitwise Reverse See waveform_bitwise_reverse() and
Calculator Twiddle Rotate/Shift Dialogs

Bitwise RTL

Bitwise RTL Scalar
See waveform_bitwise_rotate_left() and
Calculator Twiddle Rotate/Shift Dialogs

Bitwise RTR

Bitwise RTR Scalar
See waveform_bitwise_rotate_right() and
Calculator Twiddle Rotate/Shift Dialogs

Bitwise SHL

Bitwise SHL Scalar
See waveform_bitwise_shift_left() and
Calculator Twiddle Rotate/Shift Dialogs
 2/27/09 Pg-2084

WaveformTool (MSWT)
Bitwise SHR

Bitwise SHR Scalar
See waveform_bitwise_shift_right() and
Calculator Twiddle Rotate/Shift Dialogs

Bitwise XOR

Bitwise XOR Scalar
See waveform_bitwise_xor() and
Calculator Twiddle Bitwise/Logical Dialogs

Logical AND See waveform_logical_and() and
Calculator Twiddle Bitwise/Logical Dialogs

Logical OR See waveform_logical_or() and
Calculator Twiddle Bitwise/Logical Dialogs

Logical NOT See waveform_logical_not() and
Calculator Twiddle Bitwise/Logical Dialogs

Logical XOR See waveform_logical_xor() and
Calculator Twiddle Bitwise/Logical Dialogs

RTL

RTR

See waveform_rotate_left(),
waveform_rotate_right() and
Calculator Twiddle Bitwise/Logical Dialogs
 2/27/09 Pg-2085

WaveformTool (MSWT)
6.11.9.16 Calculator Twiddle Bitwise/Logical Dialogs
See Calculator Twiddle Menu.

Several Calculator Twiddle Menu options use dialogs very similar to those displayed below;
i.e. other than the dialog title (Bitwise AND, etc.), the other dialog fields and controls are
identical, and are described once below:

6.11.9.17 Calculator Twiddle Rotate/Shift Dialogs
See Calculator Twiddle Menu.

• Bitwise AND
• Bitwise OR
• Bitwise Reorder
• Bitwise XOR
• Logical AND
• Logical OR
• Logical NOT
• Logical XOR

• Bitwise AND Scalar
• Bitwise OR Scalar
• Bitwise XOR Scalar
 2/27/09 Pg-2086

WaveformTool (MSWT)
Several Calculator Twiddle Menu options use dialogs similar to those displayed below i.e.
other than the dialog title (Bitwise Reverse, etc.), the other dialog fields and controls are
identical, and are described once below:

Figure-114: Calculator Twiddle Rotate/Shift Dialogs

• Bitwise Reverse
• Bitwise RTL
• Bitwise RTR
• Bitwise SHL
• Bitwise SHR

• Bitwise RTL Scalar
• Bitwise RTR Scalar
• Bitwise SHL Scalar
• Bitwise SHR Scalar

• RTL
• RTR
 2/27/09 Pg-2087

WaveformTool (MSWT)
6.11.9.18 Calculator Dialogs/RPN Option
See Waveform Calculator, Calculator Controls.

MSWT’s Waveform Calculator has two operating modes: Reverse Polish Notation (RPN)
and standard, here called Dialogs mode. The RPN/Dialogs button is used to toggle
between modes.

Note the button name changes, and the Data Entry Window is enabled in RPN mode. This
window is used to manually enter data to be processed.

6.11.10 Response to UI User Variable Signals
See WaveformTool (MSWT).

UI defines a number of user variables which can trigger actions in tool processes. MSWT
responds to (only) the following signals, as noted. Additional details of each UI user variable
can be found in the Maverick-I/-II Programmer’s Manual.

• ui_ProgLoaded: updates ui_SiteMask and ui_Engineering variables in
MSWT.

• ui_ProgUnloaded: MSWT closes all waveform windows associated with the test
program being unloaded.

• ui_TestDone: updates each waveform window by reading the current hardware
state or waveform variable.

• ui_Minimized - MSWT display is minimized
• ui_Restored - MSWT display is restored
• ui_ToolLoaded: ignored
• ui_ToolUnloaded: ignored

Dialogs Mode RPN Mode
Data Entry Window
 2/27/09 Pg-2088

WaveformTool (MSWT)
• ui_TestStarted: ignored

6.11.11 MSWT Programming Functions
See WaveformTool (MSWT).

The following functions can be used to interact with WaveformTool (MSWT) from test
program code. These are listed in approximate usage order:

• Types, Enums, etc.
• mswt_present()
• mswt_start()
• mswt_minimize()
• mswt_restore()
• mswt_always_on_top()
• mswt_close_windows()
• mswt_display_file()
• mswt_display_waveform()
• mswt_synchronize()
• mswt_auto_synchronize()
• mswt_set_timeout()
• mswt_view_graph_controls()
• mswt_view_calculator_controls()
• mswt_view_compare_controls()
• mswt_view_cursor_controls()
• mswt_reset_graph_controls()
• mswt_angles_as_degrees()
• mswt_set_x_axis_mode(), mswt_set_y_axis_mode()
• mswt_set_y_axis_reference()
• mswt_set_plot_mode()
• mswt_set_trace_width()
• mswt_display_grid()
• mswt_set_axis_units()
 2/27/09 Pg-2089

WaveformTool (MSWT)
• mswt_set_y_range

6.11.11.1 Types, Enums, etc.
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The following enumerated types are used in support of various WaveformTool (MSWT)
functions:

Usage
The MSWTPlotMode enumerated type is used to specify the plot mode for the current
waveform displayed in WaveformTool (MSWT). See mswt_set_plot_mode():

enum MSWTPlotMode { mswt_line, mswt_line_mark, mswt_sample,
mswt_staircase, mswt_bar };

The MSWTXAxisMode and MSWTYAxisMode enumerated types are used to specify the X
and Y display mode of the current waveform displayed in WaveformTool (MSWT). See
mswt_set_x_axis_mode(), mswt_set_y_axis_mode():

enum MSWTXAxisMode { mswt_x_native, mswt_samples };

enum MSWTYAxisMode {mswt_y_native, mswt_magnitude, mswt_db_auto,
mswt_db_absolute };

The MSWTAxisUnits enumerated type is used to specify the X axis units used to display
the current waveform in WaveformTool (MSWT). See mswt_set_axis_units():

enum MSWTAxisUnits { mswt_double, mswt_integer, mswt_hex };

The MSWTYRangeMode enumerated type is used to select the Y Ranging value using
mswt_set_y_range:

MSWTYRangeModemswt_y_automswt_fixed_leftmswt_fixed_right

enum MSWTYRangeMode { mswt_y_auto,
mswt_fixed_left,
mswt_fixed_right };
 2/27/09 Pg-2090

WaveformTool (MSWT)
6.11.11.2 mswt_present()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_present() function is used to confirm that WaveformTool (MSWT) has been
started.

Usage
BOOL mswt_present();

where:

mswt_present() returns TRUE if WaveformTool (MSWT) is started, otherwise FALSE is
returned.

Example
if(! mswt_present()) mswt_start();

6.11.11.3 mswt_start()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_start() function is used to invoke WaveformTool (MSWT).

Usage
BOOL mswt_start();

where:

mswt_start() returns TRUE if WaveformTool (MSWT) starts without error, otherwise
FALSE is returned.

Example
if(! mswt_present()) mswt_start();
 2/27/09 Pg-2091

WaveformTool (MSWT)
6.11.11.4 mswt_minimize()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_minimize() function is used to minimize the WaveformTool (MSWT) display.
Note the following:

• The WaveformTool (MSWT) display can be restored using mswt_restore().
• mswt_minimize() and mswt_restore() operate normally even when

mswt_always_on_top() is TRUE.
• mswt_minimize() will return FALSE if executed when WaveformTool (MSWT) is

not running.

Usage
BOOL mswt_minimize();

where:

mswt_minimize() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_minimize())

output(" mswt_minimize() executed when MSWT not started");

6.11.11.5 mswt_restore()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_restore() function is used to cause the WaveformTool (MSWT) display to be
un-minimized. Note the following:

• The WaveformTool (MSWT) display can be minimized using mswt_minimize().
 2/27/09 Pg-2092

WaveformTool (MSWT)
• mswt_restore() and mswt_minimize() operate normally even when
mswt_always_on_top() is TRUE.

• mswt_restore() will return FALSE if executed when WaveformTool (MSWT) is
not running.

Usage
BOOL mswt_restore();

where:

mswt_restore() returns FALSE if executed when WaveformTool (MSWT) is not running,
otherwise TRUE is returned.

Example
if(! mswt_restore())

output(" mswt_restore() executed when MSWT not started");

6.11.11.6 mswt_always_on_top()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_always_on_top() function is used to control whether the WaveformTool
(MSWT) display is always displayed on top of other displays. Note the following:

• mswt_minimize() and mswt_restore() operate normally even when
mswt_always_on_top() is TRUE.

• mswt_always_on_top() will return FALSE if executed when WaveformTool
(MSWT) is not running.

Usage
BOOL mswt_always_on_top(BOOL always);

where:

always specifies whether WaveformTool (MSWT) display is always displayed on top of
other displays (TRUE) or not (FALSE).
 2/27/09 Pg-2093

WaveformTool (MSWT)
mswt_always_on_top() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_always_on_top(TRUE))

output(" mswt_always_on_top() executed when MSWT not started");

6.11.11.7 mswt_close_windows()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_close_windows() function is used to terminate WaveformTool (MSWT) and
close all associated windows.

mswt_close_windows() will return FALSE if executed when WaveformTool (MSWT) is
not running.

Usage
BOOL mswt_close_windows();

where:

mswt_close_windows() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_close_windows())

output(" mswt_close_windows() executed when MSWT not started");

6.11.11.8 mswt_display_file()
See WaveformTool (MSWT), MSWT Programming Functions.
 2/27/09 Pg-2094

WaveformTool (MSWT)
Description
The mswt_display_file() function is used to read a specified waveform file and display
the waveform in a new WaveformTool (MSWT) window. Several waveform formats are
supported, see Waveform File Formats.

Usage
BOOL mswt_display_file(CString filepath,

int channel DEFAULT_VALUE(-1));

where:

filepath specifies the waveform file to be read. If a full path to the file is not specified the
file must be relative to the test program executable location i.e.
disk:\path_to_program\Debug\program.exe.

channel is optional, and if used specifies which channel of a multi-channel waveform (for
example, stereo) is to be read. Default = -1 = all channels.

mswt_display_file() returns TRUE if successful, otherwise FALSE is returned.

Example
CString f = "d:\\my_path\\all_waveforms\\this_waveform.nwav";
if(! mswt_display_file(f))

output(" ERROR reading waveform file %s", f);

6.11.11.9 mswt_display_waveform()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_display_waveform() function is used to display a specified waveform in
WaveformTool (MSWT). The waveform is read from the test program.

Usage
BOOL mswt_display_waveform(Waveform* pWaveform);

where:

pWaveform identifies the waveform to be displayed.
 2/27/09 Pg-2095

WaveformTool (MSWT)
mswt_display_waveform() returns TRUE if pWaveform points to a valid waveform,
otherwise FALSE is returned.

Example
if(! mswt_display_waveform(sine_wf))

output(" ERROR: mswt_display_waveform() returned FALSE");

6.11.11.10 mswt_synchronize()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_synchronize() function is used to synchronize (update) selected waveform
windows in WaveformTool (MSWT). See Waveform Synchronization.

Usage
BOOL mswt_synchronize();

where:

mswt_synchronize() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_synchronize())
 output(" ERROR: mswt_synchronize() executed when MSWT not started");

6.11.11.11 mswt_auto_synchronize()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_auto_synchronize() function is used to enable or disable the WaveformTool
(MSWT) auto-synchronize mode. See Waveform Synchronization.
 2/27/09 Pg-2096

WaveformTool (MSWT)
Usage
BOOL mswt_auto_synchronize(BOOL auto_synchronize);

where:

auto_synchronize specifies whether auto-synchronize mode is enabled (TRUE) or
disabled (FALSE).

mswt_auto_synchronize() returns FALSE if executed when WaveformTool (MSWT) is
not running, otherwise TRUE is returned.

Example
if(! mswt_auto_synchronize(TRUE))
 output(" ERROR: mswt_auto_synchronize() executed when MSWT not started");

6.11.11.12 mswt_set_timeout()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_timeout() function is used to specify a time-out value for WaveformTool
(MSWT).

Usage
DWORD mswt_set_timeout(DWORD timeout);

where:

timeout specifies the desired time-out value, in uS.

mswt_set_timeout() returns the currently programmed timeout value.

Example
DWORD t = mswt_set_timeout(1000000);
 2/27/09 Pg-2097

WaveformTool (MSWT)
6.11.11.13 mswt_view_graph_controls()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_view_graph_controls() function is used to enable or disable the display of
WaveformTool (MSWT)’s graph controls. See View->Graph Controls in MSWT Toolbar View
Menu.

Usage
BOOL mswt_view_graph_controls(BOOL visible);

where:

visible specifies whether WaveformTool (MSWT)’s graph controls are displayed (TRUE)
or not (FALSE).

mswt_view_graph_controls() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_view_graph_controls(TRUE))
 output(" ERROR: mswt_view_graph_controls() executed when MSWT not started");

6.11.11.14 mswt_view_calculator_controls()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_view_calculator_controls() function is used to enable or disable the
display of WaveformTool (MSWT)’s Calculator Controls.

Usage
BOOL mswt_view_calculator_controls(BOOL visible);

where:
 2/27/09 Pg-2098

WaveformTool (MSWT)
visible specifies whether MSWT’s Calculator Controls are displayed (TRUE) or not
(FALSE).

mswt_view_calculator_controls() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_view_calculator_controls(TRUE))
 output(" ERROR: mswt_view_calculator_controls() executed when MSWT not started");

6.11.11.15 mswt_view_compare_controls()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_view_compare_controls() function is used to enable or disable the display
of WaveformTool (MSWT)’s compare controls. See View->Compare Controls in MSWT
Toolbar View Menu.

Usage
BOOL mswt_view_compare_controls(BOOL visible);

where:

visible specifies whether WaveformTool (MSWT)’s compare controls are displayed
(TRUE) or not (FALSE).

mswt_view_compare_controls() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_view_compare_controls(TRUE))
 output(" ERROR: mswt_view_compare_controls() executed when MSWT not started");
 2/27/09 Pg-2099

WaveformTool (MSWT)
6.11.11.16 mswt_view_cursor_controls()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_view_cursor_controls() function is used to enable or disable the display of
WaveformTool (MSWT)’s cursor controls. See View->Cursor Controls in MSWT Toolbar
View Menu.

Usage
BOOL mswt_view_cursor_controls(BOOL visible);

where:

visible specifies whether WaveformTool (MSWT)’s cursor controls are displayed (TRUE)
or not (FALSE).

mswt_view_cursor_controls() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_view_cursor_controls(TRUE))
 output(" ERROR: mswt_view_cursor_controls() executed when MSWT not started");

6.11.11.17 mswt_reset_graph_controls()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_reset_graph_controls() function is used to reset MSWT’s View->Graph
Controls to their default values. This is the same as clicking the Reset button.

Usage
BOOL mswt_reset_graph_controls();

where:
 2/27/09 Pg-2100

WaveformTool (MSWT)
mswt_reset_graph_controls() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_reset_graph_controls(TRUE))
 output(" ERROR: mswt_reset_graph_controls() executed when MSWT not started");

6.11.11.18 mswt_angles_as_degrees()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_angles_as_degrees() function is used to specify whether angle values in the
current waveform displayed in WaveformTool (MSWT) are displayed as degrees or radians.
This is the same control displayed using WaveformTool (MSWT)’s View->Angles as
Degrees option.

Usage
BOOL mswt_angles_as_degrees(BOOL degrees);

where:

degrees specifies whether WaveformTool (MSWT)’s angle values are displayed as
degrees (TRUE) or radians (FALSE). Only affects the current waveform being displayed in
WaveformTool (MSWT).

mswt_angles_as_degrees() returns FALSE if executed when WaveformTool (MSWT) is
not running, otherwise TRUE is returned.

Example
if(! mswt_angles_as_degrees(TRUE))
 output(" ERROR: mswt_angles_as_degrees() executed when MSWT not started");

6.11.11.19 mswt_set_x_axis_mode(), mswt_set_y_axis_mode()
See WaveformTool (MSWT), MSWT Programming Functions.
 2/27/09 Pg-2101

WaveformTool (MSWT)
Description

The mswt_set_x_axis_mode() and mswt_set_y_axis_mode() functions are used to
specify the X and Y display mode of the current waveform displayed in WaveformTool
(MSWT). These are the same controls displayed in View->Graph Controls dialog.

Usage
BOOL mswt_set_x_axis_mode(MSWTXAxisMode x_axis_mode);

BOOL mswt_set_y_axis_mode(MSWTYAxisMode y_axis_mode);

where:

x_axis_mode and y_axis_mode specify the desired X/Y axis display mode. Legal values
are of the MSWTXAxisMode enumerated type. Only affects the current waveform being
displayed in WaveformTool (MSWT).

mswt_set_x_axis_mode() and mswt_set_y_axis_mode() return FALSE if executed
when WaveformTool (MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_set_x_axis_mode(mswt_x_native))
 output(" ERROR: mswt_set_x_axis_mode() executed when MSWT not started");

if(! mswt_set_y_axis_mode(mswt_db_absolute))
 output(" ERROR: mswt_set_y_axis_mode() executed when MSWT not started");

6.11.11.20 mswt_set_y_axis_reference()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_y_axis_reference() function is used to specify the Y axis reference for
the current waveform displayed in WaveformTool (MSWT). This is the same value displayed
in the Ref value.

Usage
BOOL mswt_set_y_axis_reference(double y_reference);

where:
 2/27/09 Pg-2102

WaveformTool (MSWT)
y_reference specifies the desired reference value. See description for Ref. Only affects
the current waveform being displayed in WaveformTool (MSWT).

mswt_set_y_axis_reference() returns FALSE if executed when WaveformTool
(MSWT) is not running, otherwise TRUE is returned.

Example
if(! mswt_set_y_axis_reference(1))
 output(" ERROR: mswt_set_y_axis_reference() executed when MSWT not started");

6.11.11.21 mswt_set_plot_mode()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_plot_mode() function is used to specify the plot mode for the current
waveform displayed in WaveformTool (MSWT). This is the same value displayed in
View->Graph Controls for the Plot value.

Usage
BOOL mswt_set_plot_mode(MSWTPlotMode plot_mode);

where:

plot_mode specifies the desired plot mode. Legal values are of the MSWTPlotMode
enumerated type. See Plot for description. Only affects the current waveform being
displayed in WaveformTool (MSWT).

mswt_set_plot_mode() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_set_plot_mode(mswt_line))
 output(" ERROR: mswt_set_plot_mode() executed when MSWT not started");
 2/27/09 Pg-2103

WaveformTool (MSWT)
6.11.11.22 mswt_set_trace_width()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_trace_width() function is used to specify the trace width for the current
waveform displayed in WaveformTool (MSWT). This is the same value displayed in the
View->Graph Controls as the Trace Width value.

Usage
BOOL mswt_set_trace_width(int trace_width);

where:

trace_width specifies the desired trace width. Legal values are 1, 2 or 4. Only affects the
current waveform being displayed in WaveformTool (MSWT).

mswt_set_trace_width() returns FALSE if executed when WaveformTool (MSWT) is
not running, otherwise TRUE is returned.

Example
if(mswt_set_trace_width(2) == FALSE)

output(" ERROR: mswt_set_trace_width() returned FALSE");

6.11.11.23 mswt_display_grid()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_display_grid() function is used to specify whether the grid is displayed in the
current waveform.

Usage
BOOL mswt_display_grid(BOOL visible);

where:
 2/27/09 Pg-2104

WaveformTool (MSWT)
visible specifies whether the grid is displayed (TRUE) or not (FALSE). Only affects the
current waveform being displayed in WaveformTool (MSWT).

mswt_display_grid() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_display_grid(FALSE))
 output(" ERROR: mswt_display_grid() executed when MSWT not started");

6.11.11.24 mswt_set_axis_units()
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_axis_units() function is used to specify the X axis units used to display
the current waveform in WaveformTool (MSWT).

Usage
BOOL mswt_set_axis_units(MSWTAxisUnits axis_units);

where:

axis_units specifies the desired X axis units option. Legal values are of the
MSWTAxisUnits enumerated type. Only affects the current waveform being displayed in
WaveformTool (MSWT).

mswt_set_axis_units() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_set_axis_units(mswt_integer))
 output(" ERROR: mswt_set_axis_units() executed when MSWT not started");
 2/27/09 Pg-2105

WaveformTool (MSWT)
6.11.11.25 mswt_set_y_range
See WaveformTool (MSWT), MSWT Programming Functions.

Description
The mswt_set_y_range() function is used to specify the Y Ranging and Y minimum
values used to display the current waveform. These are the same as displayed in the View-
>Graph Controls.

Usage
BOOL mswt_set_y_range(MSWTYRangeMode range_mode,

double y_minimum,
double y_maximum);

where:

range_mode specifies the desired ranging mode. Legal values are of the
MSWTYRangeMode enumerated type. See Y Ranging for description. Only affects the
current waveform being displayed in WaveformTool (MSWT).

y_minimum and y_maximum are used when range_mode = mswt_fixed_left or
mswt_fixed_right. When to range_mode = mswt_fixed_left the left axis range is
controlled by Y Minimum and Y Maximum. When range_mode = mswt_fixed_right the
right axis range is controlled by Y Minimum and Y Maximum.

mswt_set_y_range() returns FALSE if executed when WaveformTool (MSWT) is not
running, otherwise TRUE is returned.

Example
if(! mswt_set_y_range(mswt_y_auto, 0, 10))
 output(" ERROR: mswt_set_y_range() executed when MSWT not started");
 2/27/09 Pg-2106

PatternDebugTool

 2/27/09 Pg-2107

6.12 PatternDebugTool
To start PatternDebugTool:

• Click on the PatternDebugTool icon from the Ui toolbar
• Type keyboard shortcut Ctrl+P
• Choose Tools: Pattern

Resource Manager

 2/27/09 Pg-2108

6.13 Resource Manager
Under Development.

ScanTool

 2/27/09 Pg-2109

6.14 ScanTool

Note: not yet documented for Magnum 1/2/2x.

ShmooTool / SearchTool
6.15 ShmooTool / SearchTool
This section contains the following:

• Overview
• Starting ShmooTool
• Search Output
• Shmoo Output
• ShmooTool Help
• Defining Shmoos & Searches
• Shmoo Functions
• Multi-DUT Shmoos
• Shmoo/Search Execution
• Shmoos and Searches using User Variables
• Shmoo Definition File

6.15.1 Overview
See ShmooTool / SearchTool.

ShmooTool and SearchTool are the same tool, used to specify or modify the various
parameters needed to define a shmoo or binary/linear search. Only the term ShmooTool will
be used in the remainder of this chapter.

ShmooTool is used to create and maintain named shmoo and search definitions. Once
defined, shmoo and search execution can be invoked several ways:

• Interactively, using the Breakpoint Monitor: See Executing Shmoos and Searches
Interactively.

• Programmatically, in user-written C code. See Executing Shmoos and Searches
Programmatically.

Controls in ShmooTool are used to:

• Select whether a shmoo or binary/linear search definition is being viewed.
• Specify a name for each shmoo/search definition. These names are used:
 2/27/09 Pg-2110

ShmooTool / SearchTool
• In ShmooTool, to select a specific shmoo/search definition to view or modify.
• In the Breakpoint Monitor, to control interactive shmoo/search execution.

• Specify shmoo/search parameters, start/stop values, resolution, tracking
parameters, axis labels, a title, etc.

• Save or Load shmoo/search definitions to/from disk (see Shmoo Definition File).

6.15.2 Starting ShmooTool
See ShmooTool / SearchTool.

ShmooTool is normally started from UI, after a test program is loaded. The UI Advanced,
and Engineering Mode options must both have been selected. The following methods
can be used to start ShmooTool:

• Click on the ShmooTool icon from the Ui tool bar
• Type keyboard shortcut Ctrl+H
• Choose Tools: Shmoo/Search…

6.15.3 Search Output
See ShmooTool / SearchTool.

Search output results are displayed in the site output window(s) of UI. Below is an example
linear search output. The parameter being searched was a user variable named:
x_axis_float:

x_axis_float : 1.734245

Search results can also be captured in a disk file, using ui_ShmooOutputFile (see built-
in UI User Variables and Executing Shmoos and Searches Programmatically for an
example).

6.15.4 Shmoo Output
See ShmooTool / SearchTool.
 2/27/09 Pg-2111

ShmooTool / SearchTool
A graphical shmoo output is displayed in a separate window in UI. This window opens
automatically when a shmoo is generated. Below is an example graphical shmoo, showing
some of the key features:

Figure-115: Example Shmoo Output
The shmoo display is limited to PASS and FAIL values. A PASS value is any non-zero value
returned by the executed test or test block.

When using a multi-site system each site controller will have a separate tab in this display,
allowing the user to view the shmoo from each site.

Title

Y Axis Legend

X Axis Legend

Y Axis Primary

X/Y Param values at cursor

Y Axis Major Tick = 0
(0 = every value labeled)

Y Axis Precision = 1
(1 digit after decimal point)

X Axis Major Tick = 2
(skip 2 labels

X Axis Precision = 2
(2 digits after decimal point) Param Program

Value

X Axis Primary
Param Program

Value

(dotted line)

(dotted line)

Multiple Tabs will be
displayed when using

multi-site systems
 2/27/09 Pg-2112

ShmooTool / SearchTool
Using the right-mouse button in the shmoo display will cause the following menu to appear:

Figure-116: Shmoo Output Window Controls
These controls can be used to:

• Hide the shmoo window
• Clear the shmoo window
• Update the Title and Legend: after changing Title and/or Legend properties

using ShmooTool, select this option to update the shmoo display without actually
generating a new shmoo.

• Print the shmoo window
• Save the shmoo window to a disk file, which saves an ASCII shmoo (see below)
• Float the shmoo window in the main display

A shmoo can also be captured in a disk file, using the ui_ShmooOutputFile (see UI User
Variables and Executing Shmoos and Searches Programmatically for an example). The
shmoo captured in a disk file is an ASCII equivalent of the graphical shmoo. Below is the
ASCII shmoo equivalent of the grahical shmoo shown above:

version:1

title:User Variable Shmoo
type:0
order:0
xlegend:uVar => x_axis_float
xmajor:2
xdigits:2
xpoints:11
xcount:1
 2/27/09 Pg-2113

ShmooTool / SearchTool
ylegend:uVar => y_axis_float
ymajor:0
ydigits:1
ypoints:11
ycount:1
xparam:x_axis_float
min:0
max:10
yparam:y_axis_float
min:0
max:10

ShmooInput:Shmoo1
***........
***........
****.......
****.......
*****......
*****......
*******....
*********..

6.15.5 ShmooTool Help
See ShmooTool / SearchTool.

A form of context sensitive on-line help is available which is accessible in the various
graphic tools:

• Using the mouse, left-click an item of interest in the graphic tool
• Press the F1 key
 2/27/09 Pg-2114

ShmooTool / SearchTool
Below is an example. Using the mouse, the user had clicked the selector

then pressed the F1 key. Note the result below:

Figure-117: Shmoo/Search Help

6.15.6 Defining Shmoos & Searches
See ShmooTool / SearchTool.
 2/27/09 Pg-2115

ShmooTool / SearchTool
The initial ShmooTool dialog is shown below, before a shmoo or search definition has
begun:

Figure-118: Initial Shmoo/Search Dialog
The initial display allows the following:

• Selection of Shmoo, Linear Search, or Binary Search option. This specifies the
type of definition being created, viewed, or modified.

• Add a New name to the list of shmoo/search names. This begins the process of
creating a named shmoo/search definition. Default names depend on whether
Shmoo, LSearch or BSearch is selected i.e. Shmoo1, LSearch1, BSearch1. The
user may also edit these name as desired. Once the name is correct type
<Enter> to proceed.

• Load an existing shmoo/search definition file from disk. These would have been
previously saved using Save. See Shmoo Definition File.

Once a name is added to the list, or an existing name is selected from the list, the
ShmooTool display will change, to enable and display additional controls suitable for

Select Shmoo or
Linear Search or
Binary Search option

Shmoo/search name list
(empty)

Load definitions from file
(previously saved)

New
Delete

Move Up/Down
Copy

Save definitions to file
 2/27/09 Pg-2116

ShmooTool / SearchTool
defining the shmoo or a search. Note that if an existing name was selected from the list
some/all parameters for that shmoo/search would likely be filled in.

Note: the selection of Shmoo, LSearch, or BSearch is an attribute of the definition
being viewed. If, at any time, this selection is changed, the type of definition
being viewed is also changed. This allows, for example, changing a Shmoo to a
binary search without having to create a completely new definition. Or, an
existing definition can be copied (using the Copy button) and the type of the
copy can be changed easily using the Shmoo, LSearch, and BSearch radio
buttons.

6.15.6.1 ShmooTool: Search Controls
See ShmooTool / SearchTool, Defining Shmoos & Searches.
 2/27/09 Pg-2117

ShmooTool / SearchTool
The example below shows the display seen when LSearch or BSearch is selected, before
any of the parameters have been defined:

Figure-119: Search Controls
Note that this is a subset of controls used to define shmoos (see ShmooTool: Shmoo
Controls). For this reason, only the shmoo controls will be documented further.

6.15.6.2 ShmooTool: Shmoo Controls
See ShmooTool / SearchTool, Defining Shmoos & Searches.

LSearch or
BSearch Selected

 LSearch name
(default shown)

Select search parameter(s)
from list. Add to XParam

 using the button
 2/27/09 Pg-2118

ShmooTool / SearchTool
The example below shows the shmoo display before any of the parameters have been
defined:

Figure-120: Shmoo Controls
The Title window and Legend window will display either default labels, or the user can
manually enter preferred labels. Once a Title or Legend has been manually entered, the
default mechanism is disabled. The default labels are based on the primary XParam
selection and the primary YParam parameter selection for each axis. See below.

Shmoo Selected

Shmoo Name

Select shmoo parameter(s)
from list. Add to XParam

and YParam using the
 buttons
 2/27/09 Pg-2119

ShmooTool / SearchTool
In the following example, the primary XParam is dps, the secondary XParam is vih, and
the primary YParam is vol.The dps parameter is selected thus the rest of the paramter
options apply to it. Note the default Title and Legend labels:

Figure-121: Shmoo Controls
As shown, it is possible to specify more than one parameter for the XParam and/or YParam
fields. This creates a tracking parameter scenario, where the first parameter specified on
each axis is the primary parameter and all others on that axis are secondary parameters.
Only the primary parameter directly considers the Calculate option, which determines
how the resolution of the shmoo/search is determined. The resolution of all secondary
parameters is based on the #Points, calculated or specified i.e. (max-min/#Points).

It is also possible to create a single axis shmoo. This is done by leaving either the X Param
or Y Param list empty.

Select the shmoo fast axis
Title (default shown).
Edit as desired.

Precision = number of
decimal points displayed

Number of labels to skip
in Legends

in Legends

Display and modify values
for the selected XParam
or YParam. In this example
the YParam vol is selected
and parameter options for
vol can be viewed and
modified.

When multiple parameters are specified these
controls can be used to re-order the list, which
can change the primary parameter. Default
Title and Legends change too.

Shmoo Call-back GUI
Controls

ShmooSymbols Button

See Shmoo Symbols Dialog
 2/27/09 Pg-2120

ShmooTool / SearchTool
The complete Parameter List is shown in Shmoo/Search Optional Parameters.

Different parameter option fields are displayed in the right portion of the parameter area, and
depend on which parameter is selected. Below are three examples:

Figure-122: Example Shmoo Parameter Options
The following option fields are displayed regardless of the type of parameter selected:

• Parameter Name: based on the parameter currently selected. Not directly
editable. All other fields are applied to the selected parameter. The first parameter
of an axis sets the default Legend and part of the default Title.

• Min / Max: the shmoo/search limit, inclusive.

Note: no range or limit checks are made to the min/max values entered. Use caution
(and the Product Spec.)

• Calculate: radio buttons used to specify whether the #Points or Increment
(or Epsilon) value is calculated. The other value must be manually entered by
the user. Default is Increment (or Epsilon). Only the primary parameter on
each axis is directly affected i.e. the step-size (resolution) of all other parameters
on the same axis is calculated using #Points (whether user programmed or
calculated).

• #Points: the resolution of the shmoo/search on that axis, as a count. When
#Points is user specified the Increment (or Epsilon) is calculated.

• Increment: the resolution of the shmoo or linear search on that axis, as a value.
When Increment is user specified the #Points is calculated.
 2/27/09 Pg-2121

ShmooTool / SearchTool
• Epsilon: the resolution of binary search on that axis, as a value. When Epsilon
is user specified the #Points is calculated. Epsilon is limited in software to a
maximum of 31.

The other parameter option fields are:

• Unit: selects how Legend values are scaled and which units are displayed.
Applies to voltage and current parameters only. Timing values are always specified
in Nanoseconds (nS).

• TSet#: select which time-set is to be modified when shmoo/search cycle period or
edge time values.

• PE Pin List: specify which pins are to be modified. Applies only to parameters
which are programmable per-pin. Default selection is the builtin_UsedPins pin
list.

• PE Board List: specify which PE Boards are to be modified. Applies to
parameters which are programmable per-board. Default selection is all PE boards.
Note that this option does not appear when using Magnum 1/2/2x.

• Drive/Strobe: radio button used to select whether drive or strobe formats are to
be modified. Applies to edge time values only.

The following table shows which options apply to each parameter type:

Table 6.15.6.2-1 Shmoo/Search Optional Parameters

Shmoo/Search
Parameter Unit TSet#

PE
Pin List DPS Pin List

Drive/
Strobe

back_voltage Yes No Yes No No

cycle No Yes No No No

dps Yes No No Yes No

dps_current_high Yes No No Yes No

dps_current_low Yes No No Yes No

dps_vpulse Yes No No Yes No

edge1
edge2
edge3
edge4

No Yes Yes No Yes
 2/27/09 Pg-2122

ShmooTool / SearchTool
ioedge1
ioedge2

No Yes Yes No Yes

ipar_force Yes No Yes No No

ipar_high Yes No Yes No No

ipar_low Yes No Yes No No

partime Yes No No No No

positive_clamp Yes No Yes No No

negative_clamp Yes No Yes No No

vih Yes No Yes No No

vil Yes No Yes No No

vihh Yes No Yes No No

voh Yes No Yes No No

vol Yes No Yes No No

vpar_force Yes No Yes No No

vpar_high Yes No Yes No No

vpar_low Yes No Yes No No

vtt Yes No Yes Yes No

vz Yes No Yes Yes No

INT_VARIABLE1 No No No No No

DWORD_VARIABLE1 No No No No No

FLOAT_VARIABLE1 No No No No No

DOUBLE_VARIABLE1 No No No No No

INT64_VARIABLE1 No No No No No

Notes:
1) User variables are optional, and will appear in the Parameter List using
 the name of the user variable.
 See Shmoos and Searches using User Variables

Table 6.15.6.2-1 Shmoo/Search Optional Parameters (Continued)

Shmoo/Search
Parameter Unit TSet#

PE
Pin List DPS Pin List

Drive/
Strobe
 2/27/09 Pg-2123

ShmooTool / SearchTool
6.15.7 Shmoo Functions
See ShmooTool / SearchTool.

The following functions may be used to access various shmoo/search options:

• Types, Enums, etc.
• shmoo_title_get()
• shmoo_type_get()
• shmoo_direction_get()
• shmoo_axis_params_get()
• shmoo_param_get()
• shmoo_param_pointval_get()
• shmoo_duts_subtitle_set(), shmoo_duts_subtitle_get()
• search_results_get()

Note: the functions above were first available in software release h1.1.23.

6.15.7.1 Types, Enums, etc.
See ShmooTool / SearchTool, Shmoo Functions.

Description
The following enumerated types are used in support of various Shmoo Functions:

Usage
The ShmooAxis enumerated type is used select a specific shmoo axis, typically when
retrieving information about shmoo parameters for that axis. See
shmoo_axis_params_get(), shmoo_param_get(),
shmoo_param_pointval_get():

enum ShmooAxis{ t_xaxis, t_yaxis, t_axis_na };

The ShmooType enumerated type is used as return values when retrieving the type of a
names shmoo. See shmoo_type_get():
 2/27/09 Pg-2124

ShmooTool / SearchTool
enum ShmooType{t_shmoo,
t_linearsearch,
t_binarysearch,
t_shmoo_search_na };

The ShmooAxisOrder enumerated type is returned by shmoo_direction_get():

enum ShmooAxisOrder { t_shmoo_XY, t_shmoo_YX };

The SearchResultStruct structure is used to return search results for one DUT. See
search_results_get():

typedef struct SearchResultStruct {
BOOL search_valid;
double last_pass;
double last_fail;

} search_result;

The SearchResultArray structure is used to return search results for multiple DUTs. See
search_results_get():

typedef CArray< search_result, search_result& > SearchResultArray;

6.15.7.2 shmoo_title_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_title_get() function may be used to retrieve the title defined for a named
shmoo. This is the title displayed at the top-center of the shmoo output window and set in
the Title edit box (see Shmoo Controls).

Usage
BOOL shmoo_title_get(LPCTSTR shmoo_name, CString* title);

where:
 2/27/09 Pg-2125

ShmooTool / SearchTool
shmoo_name identifies the target shmoo.

title is a pointer to an existing CString variable used to return the title.

shmoo_title_get() returns TRUE if the specified shmoo_name is valid, otherwise
FALSE is returned.

Example
CString title;
BOOL ok = shmoo_title_get("myShmoo", &title);
if(! ok) output(" ERROR: bad shmoo name specified");
else output(" Shmoo Title => %s", title);

6.15.7.3 shmoo_type_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_type_get() function may be used to retrieve the shmoo/search type of a
named shmoo. This is set using the Shmoo, LSearch and BSearch radio buttons in
ShmooTool (see Shmoo Controls).

Usage
BOOL shmoo_type_get(LPCTSTR shmoo_name, ShmooType* shmoo_type);

where:

shmoo_name identifies the target shmoo.

shmoo_type is a pointer to an existing ShmooType variable used to return the shmoo type.

shmoo_type_get() returns TRUE if the specified shmoo_name is valid, otherwise FALSE
is returned.
 2/27/09 Pg-2126

ShmooTool / SearchTool
Example
ShmooType shmoo_type;
BOOL ok = shmoo_type_get("myShmoo", &shmoo_type);
if(! ok) output(" ERROR: bad shmoo name specified");

6.15.7.4 shmoo_direction_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_direction_get() function may be used to retrieve the Axis Order
(i.e. fast-axis, shmoo direction, etc.) attribute of a named shmoo. This is set using the Axis
Order selection menu in ShmooTool (see Shmoo Controls).

Usage
BOOL shmoo_direction_get(LPCTSTR shmoo_name,

ShmooAxisOrder* direction);

where:

shmoo_name identifies the target shmoo.

direction is a pointer to an existing ShmooAxisOrder variable used to return the Axis
Order value.

shmoo_direction_get() returns TRUE if the specified shmoo_name is valid, otherwise
FALSE is returned.

Example
ShmooAxisOrder direction;
BOOL ok = shmoo_direction_get("myShmoo", &direction);
if(! ok) output(" ERROR: bad shmoo name specified");
 2/27/09 Pg-2127

ShmooTool / SearchTool
6.15.7.5 shmoo_axis_params_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_axis_params_get() function may be used to retrieve the parameter
information for a specified axis of a named shmoo. These are the parameters set using
various Shmoo Controls in ShmooTool.

Usage
BOOL shmoo_axis_params_get(LPCTSTR shmoo_name,

ShmooAxis axis,
CString* legend,
int* major_tick,
int* precision,
int* points,
CStringArray* param_name_array);

where:

shmoo_name identifies the target shmoo.

axis identifies the target axis. Legal values are of the ShmooAxis enumerated type (but
t_axis_na should not be used).

legend is a pointer to an existing CString variable used to return the Legend associated
with the specified axis.

major_tick is a pointer to an existing int variable used to return the Major Tick value
associated with the specified axis.

precision is a pointer to an existing int variable used to return the Precision value
associated with the specified axis.

points is a pointer to an existing int variable used to return the #Points value associated
with the specified axis.

param_name_array is a pointer to an existing CStringArray variable used to return one
or more Parameter Names associated with the specified axis. The array will be resized by
 2/27/09 Pg-2128

ShmooTool / SearchTool
the system software and any prior contents are lost. The first element in the returned array is
the primary parameter name. Each subsequent element is a secondary parameter.
Elements are returned in the order shown in ShmooTool’s XParam or YParam list (as
determined by the axis value).

shmoo_axis_params_get() returns TRUE if the specified shmoo_name is valid,
otherwise FALSE is returned.

Example
CString legend;
int major_tick, precision, points;
CStringArray* params;
BOOL ok = shmoo_axis_params_get("myShmoo", t_xaxis,

&legend, &major_tick, &precision, &points, ¶ms);
if(! ok) output(" ERROR: bad shmoo name specified");

6.15.7.6 shmoo_param_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_param_get() function may be used to retrieve the minimum and maximum
values specified for a specified Parameter Name associated with a given axis in ShmooTool
(see Example Shmoo Parameter Options).

Usage
BOOL shmoo_param_get(LPCTSTR shmoo_name,

LPCTSTR param_name,
ShmooAxis axis,
double* min,
double* max);

where:

shmoo_name identifies the target shmoo.
 2/27/09 Pg-2129

ShmooTool / SearchTool
param_name identifies the target parameter, which must be valid for the specified axis.
These are case sensitive and identify one of the values shown in Shmoo/Search Optional
Parameters.

axis identifies the target axis. Legal values are of the ShmooAxis enumerated type (but
t_axis_na should not be used).

min and max are pointers to existing int variables used to return the Min and Max values
specified for the specified param_name.

shmoo_param_get() returns TRUE if the specified shmoo_name is valid and
param_name is valid for the specified axis, otherwise FALSE is returned.

Example
int min, max;
BOOL ok = shmoo_param_get("myShmoo", "dps", t_xaxis, &min, &max);
if(! ok) output(" ERROR: bad shmoo name specified");

6.15.7.7 shmoo_param_pointval_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The shmoo_param_pointval_get() function may be used to retrieve the calculated
value set for a specified point of a specified parameter on a specified axis of a named
shmoo. This will be the value set for the specified parameter during the execution of the test
which determines the result for the specified point.

Usage
BOOL shmoo_param_pointval_get(LPCTSTR shmoo_name,

LPCTSTR param_name,
ShmooAxis axis,
int point,
double* val);

where:
 2/27/09 Pg-2130

ShmooTool / SearchTool
shmoo_name identifies the target shmoo.

param_name identifies the target parameter, which must be valid for the specified axis.
These are case sensitive and identify one of the values shown in Shmoo/Search Optional
Parameters.

axis identifies the target axis. Legal values are of the ShmooAxis enumerated type (but
t_axis_na should not be used).

point identifies the point-of-interest. Legal values will be 0 to #Points -1, as specified or
calculated.

val is a pointer to an existing int variable used to return the calculated value.

shmoo_param_pointval_get() returns TRUE if the specified shmoo_name is valid and
param_name is valid for the specified axis, otherwise FALSE is returned.

Example
CString legend;
int major_tick, precision, points;
double value;
CStringArray params;

// Get #Points
BOOL ok = shmoo_axis_params_get("myShmoo", t_xaxist,

&legend, &major_tick, &precision, &points, ¶ms);
if(! ok) output(" ERROR: bad shmoo name specified");

else {
int c = params.GetSize(); // Num param on this axis
for(int p = 0; p < c; ++p){ // For each param on this axis...

output(" Param => %s", params.GetAt(p));
for(int i = 0; i < points; ++i){ // For each point on axis

BOOL ok = shmoo_param_pointval_get("myShmoo",
params.GetAt(p),
t_xaxis,
i,
&value);

if(! ok) output(" ERROR: bad shmoo name specified");
output(" Value at point-%d => 0.3f", i, value);
}

}
}

 2/27/09 Pg-2131

ShmooTool / SearchTool
6.15.7.8 shmoo_duts_subtitle_set(), shmoo_duts_subtitle_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description

The shmoo_duts_subtitle_set() function is used to define a secondary title (subtitle)
to be displayed in all subsequent shmoos. The subtitle will display immediately below the
Title (see Example Shmoo Output).

The shmoo_duts_subtitle_get() function is used to get the currently defined
subtitle(s).

Note the following:

• Each subtitle is first defined as a CString.
• Then, to support specification of a different subtitle for each DUT (see Multi-DUT

Shmoos) each CString (each subtitle) is added to a CStringArray, which is
then passed as an argument to shmoo_duts_subtitle_set(). When testing a
single DUT, only the first element in the CStringArray will be used.

• shmoo_duts_subtitle_set() is the only method for defining a subtitle; i.e. it is
not possible using ShmooTool / SearchTool.

Usage
BOOL shmoo_duts_subtitle_set(CStringArray& subtitles);

int shmoo_duts_subtitle_get(CStringArray* subtitles);

where:

subtitles is used in two contexts:

• In the set function, used to specify the subtitle text to be displayed.
• In the get function, used to return the currently defined subtitle(s).

shmoo_duts_subtitle_set() returns TRUE if one or more shmoos are currently
defined, otherwise FALSE is returned.

shmoo_duts_subtitle_get() returns the number of elements in subtitles.
 2/27/09 Pg-2132

ShmooTool / SearchTool
Example
The following example was designed for use in a Multi-DUT Test Program which tests 4
DUTs in parallel. It adds a unique subtitle (“DUT-n”) to each Shmoo output window, each
window corresponding to one DUT. Each time the Sequence/Binning table is executed the
subtitle changes for each Shmoo window:

BEFORE_TESTING_BLOCK(BTB){
CStringArray stitles;
DutNumArray duts;
static int dut = 1;
for(int i = 0; i < active_duts_get(&duts); ++i){

CString s = vFormat("DUT-%d", dut++);
stitles.Add(s);

}
BOOL ok = shmoo_duts_subtitle_set(stitles);
if(! ok) output(" ERROR: NO shmoos currently defined");

// Get and output the current subtitles
CStringArray curstitles;
int c = shmoo_duts_subtitle_get(&curstitles);
for(i = 0; i < c; ++i)

output(" %s", curstitles.GetAt(i));
}

6.15.7.9 search_results_get()
See ShmooTool / SearchTool, Shmoo Functions.

Note: first available in software release h1.1.23.

Description
The search_results_get() function can be used to retrieve the result(s) of the most
recently executed search. Note the following:

• This function is useful only after executing a search defined using ShmooTool /
SearchTool and which is triggered by a breakpoint set using BreakpointTool (see
Shmoo/Search Execution). This is targeted for use in conjunction with
ui_ShmooDone.
 2/27/09 Pg-2133

ShmooTool / SearchTool
• search_results_get() supports multi-DUT searches (see Multi-DUT Shmoos).
Values are returned in an array, named result_array. When testing a single
DUT the returned array will contain a single element.

• Each return value (each array element) consists of several components, stored in
a SearchResultStruct structure:

typedef struct SearchResultStruct {
BOOL search_valid;
double last_pass;
double last_fail;

} search_result;

• search_valid = TRUE if the search algorithm converged on a PASS/FAIL
boundary, otherwise FALSE is returned. If search_valid returns FALSE the
other structure parameters are invalid.

• last_pass = the value of the search parameter the last time the search
algorithm executed with a passing test result. In most applications, this will be
the desired search result. However, using linear searches, it is sometimes
desirable to use the last failing value.

• last_fail = the value of the search parameter the last time the search
algorithm executed with a failing test result.

Usage
int search_results_get(SearchResultArray* result_array);

where:

result_array is a pointer to an existing SearchResultArray variable used to return
the search results. See Description.

search_results_get() returns the number of elements in the returned result_array.

Example
CSTRING_VARIABLE(ui_ShmooDone, "", ""){

SearchResultArray result;
int c = search_results_get(&results); // search_results_get();

}

 2/27/09 Pg-2134

ShmooTool / SearchTool
6.15.8 Multi-DUT Shmoos
See ShmooTool / SearchTool.

Description
The Multi-DUT shmoo capability is targeted for use in test programs which test multiple
DUTs in parallel.

Multi-DUT shmoos are always enabled in Multi-DUT Test Programs and a shmoo output
window will be created for each DUT in the test program. However, during shmoo
execution, no shmoo is generated for DUT(s) which are not in the Active DUTs Set (ADS);
i.e. the output window for disabled DUT(s) will be empty.

Shmoo Call-back Function
Each shmoo may or may not have a user-written call-back function registered. If a call-back
is registered it will be executed for each point of the shmoo, with the call-back code
determining the result displayed for each point for each active DUT.

Multiple call-back functions are supported since the code needed to evaluate functional test
results differs from the code needed for PMU test results, DPS current test results, etc. One
side effect of the call-back method is that user code is solely responsible for determining the
value displayed for each point in each DUT's shmoo and thus can use any criteria to do so.

Regarding the shmoo call-back functions, note the following:

• A shmoo call-back is optional, but if used, completely determines the shmoo
results displayed for each active DUT.

• if one or more shmoo call-back functions are registered (next bullet) ShmooTool
displays the Shmoo Call-back GUI Controls. These are used to associate a specific
call-back function with each shmoo.

• Three variations of shmoo call-back functions are supported:
• shmoo_dutsPF_callback: Pass/Fail call-back which returns a boolean value

for each DUT. In the shmoo, these values are displayed using Red/Green
(or */. in ASCII shmoo output). Registered using
shmoo_duts_PF_callback_set().

• shmoo_duts_int_callback: Integer call-back which returns an integer
value for each DUT. User-code defines a color to be displayed for each integer
value using the dialog displayed by the ShmooSymbols Button. Registered using
shmoo_duts_int_callback_set().
 2/27/09 Pg-2135

ShmooTool / SearchTool
• shmoo_duts_string_callback: string call-back which returns an LPCTSTR
value for each DUT. The string value is displayed as-is. Registered using
shmoo_duts_string_callback_set().

• Registering a call-back function allows a user-defined name to displayed for
selection in ShmooTool's Shmoo Call-back GUI Controls combo box.

• The call-back registration functions (shmoo_duts_PF_callback_set(),
shmoo_duts_int_callback_set() and
shmoo_duts_string_callback_set()) must be executed from Site code.
They are ignored if executed from the Host or a User Tool code.

• During shmoo execution, the call-back function is executed only on the Site. The
return values are sent to UI for display in the shmoo(s).

Shmoo Call-back GUI Controls
The controls shown below are displayed if one or more Shmoo Call-back Function(s) are
registered. These controls are used to associate a Shmoo Call-back Function with the
shmoo being defined:

Figure-123: Shmoo Call-back Controls
The radio buttons are used to select the type of call-back function to be selected:

• None - default. Select this to specify that no Shmoo Call-back Function is to be
executed by the shmoo being defined.

• Pass/Fail - allows display and selection of Shmoo Call-back Functions which
were registered using shmoo_duts_PF_callback_set(). These functions return
a boolean value for each DUT.

• Ints - allows display and selection of Shmoo Call-back Functions which were
registered using shmoo_duts_int_callback_set(). These functions return an
integer value for each DUT.

• Strings - allows display and selection of Shmoo Call-back Functions which were
registered using shmoo_duts_string_callback_set(). These functions return
a string (LPCTSTR) value for each DUT.

Shmoo Call-back Function
selection, using the name
arguments passed to the
call-back registration functions

Shmoo Call-back Function
type selection
 2/27/09 Pg-2136

ShmooTool / SearchTool
A given radio button will not be enabled for use if no call-back functions of the related type
have been registered.

As indicated, the comb-box will display the names of the Shmoo Call-back Functions of the
selected type. The actual names displayed are not the function names, but rather the name
argument passed to the call-back registration functions.

Shmoo Symbols Dialog

Note: first available in software release h1.1.23.

When one or more shmoos has a Shmoo Call-back Function the ShmooSymbols Button will
be displayed. Clicking this button will display the Shmoo Symbols dialog, which is used to
determine which color (or symbol in ASCII shmoos) is displayed for each value returned by
a shmoo_duts_int_callback function.

A shmoo_duts_int_callback function returns an integer value for each DUT being
tested. Using this call-back, ShmooTool does not display the integer value, but rather the
color mapped to the integer using the Shmoo Symbols dialog. In the example below, a
 2/27/09 Pg-2137

ShmooTool / SearchTool
unique color is mapped to the 8 integer values (in the Val column) expected to be returned
by the call-back function:

Figure-124: Example Shmoo Integer Output
Note the following:

• The dialog initially has two values: 0 and 1, representing Fail/Red and
Pass/Green.

• When ShmooTool receives an integer result which is not mapped to a color the
resulting shmoo will contain an empty (white) point.

• Rows (Vals) are added using the Add button and deleted using the Delete button.
• The Name column specifies the label displayed in the legend for each Val. Name

values are edited by double-clicking in the appropriate Name cell.
• The Color column specifies the color displayed in the main ShmooTool display and

in the legend for each Val. Color values are edited by double-clicking in the
appropriate Color cell and selecting the desired color from the dialog presented.

Legend
Text = Name
 2/27/09 Pg-2138

ShmooTool / SearchTool
• The Code column specifies the character(s) displayed in ASCII shmoos for each
Val. Code values are edited by double-clicking in the appropriate Code cell.

Usage
The following functions are used to register a user-written call-back function:

void shmoo_duts_PF_callback_set(
LPCTSTR name,
shmoo_dutsPF_callback func);

The following functions were first available in software release h1.1.23.

void shmoo_duts_int_callback_set(
LPCTSTR name,
shmoo_duts_int_callback func);

void shmoo_duts_string_callback_set(
LPCTSTR name,
shmoo_duts_string_callback func);

where:

name is the value displayed in ShmooTool's DUT Pass/Fail Callback combo box, for
use in selecting the function identified by func.

func identifies the user-written call-back function and is used in several contexts:

• The first form is used to return a boolean (Pass/Fail) result for each DUT. The
user-written shmoo_dutsPF_callback function must conform to the following
prototype:

DWORD (*shmoo_dutsPF_callback)(DWORD dut_mask);

• The second form is used to return an integer value for each DUT. The user-written
shmoo_duts_int_callback function must conform to the following prototype:

void (*shmoo_duts_int_callback)(DWORD dut_mask,
IntArray* results);

• The third form is used to return an string (LPCTSTR) value for each DUT. The user-
written shmoo_duts_string_callback function must conform to the following
prototype:

void (*shmoo_duts_string_callback)(DWORD dut_mask,
CStringArray* results);

where:
 2/27/09 Pg-2139

ShmooTool / SearchTool
dut_mask is a bit-wise mask identifying which DUT(s) are being tested. The LSB
represents DUT-1, LSB+1 = DUT-2, etc. dut_mask is derived from the current Active DUTs
Set (ADS).

results is a pointer to an existing IntArray or CStringArray used to return an integer
or string value for each DUT which is active in dut_mask. The user’s call-back function
code must add a value to the array for each DUT which is active in dut_mask before
returning.

The shmoo_dutsPF_callback() must return a bit mask in which each bit represents the
PASS/FAIL results for one DUT. A logic-1 represents PASS and a logic-0 represents FAIL.
The LSB equates to DUT-1, LSB+1 = DUT2, etc. Only the bit positions which match those
set in the input dut_mask argument are used.

Example
The following example is pseudo-code used to display different colors based on the number
of failures retrieved from the ECR for each DUT. Note that additional configuration is
required to specify the color to be displayed for each value returned by
my_ints_callback. This is done using the Shmoo Symbols Dialog. The example shown
above was generated using code similar to the following example:

int dut_failed_bits(int dut){ // Support function
DutNumArray ads;
active_duts_get(&ads); // Save for ADS restore
active_duts_enable(dut, FALSE); // Enable one dut
int bit_cnt = ecr_main_ram_scan(...); // Args for your app
if(bit_cnt == 0) return 0; // Pass = Green
if(bit_cnt > 51) return 1; // Fail: 1-50 = Red
if(bit_cnt > 301) return 2; // Fail: 51-300 = Yellow
if(bit_cnt > 501) return 3; // Fail: 301-500 = Magenta
if(bit_cnt > 701) return 4; // Fail: 501-700 = Orange
if(bit_cnt > 901) return 5; // Fail: 701-900 = Blue
if(bit_cnt > 1201) return 6; // Fail: 901-1200 = Brown
if(bit_cnt > 1401) return 7; // Fail: 1201-1400 = Grey
active_duts_enable(ads, FALSE); // Restore ADS
return bit_cnt;

}

// Users Ints call-back
void my_ints_callback(DWORD dut_mask, IntArray* results){

for(int dut = 0; dut_mask != 0; ++dut, dut_mask >>= 1)
 2/27/09 Pg-2140

ShmooTool / SearchTool
if (dut_mask & 1)
results->Add(dut_failed_bits(dut));

}

SITE_BEGIN_BLOCK(SB1){
// ... other code as desired
shmoo_duts_int_callback_set(// Register call-back

"ECRFailBitCounts",
my_ints_callback);

// ... other code as desired
}

6.15.9 Shmoo/Search Execution
See ShmooTool / SearchTool.

Shmoos and searches can be invoked using two methods, documented separately:

• Executing Shmoos and Searches Interactively
• Executing Shmoos and Searches Programmatically

6.15.9.1 Executing Shmoos and Searches Interactively
See ShmooTool / SearchTool, Shmoo/Search Execution

The paradigm for defining and interactively executing shmoos and searches utilizes two
tools:

• ShmooTool: used to create, maintain, and save named shmoo and search
definitions

• Breakpoint Monitor: used to create, maintain, and save breakpoints used to
execute shmoos and searches

Note: programmatic shmoo/search execution uses these same tools for the same
purposes, but additional methods are available to select and enable breakpoints
in user-written C code. See Executing Shmoos and Searches Programmatically.

This paradigm has the following benefits:
 2/27/09 Pg-2141

ShmooTool / SearchTool
1. Shmoo/search definitions are managed using an interactive tool. Methodology is
identical regardless of how the resulting shmoo/search is executed.

2. Shmoo/search definitions are program independent, and thus are mostly reusable. The
one exception to this is when the shmoo/search uses User Variables, which are
inherently program specific.

3. The Breakpoint Monitor provides versatility in executing shmoos/searches, independent
of how they are created. A given shmoo, or search, can be applied to more than one test,
or test block, or a mix of tests and test blocks. Using Breakpoint Monitor, it is possible to
apply a shmoo/search to an arbitrary block of user-written code.

The following example is used to show the location of key Breakpoint Monitor controls:

Figure-125: Shmoo Breakpoint Monitor Controls

Controls used to
setup shmoo and
search execution

options

List of breakpoint
definitions currently

 set up, each with
an independent

enable/disable control
 2/27/09 Pg-2142

ShmooTool / SearchTool
Figure-126: Shmoo Breakpoint Monitor Controls
There is a proper sequence to using these controls. When improperly used, confusion will
occur. The order is simple:

1. Select the desired Test Block Name, from the pull-down list. A test block must be
selected.

2. Select the desired Test#. Enter 0 when the entire test block is to execute at each
shmoo/search data point.

3. Shmoos/searches only apply to test blocks and test numbers. Selecting a Setup# other
than 0 will disable the Shmoo/Search option.

4. Shmoo/searches do not require setting a Break Condition. It is OK to set a Break
Condition, but shmoo/search execution will be interrupted each time the condition
occurs.

Not used for
shmoo/search
operations

Start & Stop
Sequence&Binning
table execution

Load breakpoint
definitions from file

Save breakpoint
definitions to file

Remove selected
breakpoint(s)

Remove all
breakpointsThe term Shmoo is used here regardless

of whether a shmoo or search is selected.

Shmoo/search name to execute

List of shmoo/search names to select
 2/27/09 Pg-2143

ShmooTool / SearchTool
Note: a known problem exists when combining a shmoo breakpoint with an After
Breakpoint Condition. Until this is corrected, it is recommended that this
combination not be used. If used, it may be necessary to terminate the test
program and UI using the Windows Task Manager.

5. Clicking any Break Condition or the Shmoo/Search Enable radio button causes a
breakpoint to be entered into the Breakpoint List. This list is not directly editable,
but can be modified by selecting the desired breakpoint and using the previous controls.

6. When all else fails, Remove any questionable breakpoints and start over.

7. Once one or more shmoo/search operations are successful, Save the breakpoint
definitions to a file. All definitions are saved (it is not possible to save a subset). A
standard windows file browser will be presented, to be used to specify disk, folder, and
file name.

Note: use caution when saving into the test program’s \debug directory. Many users
routinely delete this folder to recover disk space.

The example Breakpoint List below is used to describe several variations of Breakpoint
Monitor shmoo/search definitions. Note that breakpoints are only operational during
Sequence & Binning Table execution:

Figure-127: Shmoo Breakpoint List

Four breakpoints are defined.
The first 3 are enabled (note the check box)
Each is documented further below
 2/27/09 Pg-2144

ShmooTool / SearchTool
First entry in the Breakpoint List:

Using this example, the shmoo (or search) named Shmoo1 will execute when:

• The Sequence/Binning table is executed, and...
• Test block TB1 executes, and...
• Test number 1 executes

The test represented by Test# 1 will execute at each data point, and its pass/fail result will
determine the results of the shmoo/search.

Second entry in the Breakpoint List

Using this example, the search (or shmoo) named LSearch1 will execute when:

• The Sequence/Binning table is executed, and...
• Test block TB2 executes

Since the specified Test# = 0, the entire test block will execute at each data point, and the
value returned by the test block will determine the results of the shmoo/search.

Shmoo/Search is Enabled (radio button)

Shmoo/Search Name = Shmoo1

Selected Test Block = TB1

Test # = 1

This Breakpoint is enabled

Shmoo/Search is Enabled (radio button)

Shmoo/Search Name = LSearch1

Selected Test Block = TB2

Test # = 0 (no value displayed here)

This Breakpoint is enabled
 2/27/09 Pg-2145

ShmooTool / SearchTool
Third entry in the Breakpoint List

Using this example, the search (or shmoo) named BSearch2 will execute when:

• The Sequence/Binning table is executed, and...
• Test block TB3 executes

Since the specified Test# = 0, the entire test block will execute at each data point, and the
value returned by the test block will determine the results of the shmoo/search. Any non-
zero value returned by the test block is considered a PASS by the shmoo/search. Since a
Break Condition is also set, shmoo execution will be interrupted if the test block returns
the value 4. When this occurs, the Breakpoint Monitor Continue Execution button can
be used to resume execution.

Fourth entry in the Breakpoint List

Using this example, the shmoo or search named LSearch2 will not execute because the
breakpoint is disabled. Clicking in the box will enable the breakpoint.

6.15.9.2 Executing Shmoos and Searches Programmatically
See ShmooTool / SearchTool, Shmoo/Search Execution

Shmoo/Search is Enabled (radio button)

Shmoo/Search Name = BSearch2

Selected Test Block = TB3

Test # = 0 (no value displayed here)

A Break Condition was set to Stop
execution if TB3 returned the value 4.

This Breakpoint is enabled

Shmoo/Search is Enabled (radio button)

Shmoo/Search Name = LSearch1

Selected Test Block = TB1

Test # = 2

This Breakpoint is disabled
 2/27/09 Pg-2146

ShmooTool / SearchTool
As used here, the term executing programmatically means that shmoos or searches are
invoked using C code in the test program i.e. not interactively.

The same methods documented in Executing Shmoos and Searches Interactively are used
to create shmoo/search definitions and breakpoint definitions. To be used programmatically
these definitions must be saved to disk files. See Shmoo Definition File and Breakpoint
Definition File.

Then, using built-in UI User Variables, user-written C code can:

• Load a Shmoo Definition File
• Load a Breakpoint Definition File
• Specify an output file used to capture shmoo/search results (in ASCII).

Once these files are loaded, any subsequent execution of the Sequence & Binning Table will
invoke any shmoo/search definitions triggered by any enabled breakpoints, andstore the
output in the specified file.

Note: breakpoints function the same as when interactively using the Breakpoint
Monitor. Thus if any Break Conditions are set program execution will react
accordingly i.e. stop execution. However, since the interactive Breakpoint
Monitor is not displayed, it may not be obvious to the user why program
execution halted. Starting the Breakpoint Monitor allows the test program
execution to be resumed by clicking the Continue Execution button.

Usage
The following code examples show how to use three built-in user variables to enable
shmoos and searches from user-written C code.

remote_set("ui_ShmooInput","c:/path/shmoo_defs.txt", -1);

remote_set("ui_ShmooOutputFile","d:/path/outfile.txt", -1);

remote_set("ui_BreakPointFile","d:/path/break_defs.txt", -1);

See UI User Variables. These functions must be called from SITE_BEGIN_BLOCK() or
SITE_CONFIGURATION() block (see Limitations).

Note: all built-in UI User Variables are scoped to the UI process. This means that
unloading the test program does NOT change the state of the variable in UI,
and any subsequently loaded test programs may be affected. Terminating UI
will reset these conditions.
 2/27/09 Pg-2147

ShmooTool / SearchTool
Limitations
The Shmoo Definition File and Breakpoint Definition File are loaded once, when the
program loads. For this reason, code which specifies ui_ShmooInput and/or
ui_BreakPointFile must execute from the SITE_BEGIN_BLOCK() or
SITE_CONFIGURATION() block.

6.15.10 Shmoos and Searches using User Variables
See ShmooTool / SearchTool,

The ability to shmoo/search User Variables is very powerful. It allows arbitrary user-written C
code (the body code of the user variable) to be executed for each step of the shmoo/search.

This can be used to modify PE voltage/current values, DPS voltage/current values, timing,
parametric parameters, etc. It can also be used to implement nonlinear operations, set
limits, enforce user rules, etc.

The following user variable types can be used as shmoo/search parameters:

INT_VARIABLE

DOUBLE_VARIABLE

DWORD_VARIABLE

INT64_VARIABLE

FLOAT_VARIABLE

In the ShmooTool Parameter List list box, user variables appear with the name of the
variable. For example, the following user variables will appear as shown below:

INT_VARIABLE(my_int, 1, "x") {}

DWORD_VARIABLE(my_dword, 1, "x") {}

FLOAT_VARIABLE(my_float, 0.0, "x") {}

DOUBLE_VARIABLE(my_double, 1, "x") {}

INT64_VARIABLE(my_int64, 1, "x") {}
 2/27/09 Pg-2148

ShmooTool / SearchTool
// The "x" argument enables ShmooTool display, any value works

User variables appear at the bottom of the Parameter List. They are listed by type first (INT,
DWORD, FLOAT, DOUBLE, INT64), then alphabetical by name. To be listed, the user variable
must have a non-NULL label specified as the 3rd argument (the label itself is not displayed).
For example, the following user variable will not appear in the list:

INT_VARIABLE(some_name, 1, "") {} // Note 3rd argument is NULL

Examples

Example 1:
The following example uses 2 user variables, without any body code, to generate a shmoo
which looks like a star (not very useful, except as an example). An entire test block is
executed to determine pass/fail at each point in the shmoo. The values of the user variables
are modified within the test block, and determine whether any given test block execution
passes or fails, which in turn causes the shmoo to display pass or fail. The example has four
parts:

• C-Code:
• ShmooTool Setup
• BreakPoint Monitor Setup
• Shmoo Output

User Variable
Names
 2/27/09 Pg-2149

ShmooTool / SearchTool
C-Code:
This example assumes the shmoo min/max parameters are 0->10 for both axis.

INT_VARIABLE(x_axis_star, 0, "x") {}

INT_VARIABLE(y_axis_star, 0, "y") {}

TEST_BLOCK(TB_star) {

if (x_axis_star == y_axis_star) return FALSE;

if (x_axis_star == 5) return FALSE;

if (y_axis_star == (10 - x_axis_star)) return FALSE;

if (y_axis_star == 5) return FALSE;

return TRUE;

}

 2/27/09 Pg-2150

ShmooTool / SearchTool
ShmooTool Setup

Figure-128: Shmoo User Variable Setup

User Variables
in C Code

Used in
Breakpoint

Monitor
(next)
 2/27/09 Pg-2151

ShmooTool / SearchTool
BreakPoint Monitor Setup

Figure-129: Shmoo Breakpoint Setup

Set Breakpoint on
the test block (i.e.
test number = 0
setup number = 0)

Executes Shmoo1
any time the test
block TB_star
executes

Enable shmoo/
search and select
Shmoo1
 2/27/09 Pg-2152

ShmooTool / SearchTool
Shmoo Output

Figure-130: Shmoo Output

6.15.11 Shmoo Definition File
See ShmooTool / SearchTool

ShmooTool provides a method for saving shmoo/search definitions files on disk.

(there is a star
there, honest)
 2/27/09 Pg-2153

ShmooTool / SearchTool
These files are created or replaced using the Save button in ShmooTool, and read into
ShmooTool using the Load button:

Figure-131: Shmoo Definition File Controls
In either case, as standard Windows file browser is displayed, and used to select the desired
disk, path, and file.

Note the following:

• The information is stored in ASCII files (*.txt), which are readable using any text
editor.

Note: Nextest reserves the right to modify the format of these files at any time.
Manually editing these files is therefore discouraged.

• The Save operation saves all the definitions shown in the Name list box. It is not
possible to save a subset.

• The Load operation loads the entire contents of the selected file. Existing
definitions are not removed. If a definition name in the load file matches an
existing name in the Name list box, the user will be advised, and allowed to
confirm or cancel.

• Using command line arguments, it is possible to specify a shmoo/search definition
file to load as UI is started. See Starting UI from a Command Line, and
ui_ShmooInput.

Load an existing
shmoo/search
definition file.

Save the list of
named shmoo/search
definitions to a file.
 2/27/09 Pg-2154

SummaryTool
6.16 SummaryTool

Description
UI - User Interface provides a built-in summary display which can be used to view the
current values of Test Bins and Test Bin Groups.

To start SummaryTool:

• Type keyboard shortcut Alt+F3
• Choose View: Default Summary

This causes the Summary display to appear:

Note the following:

• Only nonzero values are displayed. If either builtin_Pass and/or
builtin_Fail contains a non-zero count value they will also be displayed.
 2/27/09 Pg-2155

SummaryTool
• The sum of all bins is also displayed (first). Note that the name for this value is
Units Tested, which may be inappropriate since the value displayed is actually the
sum of all bins. In some applications more than one bin may be incremented for
each device tested.

• The Save option is used to write the summary values to a file chosen interactively
from the file dialog to follow.

• The Print option is used to to print the summary values to a printer, installed on the
host computer (running Ui) or over a network.

• The Clear option, available only in engineering mode, is used to clear the summary
on the selected test site (controller). This also clears the related Test Bins and Test
Bin Groups

• The AllDUTs and individual DUT tabs (DUT1, etc.) are used to select which
summary data will be displayed. These are useful in Multi-DUT Test Programs.

This dialog is intended to provide runtime visibility of bin values. Since the format of values
displayed is fixed, it is not likely to satisfy the needs of all users. To obtain a customized
summary, the functions available in Test Bin Functions and Test Bin Group Functions can be
used, to generate text output, display values in User Dialogs or User Tools, save output to
disk files, etc.
 2/27/09 Pg-2156

 2/27/09 Pg-2157

TimingTool
6.17 TimingTool
To start Timing Tool:

• Click on the TimingTool icon from the Ui toolbar
• Type keyboard shortcut Ctrl+I
• Choose Tools: Timing

The image below shows the Magnum 1/2/2x TimingTool:

Note the following:

• The number of Controller tabs displayed is based on the system in use.
• The current tgmode() state of the hardware is shown in the upper left area of the

TimingTool display. This is a display-only value, which is only updated when
TimingTool is first started e.g. it is necessary to terminate and restart TimingTool to
update this value, which will be necessary, for example, when execution stops at
different breakpoints.
 2/27/09 Pg-2158

TimingTool
• The Pattern Name list box allows the user to select a test pattern, which then
causes the TimingTool display to display only the time-sets actually used in the
test pattern. To see all time-set selection tabs, select the pattern named <none>.

• The cycle period value of the currently selected time-set is displayed in the lower
left corner of the tool.

 2/27/09 Pg-2159

User Variables Tool
6.18 User Variables Tool

Note: this tool was completely re-designed in software release h2.2.xx/h1.2.xx. The
information below only applies to the new design.

This section includes the following:

• Overview
• Starting User Variables Tool
• User Variable Prompt String
• User Variables Tool Controls

- Display Option Controls
- Display Sort Controls
- User Variable Display/Modification Controls

• Built-in User Variables
 2/27/09 Pg-2160

User Variables Tool
6.18.1 Overview
See User Variables Tool.

User Variables Tool may be used to display and optionally modify User Variables. The image
below displays 28 user variables which existed in an example test program. This example
includes several instances of each type of user variable type:

Figure-132: User Variables Tool Display

See
User Variables

Tool Controls

The User
Variable Prompt

String is
displayed as a

tool-tip

User variable
names

User variable
values

User
variable
type

Use column
headers to
order display

Right-mouse
Controls
 2/27/09 Pg-2161

User Variables Tool
6.18.2 Starting User Variables Tool
See User Variables Tool.

Three methods are available to start User Variables Tool:

• Click on the User Variables Tool icon in the UI tool-bar
• Type the keyboard shortcut Ctrl+U
• Choose Tools: User Variables...

6.18.3 User Variable Prompt String
See User Variables Tool, Overview.

Only user variables which have a prompt string are displayed in User Variables Tool. For
example:

BOOL_VARIABLE(myBOOL_1, TRUE, "myBOOL_1"){}
BOOL_VARIABLE(myBOOL_3, TRUE, ""){}

myBOOL_3 will not be displayed in User Variables Tool because it has a NULL prompt string.

As the cursor is moved onto a given user variable the standard Windows tool-tips are used
to display each user variable’s prompt string (see example in User Variables Tool Display).

6.18.4 User Variables Tool Controls
See User Variables Tool.

User Variables Tool has three sets of controls:

• Display Option Controls
• Display Sort Controls
• User Variable Display/Modification Controls
 2/27/09 Pg-2162

User Variables Tool
Display Option Controls
The following image shows the display option controls. The table below describes these
controls:

Figure-133: User Variables Tool Display Option Controls
 2/27/09 Pg-2163

User Variables Tool
The following table describes the various User Variables Tool display option controls:

Figure-134: User Variables Tool Display Option Controls

Display Sort Controls
The following image shows the display sort controls. The controls are described below:

Figure-135: User Variables Tool Display Sort Controls

Control Purpose

Host
When selected, any changes to user variable values are made in
the Host only and the user variable’s body-code executes in the
Host. Clicking Get All will read values from the Host.

Controller
When selected, any changes to user variable values are made in
all Sites and the user variable’s body-code executes in each Site.
Clicking Get All will read values from the first Site.

Hex

When selected, all integer numerical values displayed in User
Variables Tool are displayed as hexadecimal values and the
background color of those values is light-green. Note that the
numerical base of a single integer value can also be changed by
first selecting the target user variable and then selecting the
desired base via the right-mouse button.

Dec

When selected, all integer numerical values displayed in User
Variables Tool are displayed as decimal values and the background
color of those values is light-yellow. Note that the numerical base of
a single integer value can also be changed by first selecting the
target user variable and then selecting the desired base via the
right-mouse button.

Hide builtins
When selected, the built-in user variables defined by the system
software are not displayed in User Variables Tool. See Built-in User
Variables.

Get All

Updates the value displayed for each user variable displayed in
User Variables Tool. This should be used any time user-code
executes which may have changed one or more user variable
values. Reads the values from the Host or first Site, depending on
which is currently selected (see Host/Controller above).
 2/27/09 Pg-2164

User Variables Tool
The width of each column can be resized using the mouse.

Clicking on Name will sort the list of user variables alphabetically, by name.

Clicking on Value has no effect.

Clicking on Type will sort the list of user variables alphabetically, by type.

The control key may be used to modify the sort algorithm. This is typically only useful as
follows:

• Click on Type to sort the list alphabetically, by type.
• Press and hold the control key and click on Name to sort the list of user variables

alphabetically, by name.
The result: the user variables remain sorted by Type but will also be sorted by Name within
each Type.
 2/27/09 Pg-2165

User Variables Tool
User Variable Display/Modification Controls
The following image shows the main User Variables Tool display area, which is used to view
each user variable’s name, value and type and optionally to modify a user variable’s value:

Figure-136: User Variable Display/Modification Controls
A user variable’s name is that assigned by the user in test program code. A user variable’s
name cannot be changed using User Variables Tool.

Modify values in the Value column. The value is
changed in the Host or all Sites depending on the

Host/Controller selection.
 2/27/09 Pg-2166

User Variables Tool
A user variable’s value is the value read when User Variables Tool is invoked or when the
Get All button is clicked. Values are read from the Host or first Site, depending on the Host/
Controller selection.

A user variable’s type is determined by the macro used in the test program to define each
user variable. A user variable’s type cannot be changed using User Variables Tool.

The method used to change a value depends on the type of the user variable:

• BOOL_VARIABLE: left-click the check-box to toggle the value. This takes effect
immediately.

• Value-based variables: left-click the current value to select the current value then
type the new value. This applies to DWORD_VARIABLE, INT64_VARIABLE,
CSTRING_VARIABLE, FLOAT_VARIABLE, UINT64_VARIABLE,
DOUBLE_VARIABLE and INT_VARIABLE. When value-based variables are
modified typing Enter or changing the focus to a different variable value causes
the change to take effect immediately. The Esc key can be used to cancel an edit.

• Each ONEOF_VARIABLE has a pull-down menu which may be used to select a
new value from the values defined for that variable. Above, the value selection for
myONEOF_1 has been selected. Selecting a new value from the pull-down menu
causes the change to take effect immediately. The Esc key can be used to cancel
an edit.

• A VOID_VARIABLE does not have not value but can be invoked by clicking the
Invoke button in the Value column.

Also note:

• When a user variable is modified in User Variables Tool its body-code IS executed
in the Host or all Sites depending on the Host/Controller selection.

Note: the user variable’s body-code WILL be executed any time that variable’s value
has been selected for editing, even though the value may not actually be
changed. The Esc key can be used to cancel an edit, which will prevent the
body-code from executing.

6.18.5 Built-in User Variables
See User Variables Tool, Display Option Controls.
 2/27/09 Pg-2167

User Variables Tool
The system software defines a number of built-in user variables, each named with the prefix
builtin_. These variables allow the system software to use underlying support for user
variables, just like user code. For the most part, these variables are used for internal needs;
the exceptions are noted in the table below (and some of these have no value to the user).

The Hide builtins control in User Variables Tool can be used to display or hide these
user variables. See Display Option Controls.

The table below lists these built-in user variables. Only the variables which have a Purpose
description below should be manipulated by the user:

Variable Name Purpose

builtin_CrtSetBreakAlloc
See _CrtSetBreakAlloc in MSDN
documentation. Useful for memory leak
diagnosis.

builtin_batch_file

Passes the specified path/file name to
set_values_from_file() which is executed
in the Host or all Sites based on the Host/
Controller selection. Rules for
set_values_from_file() apply.

builtin_dump_globals

Specify the path/file name which will be
generated and contain global variable
declarations suitable for #include in a DLL
source file. See comments in the generated file.
Default path is test program \debug\ folder.

builtin_dynload

Loads a specified DLL and initializes resources
from that DLL. Loads in the DLL in the Host all
or Sites depending on the Host/Controller
selection. See Loading DLLs.

builtin_fatal

Generates an output message containing the
specified string in the Host or all Sites
depending on the Host/Controller selection
and unloads the test program.

builtin_getenv Not useful.

builtin_invoke_dialog
Can be used to invoked the specified user
dialog which must be defined in the currently
loaded test program.
 2/27/09 Pg-2168

User Variables Tool
builtin_invoke_sequencetable
Can be used to execute the specified Sequence
& Binning Table. Only useful when
Controller is selected.

builtin_invoke_testbin
Can be used to execute the specified Test Bin.
Only useful when Controller is selected.

builtin_invoke_testblock
Can be used to execute the specified Test
Block. Only useful when Controller is
selected.

builtin_loadlibrary
See LoadLibrary in MSDN documentation.
Instead, use builtin_dynload, which
performs additional house-keeping functions.

builtin_message_box

Displays a message box displaying the specified
string. Below, the value test this was
entered. Note that if OK is not selected within a
few seconds a time-out warning dialog will be
displayed.

builtin_output
Generates an output message containing the
specified string in the Host or all Sites
depending on the Host/Controller selection.

builtin_putenv

May be used to set the value of an environment
variable. The variable will be defined only within
the scope of the program executing in the Host
or all Sites depending on the
Host/Controller selection.

Variable Name Purpose
 2/27/09 Pg-2169

User Variables Tool
builtin_remote_signal

Can be used to send a signal to a pending
remote_wait(). The value specified must
match the signal name specified by
remote_wait(). The signal is sent to the Host
or all Sites depending on the
Host/Controller selection

builtin_resource_deallocate See Resource Control Functions.

builtin_resource_initialize See Resource Control Functions.

builtin_unload
The complement of builtin_dynload.
Unloads the specified DLL and deallocates the
associated resources.

builtin_update_control

Can be used to update the specified control in a
user dialog which is currently being displayed.
The control is identified by its associated user
variable name.

builtin_warning
Generates a warning message containing the
string entered in the Host or all Sites depending
on the Host/Controller selection.

builtin_what_exe
Displays path and file name of the currently
loaded test program. This is read-only.

Variable Name Purpose
 2/27/09 Pg-2170

Voltage and Current Tool
6.19 Voltage and Current Tool
To start VoltageTool:

• Click on the Voltage Tool icon from the Ui toolbar
• Type keyboard shortcut Ctrl+R
• Choose Tools: Voltage and current…
 2/27/09 Pg-2171

Voltage and Current Tool
The image below shows the Magnum 1/2/2x VoltageTool interface:
 2/27/09 Pg-2172

WaveTool
6.20 WaveTool

Note: this section is a work in progress, is not complete and may contain errors. It is
included anyway, because the information which is complete may be of some
value. Note that the design of the various dialogs is evolving and changes are
likely as the implementation proceeds. Thank you for your patience.

This section contains the following topics:

• Example Display
• Overview
• Starting WaveTool
• WaveTool Tool-bar Controls
• WaveTool Setup Files
• WaveTool Setup Controls

• Setup Signals Dialog
• Setup Headers Dialog
• Setup Acquire Dialog

- Setup Acquire Input Controls
- Setup Acquire Execute Controls
- Setup Acquire LEC Controls

• WaveTool Run Controls
• WaveTool Timing Format Symbols
• WaveTool Color Schemes
• WaveTool Zoom Controls
• WaveTool Mouse Track Controls
• Creating WaveTool Trace Files
• History RAM

6.20.1 Example Display
See WaveTool.
 2/27/09 Pg-2173

WaveTool
The following image shows a typical WaveTool display:

Figure-137: WaveTool Display
The image above shows WaveTool with a well configured display. When WaveTool is initially
started, the system software inserts one pin into the Display Signals List and updates the
Main Waveform Display Window to show one cycle of the most recently executed test
pattern. Subsequently, the user must use the various WaveTool Setup Controls to change
the various display options, as reflected in the image above.

6.20.2 Overview
See WaveTool.

WaveTool has the following capabilities:

Column Header

See Setup
Headers Dialog

Controller
Selection

Menu
DUT

Selection
Menu

 WaveTool Run
Controls

DutPins and/or
PinLists

Row Labels
See Setup

Signals Dialog

Main Waveform
Display Window

See Timing
Format Symbols

Track Mouse
Information

See WaveTool Zoom Controls
 2/27/09 Pg-2174

WaveTool
• Graphically display format and timing information (waveforms) for one or more
selected pin(s) or pin list(s) of specified cycles of a selected test pattern source
file. This can include time-set selection, pin scramble selection, etc.
See Source->FileOrder in Setup Acquire Input Controls.

• Display the sequence of format and timing generated on one or more pins/pin lists
vs. the per-cycle test pattern execution sequence, as acquired in the hardware
History RAM. See Source->History in Setup Acquire Input Controls. This can
include time-set selection, pin scramble selection, etc. The Magnum 1 History
RAM always contains the last 512 cycles executed.

• Display the sequence of format and timing from the instruction execution
sequence of a Logic Test Pattern, as captured using the Logic Error Catch (LEC).
See Source->Lec in Setup Acquire Input Controls.

In addition:

• WaveTool has several user selectable color schemes, see WaveTool Color
Schemes.

• WaveTool supports tool setup files, allowing configurations to be saved and
reused.

• WaveTool a .ini file which records tool size, location, etc.
• WaveTool can display waveform amplitudes using symbolic levels or actual values

read from the hardware. See Default Levels.

6.20.3 Starting WaveTool
See WaveTool.

WaveTool is started from UI’s Tool menu by selecting Tool->Wavetool or type
Control+Alt+V.
 2/27/09 Pg-2175

WaveTool
6.20.4 WaveTool Tool-bar Controls
See WaveTool.

WaveTool’s tool-bar includes several pull-down menus used to select between options or
perform various actions:

See:

• WaveTool Tool-bar File Control Options
• WaveTool Tool-bar View Control Options
• WaveTool Tool-bar Options Control Options
• WaveTool Tool-bar Help Control Options
 2/27/09 Pg-2176

WaveTool
The WaveTool tool-bar’s File options are:

Table 6.20.4.0-1 WaveTool Tool-bar File Control Options

Control Description

New->Waveform
Window

Invoke a new waveform display window. Since only one window
is supported this control is only useful if the window has been
terminated.

New->Setup
Window

Invoke a new WaveTool Setup Dialogs window. See WaveTool
Setup Controls. Only one window is supported. If it exists (has
not been terminated) it will be terminated and restarted with all
values set = default values.

New->History
Window

Invoke a new History RAM Display window, to display the
contents of the History RAM.

Open->Setup
File

Select and load a WaveTool Setup File from disk. Presents a
standard file browser, initially pointing to the currently loaded test
program’s \Debug folder. WaveTool Setup Files have the .suf file
name suffix.

Save->Setup
File

Save the current WaveTool setup (as defined using the WaveTool
Setup Dialogs) to the current WaveTool Setup File .

SaveAs->Setup
File

Save the current WaveTool setup (as defined using the WaveTool
Setup Dialogs) to a specified WaveTool Setup File on disk. If
Presents a standard file browser, initially pointing to the currently
loaded test program’s \Debug folder. WaveTool Setup Files have
the .suf file name suffix.

Exit Terminate WaveTool.

 2/27/09 Pg-2177

WaveTool
The WaveTool tool-bar’s View options are:

Table 6.20.4.0-2 WaveTool Tool-bar View Control Options

Control Description

Setup Window Display or hide WaveTool Setup Dialogs window. See WaveTool
Setup Controls.

Run Controls Show or hide WaveTool Run Controls.

 2/27/09 Pg-2178

WaveTool
The WaveTool tool-bar’s Options options are:

Table 6.20.4.0-3 WaveTool Tool-bar Options Control Options

Control Description

Condensed
Headers

By default, WaveTool displays some header information only
when it changes from the previous cycle. This makes it easy to
see when, for example, the TimeSet or PinScramble selection
changes from one cycle to the next. If Condensed Headers is
disabled, this information is displayed in every cycle.

AutoSynchronize

By default, the WaveTool display will be updated when the test
pattern currently selected in the Setup Acquire Execute Controls
is executed using mechanisms external to WaveTool. If
AutoSynchronize is disabled WaveTool will only be updated if
the WaveTool Run Controls are used.

 2/27/09 Pg-2179

WaveTool
The WaveTool tool-bar’s Help options are:

Header Font
Size

Use to change the size of text displayed in WaveTool’s Column
Headers. Default = medium. Changing this value has no effect
until one of the WaveTool Run Controls is selected.

Driver Trace
Size

Use to change the size of lines used to draw driver waveforms in
the WaveTool Display. Default = thin. The other options are
none, medium and thick. Changing this value has no effect
until one of the WaveTool Run Controls is selected.

Scheme

Use to change the color scheme used in the WaveTool Display,
see WaveTool Color Schemes. Default = white. The other
options are green and black. The selection affects both the
window background color and the color of the lines used to draw
waveforms. Changing this value has no effect until one of the
WaveTool Run Controls is selected.

Table 6.20.4.0-4 WaveTool Tool-bar Help Control Options

Control Description

Help Topics Displays the Nextest Documentation Index.

Creating Trace
Files

See Creating WaveTool Trace Files.

About WaveTool Displays the WaveTool version number.

Table 6.20.4.0-3 WaveTool Tool-bar Options Control Options (Continued)

Control Description

 2/27/09 Pg-2180

WaveTool
6.20.5 WaveTool Setup Files
See WaveTool Tool-bar Controls.

The various configuration options set using WaveTool Setup Controls (i.e. the options set in
the Setup Signals Dialog, Setup Headers Dialog) may be saved and reused later to quickly
configure WaveTool. This is done, by the user, by saving any number of configurations, each
to a separate WaveTool configuration file (more below) and subsequently loading the
desired file.

Note the following:

• A WaveTool configuration file is created using File->SaveAs->Setup File.
• Changes made to the currently loaded configuration file may be saved using

File->Save->Setup File.
• A configuration may be loaded (read) using File->Open->Setup File. This

immediately updates the WaveTool Setup Controls however the WaveTool Display
is not updated until one of the WaveTool Run Controls (ReadHW or Run) is used.

• When a file browser is displayed, by default it points to the currently loaded test
program’s \Debug folder.

• WaveTool configuration files use the .suf file name suffix.

6.20.6 WaveTool Setup Controls
See WaveTool Tool-bar Controls.

The image shown in WaveTool Display shows WaveTool with a well configured display.
When WaveTool is first started, the system software inserts one pin into the Display Signals
List and updates the Main Waveform Display Window to show one cycle of the most recently
executed test pattern. Subsequently, the user may use the WaveTool Setup Dialogs shown
below or a WaveTool Setup File may be loaded to change the various WaveTool display
 2/27/09 Pg-2181

WaveTool
options to display the desired information:

Figure-138: WaveTool Setup Dialogs

6.20.6.1 Setup Signals Dialog
See WaveTool.

Setup Signals Dialog

Setup Headers Dialog

Setup Acquire Dialog
 2/27/09 Pg-2182

WaveTool
This dialog is invoked by selecting the Signals tab in the WaveTool Setup Controls .

The setup Signals dialog is used to select which pin(s) will be displayed in WaveTool.

This dialog is invoked by selecting the Signals tab after using either File->New->Setup
Window or by loading a previously saved setup using File->Open->Setup File.

Only the DutPins and/or PinLists shown in the Display Signals List will be displayed in
WaveTool. DutPins and/or PinLists are added to the Display Signals List by selecting items
from the Signal Selection List and clicking the Add button. Below, DutPins dp1 through
dp19 have been added to the Display Signals List:

Figure-139: Setup Signals Dialog

Signal
Selection

List

Regular
Expression

Filter

Display
Signals
List

See Setup
Signals
Controls

 2/27/09 Pg-2183

WaveTool
The following table describes the remaining controls in this dialog:

6.20.6.2 Setup Headers Dialog
See WaveTool.

This dialog is invoked by selecting the Headers tab in the WaveTool Setup Controls .

Table 6.20.6.1-1 Setup Signals Controls

Control Description

 Causes DutPins to be displayed for selection in the Signal
Selection List.

Causes PinLists to be displayed for selection in the Signal
Selection List. When a PinList is displayed in WaveTool the
format symbols drawn in each cycle are the composite of all
formats used on all pins in the PinList (per cycle). This can be
confusing to interpret, see WaveTool Timing Format Symbols.

Used in conjunction with the Regular Expression Filter. This will
filter the list of DutPins/PinLists displayed in the Signal Selection
List based on the specified regular expression. The default
expression (.+) causes all DutPins/PinLists to be displayed:
. = any single character
+ = zero or more characters

 Causes the DutPins/PinLists selected in the Signal Selection List
to be added to the Display Signals List.

 Removes any DutPins/PinLists selected in the Display Signals
List from the list.

 Moves any DutPins/PinLists selected in the Display Signals List
up or down in the list. Used to reorder how pins are displayed in
Main Waveform Display Window.

 Only DutPins/PinLists which are selected will be moved Up/Down
or Removed when these controls are used.
 2/27/09 Pg-2184

WaveTool
The Setup->Header dialog is used to determine the information displayed in the Column
Header area of each column in the WaveTool Display.

When WaveTool is first started, the system software inserts one value: index into the
Headers List. Subsequently, the user must use the Setup Header dialog to change the
information displayed in Column Headers.

Header options are added to the Header Options Display List by selecting Column Header
Options from the Header Option Selection List and clicking the Add button. In the image
below the Index, Time, TimeSet, PinScramble and VarRelative options have been added to
the Header Options Display List:

Figure-140: Setup Headers Dialog

Header
Option

Selection
List

Header
Options
Display
List

See Setup
Header
Controls

 2/27/09 Pg-2185

WaveTool
The following table describes the remaining controls in this dialog. Below this is the table of
Column Header Options:

The options which can be displayed in each column header are:

Table 6.20.6.2-1 Setup Header Controls

Control Description

 Causes the selections in the Header Option Selection List to be
added to the Header Options Display List.

 Removes selected options from the Header Options Display List.

 Moves any options selected in the Header Options Display List
up or down in the list. This changes the order they are displayed
in WaveTool.

Table 6.20.6.2-2 Column Header Options

Option Description

ChipSet Not supported on Magnum 1.

EbmEnable Not supported on Magnum 1.

Index
The cycle number relative to the trigger event. This is useful when
using zoom controls, to determine which cycles are being displayed.

MarAbsolute
Display the absolute MAR address of each cycle. Zero (0) is
displayed when the selected test pattern (see Setup Acquire Execute
Controls) is a pure logic pattern.

MarControl
Displays the MAR execution control used in each cycle.
No value is displayed when the selected test pattern (see Setup
Acquire Execute Controls) is a pure logic pattern.

MarLabel
Display the Pattern Label from the MAR pattern (if any) for each
cycle. No value is displayed when the selected test pattern (see
Setup Acquire Execute Controls) is a pure logic pattern.

MarPattern
Display name of the memory pattern controlling each cycle. No value
is displayed when the selected test pattern (see Setup Acquire
Execute Controls) is a pure logic pattern.
 2/27/09 Pg-2186

WaveTool
6.20.6.3 Setup Acquire Dialog
See WaveTool.

This dialog is invoked by selecting the Acquire tab in the WaveTool Setup Controls .

The setup Acquire dialog is used to configure several WaveTool options:

• Select the source of information used to generate the display and choose the first
and number of cycles to be displayed. See Setup Acquire Input Controls.

MarRelative
Display the pattern-relative MAR address of each cycle (zero-based).
-1 is displayed when the selected test pattern (see Setup Acquire
Execute Controls) is a pure logic pattern.

PinScramble
Display the Pin Scramble (PS#) selection for each cycle. A value is
displayed only if it changed from the prior cycle.

Time The time relative to the trigger event.

TimeSet
Display the Time-set (TS#) selection for each cycle. A value is only
displayed if it changed from the prior cycle.

VarAbsolute
Display the absolute VAR address of each cycle. Zero (0) is
displayed when the selected test pattern (see Setup Acquire Execute
Controls) is a pure memory pattern.

VarLabel
Display the Pattern Label from the VAR pattern (if any) for each
cycle. No value is displayed when the selected test pattern (see
Setup Acquire Execute Controls) is a pure memory pattern.

VarPattern
Display name of the logic pattern controlling each cycle. No value is
displayed when the selected test pattern (see Setup Acquire Execute
Controls) is a pure memory pattern.

VarRelative
Display the relative VAR address of each cycle (zero-based). -1 is
displayed when the selected test pattern (see Setup Acquire Execute
Controls) is a pure memory pattern.

VihhSet Display the VIHH selection in each cycle.

Table 6.20.6.2-2 Column Header Options (Continued)

Option Description
 2/27/09 Pg-2187

WaveTool
• Select the test pattern to be used to generate the display when the ReadHW button
is clicked. Also determines the pattern executed and the pattern execution stop
condition used when the Run button is clicked. See Setup Acquire Execute
Controls and WaveTool Run Controls.

• Select various Logic Error Catch (LEC) options to be used when
Input->Source->Lec is selected (see Setup Acquire Input Controls). Also see
Setup Acquire LEC Controls.

This dialog is displayed by selecting the Acquire tab in the WaveTool Setup Controls
dialog.

When WaveTool is first started, the system software configures the Setup Acquire dialog as
shown below (LogicPat1 is a user test pattern):

Figure-141: WaveTool Setup Acquire Dialog
Options are described further below.

Setup Acquire
Input Controls

Setup Acquire
Execute Controls

Not supported
on Magnum 1

Setup Acquire
LEC Controls
 2/27/09 Pg-2188

WaveTool
6.20.6.4 Setup Acquire Input Controls
See Setup Acquire Dialog, WaveTool.

These controls are used to select the source of information used to generate the display
and choose the first and number of cycles to be displayed:

Figure-142: WaveTool Setup->Acquire Input Controls
The following table describes the controls in this portion of the dialog:

Table 6.20.6.4-1 Setup Acquire Input Controls

Control Description

Source->FileOrder

The displayed sequence of cycles and related test pattern
information is retrieved from the loaded test pattern selected
using the Pattern option in the Setup Acquire Execute
Controls. After the desired pattern is selected the ReadHW
button must be clicked (the Run button has no effect) .

 Input
Controls

 2/27/09 Pg-2189

WaveTool
Source->History

The displayed sequence of cycles and related test pattern
information is retrieved from the History RAM. The History
RAM contains up to 512 cycles of per-cycle information
acquired during the most recent execution of a test pattern,
including the actual sequence of cycles executed by
conditional branch operations, etc.

Source->Lec

The displayed sequence of cycles and related test pattern
information is retrieved from the Logic Error Catch (LEC).
When this option is selected, the LEC configuration set via
test program code, if any, is not used. Instead, when the
Run button is clicked, before the selected test pattern (see
Setup Acquire Execute Controls) is executed the LEC is
configured by the system software, using
lec_config_set() and lec_mode_set() with the
values specified using the Setup Acquire LEC Controls.

Note: any prior LEC or ECR configuration is
over-written and not restored.

Source-UserSequence

The displayed sequence of cycles and related test pattern
information is retrieved from a selected WaveTool execution
trace file (*.etf) stored on disk. See Creating WaveTool
Trace Files. A standard file browser is presented initially
pointing to the currently loaded test program’s \Debug
folder.

First

Specify the first cycle to be displayed. This is a zero-based
value relative to the first cycle of the test pattern selected
using the Setup Acquire Execute Controls. Disabled when
Source->History is selected and Auto is enabled

Table 6.20.6.4-1 Setup Acquire Input Controls (Continued)

Control Description
 2/27/09 Pg-2190

WaveTool
6.20.6.5 Setup Acquire Execute Controls
See Setup Acquire Dialog, WaveTool.

These controls are used to select test pattern-related options used by WaveTool to configure
the display the when the ReadHW or Run button is clicked.

Note: using these controls, when the pattern, sequence or test block selection is
changed the contents of the History RAM and Logic Error Catch (LEC) are not
updated until the Run button is clicked, which executes the selected pattern,
sequence or test block. If the ReadHW button is used before the Run button is
clicked WaveTool will display old/stale information. This applies when
Source->History and Source->Lec are selected.

Length

Specifies the number of cycles to be displayed. The
maximum value may be affected by the selected Input
Source option. For example, if Source->Lec is currently
selected and the Logic Error Catch (LEC) is configured to
capture only failing cycles (see Mode) only 2 cycles will be
displayed cycles when only 2 cycles fail. Disabled when
Source->History is selected and Auto is enabled

Auto History RAM. This control is only enabled when Source-
>History is selected. When Auto is enabled, the and

File
Enabled (usable) only when Source-UserSequence is
selected, to allow the user to select an execution trace file
(*.etf) to be displayed. See Creating WaveTool Trace Files.

Default Levels

If enabled, the amplitude of the displayed WaveTool Timing
Format Symbols is symbolic; i.e. not based on actual or
user-programmed levels. If disabled, symbols are drawn
using levels as currently configured in the hardware when
the ReadHW or Run button is clicked.

Table 6.20.6.4-1 Setup Acquire Input Controls (Continued)

Control Description
 2/27/09 Pg-2191

WaveTool
Note: using the Run button, useful test pattern operation (PASS/FAIL results, branch-
on-error operations, etc.) depends on the current configuration of numerous DC
and AC parameters which are programmed independent of the test pattern and
independent of WaveTool. In general, when Source->History and Source-
>Lec will be useful only when the test pattern is stopped at a breakpoint and
these other parameters are properly configured to execute the selected test
pattern.

The following image shows the Acquire Pattern Controls in the Setup Acquire Dialog:

Figure-143: WaveTool Setup->Acquire Execute Controls

 Pattern,
Test Block

or Sequence
Names from

the test
program

Pattern
Execution
Stop
Options

 2/27/09 Pg-2192

WaveTool
The following table describes the controls in this portion of the dialog:

Table 6.20.6.5-1 Setup Acquire Execute Controls

Control Description

Pattern

The test pattern selected in the next menu is used when the ReadHW
button is clicked or executed when the Run button is clicked. The
Mode selection determines the pattern execution stop option used
when the pattern is executed using the Run button. See funtest().
Ignored when Source = Source-UserSequence.

AsSequence

The sequence selected in the next menu is executed when the Run
button is clicked. The Mode control is disabled. The display then
depends on the selected Source option (see Note:):

• Source->FileOrder: AsSequence is ignored.
• Source->History: the contents of the History RAM at the

end of sequence execution are used.
• Source->Lec: the contents of the Logic Error Catch (LEC) at

the end of sequence execution are used.
• Source-UserSequence: AsSequence is ignored.

AsTestBlock

The test block selected in the next menu is executed when the Run
button is clicked. The Mode control is disabled. The display then
depends on the selected Source option (see Note:):

• Source->FileOrder: AsTestBlock is ignored.
• Source->History: the contents of the History RAM at the

end of sequence execution are used.
• Source->Lec: the contents of the Logic Error Catch (LEC) at

the end of sequence execution are used.
• Source-UserSequence: AsTestBlock is ignored.

Mode

Selects the pattern execution stop option to be used when the Run
button is clicked. This is equivalent to the Condition argument to
funtest(). Enabled only when Pattern is selected and
Source->History or Source->Lec are used.
 2/27/09 Pg-2193

WaveTool
6.20.6.6 Setup Acquire LEC Controls
See See Setup Acquire Dialog, WaveTool.

These controls are enabled only when Source->Lec is selected, to control how the Logic
Error Catch (LEC) is configured when the Run button is clicked.

When selected, the current LEC configuration, if any, is not used. Instead, when the Run
button is clicked, before the test pattern selected using Setup Acquire Execute Controls is
executed the LEC is configured by the system software, using lec_config_set() and
lec_mode_set() with the values specified using the LEC controls in this dialog.

Note: any prior LEC or ECR configuration is over-written and not restored.

Figure-144: WaveTool Setup->Acquire LEC Controls

LEC
Configuration

and Mode
Options

 2/27/09 Pg-2194

WaveTool
The following table describes the controls in this portion of the dialog:

The following table describes the legal LEC modes:

Table 6.20.6.6-1 Setup Acquire LEC Controls

Control Description

Mode
This determines the Logic Error Catch (LEC) mode. See
Setup Acquire LEC Mode Options below and
lec_mode_set() for more details.

MUX

This determines how the Pin Scramble MUX is configured.
Select single when executing a non-DDR test pattern, use
single when executing a Double Data Rate (DDR) Mode
test pattern. See fail_signal_mux() for more details.

Counter

Select the first counter displayed when Mode = 2 or 3 or the
only counter displayed when Mode = 4. See
lec_mode_set() for more details.

Counter
Select the second counter displayed when Mode = 2 or 3.
See lec_mode_set() for more details.

Table 6.20.6.6-2 Setup Acquire LEC Mode Options

Mode

Equivalent
lec_mode_set()

Argument LEC Capture

1 t_lec_mode_1
64 pin P/F states (per ECR), 32 bit VAR, 32 bit
SAR. Default.

2 t_lec_mode_2
64 pin P/F states (per ECR), 28 bit VAR or
SAR, 1 bit VAR/SAR flag, one 32 bit counter
value, one 18 bit counter value.
 2/27/09 Pg-2195

WaveTool
6.20.7 WaveTool Run Controls
See WaveTool.

WaveTool’s Run Controls consist of two buttons labeled Run and ReadHW. These are used

3 t_lec_mode_3
64 pin P/F states (per ECR), 28 bit VAR or
SAR; 1 bit VAR/SAR flag, four 12 bit counter
values.

4 t_lec_mode_4
64 pin P/F states (per ECR), 28 bit VAR, 28 bit
SAR, one 20 bit counter value.

VAR = Vector Address. SAR = Scan Vector Address.

Table 6.20.6.6-2 Setup Acquire LEC Mode Options (Continued)

Mode

Equivalent
lec_mode_set()

Argument LEC Capture
 2/27/09 Pg-2196

WaveTool
to retrieve and update the information displayed in WaveTool, as follows:

Table 6.20.7.0-1 WaveTool Run & ReadHW Button Description

Button Description

Run Operation depends on the Setup->Acquire->Input->Source
option currently selected in the Setup Acquire Input Controls of the
Setup Acquire Dialog:

• If Source->History or Source->Lec is selected,
funtest() is executed with the test pattern currently selected
in the Setup Acquire Execute Controls. The pattern execution
stop option used is that selected in the Mode menu of the
Setup Acquire Execute Controls. The first cycle and number of
cycles displayed is determined by the First and Length values
in the Setup Acquire Input Controls (disabled when
Source->History is selected and Auto is enabled). If
Source->Lec is selected, failing strobes are shown in RED
(see WaveTool Timing Format Symbols).

• If Source->FileOrder or Source-UserSequence is
selected the Run button operates as above but information
displayed doesn’t change because the test results are not used
in these two modes.

Note: useful test pattern operation, which can affect which cycles
are executed and the per-pin PASS/FAIL results, depends
on the current hardware configuration at the time the Run
button is clicked. This includes DPS voltages, pin levels,
timing, etc. Thus, the Run button will typically be useful only
when the test program is paused a breakpoint, at which
these parameters are properly configured.

 2/27/09 Pg-2197

WaveTool
ReadHW Operation depends on the Setup->Acquire->Input->Source
option currently selected using the Setup Acquire Input Controls:

• If Source->History is selected the ReadHW button reads and
displays information from the History RAM, which contains
information acquired during the most recent pattern execution.
See Note:

• If Source->Lec is selected the ReadHW button reads and
displays the contents of the Logic Error Catch (LEC), which
contains information acquired during the most recent pattern
execution. This option is supported only when a pure logic
pattern (i.e. not Memory or Mixed) is executed. See Note:

• If Source->FileOrder is selected, the cycles displayed in
WaveTool are determined by reading (from pattern memory)
the test pattern selected using the Setup Acquire Execute
Controls. The first cycle and number of cycles displayed is
determined by the First and Length controls in the Setup
Acquire Input Controls. The information displayed does not
represent actual cycles executed but, rather, cycles from a test
pattern source-view perspective.

• If Source-UserSequence is selected, the cycles displayed in
WaveTool are determined by reading a previously saved
WaveTool trace file from disk. See Creating WaveTool Trace
Files. The file is selected using the File selector in the Setup
Acquire Input Controls. The first cycle and number of cycles
displayed is determined by the First and Length controls in
the Setup Acquire Input Controls.

Table 6.20.7.0-1 WaveTool Run & ReadHW Button Description (Continued)

Button Description
 2/27/09 Pg-2198

WaveTool
Note: when Source->History or Source->Lec are enabled the contents of the
History RAM and Logic Error Catch (LEC) are not automatically updated when
the selected test pattern, sequence or test block is changed (see Setup Acquire
Execute Controls). The user must use the Run button to update the hardware any
time this selection is changed. Failure to do so will cause old/stale information to
be read from the Logic Error Catch (LEC) or History RAM and displayed in
WaveTool.

6.20.8 WaveTool Timing Format Symbols
See WaveTool.

The following table shows the various symbols used to display timing edges and formats for
single pins (see WaveTool Display). When a PinList is displayed in WaveTool (see Setup
Signals Dialog) the format symbols drawn in each cycle are the composite of all formats
used on all pins in the PinList. This can be confusing to interpret, more below. By default, the
amplitude of these symbols is based on voltages defined by Nextest, but the currently
programmed hardware levels may also be used, see Default Levels control:

Table 6.20.8.0-1 Timing Format Symbols

Symbol Format Comments

 NRZ
Data = 1

Format: Non-return to Zero
The image shown here shows a transition from an
unknown prior state or tri-state to pattern data = 1.
See WaveTool Drive Waveform Images.

 NRZ
Data = 0

Format: Non-return to Zero
The image shown here shows a transition from an
unknown prior state or tri-state to pattern data = 0.
See WaveTool Drive Waveform Images.

 RTZ
Data = 1

Format: Return to Zero
The image shown here shows a transition from an
unknown prior state or tri-state to pattern data = 1.
See WaveTool Drive Waveform Images.
 2/27/09 Pg-2199

WaveTool
 RTO
Data = 0

Format: Return to One
The image shown here shows a transition from an
unknown prior state or tri-state to pattern data = 0.
See WaveTool Drive Waveform Images..

 RTC
Data = 1

Format: Return to Complement
The image shown here shows a transition from a
prior state = 0 to pattern data = 1. See WaveTool
Drive Waveform Images.

 RTC
Data = 0

Format: Return to Complement
The image shown here shows a transition from a
prior state = 1 to pattern data = 0. See WaveTool
Drive Waveform Images.

 Double Clock Pos
Data = 1

Format: Positive Double Clock
The image shown here shows a transition from a
prior state = 0 to pattern data = 1. See WaveTool
Double Clock Drive Waveform Images.

 Double Clock Neg
Data = 0

Format: Negative Double Clock
The image shown here shows a transition from a
prior state = 1 to pattern data = 0. See WaveTool
Double Clock Drive Waveform Images.

Table 6.20.8.0-1 Timing Format Symbols (Continued)

Symbol Format Comments
 2/27/09 Pg-2200

WaveTool
When displaying drive waveforms, WaveTool will show an additional (possibly 4th) logic level
in those cycles in which a non-default VIHH Map is selected, on pins which are included in
the selected VIHH Map. The logic levels are:

• VIL, when the drive waveform is driving low
• VIH, when the drive waveform is driving high
• VZ or VTT, when the pin is tri-stated
• VIHH, when the pin is included in the non-default VIHH Map selection

For example:

This waveform can easily be confused

When WaveTool draws a drive waveform format, the actual image seen will depend on both
the format used in a given cycle (as determined by the time-set selection in each cycle) and

 Window Strobe
Data = 1 (H)

The window strobe graphic symbol has width
equivalent to the time between the two strobe edges.

An edge strobe is a vertical line, positioned at the time
of the strobe edge.

Strobe-1 (H) shows the strobe graphic symbol above
the reference line, which represents VOH.

Strobe-0 (L) shows the symbol below the reference
line, which represents VOL.

Strobe-V (valid) shows the symbol both above and
below the reference, representing both above VOH
and below VOL, with a darker region in the center
which represents the invalid (fail) range between VOH
and VOL.

Strobe-Z (tri-state) uses a small symbol, very near the
reference line, which represents the region between
VOH/VOL; i.e. tri-state.

 Window Strobe
Data = 0 (L)

 Edge Strobe
Data = 1 (H)

 Edge Strobe
Data = 0 (L)

 Window Strobe
Data = n/a (V)

 Edge Strobe
Data = n/a (V)

 Window Strobe
Data = n/a (Z)

(tri-state)

 Edge Strobe
Data = n/a (Z)

(tri-state)

Table 6.20.8.0-1 Timing Format Symbols (Continued)

Symbol Format Comments

Third logic level = VIHH Level
 2/27/09 Pg-2201

WaveTool
the drive state from the previous cycle, if any. Four prior states are possible: unknown,
tri-state, drive-1 and drive-0. The following diagrams shows the various waveforms drawn in
one cycle, for each combination of drive format vs. each prior state vs. pattern data:

Figure-145: WaveTool Drive Waveform Images

Prior
State

Pattern
Data

@
T0

NRZ U/T 0

U/T 1

0 1

1 1

U/T = unknown prior state (U) or tri-state (T). 0/1 = pattern data.

I/O drive edges are shown at T0 (0nS) which is the default, see Note:.

Actual format edge timing is determined by the user’s program.

Only the lines shown in here in magenta are actually displayed in WaveTool; i.e. the U, 0 and 1 characters
are not displayed.

NRZ

NRZ

NRZ

0 0NRZ

1 0NRZ

Prior
State

Pattern
Data

@
T0

RTO U/T 0

U/T 1

0 1

1 1

RTO

RTO

RTO

0 0RTO

1 0RTO

Prior
State

Pattern
Data

@
T0

RTZ U/T 1

U/T 0RTZ

0 0RTZ

1 1RTZ

0 1RTZ

1 0RTZ

Prior
State

Pattern
Data

@
T0

RTC U/T 0

0 0RTC

1 0RTC

0 1RTC

1 1RTC

RTC U/T 1
 2/27/09 Pg-2202

WaveTool
Double clock formats are shown in the table below:

Figure-146: WaveTool Double Clock Drive Waveform Images

U = unknown prior state (U). 0/1 = pattern drive data.

Double clock waveforms are special in that any pins using these formats cannot be tri-stated, strobed, or
drive other formats. Thus, the unknown prior state region (U) only applies to the first cycle of the pattern,
when the prior state is not known.

Actual format edge timing is determined by the user’s program.

Only the lines shown in here in magenta are actually displayed in WaveTool; i.e. the U, 0 and 1 characters
are not displayed.

Prior
State

Pattern
Data

@
T0

DCLKPOS U 1

U 0DCLKPOS

0 0DCLKPOS

1 1DCLKPOS

0 1DCLKPOS

1 0DCLKPOS

Prior
State

Pattern
Data

@
T0

DCLKNEG U 1

1 1DCLKNEG

0 1DCLKNEG

DCLKNEG U 0

1 0DCLKNEG

0 0DCLKNEG
 2/27/09 Pg-2203

WaveTool
Note: in cycles containing a transition from tri-state to drive (1 or 0), if the first drive
edge occurs later than the I/O drive edge, WaveTool will draw an unknown prior
state (U below) during that time. In the example below, the I/O drive edge is
shown at T0 (0nS) which is the default I/O timing:

This is significant because it differs from actual hardware operation: at the time
of the tri-state-to-drive (I/O) transition, the hardware will drive the logic state
from the last cycle in which the driver was not tri-stated. WaveTool does not
know this prior drive state and thus can’t draw it correctly (and the software
needed to resolve this is not practical).

Driver
On

Pattern
Data

@
T0

U 0Tri-state

U 1Tri-state

WaveTool
Image
 2/27/09 Pg-2204

WaveTool
As indicated above, when a PinList is displayed in WaveTool (see Setup Signals Dialog) the
format symbols drawn in each cycle are the composite of all formats used on all pins in the
PinList (in the cycle). This can be confusing to interpret. For example:

Figure-147: WaveTool PinList Composite Symbol Examples

6.20.9 WaveTool Color Schemes
See WaveTool Tool-bar Options Control Options.

WaveTool has 3 color schemes which affect the window background color and the color of
the lines used to draw waveforms in the WaveTool Display. The scheme may be changed
by selecting Options->Scheme using WaveTool Tool-bar Options Control Options.

This image displays 6 individual pins
(dp1 through dp6) which have only
drive formats assigned in the cycles
shown. At the top, the PinList named
pl_WT_data_drive shows the
composite of those pins/formats.

This image displays 6 different
individual pins (dp7 through dp12)
which have only strobe formats
assigned in the cycles shown. At the
top, the PinList named
pl_WT_data_strobe shows the
composite of those pins/formats.
 2/27/09 Pg-2205

WaveTool
The images below show the available color schemes:

Figure-148: WaveTool Color Scheme Examples
Note the following:

• By default, the white color scheme is used.
• Changing the scheme selection value has no effect until one of the WaveTool Run

Controls is invoked.

6.20.10 WaveTool Zoom Controls
See WaveTool.

White

Green

Black
 2/27/09 Pg-2206

WaveTool
It is possible to zoom-in on a region of the Main Waveform Display Window. This is done
using a left-mouse click-hold-drag operation. The location of the initial left-mouse click draws
a vertical line in the Main Waveform Display Window. This identifies the location of the left
border of the zoomed display. The location of the right border is determined by holding the
left-mouse button and dragging the cursor to the right. As this is done, a second vertical line
is drawn, which determines the right side of the display if/when the mouse button is
released:

Figure-149: WaveTool Zoom Controls

Initial left-mouse click location.

Drag cursor to new location and
release. Location of cursor when
mouse is released.

Newly zoomed display after left
mouse is released.

Use the right-mouse and select
Zoom Out to restore the original
display zoom factor.

 2/27/09 Pg-2207

WaveTool
6.20.11 WaveTool Mouse Track Controls
See WaveTool.

Enabling the Track Mouse option (as shown below) causes additional information to be
displayed as the mouse is moved about the Main Waveform Display Window. Clicking the
right-mouse button in the Main Waveform Display Window invokes the following menu:

Figure-150: WaveTool Track Mouse Controls
The timing information seen in the upper waveform display reflects the location of the cursor
within the current test cycle. However, if the mouse remains motionless for approximately 2
seconds, the display changes, as shown in the lower waveform display, to indicate the
format, edge type and edge time of the transition closest to the cursor.

6.20.12 Creating WaveTool Trace Files
See WaveTool Tool-bar Controls.

Below is an example of the information displayed when Help->Creating Trace Files

With Track Mouse enabled, the initial
value displayed = cursor position in
cycle: time vs. voltage .

After a short delay, the displayed
value changes to show the format,
edge type and edge time of nearest
transition,
 2/27/09 Pg-2208

WaveTool
is selected. Note that the specific information displayed may change as features are added
or refined; i.e. use the image below as an example but use the Help->Creating Trace
Files button in WaveTool to get the latest version:

Figure-151: WaveTool Trace File Creation Information

6.20.13 History RAM
See Overview, WaveTool.

The History RAM is specialized hardware which records up to 512 cycles of key information
about the sequence of executed test pattern instructions. WaveTool reads and displays
information from the History RAM when Source->History is selected using the Setup

 2/27/09 Pg-2209

WaveTool
Acquire Input Controls. Additional information can be displayed using WaveTool’s History
RAM Display, invoked using File->New->History Window (see WaveTool Tool-bar File
Control Options).

The image below is a typical History RAM Display for a pure logic pattern. Note that the first
cycles displayed are from built-in test pattern instructions (required to setup the hardware)
executed prior to the first cycle of the user’s test pattern:

Figure-152: History RAM Display
Also note:

• The contents of the History RAM are updated any time a functional test pattern is
executed.

• The Magnum 1 History RAM always contains the last 512 cycles executed.

 2/27/09 Pg-2210

WafermapTool
6.21 WafermapTool

6.21.1 Overview
WaferMapTool provides the basic features needed to create, display and interact with a
wafer map.

WaferMapTool support includes both manual controls and software used to:

• Configure WaferMapTool (see WaferMapTool Configuration). This can be done
several ways:
• Manually, using WaferMapTool Configuration.
• Programmatically using wmap_set().
• By loading a Configuration File, either manually or using wmap_set().

• Send per-die test result data to WaferMapTool for display, using wmap_die_set().
This causes WaferMapTool to display, for a specified die location, one of:
• A specified bin color
• A specified bin name
• An arbitrary text string
• A specified bitmap (image)

• Clear WaferMapTool’s Main Map and Bin Counts Table, either manually or using
wmap_set().

• Execute user code (via call-back function) when a die is selected in the Main Map
i.e. clicked using the left-mouse button. The X/Y die coordinates of the selected
die are passed to the call-back function. The wmap_onclick_set() function is
used to register/un-register the user’s call-back function.

• Save the current WaferMapTool configuration to a disk file, either manually or using
wmap_set().

• Save the WaferMapTool contents to a disk file i.e. the Main Map, Bin Counts Table
and configuration, either manually or using wmap_set().

• Display a wafer map previously saved to a disk file, either manually or using
wmap_set().
 2/27/09 Pg-2211

WafermapTool
• Create a visual outline (die field) around multiple die. This is useful when testing
multiple die in parallel, to indicate which die are being tested at any given time.
See Die Field Display.

Key topics covered in this section include:

• WafermapTool Communication Architecture
• Starting WaferMapTool
• WafermapTool Persistence
• WaferMapTool Configuration

- Configuration File
• User Interface & Controls
• Die Attributes

- Die Display Options
- Marked Die

• WaferMapTool Software
- Types, Enums, etc.
- wmap_set(), wmap_get()
- WafermapTool File Access Rules
- wmap_die_set(), wmap_die_get()
- wmap_cmd_start(), wmap_cmd_end()
- wmap_die_cmd_start(), wmap_die_cmd_end()
- wmap_onclick_set()

• WafermapTool Die-Bitmap Support
- Dynamically Defined Monochromatic Images
- Dynamically Defined Color Images
- Statically Defined Images
- UI BitmapTool Images

• Die Field Display
 2/27/09 Pg-2212

WafermapTool
6.21.2 WafermapTool Communication Architecture
See Overview.

The overall architecture is as follows:

Figure-153: WaferMapTool Communication Architecture
Note the following:

• WaferMapTool can be started any time after UI is loaded. See Starting
WaferMapTool.

WaferMapTool

Load/Save Configuration File &
saved Wafermaps

Disk

Site Process
Test Program

Host Process
Test Program

Communications
via

WaferMapTool
Software

Wafer
Probe

UI

DUT Board
Test Interface

Control
Signals

Test
Signals

bin_clear
test results die location

etc.etc.

Magnum
Test System

Hardware
 2/27/09 Pg-2213

WafermapTool
• Before WaferMapTool can display useful information it must be configured. See
WaferMapTool Configuration:

Figure-154: WaferMapTool Display
The WaferMapTool Configuration defines, for example, the number and location of
each die, the size of each die, which WaferMapTool display axis is treated as the
X or Y axis, which color and numerical code is mapped to each test bin, etc. Note
that loading a previously saved wafer map also loads the configuration saved with
that wafer map.

• Once WaferMapTool is configured, it will display information sent by the test
program using the appropriate WaferMapTool Software functions. In general, the
process is as follows:

Before Configuration

After Configuration
No Test Data

After Configuration
Bin Test Data

After Configuration
 Color Test Data
 2/27/09 Pg-2214

WafermapTool
• At the start of each wafer, wmap_set() sends wmap_bin_clear to clear
WaferMapTool’s Main Map and Bin Counts Table.

• For each execution of the Sequence & Binning Table, wmap_die_set() sends
wmap_die_bin for the die tested, This is typically done in an After-testing Block.
The WaferMapTool Configuration determines how color and bin codes are
mapped to each test bin, by name.

• If the user clicks a die in the Main Map, that die is marked (see Marked Die). If a
call-back function is registered (see wmap_onclick_set()) that function is
executed in the Host process (only), receiving the coordinates of selected die.
This is targeted at directing the prober to move to the selected die; user code is
required.

• Various interactive controls are available, to manipulate and save the current
configuration, print the wafer map, save/load a configuration or wafer map, etc.
See User Interface & Controls.

6.21.3 Starting WaferMapTool
See Overview.

WaferMapTool is started from UI’s Tool menu (Tool->Wafermap...) or by clicking on the

WaferMapTool icon in UI’s Tool Bar:

WafermapTool can also be started by test program code by loading a Configuration File
using wmap_set() with the wmap_config_load option.

WaferMapTool does not display the Main Map or Bin Counts Table until a WaferMapTool
Configuration is done.

6.21.4 WafermapTool Persistence

Note: first available in software release h1.1.23.
 2/27/09 Pg-2215

WafermapTool
The following WafermapTool attributes are recorded when UI terminates (normally). Later,
when WafermapTool is started again, it is automatically configured with these recorded
values. This is commonly known as attribute persistence:

• WafermapTool's window size and location
• The currently selected view option
• The state of the cursor view selection
• The current zoom factor
• The state of the marked die enable
• Initial tool visibility (more below)

Like the other UI tools, WafermapTool's display paradigm is somewhat different than other
Windows applications. UI's tools will always be in one of the following states:

• Not started: the tool process is not running
• Started: the tool process is running. The tool is in one of the following states:

• Tool is visible
• Tool is visible but minimized; it is seen in the taskbar
• Tool is hidden; i.e. not displayed and not seen in the taskbar

Prior to software release h1.1.23, the latter state could only be entered by first starting
WafermapTool and then clicking the cancel button (the X in the upper-right corner of the
tool). As indicated, this does not terminate the WafermapTool process. Instead, it hides the
display; the tool does not appear in the task bar nor on the display. Clicking the
WafermapTool button makes it visible again. This operation allows the tool to be hidden
without losing any information.

When UI is terminated, the persistence facility records whether WafermapTool is hidden.
This does not affect WafermapTool's operation when it is subsequently started using UI's
Tool menu or the WafermapTool button, but it does affect whether WafermapTool is visible
when subsequently started by test program code. Normally, any time WafermapTool is
started by executing one of the wmap_xxx() functions (wmap_set(), wmap_die_set(),
etc.), it will be visible (and not minimized). Now, WafermapTool's persistent states
determines whether it is visible or hidden when started by these functions. In other words,
when the persistent state is hidden, if WafermapTool is started by executing one of the
wmap_xxx() functions the tool will be started but remain hidden.

Note: WafermapTool's visibility persistence is only recorded if the WafermapTool
process is running when UI is terminated.
 2/27/09 Pg-2216

WafermapTool
6.21.5 WaferMapTool Configuration
See Overview, See Configuration File.

Before WaferMapTool can display test results it must be configured, to identify die size,
locations, axis orientation and labels, title, etc.

Several methods are available:

• Load an existing Configuration File, either manually using
File->Open and selecting the file, by name, or...

• Load an existing Configuration File via user code using wmap_set() with the
wmap_config_load option.

• Use controls in WafermapTool to interactively define or modify (and save) the
configuration. This can be somewhat slow, but can be useful when creating an
initial configuration for a given wafer topology.

If the test program attempts to send test result data to WaferMapTool before a configuration
is loaded (or to an invalid die location) an error similar to the following will be displayed:

Figure-155: WaferMapTool Error: Sending Data Before Configuration

6.21.5.1 Configuration File
See WaferMapTool Configuration.

This section describes the format of the configuration file. Note the following:

• The configuration file is ASCII, and can be manually edited using any text editor.
• UI requires the file name to include the .txt extension i.e. myConfig.txt.
• Each line in the configuration file must consist of one of the following:
 2/27/09 Pg-2217

WafermapTool
• Comment. Only C++ style comments are supported (i.e. // comment). Note that
any comments manually added using a text editor WILL BE LOST if the
configuration is saved, using WaferMapTool’s File->Save or File->Save
As... controls.

• Blank line (ignored)
• keyword : value[, value][, value][, value] (more below)
As indicated the colon delimits the keyword from one or more comma separated
values

• The only required keyword is version, plus a corresponding version number.
This must be the first line in the configuration file which is not blank or a comment.
When editing an existing configuration file, the version value must not be modified.
The version is automatically added to a configuration file when saving the file to
disk, using WaferMapTool’s File->Save or File->Save As... controls.

• All keywords are case-insensitive
 2/27/09 Pg-2218

WafermapTool
The following table describes each supported keyword (listed alphabetically) with related
usage information. Additional information about some keywords is covered after the
table:

Table 6.21.5.1-1 WaferMapTool Configuration File Keywords

Keyword
Legal
Values Purpose

axis_horizontal X
Y

Specifies whether the Main Map
horizontal display axis represents the
wafer/die X-axis or Y-axis. Only one of
axis_horizontal or axis_vertical
are needed (last one wins). This selection
affects how values specified using
die_by_x, die_by_y, die_by_xy,
die_x_size, die_y_size, legend_x,
and legend_y are actually applied.

axis_horizontal_inc RightToLeft
LeftToRight

Specify the direction that die test results
are updated (added) in the horizontal
axis.

axis_vertical X
Y

Specifies whether the Main Map vertical
display axis represents the wafer/die X-
axis or Y-axis. Only one of
axis_horizontal or axis_vertical
are needed (last one wins). This selection
affects how values specified using
die_by_x, die_by_y, die_by_xy,
die_x_size, die_y_size, legend_x,
and legend_y are actually applied.

axis_vertical_inc TopToBottom
BottomToTop

Specifies the direction that die test results
are updated (added) in the vertical axis.

bin_code Two values
More below

Specifies a string (typically a bin number)
mapped to one bin name. This is text
displayed when the specified bin is
mapped to a given die. using
wmap_die_set(). See Die Display
Options.
 2/27/09 Pg-2219

WafermapTool
bin_color Four values
More below

Specifies an RGB color mapped to one
bin name. This is the color displayed
when the specified bin is mapped to a
given die. using wmap_die_set(). See
Die Display Options.

die_by_x Three values
More below

Adds one or more die location(s) to the
Main Map, in the X-axis. Affected by
axis_horizontal and
axis_vertical.

die_by_y Three values
More below

Adds one or more die location(s) to the
Main Map, in the Y-axis. Affected by
axis_horizontal and
axis_vertical.

die_by_xy Two values
More below

Adds one die location to the Main Map.
Affected by axis_horizontal and
axis_vertical.

die_size_unit Micron
Mil

Specifies the unit of value for both
die_x_size and die_y_size. Mil =
.001”

die_x_size +Integer Specifies die size in the X-axis, in
die_size_units. Affected by
axis_horizontal and
axis_vertical.

die_y_size +Integer Specifies die size in the Y-axis, in
die_size_units. Affected by
axis_horizontal and
axis_vertical.

Table 6.21.5.1-1 WaferMapTool Configuration File Keywords (Continued)

Keyword
Legal
Values Purpose
 2/27/09 Pg-2220

WafermapTool
The following keywords require additional usage details:

bin_code specifies the code mapped to one bin name. Multiple bin_code statements are
typically used, one for each bin name. bin_code requires 2 values:

bin_code : bin_name_string, code_string

where:

bin_name_string identifies the name of the bin. This must match one of the bin names
being sent to WafermapTool using wmap_die_set() in the test program.

code_string identifies the code mapped to the bin_name_string. This will typically
represent the hardware bin number corresponding to the bin name, but can be any string
value.

legend_x String Specifies the user-defined X-axis title
(see WaferMapTool with Test Data). All
characters after colon to end-of-line are
displayed. Quotes are not required and
are displayed if used. Display location is
affected by axis_horizontal and
axis_vertical.

legend_y String Specifies the user-defined Y-axis title (see
WaferMapTool with Test Data). All
characters after colon to end-of-line are
displayed. Do not quote string. Display
location is affected by
axis_horizontal and
axis_vertical.

title String Specifies the user-defined title (see
WaferMapTool with Test Data). All
characters after colon to end-of-line are
displayed.

version Auto-generated.
Do not edit

Required by system software.
Automatically added to the Configuration
File file by File->Save and File-
>Save As.... Do not edit.

Table 6.21.5.1-1 WaferMapTool Configuration File Keywords (Continued)

Keyword
Legal
Values Purpose
 2/27/09 Pg-2221

WafermapTool
bin_color specifies the RGB color mapped to one bin name. Multiple bin_color
statements are typically used, one for each bin name. bin_color requires 4 values:

bin_color : bin_name_string, R, G, B

where:

bin_name_string identifies the name of the bin. This must match one of the bin names
being sent to WafermapTool using wmap_die_set().

R, G, and B are each a value of 0-255, representing the amount of each color to be applied.
Also see WaferMapTool Bin Colors Dialog.

die_by_x and die_by_y add one or more die location(s) to the Main Map, in the X-axis
or Y-axis. Multiple die_by_x or die_by_y statements may be used. Duplicate dies are
silently ignored. These keywords require 3 values:

die_by_x : Xlocation, Ystart, Ystop

die_by_y : Ylocation, Xstart, Xstop

where:

Xlocation and Ylocation identify the reference X or Y location in the Main Map. One
or more die will be added in the X-axis or Y-axis starting at this location. Negative die
location values are OK. Whether the X or Y axis is horizontal or vertical depends upon
axis_horizontal or axis_horizontal.

Ystart and Xstart identifies the starting Y or X location in the Main Map i.e. the location
of the first die to be added. Negative die location values are OK. Whether the X or Y axis
is horizontal or vertical depends upon axis_horizontal or axis_horizontal.

Ystop and Xstop identify the location of the last die to be added in the specified axis.
Negative die location values are OK.

die_by_xy adds one die location to the Main Map. Multiple die_by_xy statements may
be used. Duplicate dies are silently ignored. die_by_xy requires 2 values:

die_by_xy : Xlocation, Ylocation

where:

Xlocation identifies the location of the die being added in the X-axis. Whether the X or Y
axis is horizontal or vertical depends upon axis_horizontal or axis_horizontal.

Ylocation identifies the location of the die being added in the Y-axis. Whether the X or Y
axis is horizontal or vertical depends upon axis_horizontal or axis_horizontal.
Negative die location values are OK.
 2/27/09 Pg-2222

WafermapTool
Example
The following example consists of two parts:

• Example Configuration File
• Example Test Program Code

Example Configuration File
Note: some auto-generated comments were deleted below to improve readability.

// WaferMapTool Configuration File
// -------------------------------

// All key words are case-insensitive
// only C++ style comments are supported.

version : 1// Must be the first line which is not blank or a comment

////////////////// Display Headings //////////////////////////
// Each value an arbitrary user-defined string
// Quotes not required, displayed if used.
title : "User defined Title"
legend_x : User Defined X Label
legend_y : User Defined Y Label

//////////////// Main Map Axis Orientation ////////////////////
// One of the next two lines is optional, last one wins
// Winner affects die_by_x, die_by_y, die_by_xy, legend_y,
// legend_x, die_x_size, die_y_size
axis_horizontal : X
axis_vertical : Y

//////////////// Main Map Axis Motion ////////////////////
// Specifies direction dies are updated
axis_horizontal_inc : LeftToRight
axis_vertical_inc : BottomToTop

//////////////////// Die Size ////////////////////////
die_size_unit : Micron// Options: Micron or Mil (.001")
die_x_size : 7812
die_y_size : 5625

/////////////////// Die Locations ////////////////////
// Options:
// die_by_x : Xlocation, Ystart, Ystop
// die_by_y : Ylocation, Xstart, Xstop
 2/27/09 Pg-2223

WafermapTool
// die_by_xy : Xlocation, Ylocation
// All are affected by axis_horizontal/axis_vertical
die_by_x : 25, 18, 24
die_by_x : 26, 16, 26
die_by_x : 27, 15, 28
die_by_x : 28, 14, 29
die_by_x : 29, 13, 29
die_by_x : 30, 12, 30
die_by_x : 31, 12, 30
die_by_x : 32, 12, 30
die_by_x : 33, 12, 30
die_by_x : 34, 13, 29
die_by_x : 35, 14, 29
die_by_x : 36, 15, 28
die_by_x : 37, 16, 26
die_by_x : 38, 18, 24

/////////////////// Test Bin Map /////////////////////
// Maps bin_string sent via wmap_die_set() to code value
// bin_code : bin_name_string, code_string
bin_code : PassNoRepair, 1
bin_code : PassRepaired, 2
bin_code : ContinuityFail, 3
bin_code : LeakageFail, 4
bin_code : DynIddFail, 5
bin_code : StaticIddFail, 6
bin_code : RepairFail, 7

// Maps bin_string sent via wmap_die_set() to RGB color
// bin_color : bin_name_string, R, G, B
bin_color : PassNoRepair, 0, 255, 0
bin_color : PassRepaired, 0, 180, 0
bin_color : ContinuityFail, 255, 0, 0
bin_color : LeakageFail, 64, 128, 128
bin_color : DynIddFail, 255, 255, 0
bin_color : StaticIddFail, 0, 0, 128
bin_color : RepairFail, 255, 0, 255

Example Test Program Code
The following test program code matches the Example Configuration File. In particular, the
Bin names must match in both locations.
 2/27/09 Pg-2224

WafermapTool
CString binID;
AFTER_TESTING_BLOCK(ATB) { // See AFTER_TESTING_BLOCK()

BOOL ok = wmap_die_set(wmap_die_bin, x, y, bin_string);
if(! ok)

output(" ERROR: wmap_die_set:wmap_die_bin = %s @ %d/%d",
bin_string, die_x, die_y);

}
TEST_BIN(ContinuityFail) { binID = resource_name(current_test_bin);
} // See TEST_BIN()
TEST_BIN(LeakageFail) { binID = resource_name(current_test_bin); }
TEST_BIN(DynIddFail) { binID = resource_name(current_test_bin); }
TEST_BIN(StaticIddFail) { binID = resource_name(current_test_bin); }
TEST_BIN(PassNoRepair) { binID = resource_name(current_test_bin); }
TEST_BIN(PassRepaired) { binID = resource_name(current_test_bin); }
TEST_BIN(RepairFail) { binID = resource_name(current_test_bin); }

Note that the body code of each TEST_BIN() macro can be modified as needed, provided
binID is correctly set to the name of the bin.

6.21.6 User Interface & Controls
See Overview.

WaferMapTool’s controls provide the following general capabilities:

• Load or save a WaferMapTool Configuration
• Interactively create or modify the current configuration
• Save a wafer map or load a previously saved wafer map.
• Clear test results displayed in the Main Map and Bin Counts Table.
 2/27/09 Pg-2225

WafermapTool
The following image shows the WaferMapTool after being configured and after displaying
test data for most of a wafer:

Figure-156: WaferMapTool with Test Data

Main Map

Bin Counts
Table

Title
Axis Label

Tool Bar

Subtitle

Die Field
Display
Marked
Die
 2/27/09 Pg-2226

WafermapTool
The following images expand WaferMapTool’s main menu to show the available sub-menus
and dialogs. These are described on later pages:

Figure-157: WaferMapTool Main Menu Options
WaferMapTool’s File menu contains the following controls:

Control Purpose

New Create a new configuration (see WaferMapTool Configuration).
Clears existing configuration, Main Map and Bin Counts Table.

Open Config Open an existing WaferMapTool Configuration file. Clears existing
configuration, Main Map and Bin Counts Table. The standard file
browser is presented. See WafermapTool File Access Rules.

Open Data Open and display a wafer map previously saved using Save Data
As. Replaces the existing WaferMapTool Configuration, Main Map
and Bin Counts Table. The standard file browser is presented. See
WafermapTool File Access Rules.
 2/27/09 Pg-2227

WafermapTool
Save Current Save EITHER the current configuration or the current wafer map into
the file last opened using one of:
- File->Open Config
- File->Open Data
- File->Save Config As...
- File->Save Data As...
- wmap_set() with wmap_config_load
- wmap_set() with wmap_config_save
- wmap_set() with wmap_data_load
- wmap_set() with wmap_data_save
The file name displayed in WafermapTool’s title bar indicates both
the file being written and whether a configuration is being saved
(*.txt file) or a wafer map is being saved (*.wmp file). See
WafermapTool File Access Rules.

Save Config
As...

Save the current configuration into a specified WaferMapTool
Configuration file. The standard file browser is presented. See
WafermapTool File Access Rules.

Save Data
As...

Save the current wafer map into a specified file.
This saves the current WaferMapTool Configuration, Main Map and
Bin Counts Table into a file which can subsequently be displayed in
WafermapTool using Open Data. The standard file browser is
presented. See WafermapTool File Access Rules.

Print Print the current Main Map and Bin Counts Table.

1 file name
2 file name
3 file name
4 file name

Short-cut selection of a file to load. Both Configuration Files (*.txt)
and wafer map data files (*.wmp file) may be displayed. The
selection determines the type of file loaded. Note that loading
either type replaces the current WaferMapTool Configuration, if any.

Exit Close WafermapTool.

Control Purpose
 2/27/09 Pg-2228

WafermapTool
WaferMapTool’s View menu contains the following controls:

The Setup->Heading dialog can be used to interactively define or modify 3 user-defined
labels seen in the WaferMapTool display:

Figure-158: WaferMapTool Setup Headings Dialog
These heading can also be accessed from the test program using wmap_set().

Control Purpose

CrossHair Enables/disables the crosshair display. This is also selectable
using the crosshair button:

MarkDie Mode Enables/disables the crosshair display. This is also selectable
using the crosshair button:

BinColorView
BinCodeView

BinColorCodeVie
w

TextView
BitmapView

Selects which display
mode is used in the
Main Map. This
selection is also
possible using the
buttons shown here:

ToolBar Enables/disables WMapTool’s tool bar.

StatusBar Enables/disables WMapTool’s status bar.

BinColor
BinCode

Text
Bitmap

BinColorCode

Corresponding Configuration
File entries:

• title
• legend_x
• legend_y
 2/27/09 Pg-2229

WafermapTool
The Setup->Axis Orientation... dialog can be used to interactively define or modify
WaferMapTool axis increment and axis orientation parameters:

Figure-159: WaferMapTool Setup Axis Orientation Dialog
These parameters can also be accessed from the test program using wmap_set().

The Setup->Die->Location... dialog can be used to interactively define or modify die
locations:

Figure-160: WaferMapTool Setup Die Locations Dialog

Corresponding Configuration File
entries:

• axis_horizontal_inc
• axis_vertical_inc
• axis_horizontal
• axis_vertical

The latter 2 options define the
same parameter (last one wins).

Corresponding
Configuration File
entries:

• die_by_x
• die_by_y
• die_by_xy

Values entered are
affected by
axis_horizontal
and axis_vertical.
 2/27/09 Pg-2230

WafermapTool
These parameters can also be accessed from the test program using wmap_set().

The Setup->Die->Size... dialog can be used to interactively define or modify die size:

Figure-161: WaferMapTool Setup Die Size Dialog
These parameters can also be accessed from the test program using wmap_set().

The Setup->Bin->Mapping... dialog can be used to interactively define or modify which
color and/or code is mapped to each bin name. Bin names can be added or deleted:

Figure-162: WaferMapTool Setup Bin Colors/Codes Dialog
These parameters can also be accessed from the test program using wmap_set().

Corresponding Configuration
File entries:

• die_size_unit
• die_x_size
• die_y_size

The bottom 2 values are affected
by axis_horizontal and
axis_vertical.

Corresponding
Configuration File entries:

• Bin Names
• bin_code
• bin_color

To edit individual table
cells, double-left-click in
the target cell.
 2/27/09 Pg-2231

WafermapTool
When editing a color value the following dialog is displayed and used to choose the desired
color:

Figure-163: WaferMapTool Bin Colors Dialog
The Setup->Bin->Filter... dialog can be used to interactively select which bin(s) are
displayed in the Main Map. This makes it easy, for example, to see only pass bins, etc.

Figure-164: WaferMapTool Bin Filter Dialog
 2/27/09 Pg-2232

WafermapTool
6.21.7 Die Attributes
See Overview.

After WafermapTool has been started and configured (see WaferMapTool Configuration) the
Main Map displays a grid, with each cell representing one die.

Initially (i.e. before the test program sends any test results to WafermapTool) all die will be
blank. During program execution, test program code will use wmap_die_set() to send test
result data for one or more die. Which data is actually displayed is controlled, for the whole
wafer using Die Display Options.

Using the left-mouse button, the user may select a die in the Main Map. This can cause the
die to be marked or unmarked (see Marked Die) and can also invoke a user-written call-
back function, if previously registered using wmap_onclick_set().

6.21.7.1 Die Display Options
See Die Attributes, Overview.

During program execution, test program code will use wmap_die_set() to send test result
data to each die in WafermapTool’s Main Map. This determines, for example, whether a
 2/27/09 Pg-2233

WafermapTool
given die turns green or red. However, color is only one of several die display options, which
include the following:

Option
wmap_die_set()
Type Argument

Displayed in
Mode Operation

Bin wmap_die_bin Bin Code View

The wmap_die_bin value sent
via wmap_die_set() is
displayed in the specified die.
See Note below.

Color wmap_die_bin Bin Color View

If the wmap_die_bin value
sent via wmap_die_set()
exactly matches a bin name
specified in the WaferMapTool
Configuration the color mapped
to that bin is displayed,
otherwise the die remains
empty (white). See Note below.

Color &
Bin wmap_die_bin Bin Color-Code View Combination of Bin Color View

and Bin Code View.

Text wmap_die_text Text View

The wmap_die_text value
sent via wmap_die_set() is
displayed in the specified die. It
may be necessary to zoom IN to
see the entire string displayed
for a given die.

Bitmap wmap_die_bitmap Bitmap View

The wmap_die_bitmap sent
via wmap_die_set() is
displayed in the specified die.
See WafermapTool Die-Bitmap
Support.

Note: the die attributes displayed for a given die in the Bin Code View, Bin Color View and
Bin Color-Code View depend upon the same wmap_die_bin value sent via
wmap_die_set(). However, the WaferMapTool Configuration determines the color
displayed for a given wmap_die_bin value.
 2/27/09 Pg-2234

WafermapTool
The following image shows the bin color view:

Figure-165: Bin Color View
The bin color to be displayed is defined in the WaferMapTool Configuration, by associating a
set of RGB color values with each bin name which will be sent from the test program. The
bin name is sent from the test program to WafermapTool using wmap_die_set(). For
example:

TEST_BIN(PassBin){}
wmap_die_set(wmap_die_bin, 25, 33, "PassBin");

In this example, a test bin named PassBin is defined using the TEST_BIN macro. Later,
when wmap_die_set() sends the name of this bin (PassBin) to WafermapTool, if Bin
Color View is selected, the RGB color mapped to PassBin in the WaferMapTool
Configuration will be displayed for the die at location 25,33.
 2/27/09 Pg-2235

WafermapTool
The following image shows the bin code view:

Figure-166: Bin Code View
The bin code to be displayed is defined in the WaferMapTool Configuration, by associating
an integer bin number (code) with each bin name which will be sent from the test program.
The bin name is sent from the test program to WafermapTool using wmap_die_set(). For
example:

TEST_BIN(FailBin){}
wmap_die_set(wmap_die_bin, 25, 33, "FailBin");

In this example, a test bin named FailBin is defined using the TEST_BIN macro. Later,
when wmap_die_set() sends the name of this bin (FailBin) to WafermapTool, if Bin
Code View is selected, the bin code mapped to FailBin in the WaferMapTool
Configuration will be displayed for the die at location 25, 33.
 2/27/09 Pg-2236

WafermapTool
The following image shows the bin color-code view:

Figure-167: Bin Color-Code View
This view combines the Bin Color View and the Bin Code View.
 2/27/09 Pg-2237

WafermapTool
The following image shows the text view:

Figure-168: Text View
The text to be displayed is sent as the value argument to wmap_die_set(). For example:

wmap_die_set(wmap_die_text, 34, 29, "myText");

When wmap_die_set() sends “myText” to WafermapTool, if Text View is selected, the
text will be displayed for the die at location 34, 29.

Note that the displayed
text may not be

readable until the
display is Zoomed to

magnify the die.
 2/27/09 Pg-2238

WafermapTool
The following example shows a variety of color bitmaps displayed for selected die:

Figure-169: Bitmap View
The bitmap to be displayed is sent as the value argument to wmap_die_set(). For
example:

wmap_die_set(wmap_die_bitmap, 34, 29, IDB_BITMAP2);

When wmap_die_set() sends IDB_BITMAP2 to WafermapTool, if Bitmap View is
selected, the bitmap image will be displayed for the die at location 34, 29.

Several methods are available for creating the bitmap images to be displayed:

• Dynamically Defined Monochromatic Images
• Dynamically Defined Color Images
• Statically Defined Images
• UI BitmapTool Images i.e. a BitmapTool-like image.

See WafermapTool Die-Bitmap Support.
 2/27/09 Pg-2239

WafermapTool
Note: WafermapTool will automatically scale any bitmap being displayed, to the size
of the target die in WafermapTool (see WaferMapTool Configuration
die_x_size, die_y_size). However, the details in complex bitmap images
may not be easy to see without zooming to increase the visible size of the die
image in WafermapTool.

6.21.7.2 Marked Die
See Die Attributes, Overview.

WafermapTool allows one or more die to be marked:

Figure-170: WaferMapTool Marked Die and Clear Dialog
Note the following:

• By default, die marking is disabled. Click the check icon in WafermapTool’s
tool bar to enable/disable die marking. The cursor will change to a check mark when
die marking is enabled.

• If a call-back function is registered (see wmap_onclick_set()) that function will
execute, in the Host process only, and receive the coordinates of the die just
marked. The call-back code may, for example, direct the wafer prober to move to
the marked die.

• A die can also be marked from user code using wmap_die_set().

Marked Die

Select to Toggle
Die Marking Enable

Right-mouse
Context Menu
 2/27/09 Pg-2240

WafermapTool
• Any number of die can be marked. This can be useful when testing multiple die in
parallel to indicate which die are being tested at any given moment. User code
uses wmap_die_set() to mark the desired die.

• Marked die can be un-marked (cleared) several ways:
• Using the left-mouse button, click the die again.
• Use the right-mouse button to display the popup menu shown above and select

“Clear all marked die”
• From the test program execute wmap_set() with wmap_mark_clear.

6.21.8 WaferMapTool Software
See Overview.

Rather than define a large set of functions, each targeted at a specific WafermapTool
attribute or control, a smaller set of functions are provided. These functions use a keyword
to identify the target attribute or control to be accessed. Zero or more additional arguments
may be specified to complete the task. The following functions are provided:

• wmap_set(), wmap_get() - used to access all WafermapTool attributes except
per-die features.

• wmap_die_set(), wmap_die_get() - used to access per-die attributes.
• wmap_cmd_start(), wmap_cmd_end() - used to improve performance, by

defining a collection of WafermapTool commands to be sent to WafermapTool with
a single transaction.

• wmap_die_cmd_start(), wmap_die_cmd_end() - used to improve
performance, by defining a collection of per-die commands to be sent to
WafermapTool with a single transaction.

• wmap_onclick_set() - used to register a user-written call-back function
executed when a die is clicked in WafermapTool’s Main Map.

• WafermapTool Die-Bitmap Support includes additional functions used to create or
define bitmap images to be displayed for a die.

6.21.8.1 Types, Enums, etc.
See WaferMapTool Software.
 2/27/09 Pg-2241

WafermapTool
Description
The following enumerated types are used in support of various WafermapTool functions:

Description
The wmap_type enumerated type is used to identify a WafermapTool attribute or control, to
set or get using wmap_set() and wmap_get():

enum wmap_type {wmap_bin_clear, wmap_mark_clear, wmap_text_clear,
wmap_bitmap_clear, wmap_all_clear,
wmap_config_load, wmap_config_save,
wmap_data_load,wmap_data_save, wmap_title,
wmap_subtitle, wmap_die_field_clear };

The wmap_die_type enumerated type is used to identify a WafermapTool die attribute or
control, to set or get using wmap_die_set() and wmap_die_get(). wmap_die_field
was added in software release h1.1.23:

enum wmap_die_type {wmap_die_bin, wmap_die_marked, wmap_die_text,
wmap_die_bitmap, wmap_die_field};

};

6.21.8.2 wmap_set(), wmap_get()
See WafermapTool, WaferMapTool Software.

Description

The wmap_set() function is used to send commands and information to WafermapTool.
See wmap_die_set() function to perform similar operations for a specific die.

The wmap_get() function is used to get the current value of some WafermapTool
attributes. See wmap_die_get() function to perform similar operations for a specific die.

Note: in general, it is desirable to have a get function for each set function. However,
the initial options supported by wmap_set() do not include parameters which
would typically need to be retrieved. wmap_get() is defined here as a place-
holder for potential future enhancements.
 2/27/09 Pg-2242

WafermapTool
Both wmap_set() and wmap_get()are used for multiple purposes. The type argument
identifies the target attribute or control being accessed. Zero or more additional arguments
are used to specify value(s). The following table describes the various options:

Table 6.21.8.2-1 wmap_set() Type/Value Descriptions

Type Func
Value
Type Operation

wmap_all_clear Set void

Clears WafermapTool’s Main Map in
all views (Bin Code View, Bin Color
View, Bin Color-Code View, Text
View, and Bitmap View), clears the
Bin Counts Table, and un-marks all
marked die in the Main Map.

wmap_bin_clear Set void

Clears WafermapTool’s Main Map
for the Bin Code View, Bin Color
View and Bin Color-Code View and
clears the Bin Counts Table.

wmap_bitmap_clear Set void
Clears WafermapTool’s Main Map
for only the Bitmap View only and
clears the Bin Counts Table.

wmap_config_load Set CString

Loads a WaferMapTool
Configuration from the specified file.
This completely replaces the
existing configuration, if any, and
clears the Main Map, Bin Counts
Table, and all marked die, if any.
See WafermapTool File Access
Rules. This will also start
WafermapTool if it is not already
running.

wmap_config_save Set CString

Saves the current WaferMapTool
Configuration to the specified file.
See WafermapTool File Access
Rules. See Note:.
 2/27/09 Pg-2243

WafermapTool
wmap_data_load Set CString

Load a previously saved wafer map
from the specified file. This defines
the WaferMapTool Configuration
(replacing the previous
configuration, if any) and loads the
Main Map and Bin Counts Table,
replacing the content, if any. See
WafermapTool File Access Rules.

wmap_data_save Set CString

Saves the current wafer map into
the specified file. Includes the
current WaferMapTool
Configuration, the Main Map and Bin
Counts Table. See WafermapTool
File Access Rules.

wmap_mark_clear Set void
Un-marks all marked die in the Main
Map.

wmap_subtitle

Added in software
release h1.1.23

Set CString

Defines the Subtitle displayed at the
top of the WafermapTool display,
just below the Title. The Subtitle can
only be set from the test program
using wmap_set(); i.e. it cannot be
set from the WaferMapTool
Configuration.

wmap_text_clear Set void
Clears WafermapTool’s Main Map
for only the Text View only and
clears the Bin Counts Table.

wmap_title

Set CString

Defines the main Title displayed at
the top of the WafermapTool display.
Can also be set via the
WaferMapTool Configuration.

Get *CString
Returns the current main Title
displayed at the top of the
WafermapTool display.

Table 6.21.8.2-1 wmap_set() Type/Value Descriptions

Type Func
Value
Type Operation
 2/27/09 Pg-2244

WafermapTool
Performance can be improved when executing a series of wmap_set() functions by using
wmap_cmd_start(), wmap_cmd_end().

Usage
The following function is used to send a signal/command to WafermapTool. This version has
no additional value arguments:

BOOL wmap_set(wmap_type type);

The following functions are used to set or get a CString value to/from WafermapTool:

BOOL wmap_set(wmap_type type, CString value);
BOOL wmap_get(wmap_type type, CString *value);

Note: see wmap_cmd_start(), wmap_cmd_end() for overloads of wmap_set()
and wmap_get() which include the wmap_cmd argument. These are used to
improve performance by aggregating multiple commands.

where:

type identifies the specific WafermapTool attribute being accessed. See wmap_set() Type/
Value Descriptions table above.

value is used in two contexts:

• Using the set function, value specifies the value being set.
• Using the get function, value is a pointer to an existing variable of the appropriate

type used to return the target value.
wmap_set() and wmap_get() return TRUE when no errors occur, otherwise FALSE is
returned.

Example
The following code clears WafermapTool’s Main Map for the Bin Code View, Bin Color View
and Bin Color-Code View and clears the Bin Counts Table:

wmap_set(wmap_bin_clear);

The following code saves the wafermap bin data into the specified file:

CString fname = "D:/myPath/myWmapSaveFile.wmp";
wmap_set(wmap_data_save, fname);
 2/27/09 Pg-2245

WafermapTool
The following code loads the specified wafermap configuration file. This will also start
WafermapTool if it is not already running:

wmap_set(wmap_config_load, "D:/myPath/myConfigFile.txt");

The following code defines the Subtitle, with an incrementing wafer number and time stamp.
This example should be executed each time a new wafer is loaded:

static int wafer_no = 0;
CString st;
st.Format("Wafer => %d\n", ++wafer_no);
st += CTime::GetCurrentTime().Format("%m/%d/%y::%H:%M:%S");
wmap_set(wmap_subtitle, st);

6.21.8.3 WafermapTool File Access Rules
See wmap_set(), User Interface & Controls.

The following rules apply to operations which save-to or load-from a file:

• Configuration Files require the .txt extension. This facilitates opening/editing these
files with a text editor and prevents accidentally saving a wafer map data file into
a configuration file, and vice-versa.

• Wafer map data files require the .wmp extension. This prevents accidentally
saving a wafer map data file into a configuration file, and vice-versa.

• Loading a Configuration File, regardless of the method used, replaces the existing
configuration, and clears the Main Map and Bin Counts Table content. This will also
start WafermapTool if it is not already running.

• Loading a wafer map data file, regardless of the method used, also replaces the
existing configuration, and replaces the contents of the Main Map and Bin Counts
Table.

• Loading or saving either file type sets the behavior of subsequent WafermapTool’s
File->Save Current selections. See Save Current.

Note: saving a Configuration File to an existing configuration file completely
over-writes the original file, including any comments which were manually
entered into the target file (using a text editor).
 2/27/09 Pg-2246

WafermapTool
6.21.8.4 wmap_die_set(), wmap_die_get()
See WafermapTool, WaferMapTool Software.

Description

The wmap_die_set() function is used to send commands and attributes to a specific die
in WafermapTool. As appropriate, this updates the Main Map and Bin Counts Table. See
wmap_set() function to perform similar operations for general WafermapTool attributes.

The wmap_die_get() function is used to retrieve (get) information about a specific die
from WafermapTool. See wmap_get() function to perform similar operations for general
WafermapTool attributes.

wmap_die_set() and wmap_die_get() are used for multiple purposes. The type
argument identifies the target attribute or control with additional arguments used to specify
the target die and to specify value(s) or to return a value. The following table describes the
various options:

Table 6.21.8.4-1 wmap_die_set() Type/Value Descriptions

Type Func
Value
Type Operation

wmap_die_bin
Set CString

Send the test bin name to the specified die
in WafermapTool. See Die Display Options.
The CString value must exactly match one
of the bin names specified for bin_code
and bin_color in the WaferMapTool
Configuration. Affects Bin Color View, Bin
Code View and Bin Color-Code View, see
Die Display Options.

Get *CString
Gets the test bin name for the specified die
from WafermapTool.

wmap_die_bitmap Set *bitmap
Send a bitmap image to the specified die in
WafermapTool. No get function. Affects
Bitmap View only, see Die Display Options.
 2/27/09 Pg-2247

WafermapTool
Performance can be improved when executing a series of wmap_die_set() functions by
using wmap_die_cmd_start(), wmap_die_cmd_end().

Usage
The following functions are used to set or get a CString value to/from a specific die in
WafermapTool. This is used with both wmap_die_bin and wmap_die_text:

BOOL wmap_die_set(wmap_die_type type,
int x, int y,
CString value);

BOOL wmap_die_get(wmap_die_type type,
int x, int y,
CString *value);

wmap_die_marked
Set int

Used to mark or unmark the specified die,
similar to left-clicking that die in the Main
Map (see Marked Die). Sending the value 0
(FALSE) un-marks the die, sending the
value 1 (TRUE) marks the die. Does NOT
trigger the call-back function, even if one is
registered using wmap_onclick_set().

Get *int
Gets the current marked state for the
specified die; 0 = unmarked, 1 = marked.

wmap_die_text
Set CString

Send the text string to the specified die in
WafermapTool. Affects Text View only, see
Die Display Options.

Get *CString
Gets the text string for the specified die from
WafermapTool.

wmap_die_field

Added in software
release h1.1.23

Set

Multiple
Values,
see Die

Field
Display

Allows user code to generate a color outline
surrounding one or more die. Useful when
testing multiple die in parallel, to indicate
which die are being tested at any given time.
See Die Field Display.

Table 6.21.8.4-1 wmap_die_set() Type/Value Descriptions (Continued)

Type Func
Value
Type Operation
 2/27/09 Pg-2248

WafermapTool
The following functions are used to set or get an integer (int) value to/from a specific die in
WafermapTool. This is used with wmap_die_marked:

BOOL wmap_die_set(wmap_die_type type, int x, int y, int value);

BOOL wmap_die_get(wmap_die_type type, int x, int y, int *value);

The following functions are used to set a monochromatic or color bitmap to a specific die in
WafermapTool. This is used with wmap_die_bitmap. See WafermapTool Die-Bitmap
Support:

BOOL wmap_die_set(wmap_die_type type,
int x,
int y,
mono_bitmap *pBitmap);

BOOL wmap_die_set(wmap_die_type type,
int x,
int y,
color_bitmap *pBitmap);

The following function uses UI’s BitmapTool software to generate a bitmap image and
display it for the specified die. This is only used with wmap_die_bitmap. Unlike the other
versions of wmap_die_set() this overload does not have a value parameter. Instead, this
option invokes the BitmapTool code which reads errors from the ECR and generates the
bitmap image, and sends it to the target die in WafermapTool. See WafermapTool Die-
Bitmap Support and UI BitmapTool Images:

BOOL wmap_die_set(wmap_die_type type, int x, int y);

Note: see wmap_die_cmd_start(), wmap_die_cmd_end() for overloads of
wmap_die_set() and wmap_die_get() containing the wmap_die_cmd
argument. These are used to improve performance by aggregating multiple
commands.

Note: see Die Field Display for overloads of wmap_die_set() using the
wmap_die_field argument.

where:

type identifies the specific die attribute being accessed. See wmap_die_set() Type/Value
Descriptions table above.
 2/27/09 Pg-2249

WafermapTool
x and y identify the location of the target die. Proper operation requires that these values
exactly match one of the die locations defined in the WaferMapTool Configuration. Sending
an invalid die coordinate causes an error dialog similar to Figure-155: .

value identifies an additional parameter being sent along with the type command
specified. See wmap_die_set() Type/Value Descriptions.

wmap_die_set() and wmap_die_get() return TRUE when no errors occur, otherwise
FALSE is returned.

Example
The following example sends the bin code OpensFail to the die at coordinates X=5, Y=17:

BOOL ok = wmap_die_set(wmap_die_bin, 5, 17, "OpensFail");
if(! ok)

output(" ERROR: wmap_die_set(wmap_die_bin) at location 5/17");

The following example marks the die at coordinates X = 10, Y = 11:

BOOL ok = wmap_die_set(wmap_die_marked, 10, 11, 1);
if(! ok)

output(" ERROR: wmap_die_set(wmap_die_marked) at 10/11");

6.21.8.5 wmap_cmd_start(), wmap_cmd_end()
See WafermapTool, WaferMapTool Software.

Description

The wmap_cmd_start() and wmap_cmd_end() functions are used to improve
performance when sending multiple wmap_set(), and to a lesser extent wmap_get(),
commands from the test program to WafermapTool.

In simple terms, wmap_cmd_start() identifies a collection of commands which will be
executed all at once when wmap_cmd_end() is executed. This results in a single
program-to-tool transaction for the set of collected commands rather than a series of
individual transactions. However...

The previous description is only correct when using wmap_set() (with the wmap_cmd
argument). When using wmap_get() (with the wmap_cmd argument), each function is
executed immediately, to allow the returned value to be used immediately. However,
 2/27/09 Pg-2250

WafermapTool
performance may be improved, depending on whether other associated get commands are
used with the same wmap_cmd argument, because information related to the specified get
parameter is automatically retrieved, in anticipation that it may be requested next.

Also note the following

• Do not nest wmap_cmd_start() and wmap_cmd_end() functions.
• These functions have no effect on wmap_onclick_set() or any registered

call-back function, if any.

Usage
wmap_cmd* wmap_cmd_start();

void wmap_set(wmap_cmd *cmd, wmap_type type);

void wmap_set(wmap_cmd *cmd, wmap_type type, CString value);

BOOL wmap_get(wmap_cmd *cmd, wmap_type type, CString *value);

void wmap_cmd_end(wmap_cmd *cmd);

where:

cmd is the pointer returned by wmap_cmd_start().

type identifies the specific WafermapTool attribute being accessed. See wmap_set(),
wmap_get().

wmap_cmd_start() returns a pointer which must be passed to each function to be
controlled by wmap_cmd_start()/wmap_cmd_end() and to wmap_cmd_end() to
complete the transaction.

Example
The following example executes two wmap_set() functions with a single transaction from
the site to WafermapTool:

wmap_cmd* c = wmap_cmd_start();
wmap_set(c, wmap_config_load, "D:myPath/MyWMapConfig.txt");
wmap_set(c, wmap_title, "myWafermapTitle");
wmap_cmd_end(c);
 2/27/09 Pg-2251

WafermapTool
6.21.8.6 wmap_die_cmd_start(), wmap_die_cmd_end()
See WafermapTool, WaferMapTool Software.

Description

The wmap_die_cmd_start() and wmap_die_cmd_end() functions are used to improve
performance when sending multiple wmap_die_set()and, to a lesser extent,
wmap_die_get() commands from the test program to WafermapTool.

In simple terms, wmap_die_cmd_start() identifies a collection of die commands which
will be executed all at once when wmap_die_cmd_end() is executed. This results in a
single program-to-tool transaction for the set of collected commands rather than a series of
individual transactions. However...

The previous description is only correct when using wmap_die_set() (with the
wmap_die_cmd argument). When using wmap_die_get() (with the wmap_die_cmd
argument), each function is executed immediately, to allow the returned value to be used
immediately. However, performance may be improved, depending on whether other
associated get commands are used with the same wmap_die_cmd argument, because
information related to the specified die is automatically retrieved, in anticipation that it may
be requested next. For example, a given die has the following attributes (more may be
added in the future):

• wmap_die_bin

• wmap_die_marked

If wmap_die_get() is used with the wmap_die_cmd argument to, for example, get
wmap_die_bin, the wmap_die_marked attribute is also automatically retrieved. Then, if
wmap_die_get() is subsequently used with the same wmap_die_cmd argument, to get
wmap_die_marked, the value previously retrieved is used, saving one site-to-tool
transaction.

Also note the following

• Do not nest wmap_die_cmd_start() and wmap_die_cmd_end() functions.
• These functions have no effect on wmap_onclick_set() or any registered

call-back function, if any.

Usage
wmap_die_cmd* wmap_die_cmd_start();
 2/27/09 Pg-2252

WafermapTool
void wmap_die_set(wmap_die_cmd *cmd,
wmap_die_type type,
int x, int y,
CString value);

void wmap_die_set(wmap_die_cmd *cmd,
wmap_die_type type,
int x, int y,
int value);

BOOL wmap_die_get(wmap_die_cmd *cmd,
wmap_die_type type,
int x, int y,
CString *val);

BOOL wmap_die_get(wmap_die_cmd *cmd,
wmap_die_type type,
int x, int y,
int *val);

The following overload was added in software release h1.1.23.

void wmap_die_set(wmap_die_cmd *cmd,
wmap_die_type type,
int x,
int y,
int numx,
int numy,
int penStyle,
COLORREF color);

void wmap_die_cmd_end(wmap_die_cmd *cmd);

where:

cmd is the pointer returned by wmap_cmd_start().

type identifies the specific WafermapTool die attribute being accessed. See
wmap_die_set(), wmap_die_get().

wmap_die_cmd_start() returns a pointer which must be passed to each function to be
controlled by wmap_die_cmd_start()/wmap_die_cmd_end() and to
wmap_die_cmd_end() to complete the transaction.
 2/27/09 Pg-2253

WafermapTool
Example
The following example executes two wmap_set() functions with a single transaction from
the site to WafermapTool:

wmap_die_cmd* dc = wmap_cmd_start();
wmap_die_set(dc, 0, 10, "OpensFail");
wmap_die_set(dc, 0, 11, "PassNoRepair");
wmap_die_cmd_end(dc);

6.21.8.7 wmap_onclick_set()
See WafermapTool, WaferMapTool Software.

Description
The wmap_onclick_set() function is used to register a call-back function which will be
executed any time the user clicks the left-mouse button on a die in WafermapTool’s Main
Map. The call-back receives the X/Y die coordinates for the die selected.

Note the following:

• The call-back function executes only in the Host process. This is consistent with
the execution scope of wafer prober control software.

• The call-back can be registered at any time, but useful operation also requires that
WafermapTool be configured. See WaferMapTool Configuration.

• The call-back function name is user-defined, but the prototype is defined by Nextest.
See Usage.

• The call-back function can be unregistered by passing a NULL pointer.

Usage
The following function is used to send a keyword and values for a specified die location to
WafermapTool:

wmap_onclick_set(void* func);

where:

func is a pointer to a user-defined function with the following prototype:

void (*wmap_callback_function)(int x, int y);
 2/27/09 Pg-2254

WafermapTool
where:

x and y identify the coordinates of the die which was clicked in the WafermapTool display.

Example
The following code registers the user call-back function which follows:

wmap_onclick_set(myCallbackFunc);

If registered as shown, the following call-back example will execute in the Host process any
time a die is clicked in WafermapTool’s Main Map. This example will output the die’s X/Y
location:

void myCallbackFunc(int x, int y) {
output("Selected Die at X=> %d, Y=> %d", x, y);

}

6.21.9 WafermapTool Die-Bitmap Support
WafermapTool allows bitmap images to be displayed for a die. The following methods are
available to define/create the image(s) to be displayed:

• Dynamically Defined Monochromatic Images
• Dynamically Defined Color Images
• Statically Defined Images
• UI BitmapTool Images

6.21.9.1 Dynamically Defined Monochromatic Images
See WafermapTool, WaferMapTool Software, WafermapTool Die-Bitmap Support.

Description
The functions documented here allow test program code to dynamically create, define and
destroy a monochromatic bitmap image. In a typical application, the test program will also
send the bitmap to a die in WafermapTool (more below). See Dynamically Defined Color
Images for methods used with bitmaps containing arbitrary colors or images.
 2/27/09 Pg-2255

WafermapTool
Note the following:

• The wmap_bitmap_mono_create() function is used to create a new, empty,
monochromatic bitmap image of a specified size.

Note: WafermapTool will automatically scale any bitmap being displayed, to the size
of the target die in WafermapTool (see WaferMapTool Configuration
die_x_size, die_y_size). However, the details in complex bitmap images
may not be easy to see without zooming to increase the visible size of the die
image in WafermapTool.

• The wmap_bitmap_mono_set() function is used to set a specified bit in a
specified monochromatic bitmap. Bit(s) which are set are displayed using the
current BitmapFailColor (see ui_BitmapFailColor, ui_BitmapPassColor).
The default color is red.

• The wmap_bitmap_mono_clear() function is used to clear a specified bit in a
specified monochromatic bitmap. Bit(s) which are cleared are displayed using the
current BitmapPassColor (see ui_BitmapFailColor, ui_BitmapPassColor).
The default color is black.

• The wmap_bitmap_mono_get() function to get the current value of a specified
bit in a specified monochromatic bitmap.

• The wmap_bitmap_mono_clear_all() function is used to clear all bits in a
specified monochromatic bitmap.

• The wmap_bitmap_mono_delete() function is used to destroy a specified
monochromatic bitmap.

• mono_bitmap is an opaque data type used by these functions as a handle to a
monochromatic bitmap.

A mono_bitmap can be displayed in WafermapTool, for a specified die, using the
wmap_die_bitmap option to wmap_die_set().

Usage
mono_bitmap* wmap_bitmap_mono_create(int width, int height);

void wmap_bitmap_mono_set(mono_bitmap *pBitmap,
int row,
int col);
 2/27/09 Pg-2256

WafermapTool
BOOL wmap_bitmap_mono_get(mono_bitmap *pBitmap,
int row,
int col);

void wmap_bitmap_mono_clear(mono_bitmap *pBitmap,
int row,
int col);

void wmap_bitmap_mono_clear_all(mono_bitmap *pBitmap);

void wmap_bitmap_mono_delete(mono_bitmap *pBitmap);

where:

width and height specify the size of the bitmap being created, in pixels.

pBitmap identifies the bitmap of interest, previously created using
wmap_bitmap_mono_create().

row and col specify the coordinates of a bit to be set, cleared or retrieved. Invalid
coordinate values are silently ignored.

wmap_bitmap_mono_create() returns the bitmap created.

wmap_bitmap_mono_get() returns TRUE if the specified bit is currently set and FALSE if
the bit is cleared.

Example
The following example creates a 64x64 pixel monochromatic bitmap identified as
myBitmap. A diagonal of bits are set then the bitmap is sent to WafermapTool for display in
the die location specified by die_x/die_y. Last, the bitmap is destroyed:

mono_bitmap* myBitmap = wmap_bitmap_mono_create(64, 64);
for(int i = 0; i < 64; ++i)

wmap_bitmap_mono_set(myBitmap, i, i);
wmap_die_set(wmap_die_bitmap, die_x, die_y, myBitmap);
wmap_bitmap_mono_delete(myBitmap);

6.21.9.2 Dynamically Defined Color Images
See WafermapTool, WaferMapTool Software, WafermapTool Die-Bitmap Support.
 2/27/09 Pg-2257

WafermapTool
Description
The functions documented here allow test program code to dynamically create, define and
destroy a color bitmap image. In a typical application, the test program will also send the
bitmap to a die in WafermapTool (more below). See Dynamically Defined Monochromatic
Images for methods used with bitmaps containing only two colors.

Note the following:

• The wmap_bitmap_color_create() function is used to create a new, empty,
color bitmap of a specified size.

Note: WafermapTool will automatically scale any bitmap being displayed, to the size
of the target die in WafermapTool (see WaferMapTool Configuration
die_x_size, die_y_size). However, the details in complex bitmap images
may not be easy to see without zooming to increase the visible size of the die
image in WafermapTool.

• The wmap_bitmap_color_setcolor() function is used to set a specified bit in
a specified color bitmap to an RGB color.

• The wmap_bitmap_color_getcolor() function is used to get the current RGB
color value of a specified bit in a specified color bitmap.

• The wmap_bitmap_color_delete() function is used to destroy a specified
color bitmap.

• color_bitmap is an opaque data type used by these functions as a handle to a
color bitmap.

A color_bitmap can be displayed in WafermapTool, for a specified die, using the
wmap_die_bitmap option to wmap_die_set().

Also see Dynamically Defined Monochromatic Images.

Usage
color_bitmap* wmap_bitmap_color_create(

int width,
int height,
COLORREF bg_color DEFAULT_VALUE(RGB(0, 0, 0)));

void wmap_bitmap_color_setcolor(color_bitmap *pBitmap,
int row,
int col,
COLORREF rgb);
 2/27/09 Pg-2258

WafermapTool
COLORREF wmap_bitmap_color_getcolor(color_bitmap *pBitmap,
int row,
int col);

void wmap_bitmap_color_delete(color_bitmap *pBitmap);

where:

width and height specify the size of the bitmap being created, in pixels.

bg_color is optional and, if used, specifies the RGB background color for the bitmap being
created. Default = 0,0,0 i.e. black.

pBitmap identifies the bitmap of interest, previously created using
wmap_bitmap_color_create().

row and col specify the coordinates of a bit for which the RBG color is to be set or
retrieved. Invalid coordinate values are silently ignored.

wmap_bitmap_color_create() returns the bitmap created.

wmap_bitmap_color_getcolor() returns the RGB value as a COLORREF, a Microsoft
defined data type.

Example
The following example creates a 64x64 pixel color bitmap identified as myCBmap with a grey
background color. Then a diagonal of pixels are set to 4 different colors. The bitmap is sent
to WafermapTool for display in the die location specified by die_x/die_y. The RGB color of
the pixel at 8/8 is retrieves and the individual color values are printed. Last, the bitmap is
destroyed:

color_bitmap* myCBmap;
myCBmap = wmap_bitmap_color_create(64, 64, RGB(128, 128, 128));

for(int i = 0; i < 16; ++i)
wmap_bitmap_color_setcolor(myCBmap, i, i, RGB(255, 255, 0));

for(i = 16; i < 32; ++i)
wmap_bitmap_color_setcolor(myCBmap, i, i, RGB(255, 0, 255));

for(i = 32; i < 48; ++i)
wmap_bitmap_color_setcolor(myCBmap, i, i, RGB(0, 255, 255));

for(i = 48; i < 64; ++i)
wmap_bitmap_color_setcolor(myCBmap, i, i, RGB(255, 255, 255));

wmap_die_set(wmap_die_bitmap, die_x, die_y, myCBmap);
 2/27/09 Pg-2259

WafermapTool
COLORREF c = wmap_bitmap_color_getcolor(myCBmap, 8, 8);
BYTE v = GetRValue(c); output(" Red => %d", v); // SB 255

v = GetGValue(c); output(" Green => %d", v); // SB 255
v = GetBValue(c); output(" Blue => %d", v); // SB 0

wmap_bitmap_color_delete(myCBmap);

6.21.9.3 Statically Defined Images
See WafermapTool, WaferMapTool Software, WafermapTool Die-Bitmap Support.

Description
In WafermapTool, It is possible to display statically defined bitmap image for a die (see
Bitmap View). Both methods below use Developer Studio to incorporate the desired
bitmap(s) into the test program:

• Import a bitmap image from disk into the test program, as a Bitmap resource.
• Use Developer Studio’s built-in bitmap editor to manually create or modify a

Bitmap resource.
Using either method, the resulting bitmap image will typically have an identity similar to
IDB_BITMAP1, which is then used as the value argument to wmap_die_set(). For
example:

wmap_die_set(wmap_die_bitmap, die_x, die_y, IDB_BITMAP1);

Note: WafermapTool will automatically scale any bitmap being displayed, to the size
of the target die in WafermapTool (see WaferMapTool Configuration
die_x_size, die_y_size). However, the details in complex bitmap images
may not be easy to see without zooming to increase the visible size of the die
image in WafermapTool.

6.21.9.4 UI BitmapTool Images
See WafermapTool, WaferMapTool Software, WafermapTool Die-Bitmap Support.
 2/27/09 Pg-2260

WafermapTool
Description
WafermapTool allows Error Catch RAM (ECR)-based bitmap images to be displayed for a
die. This is the same image, typically much reduced, displayed using UI’s BitmapTool.

Note the following:

• One version (overload) of the wmap_die_set() function generates the bitmap
image and sends it to a specific die in WafermapTool:

BOOL wmap_die_set(wmap_die_type type, int x, int y);

e.g.
wmap_die_set(wmap_die_bin, 9, 11);

Note that unlike the other versions of wmap_die_set() this overload does not
have a value parameter. This version is only used to invoke the BitmapTool code
which reads errors from the ECR and generates the bitmap image, and sends it to
a die in WafermapTool.

• All preparations for generating a bitmap image using BitmapTool are also required
to use this feature. This includes configuring the ECR, executing a test which
executes a Memory Test Pattern which captures errors to the ECR, etc.

• Even though BitmapTool is not visibly used to obtain the image to be displayed
same underlying code is executed, much as though BitmapTool was being used
interactively. Thus, all of BitmapTool’s various options can/will affect the resulting
image, whether set manually using BitmapTool’s menus/controls and/or set using
the various UI User Variables specific to BitmapTool (ui_BitmapDisplayMode,
ui_BitmapFailColor, ui_BitmapPassColor, etc.). In other words, the
bitmap image displayed is configured by the current BitmapTool configuration
settings, whether default values or as configured by the user or user code.

• If BitmapTool is in use (visible), its display will change to show the image being
collected for WafermapTool. Any existing image will be discarded.

6.21.10 Die Field Display
See WafermapTool, WaferMapTool Software.

Note: first available in software release h1.1.23.
 2/27/09 Pg-2261

WafermapTool
Description
The wmap_die_field option to the wmap_die_set() function allows user code to
generate a visual color outline surrounding one or more die. This is useful when testing
multiple die in parallel, to indicate which die are being or can be tested as a group.

Note the following:

• A die field outline is specified by identifying an origin die, using the x, y
arguments, and specifying the size of the outline as a count of die in the X and Y
axis, using numx and numy arguments. See Usage.

• Multiple die field outlines may be drawn and coexist. When defining multiple
outlines at one time it is faster to queue multiple wmap_die_set() commands
using wmap_die_cmd_start() and wmap_die_cmd_start(). See Examples.

• An existing die field outline can be erased (cleared) several ways:
• Execute wmap_die_set() with the numx, and numx arguments both set to 0,

AND the x and y values set to the origin die of the previously generated outline
to be erased.

• In WafermapTool, use the right-mouse button to display the context menu shown
below and select Erase All Die Field Outlines. As indicated, this erases
all die field outlines:

• Use the right-mouse button to display the context menu shown above and select
Do All The Above. This clears all non-configuration data from the Wafermap.

• A die field outline may cover portions of the wafermap which don’t contain die,
with the following restrictions:
• The x and y argument values to wmap_die_set() must be the coordinates of a

valid die.
• The die field outline is clipped by the wafermap configuration’s xmin, xmax,
ymin, and ymax values. See WaferMapTool Configuration. In simple terms, the
outline will not extend past any border of the wafer.
 2/27/09 Pg-2262

WafermapTool
Usage
BOOL wmap_die_set(wmap_die_type type,

int x,
int y,
int numx,
int numy,
int penStyle,
COLORREF color);

Note: see wmap_die_cmd_start(), wmap_die_cmd_end() for overloads of
wmap_die_set() containing the wmap_die_cmd argument. These are used to
improve performance by aggregating multiple commands.

where:

x and y specify the reference (origin) die location, which must be a valid die location. The
die field outline then extends numx and numy die. The direction that the outline actually
extends is determined by the wafermap’s axis orientation and direction configuration. See
WaferMapTool Configuration (axis_horizontal, axis_horizontal_inc, etc.).

penStyle specifies the type of line used to drawn the outline. The following declarations
are available for use as penStyle argument values. These are defined in a Microsoft
library file:

#define PS_SOLID 0 // Solid line
#define PS_DASH 1 // -------
#define PS_DOT 2 //
#define PS_DASHDOT 3 // _._._._
#define PS_DASHDOTDOT 4 // _.._.._

color specifies the desired RGB color for the outline being created. This is best defined
using the RGB macro; i.e. RGB(0,0,0) = black, RGB(255,0,0) = red, etc. See Examples.

wmap_die_set() returns TRUE when no errors occur, otherwise FALSE is returned.

Examples
The following three examples use different die field specifications but produce the same
result, shown in the image below:
 2/27/09 Pg-2263

WafermapTool
wmap_die_set(wmap_die_field, 12,12, -3,2, PS_SOLID, RGB(0,0,255));
wmap_die_set(wmap_die_field, 10,13, 3,-2, PS_SOLID, RGB(0,0,255));
wmap_die_set(wmap_die_field, 12,13, -3,-2, PS_SOLID, RGB(0,0,255));
 2/27/09 Pg-2264

WafermapTool
The following example shows the effect when the X axis direction is reversed:

wmap_die_set(wmap_die_field, 10,12, 3,2, PS_SOLID, RGB(0,0,255));

The following example queue’s several commands to draw multiple die field outlines more
quickly:

wmap_die_cmd *c = wmap_die_cmd_start();
wmap_die_set(c, wmap_die_field, 9, 12,3,2, PS_DASH, RGB(0,0,0));
wmap_die_set(c, wmap_die_field, 9,14, 3,2, PS_DASH, RGB(0,0,0));
wmap_die_cmd_end(c);
 2/27/09 Pg-2265

Chapter 7 Advanced Topics
This section includes the following topics

• User Variables
• Resources

- Overview
- Resource Types
- Resource Name Functions
- Resource Find Functions
- Resource Control Functions
- Resource Use Functions
- invoke()

• User Tools
- Overview
- Creating User Tools
- Starting/Terminating User Tools
- User Tool Output Messages
- User Tool Initialization
- User Tool Functions
- User Tool Example
- ToolLauncher

• User Dialogs
- Overview
- Supported Dialog Components
- Creating a User Dialog
- Setting Tab Order
- Changing Dialog Button Text
- Creating Bitmap Dialog Components
- Bitmap Usage
- Dialog Progress Resource
- Radio Buttons and ONEOF User Variables
 2/27/09 Pg-2266

Advanced Topics User Variables
- Sliders & Scroll-bars
- User Dialog Functions
- Grid Usage

• STDF Software
• Excel Related Functions
• MonitorApp
• Environmental Variables
• DUT Board TDR Functions
• Miscellaneous

7.1 User Variables
• User-defined User Variables
• Built-in User Variables
• UI User Variables
• Host / Site / Tool Communication

7.1.1 Overview

Description
User variables are special global variable objects that are used to:

• Provide variables of various types whose values can be viewed and modified
using UI’s User Variables Tool.

• Connect the graphic components of User Dialogs with user-written C-code. In this
context, user variables provide for both value storage and command execution
functionality. The Test Program Wizards generates the dialog.cpp file which
contains many basic examples of using user variables with dialogs.

• Pass both values and/or commands between the test program processes, i.e.
between Host and Site and User Tools. Read the Overview in Binning for
information about the different processes.
 2/27/09 Pg-2267

Advanced Topics User Variables
User-defined User Variables can be created to perform specialized functions in test
programs, User Dialogs, and User Tools.

There are a large number of built-in UI User Variables that support commonly desired
functions.

User variables share the following common attributes:

• Each user variable has a name, which can be treated as any variable is used, for
value storage, logical operations, etc.

• Each user variable has an initial value (except for VOID_VARIABLE which has no
value).

• Each user variable has an optional prompt string which, if defined, is displayed in
User Variables Tool to enable display and modification of the variable at runtime.

• Each user variable has optional body code, which can execute standard C/C++
code and can call the Nextest functions. When the user variable is invoked (see
Invoking User Variable Body Code), the body code is executed (in a separate
thread).

• When a user variable is tied to a component of User Dialogs, modification of its
value within its body code automatically causes the dialog value to be updated when
the body code execution terminates. Separate functions also exist to explicitly
update the dialog or the user variable: see Transferring Values to/from Dialog
Resources.

• Within the scope of user variable body code, two built-in variables named sender
and oldval are automatically accessible. sender identifies the site_num()
which invoked the user variable body code. oldval contains the previous value of
the user variable.

• User variables are global to the process in which they are defined. This means
that user variables defined in test program code automatically exist in both the
Host and all Site processes. Conversely, a user variable defined in User Tools do
not automatically exist in the test program, and vice versa.

• The remote_send(), remote_fetch(), remote_set(), and remote_get()
functions can be used to synchronize the values of a user variable between
different processes. Some can also be used to invoke the body code (see Invoking
User Variable Body Code).

• A collection (set, snapshot) of user variables can be created using SNAPSHOT().
A snapshot can then be used with remote_send(), remote_fetch(),
remote_set(), and remote_get() to perform the same operation on a number
of user variables with a single function call.
 2/27/09 Pg-2268

Advanced Topics User Variables
• It is possible for one site to intercept remote transactions to specified User-defined
User Variables sent to a different site. See Intercepting User Variables.

7.1.2 Usage
This section shows an overview of how user variables can be used. One INT user variable,
named myIntVar, is defined here and used in all of the examples below:

INT_VARIABLE(myIntVar, 0, "myIntVar") {
output(" myIntVar = %d, previously = %d", myIntVar, oldval);

}

myIntVar is used as a simple variable. None of these execute myIntVar’s body code:

myIntVar = 10;
myIntVar++;
if(myIntVar < 10) {...}
for (myIntVar = 10; myIntVar >0; myIntVar--) {...}
etc...

Methods for executing the body code of myIntVar. For more information see Invoking User
Variable Body Code:

// Execute body code in the local process
invoke (myIntVar);

// Update value in Site-1, do not execute body code
remote_send(myIntVar, 1, FALSE, INFINITE);
remote_set("myIntVar", value, 1, FALSE); // remote_set()

// Update value in Site-1, do execute body code on site-1
remote_send(myIntVar, 1, TRUE, INFINITE);
remote_set("myIntVar", value, 1, TRUE);

// Get value from Host (Site 0), do not execute body code
remote_fetch(myIntVar, 0, FALSE);
remote_get("myIntVar", 0, FALSE); // remote_get()

// Get value from Host (Site 0), body code executes in local process
remote_fetch(myIntVar, 0, TRUE);
remote_get("myIntVar", 0, TRUE);

Note that what is shown above uses just one version (one overload) of remote_send(),
remote_fetch(), remote_set(), and remote_get(); there are others.
 2/27/09 Pg-2269

Advanced Topics User Variables
UI’s User Variables Tool can be used to view and modify myIntVar’s value:

The code below is typical of that used to support User Dialogs. None of these execute the
body code of myIntVar:

// Connect myIntVar to dialog resource IDC_widget1
CONTROL(IDC_widget1, myIntVar)

// Get the current value from the dialog resource into myIntVar
update_variable(myIntVar);

// Put the current value of myIntVar into the dialog resource
update_control(myIntVar);

Assuming additional user variables named myBoolVar, and myCStringVar exist, the
following creates a snapshot containing all, three variables. This can be used with
remote_send(), remote_fetch(), remote_set(), and remote_get():

SNAPSHOT(name) { // See SNAPSHOT()
VARIABLE(myIntVar)
VARIABLE(myBoolVar)
VARIABLE(myCStringVar)

}

7.1.3 User-defined User Variables
When the built-in UI User Variables do not provide a desired functionality, user-defined user
variables may be used, in test program code and User Tools code.

A set of Test System Macros exists for this purpose. A corresponding set of macros exists to
make external user variable declarations.

View and change the value of myIntVar
here. Values can be different on
Host vs. Site based on radio button
selection. Clicking Set both modifies
the value AND executes the body
code.

Prompt string
 2/27/09 Pg-2270

Advanced Topics User Variables
Usage
The following macros are used to define user variables:

BOOL_VARIABLE(var_name, initial_value, prompt) { body code }

CSTRING_VARIABLE(var_name, initial_value, prompt) { body code }

DOUBLE_VARIABLE(var_name, initial_value, prompt) { body code }

DWORD_VARIABLE(var_name, initial_value, prompt) { body code }

FLOAT_VARIABLE(var_name, initial_value, prompt) { body code }

INT_VARIABLE(var_name, initial_value, prompt) { body code }

INT64_VARIABLE(var_name, initial_value, prompt) { body code }

UINT64_VARIABLE(var_name, initial_value, prompt) { body code }

ONEOF_VARIABLE(var_name, value_list, prompt) { body code }

VOID_VARIABLE(var_name, prompt) { body code }

The following Test System Macros are used to declare a user variable as external:

EXTERN_BOOL_VARIABLE(var_name)

EXTERN_CSTRING_VARIABLE(var_name)

EXTERN_DOUBLE_VARIABLE(var_name)

EXTERN_DWORD_VARIABLE(var_name)

EXTERN_FLOAT_VARIABLE(var_name)

EXTERN_INT_VARIABLE(var_name)

EXTERN_INT64_VARIABLE(var_name)

EXTERN_UINT64_VARIABLE(var_name)

EXTERN_ONEOF_VARIABLE(var_name)

EXTERN_VOID_VARIABLE(var_name)

where:

The prefix in the macro name (VOID, INT, BOOL, etc.) defines the type of user variable
being created (void, int, BOOL, etc.). The ONEOF_VARIABLE is essentially the same
as CSTRING_VARIABLE, except that the value list is a comma delimited string of discrete
values. This is useful for filling in the values of combo boxes in User Dialogs.
 2/27/09 Pg-2271

Advanced Topics User Variables
var_name is the name of the variable being defined. The name must follow the rules for
C identifiers for variables of the same generic type as specified by the prefix in the macro
name (VOID, INT, BOOL, etc.).

The EXTERN macros are used to make external, or forward, declarations. They can be
thought of as equivalent to the normal C extern declaration.

initial_value is the initial value of the user variable. The initial value is set at program
initialization and can be a value or a function that returns a value of the correct type.

prompt is a string enclosed in double quotes. This string will appear above the edit box in
UI’s User Variables Tool. A NULL prompt string (“”) prevents the user variable from
appearing in User Variables Tool.

body code is optional, and can include any C++ code. This body code will be executed
when the user variable is invoked (see Invoking User Variable Body Code).

Examples

Example 1:
INT_VARIABLE(bad_cell_count, 0, "") {}

In this example, an INT user variable named bad_cell_count is defined. The initial value
of bad_cell_count is 0, and there is no prompt string thus this user variable will not be
accessible in User Variables Tool. There is no C code to execute in the body section of the
variable definition.

Example 2:
In this example, code in a TEST_BLOCK (which executes in a Site process) causes an
AfxMessageBox to be displayed in the Host process, and waits for it to be dismissed
before continuing.

// The body code of okDialog will be invoked using remote_send()
// from DoConfirm(). Intended to execute in the Host process
CSTRING_VARIABLE(okDialog, "", "") {

AfxMessageBox(vFormat("%s\n(from site:%d)", okDialog, sender));
}

// DoConfirm() is intended for Site execution. It will cause the
// Host to display an AfxMessageBox
void DoConfirm(LPCTSTR question) {

// Display question in an AfxMessageBox on the Host. Wait for the
// user response.
 2/27/09 Pg-2272

Advanced Topics User Variables
okDialog = question; // Set uVar value = question
remote_send(okDialog, 0, TRUE, INFINITE); // 0 = Host

}

TEST_BLOCK(abc) {
// ...
DoConfirm("About to set vih");
// ...

}

7.1.4 Invoking User Variable Body Code

Description
The body code of user variables can be caused to execute using the following methods:

• Directly, using the invoke() function. The body code executes in the process
which calls invoke().

• Indirectly, using remote_send(), remote_fetch(), remote_set(),
remote_get(). The body code executes when the TRUE argument is specified,
and executes in the process which is the destination of the variable value being
set, send, get, or fetched. This requires that the calling code know the site number
(see site_num()) of the destination process, which is simple for Host/Site
processes but more complex for User Tools. See Intercepting User Variables. It is
also possible for one site to intercept remote transactions to specified User-defined
User Variables sent to a different site. See Intercepting User Variables.

• By setting a new value in the user variable using User Variables Tool. The body
code executes in the process specified using the radio buttons in User Variables
Tool.

• When set_values_from_file() is called to perform User Variable Text File
Initialization of user variables.

User variable body code executes in its own thread. If multiple Sites remote_send(),
remote_fetch(), remote_set(), or remote_get() to/from the Host at the same time,
the events are serialized.
 2/27/09 Pg-2273

Advanced Topics User Variables
7.1.5 User Variable Command Line Initialization

Description
Test programs can be invoked from a Windows shell command line. When this is done, it is
possible to also start and use UI, or not.

The latter case is targeted at software testing, is quite limited, not very useful in normal
device testing operations, and thus not documented here. For the former case, see Starting
UI from a Command Line.

It is also possible to specify other command line options, modes, etc. most of which are
controlled using UI User Variables. Command line usage and syntax is covered in the
detailed documentation of each UI user variable.

When UI is started from a command line it is possible to specify initial values for User-
defined User Variables. It is also possible to set different values for the same user variable in
Host vs. Site processes. In both cases, these values over-ride the value specified in the
source code.

If the test program loaded does not contain the specified user variable (exact spelling, case
sensitive) an error message similar to the following will be displayed in either the Host output
window, or the Site output window(s) of all enabled sites.

Warning: Attempt to set undefined user-variable "myVar" from site
-1 ignored.

Note that site -1 refers to UI, which forwards the command line value to the Host or Site
processes.

When a test program is unloaded (Closed) it is possible, without terminating UI, to load
another (or the same) test program. The reload option, enabled using the added R token as
shown below, is provided. If used, this causes any user variable initialization specified via
the command line or batch file (see User Variable Batch File Initialization) to be performed
on each test programs loaded using the current instance of UI. When the reload option is not
specified, the initial values of all user variables in the 2nd..nth test programs loaded will be
the value specified in the source code. Once UI is terminated, all reload information is
discarded.

Usage
/S:uVarName=<value>

/SR:uVarName=<value>
 2/27/09 Pg-2274

Advanced Topics User Variables
/H:uVarName=<value>

/HR:uVarName=<value>

where:

uVarName is the user variable to be initialized.

<value> is the initialization value, and must be of the correct type for the user variable
being initialized (int, BOOL, etc.).

/S is used to initialize the specified user variable’s value in all enabled Site processes.

/SR is the same as /S except that the Reload option is enabled, see above.

/H is used to initialize the specified user variable’s value in the Host process.

/HR is the same as /H except that the Reload option is enabled, see above.

Example
The following example command line starts UI and initializes two user variables. One,
named test_var is initialized to 10 in the Host process. The other, named my_var, is
initialized to -1, in all enabled Site process(es). In this example, proper operation requires
that these user variables both be INT_VARIABLE, DWORD_VARIABLE, INT64_VARIABLE,
FLOAT_VARIABLE, or DOUBLE_VARIABLE:

ui /H:test_var=10 /S:my_var=-1

7.1.6 User Variable Batch File Initialization

Description
Test programs can be invoked from an ASCII batch file, using ui_BatchFile. The batch file
can also specify numerous options, modes, etc. most of which are controlled using UI User
Variables. Batch file usage and syntax is covered in the detailed documentation of each UI
user variable.

When a batch file is used, it is possible to specify initial values for user variables. It is also
possible to set different values for the same user variable in Host vs. Site processes. In both
cases, these values over-ride the value specified in the source code.
 2/27/09 Pg-2275

Advanced Topics User Variables
To do this in a batch file combines the use of the ui_HostModeCommandLine and/or
ui_SiteModeCommandLine UI user variables, plus the syntax documented in User
Variable Command Line Initialization.

If the test program loaded does not contain a specified user variable (exact spelling, case
sensitive) an error message similar to the following will be displayed in either the Host output
window, or the Site output window(s) of all enabled sites.

Warning: Attempt to set undefined user-variable "myVar" from site
-1 ignored.

Note that site -1 refers to UI, which forwards the command line value to the Host or Site
processes.

Usage
ui_SiteModeCommandLine=/S:uVarName=<value>

ui_SiteModeCommandLine=/SR:uVarName=<value>

ui_HostModeCommandLine=/H:uVarName=<value>

ui_HostModeCommandLine=/HR:uVarName=<value>

Note that the values assigned to ui_HostModeCommandLine and
ui_SiteModeCommandLine use the same syntax documented in User Variable Command
Line Initialization.

Example
The following is an example of a batch file which inhibits the initial UI splash screen, enables
engineering mode, initializes three user variables, and loads the test program D:/
MinTestProg/Debug/MinTestProg. Note the quoted string value assigned to CSvar which,
for proper operation, must be a CSTRING_VARIABLE:

ui_NoLogo=1
ui_EngineeringMode=1
ui_SiteModeCommandLine=/S:Var1=101 /S:CSvar="str val" /S:Var2=99
ui_TestProgName=D:/MinTestProg/Debug/MinTestProg.exe

If these statements are in the file C:\test9_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test9_batch.txt
 2/27/09 Pg-2276

Advanced Topics User Variables
7.1.7 User Variable Text File Initialization
See Built-in User Variables.

Definition

The set_values_from_file() function allows user C-code to set the value of one or
more user defined User Variables from an external text file.

The Built-in User Variables builtin_batch_file can be used for the same purpose.

When set_values_from_file() is executed, it opens the specified file and reads the
names and values of user variables. For each user variable in the file, it updates the value,
and then executes the body code of that user variable. Anything in the file that is not a user
variable/value pair is ignored. Lines starting with # are treated as comments.

Executing set_values_from_file() within the Host process initializes user variables
only in that process. Similarly, executing set_values_from_file() within a Site process
initializes user variables only in that process. This operation can be modified, see
Intercepting User Variables.

If the initialization file refers to a user variable which does not exist in the loaded test
program (exact spelling, case sensitive) an error message similar to the following will be
displayed in either the Host output window, or the Site output window(s).

Warning: Attempt to set undefined user-variable "myVar" from site
1 ignored.

builtin_batch_file serves the same purpose. It is one of the Built-in User Variables,
and has predefined body code which calls set_values_from_file().

It is invoked using remote_set() where the site argument determines where
set_values_from_file() will be executed, and the value argument specifies the file. If
the specified file is not valid a warning message is displayed in the output window of the
specified site.

Usage
BOOL set_values_from_file(LPCTSTR filename);

where:

filename is the name of the text file to be read. The file must be accessible in a file system
accessible to the test program executable program. If an absolute path is not specified,
 2/27/09 Pg-2277

Advanced Topics User Variables
set_values_from_file() will search for the file using the PATH environment variable.
See Environmental Variables.

set_values_from_file() returns TRUE if the specified file exists otherwise FALSE is
returned.

builtin_batch_file is used with remote_set(). When sent to a Site
(remote_set() with site = 1, 2, etc.) the user variables will be initialized on the Site.
When multiple Site are in use remote_set() must be called once for each site. When
sent to the Host (remote_set() with site = 0) the user variables will be initialized on the
Host. Correct operation requires that the execute body code argument to remote_set()
be TRUE.

Example
This example contains the following parts. Each part has comments about important
features:

• Program Code
• Host Values File
• Site Values File
• Host Output Window
• Site Output Window

Program Code
This code defines two user variables of each type (except VOID), each with an initial value
and similar body code. When executed, the body code outputs the current value of the user
variable. Below the user variables, a Host Begin Block and Site Begin Block both call
set_values_from_file(), each specifying a different file name. Executing
set_values_from_file() reads the specified file, sets the specified user variables to
the value in the file, and executes the body code of each user variable.

Also included below is a CONFIGURATION() block which shows the how remote_set() is
used to invoke builtin_batch_file. In this example the same two files are read and set
the same variables to the same values. Using both methods in this way is redundant but
does show proper syntax, etc.:

BOOL_VARIABLE(B1, TRUE, "") {
output("B1 =[%s]", B1?"TRUE":"FALSE");

}

 2/27/09 Pg-2278

Advanced Topics User Variables
BOOL_VARIABLE(B2, TRUE, "") {
output("B2 =[%s]", B2?"TRUE":"FALSE");

}

CSTRING_VARIABLE(S1, "?", "") {output("S1 =[%s]", S1);}

CSTRING_VARIABLE(S2, "?", "") {output("S2 =[%s]", S2);}

DOUBLE_VARIABLE(D1, -1, "") {output("D1 =[%5f]", D1);}

DOUBLE_VARIABLE(D2, -1, "") {output("D2 =[%5f]", D2);}

DWORD_VARIABLE(DW1, -1, "") {output("DW1 =[%d]", DW1);}

DWORD_VARIABLE(DW2, -1, "") {output("DW2 =[%d]", DW2);}

FLOAT_VARIABLE(F1, -1.0, "") {output("F1 =[%0.3f]", F1);}

FLOAT_VARIABLE(F2, -1.0, "") {output("F2 =[%0.3f]", F2);}

INT_VARIABLE(I1, -1, "") {output("I1 =[%d]", I1);}

INT_VARIABLE(I2, -1, "") {output("I2 =[%d]", I2);}

INT64_VARIABLE(I641, -1, "") {output("I641 =[%I64x]", I641);}

INT64_VARIABLE(I642, -1, "") {output("I642 =[%I64x]", I642);}

ONEOF_VARIABLE(O1, "A,B,C", "") {output("O1 =[%s]", O1);}

ONEOF_VARIABLE(O2, "D,E,F", "") {output("O2 =[%s]", O2);}

HOST_BEGIN_BLOCK(HBB1) { // See HOST_BEGIN_BLOCK()
set_values_from_file ("c:/uVar_Host_values.txt");

}

SITE_BEGIN_BLOCK (SBB1) { // See SITE_BEGIN_BLOCK()
set_values_from_file ("c:/uVar_Site_values.txt");

}

CONFIGURATION(CB1) { // See CONFIGURATION()
remote_set("builtin_batch_file","c:/uVar_Host_values.txt", 0);
remote_set("builtin_batch_file","c:/uVar_Host_values.txt", 1);

}

Host Values File
This file, used to initialize the user variables in the Host process, is named
c:/uVar_Host_values.txt. Note that each user variable name has a corresponding value,
which is different than the value specified in the Program Code above.
 2/27/09 Pg-2279

Advanced Topics User Variables
B1: TRUE
B2: FALSE
S1: two words
S2: three word string
D1: 1234
D2: 5678
DW1: 9876
DW2: 5432
F1: 99.999
F2: -88.999
Int1: 13
Int2: -13
I64_1: 0xFFFFFFFFFFFFFFFF
I64_2: 0xEFFEEFFEEFFEEFFE
One1: B
One2: F

Site Values File
This file, used to initialize the user variables in each enabled Site process, is named
c:/uVar_Site_values.txt. Note that each user variable name has a corresponding value,
which is different than the value specified in the Program Code above.

B1: FALSE
B2: TRUE
S1: four word string here
S2: three words here
D1: 12345678
D2: 56789012
DW1: 98765432
DW2: 54321098
F1: 77.777
F2: -66.666
Int1: 19
Int2: -19
I64_1: 0xA55AA55AA55AA55A
I64_2: 0xABCDEF0FEDCBA0FE
One1: C
One2: E
 2/27/09 Pg-2280

Advanced Topics User Variables
Host Output Window
This is the output generated by executing the user variable body code in the Host process:

B1 =[TRUE]
B2 =[FALSE]
S1 =[two word]
S2 =[three word string]
D1 =[1234.000000]
D2 =[5678.000000]
DW1 =[9876]
DW2 =[5432]
F1 =[99.999]
F2 =[-88.999]
I1 =[13]
I2 =[-13]
I641 =[ffffffffffffffff]
I642 =[effeeffeeffeeffe]
O1 =[B]
O2 =[F]

Site Output Window
This is the output generated by executing the user variable body code in a Site process:

B1 =[FALSE]
B2 =[TRUE]
S1 =[four word string here]
S2 =[three words here]
D1 =[12345678.000000]
D2 =[56789012.000000]
DW1 =[98765432]
DW2 =[54321098]
F1 =[77.777]
F2 =[-66.666]
I1 =[19]
I2 =[-19]
I641 =[a55aa55aa55aa55a]
I642 =[abcdef0fedcba0fe]
O1 =[C]
O2 =[E]
 2/27/09 Pg-2281

Advanced Topics User Variables
7.1.8 Modifying ONEOF Variables

Definition

The function set_choices() allows user C-code to programmatically modify the comma
separated list of values associated with a ONEOF_VARIABLE.

This is desirable to modify the list of items displayed in User Dialogs Combo boxes or List
boxes, which are linked to a ONEOF_VARIABLE. Both the ONEOF user variable and the
dialog resource are updated by set_choices().

The modification can replace the entire previous list of comma separated values or,
optionally, append to the existing list.

Definition
BOOL set_choices(VariableProxy Oneof_Variable,

CString choices,
BOOL append DEFAULT_VALUE(FALSE));

BOOL set_choices(VariableProxy Oneof_Variable,
CStringArray &choices,
BOOL append DEFAULT_VALUE(FALSE));

where:

Oneof_Variable identifies the ONEOF_VARIABLE user variable to be modified.

choices is a CString value, which can be a single value or a comma separated list of
values.

append determines whether the existing list is replaced (FALSE) or appended to (TRUE).

Example
The following code creates a ONEOF_VARIABLE with an initial list of three color values. The
User Dialog code associates this ONEOF variable with a dialog resource:

ONEOF_VARIABLE(SM_listbox, "Orange, Yellow, Green", "Colors") {}

DIALOG(simple_dialog) {

CONTROL(IDC_SM_listbox, SM_listbox) // Tied to dialog List Box

}

 2/27/09 Pg-2282

Advanced Topics User Variables
The original list displayed in the dialog will show Orange, Yellow, Green. The code below
modifies both the list displayed in the dialog, and the list of choices associated with the
underlying ONEOF_VARIABLE:

set_choices(SM_listbox, "Red, White, Blue");

7.1.9 Intercepting User Variables
See User Variables.

Description
User Variables allow one site (process) to transfer data to/from another site and optionally
to cause user code to be executed on that site, by invoking the User Variable’s body code.
This is explicitly done using the remote_send(), remote_fetch(), remote_set() and
remote_get() functions.

The intercept() function causes most operations on a specified User Variable on a
specific site to be automatically forwarded to the site that calls intercept(). This includes
transactions caused by the remote_xxx() functions noted above and transactions invoked
less directly (more below).

The remote_send(), remote_fetch(), remote_set() and remote_get() functions
each require an explicit site number argument, to identify the remote site. There are four
categories of sites:

• UI (site number = -1)
• Host process (site number = 0)
• Site processes (site number = 1 through 40)
• User Tools (site number = > 1024, randomly assigned)

When the intercept() function is executed by a given site it identifies, using the site
argument, which site is being intercepted. For example, given the following User Variable
declaration:

CSTRING_VARIABLE(myVar, "abc", "") {}

The site which executes the following code will receive all remote transactions to myVar
sent to the Host (site number = 0):

intercept(myVar, 0);
 2/27/09 Pg-2283

Advanced Topics User Variables
The site which executes the following code will receive a copy of remote transactions to
myVar sent to the Host (site number = 0). The Host process will also receive the transaction:

intercept(myVar, 0, TRUE); // Note the tee argument = TRUE

And, the site which executes the following code will receive all remote transactions to myVar
sent to UI (site number = -1):

intercept(myVar, -1);

This latter example reflects a mainstream application, more below.

The fumble() function is used restore normal remote command operation for a specified
User Variable.

Note that the site numbers of Host, Site and UI are constant, making the use of the
remote_xxx() functions very straight forward. However, the site number for User Tools is
randomly assigned, which normally would require that each Host/Site process which needed
to communicate with a given User Tool somehow get the site number for that tool.

Alternatively, the User Tool can use intercept() to register key User Variables with UI.
Subsequently, any site (process) which needs to communicate with that User Tool will still
use the remote_xxx() functions but will specify UI as the target site (-1). When UI
receives the transaction, it will forward it to the process which intercepted the User Variable;
i.e. the User Tool.

For example, the following User Tool code intercepts the myVar User Variable when related
remote transactions are sent to UI (site number = -1):

TOOL_BEGIN_BLOCK(TB1) {
intercept(myVar, -1);

}

Subsequently, any site (including a User Tool) may execute the following code to
communicate with the User Tool:

remote_set(myVar, "abc", -1);

Note that the remote command specifies UI (-1) as the target site, but since myVar has been
intercepted the transaction will be forwarded to the User Tool.

Also note:

• Any Host, Site or User Tool (process) can use intercept().
• The site argument identifies the site on which the specified User Variable will be

intercepted; i.e. the site which will no longer receive the remote transaction but will
instead forward it to the site which executed the intercept() function.
 2/27/09 Pg-2284

Advanced Topics User Variables
• The optional tee argument causes the transaction to be tee’ed to the process
which executed intercept(). When tee is FALSE only the process which
executed intercept() receives the remote transactions to the specified User
Variable. When tee is TRUE, both the process which executed intercept()
and the specified site receive the transaction; i.e. site still gets notified.

• As indicated above, intercept() changes the site/process which receives
transactions related to the specified User Variable. This mechanism affects the
remote_xxx() functions noted above, but also affects the following, less obvious,
transactions to intercepted User Variables:
• A simple value assignment to an intercepted User Variable only affects the local

variable; i.e. intercept() has no effect.
• When a User Variable is associated with a dialog using IMMEDIATE_CONTROL()

and that dialog control is invoked the transaction will be sent to the intercepted
User Variable.

• Using invoke() to explicitly invoke a User Variable’s body. See Invoking User
Variable Body Code.

• set_values_from_file() and builtin_batch_file will affect intercepted
User Variable.

• Note intercept() will affect User Variables associated with User Dialogs,
however, it is not expected that intercept() will target these User Variables. If
the variable in question is intercepted, then update_variable(),
update_variables() will change the remote value, and update_control()
and update_controls() will apply the remote value to the control(s).

Note: different versions of intercept() and fumble() are used to redirect output
messages. See Redirecting Output Messages.

Usage
BOOL intercept(VariableProxy v,

int site DEFAULT_VALUE(-1),
BOOL tee DEFAULT_VALUE(FALSE));

BOOL intercept(Snapshot *ss,
int site DEFAULT_VALUE(-1),
BOOL tee DEFAULT_VALUE(FALSE));

BOOL fumble(VariableProxy v, int site DEFAULT_VALUE(-1));

where:
 2/27/09 Pg-2285

Advanced Topics User Variables
v identifies the target User Variable.

site is optional and, if used, specifies the site one which the target User Variable is being
intercepted. Default = -1 = UI.

tee is optional and, if used, specifies whether the specified site also receives remote
transactions (TRUE) or whether only the site which intercepted the variable receives the
transaction (FALSE, default).

ss identifies a snapshot, which identifies one or more user variable(s). See SNAPSHOT().

intercept() return TRUE if the operation is successful, otherwise FALSE is returned.

fumble() return TRUE if the specified site was intercepting the specified user variable,
otherwise FALSE is returned. This operation was first available in software release h2.0.xx.

Example
if(! intercept(myUvar))

output("ERROR: intercept(myUvar, -1) returned FALSE");

7.1.10 Built-in User Variables
See User Variables.

Description
The following three built-in User Variables are automatically part of every test program:

• builtin_what_exe : identify the software release in use or the current test
program name and location.

• builtin_dynload : load a Dynamic Link Library (DLL). Documented in Loading
DLLs.

• builtin_batch_file : initialize User Variables from a text file. This can also be
done using set_values_from_file(). Both are documented in User Variable
Text File Initialization.

7.1.10.1 builtin_what_exe
See Built-in User Variables.
 2/27/09 Pg-2286

Advanced Topics User Variables
Description

Using builtin_what_exe plus remote_get() it is possible to get, as a CString, the
following:

• The complete disk:\path\filename of the currently executing UI, which normally
indicates the software release in use. For example:

C:\Nextest\v2.10.15\Bin\Ui.exe

• The current disk:\path\filename of the test program.
Either can be used for informational purposes, or to enable code to conditionally execute
functions only available after a specific software release. See Example.

Also see Retrieving the Nextest Software Version.

Usage
builtin_what_exe is used with remote_get(). When builtin_what_exe is
retrieved from the UI process (remote_get() with site = -1) the path to UI is returned.
When builtin_what_exe is retrieved from the Host or any Site process (remote_get()
with site = 0, 1, 2, etc.) the path to the test program is returned.

Example
This is an example using builtin_what_exe to display the path to UI and the path to the
executing test program. A conditional statement is also shown which checks to see if the
current software release is v2.10.15. Note that correct operation depends upon a typical
software installation where the release number is included in the path to UI.

// Get builtin_what_exe from UI (-1) to locate release
CString release = remote_get("builtin_what_exe", -1);
output(" Release location => %s", release);

// Determine if the release in use is v2.10.15
if (release.Find("v2.10.15") != -1)

output(" Release used is v2.10.15");
else

output(" Release used is NOT v2.10.15");

// Get builtin_what_exe from Host/Site to locate test program
CString program = remote_get("builtin_what_exe", 0); // 0= Host
output(" Program location => %s", program);
 2/27/09 Pg-2287

Advanced Topics User Variables
7.1.10.2 Loading DLLs
See Built-in User Variables.

Description

Using builtin_dynload plus remote_set() the test program and/or User Tools can
cause the a Dynamic Link Library (DLL) to be loaded. This allows program independent
User Tools to, for example, cause the test program to load a DLL containing User-defined
User Variables which are required by the tool but are not normally included in the test
program. Or, a test program can load a standard library of functions developed and
maintained independent of the program.

Using builtin_dynload requires that the location of the DLL be specified. Two options
exist:

• Relative path: put the DLL in any location listed in the PATH environment variable.
See Environmental Variables. In this scenario, no path is specified in the value
assigned to builtin_dynload. The first location checked is always relative to
the test program executable (.exe). Other locations can vary depending on which
Nextest software release is being used and user modifications to the PATH
environment variable.

• Absolute path: put the DLL in any location and specify the complete path to it in
the value assigned to builtin_dynload.

When using multi-site systems, the PATH environment variable on the Site computers does
not exactly match that on the Host, and environment variables set on the Host are not
automatically configured on the Sites. This can be addressed using the RBoot Client File.

Usage
builtin_dynload is used with remote_set(). When sent to a Site (remote_set()
with site = 1, 2, etc.) the site process will load the DLL. When multiple sites are in use
remote_set() must be called once for each site. When sent to the Host
(remote_set() with site = 0) the Host process will load the DLL. Correct operation
requires that the execute body code argument to remote_set() be TRUE.

Example
An example of a User Tools using builtin_dynload to cause the test program to load a
DLL is located at Example 3:.
 2/27/09 Pg-2288

Advanced Topics User Variables
7.1.10.3 RBoot Client File
See Loading DLLs.

Description

As indicated in Loading DLLs, when using multi-site systems, the PATH environment
variable on the Site computers does not exactly match that on the Host. For example, the
Site computers see the Host computer’s C:\ partition as Y:\. And, any user defined
environment variables set on the Host are not automatically configured on the Sites.

To address this, a file in the Host computer's C:\rboot\server\ folder, named client (with no
file name extension) can be modified to set environment variables and/or execute
commands on the site controllers (only). This happens each time the Site computer reboots.
The user manually edits the client file to add commands using the syntax noted below.

Note the following:

• First available in rbootHD version 1.13. The version is seen when Startserver is
executed during system initialization.

• One environment variable or command per line.
• # symbol is used for comments.
• The syntax noted below also outlined in the default C:\rboot\server\client file.
• The user is responsible for ensuring environment variables match (when

necessary) between the Host and Site(s).

Usage
To define an environment variable

ENV=variable:value

To define a command:

EXEC=command

where:

variable is the environment variable name.

value is the value to assign to variable.

command is the statement to execute via the Site’s command shell. Quote the command
string as necessary for proper command shell execution.
 2/27/09 Pg-2289

Advanced Topics User Variables
Example
The following example sets the environment variable named MYDLL to the location of the
target DLL:

ENV=MYDLL:D:/myLibs/mySpecialDLL

7.1.11 UI User Variables

Overview
A number of built-in User Variables are available to provide predefined functionality which is
accessible via the user variable. In general, UI user variables can be used to:

• Set selected values, modes, or attributes when UI - User Interface is started from
a Windows command line or batch file

• Allow user-written C-code to communicate with UI to set, or get, selected values,
modes, or attributes, or to command UI to perform some function. The C-code can
be in a test program and/or User Tools.

• Allow UI to provide notification of key events, which will execute user C-code in
the test program and/or User Tools. This is done using Callback UI User Variables.

UI User Variable Scope is discussed separately, and is key to understanding operation
when, within a single invocation of UI, multiple test programs are loaded and unloaded.

UI User Variables Categories describes how UI user variables share attributes and
similarities.

UI User Variables, Alphabetical Listing provides a brief overview of each variable, its type,
category, etc.

UI Call-back User Variables is a separate table documenting which processes are notified by
UI.

7.1.11.1 UI User Variable Scope
One important characteristic of all UI user variables which have a value or state is that the
scope of the variable is the UI process. This is true even when UI subsequently uses the
variable value to influence a test program.
 2/27/09 Pg-2290

Advanced Topics User Variables
For many UI user variables, test program and User Tools C-code can change its value or
state. When these changes are sent to UI (the normal practice) the act of unloading a test
program does not further change the state of the variable in UI. Thus, during the same
invocation of UI, the next program loaded will see the modified variable value.

Some UI user variables have Reload support, which can be used to un-do changes made by
test program or User Tools code, but only when the variable was originally set from a
Windows command line. See Reload.

7.1.11.2 UI User Variables Categories
UI user variables fall into several categories, which are based on the following:

• The purpose of each variable. There are three general applications:
- Set and/or Get a value, state, or attribute
- Send a command to UI
- Callback UI User Variable

• How the variable may be used:
- Command line
- Batch file
- user-written C-code
Some UI user variables are only useful in some of these contexts, while others
can be useful in all.

• The type of the variable: void, int, BOOL, CString, etc. This is important to set
and/or get an attribute value, and to send a command to UI. Some Callback UI
User Variables also deliver information of a particular type when invoked.

• Whether the variable value is persistent, via the Ui.INI file. This attribute is noted
in the detailed documentation of each variable.
 2/27/09 Pg-2291

Advanced Topics User Variables
• Whether the variable has Reload support, which can be important when using
command line methods. This attribute is noted in the detailed documentation of
each variable.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing

Variable
Type VariablerName

Variable
Purpose Remarks

CString ui_BatchFile Set attribute

Used to specify a
batch file on a
command-line or
within another batch
file.

BOOL ui_BitmapCrossHair
Set or get
attribute

Set the initial
crosshair display
mode.

BOOL ui_BitmapDialogDecMode
Set or get
attribute

Sets initial
BitmapTool coordinate
display mode to
Decimal. Or, gets the
current mode.

int ui_BitmapDisplay UI command

Invokes BitmapTool,
or if already
running, updates the
display.

CString ui_BitmapDisplayMode
Set or get
attribute

Set the initial
display mode to
update the whole
display or only the
visible display.

BOOL
ui_BitmapDisplaySeparateZoomW

indow
Set or get
attribute

Enable or disable
whether the full view
and zoom windows are
displayed separately.
See BitmapTool
Separate Window
Option.

BOOL ui_BitmapDisplayTotalCount
Set or get
attribute

Enable or disable
whether the total
fail count is
displayed. See Fail
Count Enable
Controls.
 2/27/09 Pg-2292

Advanced Topics User Variables
BOOL ui_BitmapDisplayVisibleCount
Set or get
attribute

Enable or disable
whether the visible
fail count is
displayed. See Fail
Count Enable
Controls.

int ui_BitmapdutNo
Set or get
attribute

In parallel test
applications, sets
BitmapTool to display
failures from one
specified DUT.

int
ui_BitmapFailColor,
ui_BitmapPassColor

Set or get
attribute

Programmatically set
the two colors used
to represent Pass/
Fail in BitmapTool.

_int64 ui_BitmapMainSize
Set or get
attribute

Programmatically set
the size of the
BitmapTool full view
window.

int ui_BitmapMaxErrors
Set or get
attribute

Limits the number of
failures displayed by
BitmapTool.

_int64 ui_BitmapMoveTo UI command

Moves zoom selection
box to a specified
row/column/data
position in the main
BitmapTool display.

int

ui_BitmapPageHScroll,
ui_BitmapPageVScroll,
ui_BitmapLineHScroll,
ui_BitmapLineVScroll

Set or get
attribute

Set the initial
values for Page and
Line horizonal and
vertical scroll size.

BOOL ui_BitmapPan
Set or get
attribute

Set the state of the
zoom/pan option.

int ui_BitmapRowsChunk
Set or get
attribute

Maximum number of
rows read from the
ECR in a single
chunk.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2293

Advanced Topics User Variables
BOOL ui_BitmapRulers
Set or get
attribute

Set the initial ruler
display mode.

_int64 ui_BitmapTotalFailBitCount
Callback UI

User Variable

If defined, executes
instead of the normal
ECR scan routine used
to obtain the total
fail bit count value.

CString
ui_BitmapTotalVisibleFailBitS

tring
Callback UI

User Variable

If defined, executes
any time the
BitmapTool Total/
Visible fail values
are updated, but only
if BitmapTool main
and zoom displays are
not separate. Used to
modify the string
displayed.

CString ui_BitmapTotalFailBitString
Callback UI

User Variable

If defined, executes
any time the
BitmapTool Total fail
values are updated,
but only if
BitmapTool’s main and
zoom displays are
separate. Used to
modify the string
displayed.

CString ui_BitmapVisibleFailBitString
Callback UI

User Variable

If defined, executes
any time the
BitmapTool Visible
fail values are
updated, but only if
BitmapTool’s main and
zoom displays are
separate. Used to
modify the string
displayed.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2294

Advanced Topics User Variables
_int64 ui_BitmapVisibleSize
Set or get
attribute

Programmatically set
the size of the
BitmapTool zoom
window.

BOOL ui_BitmapZoom2
Set or get
attribute

Set the initial state
of the power of 2
zoom option.

CString ui_BreakPointFile
Set or get
attribute

Specify the path/file
name of a Breakpoint
Definition File to
load during test
program load.

void ui_BreakPointRemoveAll UI command

Clears all
breakpoints currently
set via the
Breakpoint Monitor.

BOOL ui_ClearAtProgramLoad
Set or get
attribute

If set, UI output
windows are cleared
before test program
load starts.

BOOL ui_ClearAtTestStart
Set or get
attribute

If set, UI output
window is cleared
every time start test
is issued

void ui_Close UI command
Same as clicking on
Close in the UI File
Menu

BOOL ui_CloseAfterRun
Set or get
attribute

If set, test program
is unloaded after
executing the
Sequence & Binning
Table
ui_RunTestProgram
times

CString ui_Controller Set attribute
Modify UI Controller
list from command
line or batch file.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2295

Advanced Topics User Variables
CString ui_CurrentBitmapScheme
Callback UI

User Variable

Invoked by UI any
time a new Bitmap
scheme is selected in
BitmapTool.

BOOL ui_DbmDialogDecMode
Set or get
attribute

Used to set the
Hex/Decimal display
mode for DBMTool.

BOOL ui_DutBoardStatusCheckDisable Set attribute
Used to disable
automatic DUT Board
status checking.

BOOL ui_ECRDialogDecMode
Set or get
attribute

Used to set the
Hex/Decimal display
mode for ECRTool.

BOOL ui_EngineeringMode
Set or get
attribute

Enable/disable
Engineering Mode.

int ui_ExcelAppEvent
Callback UI

User Variable

Invoked by UI when it
receives an event
from Excel

void ui_Exit UI command
Same as clicking on
Exit in the UI File
Menu

BOOL ui_ExitAfterRun
Set or get
attribute

If set, terminate UI
after running the
test program
ui_RunTestProgram
times

ONEOF_VA
RIABLE

ui_HideTool UI command

Used to hide many of
UI’s Interactive
Tools from user C-
code.

BOOL ui_HostDebug
Set or get
attribute

Enable/disable
running host debug
mode.

CString ui_HostModeCommandLine
Set or get
attribute

Specify command line
options which will
affect Host process
only.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2296

Advanced Topics User Variables
int ui_HostTimeOut
Set or get
attribute

Specify Host timeout
value from command
line.

int ui_LoadTimeOut
Set or get
attribute

Specify program load
timeout value from
command line.

DWORD ui_LoadedMask
Get UI

attribute

Identify which sites
have a loaded test
program.

int ui_MonitorPort
Set or get
attribute

Set the monitor port
value from a command
line.

int ui_MonitorTimeOut
Set or get
attribute

Set the monitor
timeout value from
command line.

BOOL ui_NoLogo
Set or get
attribute

Enable/disable UI
logo during UI start
from a command line.

CString ui_Open UI command
Specify a test
program to load from
a User Tools.

BOOL ui_OutputAutoOpen
Set UI

attribute

Control whether a
closed output window
will open when a new
message is sent.

CString ui_OutputFile
Set or get
attribute

Specify a path/
filename to log UI
output messages.

CString ui_OutputFormat
Set or get
attribute

Control a prefix to
the default output()
format

BOOL ui_OutputOpen
Set UI

attribute
Open or close UI’s
output window.

void ui_ProgLoaded
Callback UI

User Variable

Host and User Tools
are notified when all
enabled sites have
loaded a test program

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2297

Advanced Topics User Variables
void ui_ProgUnloaded
Callback UI

User Variable

User Tools are
notified when a test
program is closed.

CString ui_ResourceInitialized
Callback UI

User Variable

Host and User Tools
are notified as each
resource is
initialized on each
enabled site.

int ui_RunTestProgram UI command

Send Start Test to
invoke the Sequence &
Binning Table in all
enabled sites

CString ui_ShmooDone
Callback UI

User Variable

Sites are notified
when a search/shmoo
execution has
completed. Useful
with
search_results_get().

CString ui_ShmooInput
Set or get
attribute

Specify the path/file
name of a Shmoo/
Search definition
file to load. See
Shmoo Definition File

CString ui_ShmooOutputFile
Set or get
attribute

Specify the path/file
name of a file used
to store Shmoo/Search
output.

int ui_ShowOutputTab UI command
Selects which tab is
displayed in UI’s
output window.

BOOL ui_Show
Callback UI

User Variable

Added to user tools
managed by
ToolLauncher to
enable ui_HideTool
and ui_ShowTool to
control the tool
display state.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2298

Advanced Topics User Variables
ONEOF_VA
RIABLE

ui_ShowTool UI command

Used to invoke many of
UI’s Interactive
Tools from user C-
code.

void ui_ShutDown UI command
Same as clicking on
Exit command in the
UI File Menu

DWORD ui_SiteDebug
Set or get
attribute

Site mask for
starting sites in
Developer Studio
debug mode.

CString ui_SiteDone
Callback UI

User Variable

Host and User Tools
are notified when
Sequence & Binning
Table execution has
completed on a given
site.

int ui_SiteLoaded
Callback UI

User Variable

Host and User Tools
are notified when
each site completes
loading a test
program

int ui_SiteMask
Set or get
attribute

Used to set or get
the enabled site
mask.

CString ui_SiteModeCommandLine
Set or get
attribute

Specify command line
options which will
affect Site processes
only.

int ui_SiteUnloaded
Callback UI

User Variable

Host and User Tools
are notified when
each enabled site
unloads a test
program.

void ui_StartTest UI command
Same as clicking on
Start Testing command
in the UI File Menu.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2299

Advanced Topics User Variables
CString ui_StartTool UI command

Used to invoke User
Tools from test
program C-code (or
from another tool)

void ui_StopTest UI command
Same as clicking Stop
Testing in the UI
File Menu

void or
CString

ui_TestDone
Callback UI

User Variable

Host and User Tools
are notified when
Sequence & Binning
Table execution has
completed on all
enabled sites.

CString ui_TestProgConfiguration
Set or get
attribute

Used to specify the
name of the
CONFIGURATION() block
to be used in the
next program loaded.

CString ui_TestProgDirPath
Set or get
attribute

Use to set the
initial folder
location seen when
File Open is invoked
in UI.

CString ui_TestProgName
Set or get
attribute

Used from a command
line or batch file to
specify the path/name
of the test program
to load

void ui_TestStarted
Callback UI

User Variable

Host and User Tools
are notified when UI
sends the Start Test
signal to the sites.

CString ui_TimingToolPinLists
Set or get
attribute

Set, modify, or get
which pin lists
appear in TimingTool.

void ui_ToolLoaded
Callback UI

User Variable

User Tools are
notified when another
tool is started.

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2300

Advanced Topics User Variables
7.1.11.3 Callback UI User Variable
The UI user variables shown in the table below provide call-back functionality at key times
during test program operation.

In general, if any of these user variables are defined in user-written C-code UI will cause the
body code to be executed based on a particular event. As noted in the table, some variables

CString ui_ToolModeCommandLine
Set or get
attribute

Specify command line
options which will
affect Tool processes
only.

void ui_ToolUnloaded
Callback UI

User Variable

User Tools are
notified when another
tool is terminated

BOOL ui_UserVarSiteMode
Set or get
attribute

Set the initial state
of the Host/
Controller radio
buttons in User
Variables Tool.

int ui_UserVariableTimeout
Set or get
attribute

Used to modify the
default timeout value
applied when
executing user
variable body code

Table 7.1.11.2-1 UI User Variables, Alphabetical Listing (Continued)

Variable
Type VariablerName

Variable
Purpose Remarks
 2/27/09 Pg-2301

Advanced Topics User Variables
are invoked only in User Tools processe(s) while others are invoked in both Host and user
tool processe(s).

Table 7.1.11.3-1 UI Call-back User Variables

Executed in
Process...

Variable Host Site
User
Tool Notes

ui_ProgLoaded X X
Notification that all sites have
reported program load is
complete.

ui_ProgUnloaded X Notification that the test
program is unloaded.

ui_ResourceInitialized X Notification of each resource
loaded from all enabled sites

ui_ShmooDone X
Notification that a search/
shmoo execution has
completed.

ui_SiteDone X X
Notification that a given site
has completed execution of the
Sequence & Binning Table.

ui_SiteLoaded X X
Notification that a site has
reported program load is
complete.

ui_SiteUnloaded X X Notification that a site has
unloaded the test program.

ui_TestDone X X
Notification that all enabled
sites have reported test
execution is completed.
 2/27/09 Pg-2302

Advanced Topics User Variables
7.1.11.4 Reload
As noted in the UI User Variable Scope, some UI user variables are targeted for use from a
Windows shell command line. In these situations, the value assigned to a given UI user
variable is typically important to desired program operation, to set key values, modes, etc.

In most cases, these same UI user variables can be modified from the test program
C-code, or from code in separate User Tools. And, as also noted in the UI User Variable
Scope, the scope of all UI user variables is UI, not the loaded test program. Thus, the
Reload option.

The Reload mechanism becomes useful when, within the same invocation of UI, a test
program is unloaded (closed) and another test program is loaded. If the first program
modifies a UI user variable value which was set from a command line with the Reload
option, the original value is restored before the 2nd program loads.

The following sequence shows the effect of using and not using the Reload option:

• A command line or batch file is used to start UI and set the following UI user
variables:
- ui_ClearAtTestStart=1 and the Reload option is not set
- ui_OutputFile=c:\tmp\filename.txt, and the Reload option is set

ui_TestStarted X X Notification that UI has sent the
Start Test signals to the sites.

ui_ToolLoaded X
Notification that a User Tools
was started. Used to signal
other User Tools.

ui_ToolUnloaded X
Notification that a User Tools
was terminated. Used to signal
other User Tools.

Table 7.1.11.3-1 UI Call-back User Variables (Continued)

Executed in
Process...

Variable Host Site
User
Tool Notes
 2/27/09 Pg-2303

Advanced Topics User Variables
• Test program #1 is loaded (how doesn’t matter), and modifies the values of both
UI user variables noted above. Note that User Tools can also modify these
variables.

• Test program #1 is unloaded, and test program #2 is loaded (or #1 is loaded
again, it doesn’t matter).

• At this point, the value of ui_ClearAtTestStart is the modified value, whereas
the value of ui_OutputFile is the original value, as set from the command line.

Also note the following:

• Reload is enabled by adding the ‘R’ character to the long form of the command
syntax. For example, the following line does NOT enable Reload:

ui /U:ui_ClearAtTestStart=1
The following line adds the R and does enable Reload:

ui /UR:ui_ClearAtTestStart=1

• Not all UI user variables have Reload support. This capability is noted in the
detailed documentation of each UI user variable.

• Reload state is independent for each supported UI user variable i.e. it is possible
for some UI user variables to be specified with Reload enabled while others have
Reload disabled.

• Reload is only enabled when the UI user variable is set from a command line, not
from a batch file or from user C-code.

• The Reload value is persistent only to the current UI invocation i.e. terminating UI
also terminates the Reload value.

7.1.11.5 Paths, File Names, Default Extensions, etc.
UI User Variables used to specify a file name use the following conventions:

• When a full path is not specified the environmental PATH will be searched for the
specified file. Shmoo Definition Files (specified using ui_ShmooInput) do not
follow this rule (see below).

• File Name Default Extensions
- Test program name .exe
- Batch file .txt (not .bat)
- Shmoo input file name .txt

• Using ui_ShmooInput, if a full path is not specified only the Program Working
Directory is checked i.e. the PATH is NOT checked.
 2/27/09 Pg-2304

Advanced Topics User Variables
7.1.11.6 ui_BatchFile
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BatchFile.

Description
This UI user variable is used to specify a batch file to be executed when starting UI.

ui_BatchFile is only usable from a Windows command line, or from within a batch file.

The value assigned to this UI user variable is the file name of an ASCII text file with an
optional path to the file.

The batch file has the following rules:

• It can only contain UI variable assignments.
• Each entry must be on a separate line.
• The # character can be used to add a comment to the end of a line. There are no

multi-line comment facilities. Using two # will add a single # to the line; i.e. ## is
not a comment.

• Only the long form of UI variable syntax is legal. This form is shown in the
separate documentation of appropriate UI user variables.

• A batch file can invoke another batch file.
• If the path is not specified an attempt is made to locate the file using the PATH

environment variable. See Environmental Variables. If the specified file is not found
a warning is displayed, and command line execution continues.

• When ui_BatchFile is used within a batch file, if the file is not found a warning
is displayed, and the batch file execution continues.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Reload does not apply to this variable.

Usage
CSTRING_VARIABLE(ui_BatchFile, "", "")

From command line:

Long form: /U:ui_BatchFile=<filename>

Short form: /BATCH=<filename>
 2/27/09 Pg-2305

Advanced Topics User Variables
From within a batch file:

ui_BatchFile=<filename>

where <filename> specifies the path/file-name of the batch file.

Example
These two examples operate identically when executed at a Windows command line:

C:\> ui /U:ui_BatchFile=c:\test_batch.txt

C:\> ui /BATCH=c:\test_batch.txt

Example batch file contents:

ui_NoLogo=1

ui_EngineeringMode=1

ui_ClearAtTestStart=1

7.1.11.7 ui_BitmapCrossHair
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapCrossHair.

Description
This UI user variable is used to set the initial state of BitmapTool’s cross hair option which is
also controllable using the BitmapTool Control Dialog.

ui_BitmapCrossHair is only effective if sent to UI before BitmapTool has been started. It
was created to allow User Dialogs or User Tools to modify the default state of the BitmapTool
cross hair option. The default mode is FALSE (disabled).

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1). Setting the value to TRUE enables the
cross hairs when BitmapTool is started. FALSE disables the cross hairs.

Example
The following example will enable the cross hairs when BitmapTool is next invoked:
 2/27/09 Pg-2306

Advanced Topics User Variables
remote_set("ui_BitmapCrossHair", TRUE, -1) // remote_set()

The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapCrossHair", -1);
output(" State => %s", val);

7.1.11.8 ui_BitmapDialogDecMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDialogDecMode.

Description
This UI user variable is used to set the initial state of BitmapTool’s hex/decimal coordinate
display mode control, which is also controllable using the BitmapTool Control Dialog::

ui_BitmapDialogDecMode is only effective if sent to UI before BitmapTool has been
started. It was created to allow User Dialogs or User Tools to modify the default state of the
BitmapTool hex/decimal mode attribute. The default mode is hexadecimal.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1). Setting the value to TRUE sets the initial

Hex/Decimal
Mode Control
in Decimal mode
 2/27/09 Pg-2307

Advanced Topics User Variables
state of BitmapTool’s Hex/Decimal coordinate display mode control to decimal. FALSE sets
the initial state to hex.

Example
The following example will cause the Hex/Decimal mode to be decimal when BitmapTool is
next invoked:

remote_set("ui_BitmapDialogDecMode", TRUE, -1) // remote_set()

The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapDialogDecMode", -1);

output(" State => %s", val);

7.1.11.9 ui_BitmapDisplay
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDisplay.

Description
This UI user variable is used to invoke BitmapTool or, if already running, to update the
display by re-reading the ECR. This has the same effect as clicking the Bitmap button in the
BitmapTool control panel:

Bitmap Button
 2/27/09 Pg-2308

Advanced Topics User Variables
This UI user variable was created to allow User Dialogs or User Tools to invoke BitmapTool
or update its display.

Usage
Intended usage is via remote_set() from within user-written C-code. The variable is only
valid when sent to UI (site = -1). The value set to this variable specifies which site is to have
BitmapTool invoked/updated. Using a single site system (PT) this value will be 1.

Example
The following command will cause BitmapTool to be invoked, or updated, using data from
the ECR in site-1:

remote_set("ui_BitmapDisplay", 1, -1); // remote_set(), -1 = UI

7.1.11.10 ui_BitmapDisplayMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDisplayMode.

Description
This UI user variable is used to set the default state of BitmapTool’s display mode.

To simplify future enhancements ui_BitmapDisplayMode is a CSTRING_VARIABLE. The
legal values are (case insensitive):

"entire"

"entire-xl"

"visible"

See BitmapTool Display Mode.

ui_BitmapDisplayMode is only effective if sent to UI before BitmapTool has been started.
It was created to allow User Dialogs or User Tools to modify the default state of the
BitmapTool update mode. The default mode is "entire".

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).
 2/27/09 Pg-2309

Advanced Topics User Variables
Example
The following example will set the default update mode when BitmapTool is next invoked:

remote_set("ui_BitmapDisplayMode", "visible", -1)

The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapDisplayMode", -1);
output(" State => %s", val);

7.1.11.11 ui_BitmapDisplaySeparateZoomWindow
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDisplaySeparateZoomWindow.

Description
This UI user variable is used to set the default state of BitmapTool’s seperate zoom display
option. See BitmapTool Separate Window Option

Setting the value to TRUE causes BItmapTool to use separate displays. Setting the value to
FALSE causes BItmapTool to use the original joined displays.

ui_BitmapDisplaySeparateZoomWindow is only effective if sent to UI before
BitmapTool has been started. It was created to allow User Dialogs or User Tools to modify
the default state of the BitmapTool seperate zoom display option. The default mode is
FALSE.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will cause separate displays when BitmapTool is next invoked:

remote_set("ui_BitmapDisplaySeparateZoomWindow",
TRUE,
-1,
TRUE,
INFINITE);
 2/27/09 Pg-2310

Advanced Topics User Variables
The following example retrieves and outputs the current state of this variable:

BOOL val = remote_get("ui_BitmapDisplaySeparateZoomWindow", -1);
output(" State => %s", val ? "TRUE" : "FALSE");

7.1.11.12 ui_BitmapDisplayTotalCount
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDisplayTotalCount.

Description
This UI user variable is used to set the default state of BitmapTool’s display total fail count
option. See Fail Count Enable Controls. Note that displaying total fail count can impact
BitmapTool update performance.

Setting the value to TRUE causes BitmapTool to collect and display the total fail count value
in the full view window border. Setting the value to FALSE disables BitmapTool from
collecting and displaying the total fail count value.

ui_BitmapDisplayTotalCount is only effective if sent to UI before BitmapTool has been
started. It was created to allow User Dialogs or User Tools to set the default state of the
BitmapTool display total fail count mode. The default mode is TRUE.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will retrieve and display total fail count when BitmapTool is next
invoked:

remote_set("ui_BitmapDisplayTotalCount",
TRUE,
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:
 2/27/09 Pg-2311

Advanced Topics User Variables
BOOL val = remote_get("ui_BitmapDisplayTotalCount", -1);
output(" State => %s", val ? "TRUE" : "FALSE");

7.1.11.13 ui_BitmapDisplayVisibleCount
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapDisplayVisibleCount.

Description
This UI user variable is used to set the default state of BitmapTool’s display visible fail count
option. See Fail Count Enable Controls.

Setting the value to TRUE causes BItmapTool to collect and display the visible fail count
value in the zoom view window border. Setting the value to FALSE disables BItmapTool from
collecting and displaying the visible fail count value.

ui_BitmapDisplayVisibleCount is only effective if sent to UI before BitmapTool has
been started. It was created to allow User Dialogs or User Tools to set the default state of
the BitmapTool display visible fail count mode. The default mode is TRUE.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will retrieve and display visible fail count when cause BitmapTool is
next invoked:

remote_set("ui_BitmapDisplayVisibleCount",
TRUE,
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:

BOOL val = remote_get("ui_BitmapDisplayVisibleCount", -1);
output(" State => %s", val ? "TRUE" : "FALSE");
 2/27/09 Pg-2312

Advanced Topics User Variables
7.1.11.14 ui_BitmapdutNo
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapdutNo.

Description
This UI user variable can be used in user-written C-code to modify the DUT# normally
controlled interactively using the BitmapTool control panel.

In the BitmapTool control panel this value is one’s based i.e. the first DUT is 1. However, the
system software treats this as zero based, thus the values used with ui_BitmapdutNo
must be zero based i.e. the first DUT is 0.

This UI user variable is only effective if sent to UI before BitmapTool has been started. It was
created to allow User Dialogs or User Tools to set the default state of DUT#. The default
mode is DUT# 1.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will set the value of DUT# to 2:

DUT# Selection
 2/27/09 Pg-2313

Advanced Topics User Variables
int dut = 2;
remote_set("ui_BitmapdutNo", (dut - 1), -1);

The following example read back and output the current value of DUT#:

CString val = remote_get("ui_BitmapdutNo", -1);
output(" Get ui_BitmapdutNo => %d", (val + 1));

7.1.11.15 ui_BitmapFailColor, ui_BitmapPassColor
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapFailColor, ui_BitmapPassColor.

Description

ui_BitmapFailColor and ui_BitmapPassColor allow User Dialogs or User Tools to
set the colors used to display Pass/Fail in BitmapTool. By default, the Pass color is black
and the Fail color is red.

ui_BitmapFailColor and ui_BitmapPassColor are only effective if sent to UI before
BitmapTool has been started

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will set the pass and fail color when BitmapTool is next invoked:

remote_set("ui_BitmapFailColor",
 RGB(0, 0, 255),
-1,
TRUE,
INFINITE);

remote_set("ui_BitmapPassColor",
 RGB(0, 255, 0),
-1,
TRUE,
INFINITE);
 2/27/09 Pg-2314

Advanced Topics User Variables
The following example retrieves and outputs the current state of this variable:

int c = atoi (remote_get("ui_BitmapPassColor", -1));
BYTE v = GetRValue(c); output(" Red => %d", v);

v = GetGValue(c); output(" Green => %d", v);
v = GetBValue(c); output(" Blue => %d", v);

7.1.11.16 ui_BitmapMainSize
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapMainSize.

Description
This UI user variable is used to set the size of BitmapTool’s full view window. This control
only works when the full view window is displayed separate from the zoom window. See
BitmapTool Separate Window Option.

A single __int64 value is used to specify both the X and Y size of the window, in pixels.
The low 32 bits specify the X size, the high 32 bits specify the Y size.

ui_BitmapMainSize is only effective if sent to UI before BitmapTool has been started. It
was created to allow User Dialogs or User Tools to set the default size of the BitmapTool full
view window.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will set the size of the full view window to 256 by 256 pixels when
BitmapTool is next invoked:

CSize size;
size.cx = 256;
size.cy = 256;
__int64 main_window_size = __int64(size.cy) << 32;
main_window_size |= size.cx;
remote_set("ui_BitmapMainSize",

main_window_size,
 2/27/09 Pg-2315

Advanced Topics User Variables
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:

__int64 val = remote_get("ui_BitmapMainSize", -1);
output(" Y size => %d", int (val >> 32));
output(" X size => %d", int (val & 0xFFFF));

7.1.11.17 ui_BitmapMaxErrors
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapMaxErrors.

Description
Displaying a large number of failures for a large memory device can be quite slow. This UI
user variable is used to limit the number of failures displayed.

The effect is approximate, based on ui_BitmapRowsChunk. BitmapTool will stop displaying
errors when the maximum error count is reached, but errors are read from the ECR in
chunks.

Usage
Intended usage is via remote_set() from within user-written C-code. The variable is only
valid when sent to UI (site = -1). The value set to this variable specifies the maximum
number of failures to be displayed, and should be > 0.

Example
The following example sets the maximum number of failures to 1024. As noted above, the
effect will be approximate.

remote_set("ui_BitmapMaxErrors", 1024, -1);

The following example will read back and output the current value of
ui_BitmapMaxErrors:

CString val = remote_get("ui_BitmapMaxErrors", -1);

output(" Get ui_BitmapMaxErrors => %s", val);
 2/27/09 Pg-2316

Advanced Topics User Variables
7.1.11.18 ui_BitmapMoveTo
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapMoveTo.

Description
This UI user variable allows user-written C-code to move the zoom box to a specified
row/column/data position within the left portion of the BitmapTool display.

The zoom box is the dotted-line box that represents what portion of the entire DUT (left
window) is displayed in the zoom window (right window). Zooming-in or -out causes the size
of the box to change. The zoom box is moved interactively using the left mouse to drag the
box to the desired location. It can also be moved using the Zoom Window Controls invoked
using the right mouse button in the zoom window.

When moving the zoom box using C-code, the specified row/column/data coordinates
specify the new position of the upper left corner of the zoom box. The final location does

Zoom
Box

Zoom
Window
Controls

Full DUT
Display
Window

Zoom
Window
 2/27/09 Pg-2317

Advanced Topics User Variables
consider the currently selected Bitmap Scramble Selection. However, movement stops
when the right edge of the box reaches the right edge of the window, and/or the bottom edge
of the box reaches the bottom of the window.

Using the ui_BitmapMoveTo variable presents a complexity which is addressed using the
BITMAP_MOVETO() macro. To use the ui_BitmapMoveTo variable requires packing the
row/column/data coordinate values into a single __int64 value. Example 1: shows one
method for doing this. The packed fields are:

To simplify things, use the BITMAP_MOVETO() macro (Example 2:) which allows row,
column, and data values to be specified as separate integer arguments.

Usage
Intended usage of ui_BitmapMoveTo is via remote_set() from within user-written
C-code. The variable is only valid when sent to UI (site = -1).

The BITMAP_MOVETO() Test System Macro can be called as desired, from Host, Site, or
Tool code. It takes three arguments:

BITMAP_MOVETO(int row, int col, int data)

Example

Example 1:
This example demonstrates the explicit use of ui_BitmapMoveTo, with the row/column/
data coordinates correctly packed into the single value passed to remote_set().

__int64 row = 10, col = 20, data = 0x0;

remote_set("ui_BitmapMoveTo",(data<<48|col<<24|row<<0), -1);

Example 2:
This example demonstrates the use of BITMAP_MOVETO() macro, with separate row,
column, and data coordinate values.

int row = 10, col = 20, data = 0x0;

BITMAP_MOVETO(row, col, data)

Column
47................24

Row
23................0

Data
64................48__int64
 2/27/09 Pg-2318

Advanced Topics User Variables
7.1.11.19 ui_BitmapPageHScroll, ui_BitmapPageVScroll,
ui_BitmapLineHScroll, ui_BitmapLineVScroll

All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapPageHScroll, ui_BitmapPageVScroll, ui_BitmapLineHScroll,
ui_BitmapLineVScroll.

Description
These UI user variables are used to set the initial values for BitmapTool’s scrolling
resolution. These are also controllable using the BitmapTool Control Dialog.

These UI user variables are only effective if sent to UI before BitmapTool has been started.
They were created to allow User Dialogs or User Tools to set the initial values for
BitmapTool’s scrolling resolution. The default values are:

ui_BitmapPageHScroll 64

ui_BitmapPageVScroll 64

ui_BitmapLineHScroll 4

ui_BitmapLineVScroll 4

ui_BitmapPageHScroll and ui_BitmapPageVScroll are used to specify the amount
the zoom window will scroll when the left mouse is clicked in the page area (see BitmapTool
Display) of a scroll bar. The value is in databits, which are displayed using a different
number of pixels depending on the current zoom factor.

ui_BitmapLineHScroll and ui_BitmapLineVScroll are used to specify the amount
the zoom window will scroll when the left mouse is clicked on either line scroll target (see
BitmapTool Display) of a scroll bar. The value is in databits, which are displayed using a
different number of pixels depending on the current zoom factor.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
These variables are only valid when sent to UI (site = -1). It is recommended that the user
experiment changing these values using the BitmapTool Control Dialog before setting
values in software. Legal values are positive integers.
 2/27/09 Pg-2319

Advanced Topics User Variables
Example
The following example will set both the horizontal and vertical page scroll resolution to 100
databits when BitmapTool is next invoked:

remote_set("ui_BitmapPageHScroll", 100, -1)
remote_set("ui_BitmapPageVScroll", 100, -1)

The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapPageHScroll", -1);
output(" State => %s", val);

7.1.11.20 ui_BitmapPan
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapPan.

Description
This UI user variable is used to set the initial state of BitmapTool’s zoom/pan box, which is
also controllable using the BitmapTool Control Dialog.

ui_BitmapPan is only effective if sent to UI before BitmapTool has been started. It was
created to allow User Dialogs or User Tools to modify the default mode of the zoom/pan box.
The default mode is FALSE (zoom).

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1). Setting the value to TRUE sets the
zoom/pan box to pan mode when BitmapTool is started. FALSE sets the mode to zoom.

Example
The following example will set the mode to pan when BitmapTool is next invoked:

remote_set("ui_BitmapPan", TRUE, -1)

The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapPan", -1);
output(" State => %s", val);
 2/27/09 Pg-2320

Advanced Topics User Variables
7.1.11.21 ui_BitmapRowsChunk
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapRowsChunk.

Description
To update its display BitmapTool reads failure information from the ECR. For performance
reasons, failure information is read in chunks consisting of all failing columns in a specific
number of rows. In general, the larger the chunk the faster BitmapTool update will occur. The
default is 512 rows (to improve the display update performance of BitmapTool the default
was changed to 1024 in software release h1.0.25 and h2.0.10).

When ui_BitmapMaxErrors is used to limit the number of failures displayed in
BitmapTool the system software can only halt when a new chunk is about to be read. The
ui_BitmapRowsChunk user variable can be used to set the maximum number of rows
read in a single chunk.

However, there is a tradeoff. Making ui_BitmapRowsChunk smaller reduces the overall
update performance of BitmapTool but improves the granularity with which updating will halt
when ui_BitmapMaxErrors is reached. Making ui_BitmapRowsChunk larger improves
the overall update performance of BitmapTool but reduces the granularity with which
updating will halt when ui_BitmapMaxErrors is reached.

This UI user variable can be used from a Windows command line, from within a batch file
(see ui_BatchFile), or from user-written C-code.

Usage
From command line:

Long form: /U:ui_BitmapRowsChunk=<value>

Short form: /BRC=<value>

From within a batch file:

ui_BitmapRowsChunk=<value>

where <value> specifies the maximum number of rows to be read in a chunk.

From C-code, usage is via remote_set() and remote_get(). The variable is only valid
when sent to UI (site = -1).
 2/27/09 Pg-2321

Advanced Topics User Variables
Example
These two examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_BitmapRowsChunk=64

C:\> ui /BRC=64

The following example sets the maximum number of failing rows read from the ECR in one
chunk to 64.

remote_set("ui_BitmapRowsChunk", 64, -1);

This example reads back and outputs the current chunk size:

CString val = remote_get("ui_BitmapRowsChunk", -1);

output(" Get ui_BitmapRowsChunk=> %s", val);

7.1.11.22 ui_BitmapRulers
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapRulers.

Description
This UI user variable is used to set the initial state of BitmapTool’s rulers (see Example
BitmapTool Display with Overlays) i.e. whether rulers are displayed or not. Rulers are also
controllable using the BitmapTool Control Dialog.

ui_BitmapRulers is only effective if sent to UI before BitmapTool has been started. It was
created to allow User Dialogs or User Tools to modify the default state of rulers. The default
mode is FALSE (not displayed).

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1). Setting the value to TRUE causes rulers
to be displayed when BitmapTool is started. FALSE hides the rulers.

Example
The following example cause rulers to be displayed when BitmapTool is next invoked:

remote_set("ui_BitmapRulers", TRUE, -1)
 2/27/09 Pg-2322

Advanced Topics User Variables
The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapRulers", -1);
output(" State => %s", val);

7.1.11.23 ui_BitmapTotalFailBitCount
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapTotalFailBitCount.

Description
This Callback UI User Variable allows user-written code to determine the total fail bit count
value displayed, instead of scanning the ECR for that value:

This is the value displayed in the bottom edge of the main BitmapTool display. The Visible
fail value does not change using ui_BitmapTotalFailBitCount.

If defined, ui_BitmapTotalFailBitCount’s body code is invoked by UI under the
following conditions:

• The ECR scan routine used to obtain the total fail bit count value is about to be
executed.
And...

• BitmapTool's Total Count is option selected.
And...

• The selected Bitmap Mode is either Entire-XL or Visible.
If these conditions are met, the normal ECR scan routine used to obtain the total failed bit
count value is skipped, and the body code of ui_CurrentBitmapScheme is executed
instead. This has the following effects:

• The execution time normally consumed to scan the ECR for total fail bit count is
eliminated.

Total Fail Bit Count Value
 2/27/09 Pg-2323

Advanced Topics User Variables
• The total failed bit count value displayed in BitmapTool is the value assigned to
ui_BitmapTotalFailBitCount.

• Only the window which matches the currently selected ECR/DUT/Bitmap Scheme
is updated.

BitmapTool has controls allowing the user to select the following options:

• Which DUT is being displayed (see ui_BitmapdutNo)
• Which Bitmap Scheme is in effect (see ui_CurrentBitmapScheme)
• Which Site is being displayed

When using ui_BitmapTotalFailBitCount, user code is totally responsible for
comprehending these settings and correctly determine the total fail bit count value.

Usage
INT64_VARIABLE(ui_BitmapTotalFailBitCount, 0, ""){ [body] }

where:

ui_BitmapTotalFailBitCount is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_BitmapTotalFailBitCount used to
change the value of ui_BitmapTotalFailBitCount.

Example
The following example executes a user-written function named my_count_func() to
obtain the total fail bit count value to be displayed in place of the original value:

INT64_VARIABLE(ui_BitmapTotalFailBitCount, 0, "") {
output("Original count => %I64d", ui_BitmapTotalFailBitCount);
__int64 count = my_count_func();
output("New count => %I64d", count);
ui_BitmapTotalFailBitCount = count; // Display new count

}

7.1.11.24 ui_BitmapTotalVisibleFailBitString
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapTotalVisibleFailBitString.
 2/27/09 Pg-2324

Advanced Topics User Variables
Description
This Callback UI User Variable allows user-written code to determine the complete string
displayed for BitmapTool's total/visible fail bit count values:

If defined, this Callback UI User Variable is invoked by UI under the following conditions:

• BitmapTool's display is not split i.e. the full view and zoom view windows are not
separate (see ui_BitmapDisplaySeparateZoomWindow)

• BitmapTool is about to update the total/visible fail bit count value (more below).
When ui_BitmapTotalVisibleFailBitString is executed, its value is the string
which would be displayed if the call-back was not defined. This string includes the actual
value for both total fails and visible fails. See above.

User code determines the string to display by assigning a new value to
ui_BitmapTotalVisibleFailBitString; the last value assigned in the body code will
be displayed in BitmapTool when the call-back exits.

As noted, this call-back will execute when BitmapTool is about to update the total fail bit
count value. This will occur when the user clicks the Bitmap button, changes the size of the
Zoom/Pan box, scrolls the zoom window, changes the Hex/Dec mode, etc.

Only the window which matches the currently selected ECR/DUT/Bitmap Scheme is
updated.

Usage
CSTRING_VARIABLE(ui_BitmapTotalVisibleFailBitString, 0, ""){[body]}

where:

ui_BitmapTotalVisibleFailBitString is a Callback UI User Variable .

body is the C-code the user adds to the body of
ui_BitmapTotalVisibleFailBitString used to change the string displayed in
BitmapTool.

Total/Visible Fail Bit Count String
 2/27/09 Pg-2325

Advanced Topics User Variables
Example
The following example changes the string to use all upper case letters:

CSTRING_VARIABLE(ui_BitmapTotalVisibleFailBitString, "", "") {
ui_BitmapTotalVisibleFailBitString.MakeUpper();

}

7.1.11.25 ui_BitmapTotalFailBitString
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapTotalFailBitString.

Description
This Callback UI User Variable allows user-written code to determine the complete string
displayed for BitmapTool's total fail bit count values:

If defined, this Callback UI User Variable is invoked by UI under the following conditions:

• BitmapTool's display IS split i.e. the full view and zoom view windows are separate
(see ui_BitmapDisplaySeparateZoomWindow)

• BitmapTool is about to update the total fail bit count value (more below).
When ui_BitmapTotalFailBitString is executed, its value is the string which would
be displayed if the call-back was not defined. This string includes the actual total fails value.
See above.

User code determines the string to display by assigning a new value to
ui_BitmapTotalFailBitString; the last value assigned in the body code will be
displayed in BitmapTool when the call-back exits.

Total Fail Bit Count String
This is the string displayed in Bitmap’s Full View window
 2/27/09 Pg-2326

Advanced Topics User Variables
As noted, this call-back will execute when BitmapTool is about to update the total fail bit
count value, but only if the full and visible displays are separate. This will occur when the
user clicks the Bitmap button, changes the Hex/Dec mode, etc.

Only the window which matches the currently selected ECR/DUT/Bitmap Scheme is
updated.

Usage
CSTRING_VARIABLE(ui_BitmapTotalFailBitString, 0, ""){[body]}

where:

ui_BitmapTotalFailBitString is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_BitmapTotalFailBitString used
to change the string displayed in BitmapTool.

Example
The following example changes the string to use all upper case letters:

CSTRING_VARIABLE(ui_BitmapTotalFailBitString, "", "") {
ui_BitmapTotalFailBitString.MakeUpper();

}

7.1.11.26 ui_BitmapVisibleFailBitString
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapVisibleFailBitString.

Description
This Callback UI User Variable allows user-written code to determine the complete string
displayed for BitmapTool's visible fail bit count values:

Visible Fail Bit Count String
This is the string displayed in Bitmap’s Zoom View window
 2/27/09 Pg-2327

Advanced Topics User Variables
If defined, this Callback UI User Variable is invoked by UI under the following conditions:

• BitmapTool's display IS split i.e. the full view and zoom view windows are separate
(see ui_BitmapDisplaySeparateZoomWindow)

• BitmapTool is about to update the visible fail bit count value (more below).
When ui_BitmapVisibleFailBitString is executed, its value is the string which
would be displayed if the call-back was not defined. This string includes the actual visible
fails value. See above.

User code determines the string to display by assigning a new value to
ui_BitmapVisibleFailBitString; the last value assigned in the body code will be
displayed in BitmapTool when the call-back exits.

As noted, this call-back will execute when BitmapTool is about to update the visible fail bit
count value, but only if the full and visible displays are separate. This will occur when the
user clicks the Bitmap button, changes the size of the Zoom/Pan box, scrolls the zoom
window, changes the Hex/Dec mode, etc.

Only the window which matches the currently selected ECR/DUT/Bitmap Scheme is
updated.

Usage
CSTRING_VARIABLE(ui_BitmapVisibleFailBitString, 0, ""){[body]}

where:

ui_BitmapVisibleFailBitString is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_BitmapVisibleFailBitString
used to change the string displayed in BitmapTool.

Example
The following example changes the string to use all upper case letters:

CSTRING_VARIABLE(ui_BitmapVisibleFailBitString, "", "") {
ui_BitmapVisibleFailBitString.MakeUpper();

}

 2/27/09 Pg-2328

Advanced Topics User Variables
7.1.11.27 ui_BitmapVisibleSize
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapVisibleSize.

Description
This UI user variable is used to set the size of BitmapTool’s zoom view window.

When it is displayed separate from the full view windo (see BitmapTool Separate Window
Option) this has no effect on the full view window. When the two windows are connected,
setting the vertical size of the zoom window can affect the full view window.

A single __int64 value is used to specify both the X and Y size of the window, in bits (not
pixels). The low 32 bits specify the X size, the high 32 bits specify the Y size.

The set_bitmap_visible_size() function does the same thing.

Both methods were created to allow User Dialogs or User Tools to set the default size of the
BitmapTool full view window.

Using set_bitmap_visible_size(), separate arguments are provided for X vs. Y size.
See Usage.

Using either method, size is specified in databits.

Either method is only effective if invoked before BitmapTool has been started.

Usage
The intended usage of ui_BitmapVisibleSize is using remote_set() and
remote_get() from within user-written C-code. The variable is only valid when sent to UI
(site = -1).

void set_bitmap_visible_size(int width, int height);

where:

width and height set the corresponding sizes of the BitmapTool zoom window.

Example
The following example will set the size of the zoom view window to 400 by 200 pixels when
BitmapTool is next invoked:
 2/27/09 Pg-2329

Advanced Topics User Variables
CSize size;
size.cx = 400;
size.cy = 200;
__int64 zoom_window_size = __int64(size.cy) << 32;
zoom_window_size |= size.cx;
remote_set("ui_BitmapVisibleSize",

zoom_window_size,
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:

__int64 val = remote_get("ui_BitmapVisibleSize", -1);
output(" Y size => %d", int (val >> 32));
output(" X size => %d", int (val & 0xFFFF));

7.1.11.28 ui_BitmapZoom2
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BitmapZoom2.

Description
This UI user variable is used to set the initial state of BitmapTool’s power of 2 zoom mode,
which is also controllable using the BitmapTool Control Dialog.

ui_BitmapZoom2 is only effective if sent to UI before BitmapTool has been started. It was
created to allow User Dialogs or User Tools to modify the default state of the power of 2
zoom mode. The default mode is FALSE (disabled).

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1). Setting the value to TRUE enables
power of 2 zoom mode when BitmapTool is started. FALSE disables power of 2 zoom mode.

Example
The following example enables power of 2 zoom mode when BitmapTool is next invoked:

remote_set("ui_BitmapZoom2", TRUE, -1)
 2/27/09 Pg-2330

Advanced Topics User Variables
The following example retrieves and outputs the current default state:

CString val = remote_get("ui_BitmapZoom2", -1);
output(" State => %s", val);

7.1.11.29 ui_BreakPointFile
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BreakPointFile.

Description
This UI user variable is used to specify a Breakpoint Definition File to be loaded as a test
program is loaded.

ui_BreakPointFile can be used from a Windows command line, and from within a batch
file (see ui_BatchFile).

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
CSTRING_VARIABLE(ui_BreakPointFile, "", "")

From command line:

Long form: /U:ui_BreakPointFile=<value>

Short form: /BRK=<value>

From within a batch file:

ui_BreakPointFile=<value>

where <value> is the name of a Breakpoint Definition File. If a full path/file name is not
specified the current PATH is searched.

From C-code, usage is via remote_set() and remote_get(). The variable is only valid
when sent to UI (site = -1).

Example
These two examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_BreakPointFile=c:\breakfile.txt
 2/27/09 Pg-2331

Advanced Topics User Variables
C:\> ui /BRK=c:\breakfile.txt

This example sets the mode from user-written C-code:

remote_set("ui_BreakPointFile", "c:\breakfile.txt", -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_BreakPointFile", -1);

output(" Get ui_BreakPointFile => %s", val);

7.1.11.30 ui_BreakPointRemoveAll
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_BreakPointRemoveAll.

Note: first available in software release h2.2.7/h1.2.7.

Description
This UI user variable is used to clear all breakpoints currently set via the Breakpoint Monitor.
This has the same effect as clicking the Remove All button in the Breakpoint Monitor.

ui_BreakPointRemoveAll can only be used from within user-written C-code. See Usage
below.

Usage
From C-code, intended usage is via remote_set() only. The variable is only valid when
sent to UI (site = -1). The value assigned to this user variable is not used.

Example
remote_set("ui_BreakPointRemoveAll", 0, -1);

7.1.11.31 ui_ClearAtProgramLoad
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ClearAtProgramLoad.
 2/27/09 Pg-2332

Advanced Topics User Variables
Description
This UI user variable is used to set a mode which causes the UI Site output window(s) to be
cleared when a [new] test program is loaded. The default is TRUE.

ui_ClearAtProgramLoad can be used from a Windows command line, from within a
batch file (see ui_BatchFile), or from within user-written C-code. See Usage below.

The value IS persistent after UI is terminated (via the UI.ini file).

Note: this variable has limited value to most users. It is targeted at applications where
a command line or batch file starts UI and automatically loads and executes
multiple test programs where the output windows must not be cleared between
programs.

Usage
From command line:

Long form: /U:ui_ClearAtProgramLoad=<value>

Short form: /CP=<value>

Short form: /CP

The latter short form assumes value = 1.

From within a batch file:

ui_ClearAtProgramLoad=<value>

where <value> is 0 (FALSE) or 1 (TRUE).

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). Legal values assigned to this user variable must be 0
(FALSE) or 1 (TRUE).

Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_ClearAtProgramLoad=1

C:\> ui /CP=1

C:\> ui /CP

This example sets the mode from user-written C-code:
 2/27/09 Pg-2333

Advanced Topics User Variables
remote_set("ui_ClearAtProgramLoad", 0, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_ClearAtProgramLoad", -1);

output(" Get ui_ClearAtProgramLoad => %s", val);

7.1.11.32 ui_ClearAtTestStart
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ClearAtTestStart.

Description
This UI user variable is used to set a mode which causes the UI Site output window(s) to be
cleared each time the start test signal is invoked i.e. each time the Sequence & Binning
Table is executed.

ui_ClearAtTestStart can be used from a Windows command line, from within a batch
file (see ui_BatchFile), or from within user-written C-code. See Usage below.

The value IS persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_ClearAtTestStart=<value>

Short form: /CS=<value>

Short form: /CS

The latter short form assumes value = 1.

From batch file:

ui_ClearAtTestStart=<value>

where <value> is 0 (FALSE) or 1 (TRUE). The default is FALSE.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). Legal values assigned to this user variable must be 0
(FALSE) or 1 (TRUE).
 2/27/09 Pg-2334

Advanced Topics User Variables
Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_ClearAtTestStart=1

C:\> ui /CS=1

C:\> ui /CS

This example sets the mode from user-written C-code:

remote_set("ui_ClearAtTestStart", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_ClearAtTestStart", -1);

output(" Get ui_ClearAtTestStart => %s", val);

7.1.11.33 ui_Close
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_Close.

Description
This UI user variable is used to close a test program from user-written C-code, as if selecting
the File Close option in the UI File Menu. This does not terminate UI.

Usage
Intended usage is via remote_set() from within user-written C-code. The variable is only
valid when sent to UI (site = -1). The value assigned to the variable is ignored. See example:

Example
This example will immediately close (terminate) the test program.

remote_set("ui_Close", -999, -1); // Value (-999) is ignored
 2/27/09 Pg-2335

Advanced Topics User Variables
7.1.11.34 ui_CloseAfterRun
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_CloseAfterRun.

Description
This UI user variable is used to set a mode which causes a test program to be closed after
executing the Sequence & Binning Table ui_RunTestProgram times (default = 1). The
program is closed as if the File Close option was selected in the UI File Menu. This does
not terminate UI.

This UI user variable can be used from a Windows command line, from within a batch file
(see ui_BatchFile), or from within user-written C-code. See Usage below.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Note: this variable has limited value to most users. It is targeted at applications where
a command line or batch file starts UI, automatically loads and executes
multiple test programs, and each program must close after one execution of its
Sequence & Binning Table.

Usage
From command line:

Long form: /U:ui_CloseAfterRun=<value>

Short form: /CR=<value>

Short form: /CR

The latter short form assumes value = 1.

From batch file:

ui_CloseAfterRun=<value>

where <value> is 0 (FALSE) or 1 (TRUE). The default is FALSE.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). Legal values assigned to this user variable must be 0
(FALSE) or 1 (TRUE).
 2/27/09 Pg-2336

Advanced Topics User Variables
Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_CloseAfterRun=1

C:\> ui /CR=1

C:\> ui /CR

This example sets the mode from user-written C-code:

remote_set("ui_CloseAfterRun", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_CloseAfterRun", -1);

output(" Get ui_CloseAfterRun => %s", val);

7.1.11.35 ui_Controller
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_Controller.

Description
This UI user variable is used when starting UI from a Windows command line or a batch file,
to specify which site(s) will be enabled for use. Several usage options are possible as noted
below.

Note: this variable has limited value to most users. It is targeted at applications where
a command line or batch file starts UI, selects which of the target test system’s
site controller(s) will load the test program and loads a test program.

Note the following:

• In the original implementation, values are assigned to ui_Controller to specify
the IP address of the site(s) which are to be used. See Usage. Beginning in
software release h1.1.23 additional options are available, more below.
 2/27/09 Pg-2337

Advanced Topics User Variables
Note: prior to software release h1.1.23, the enabled site(s) were persistent after UI
was terminated, via the UI.ini file. This was true regardless of the method used
to select the enabled sites: UI, using ui_Controller, or both.
Beginning in software release h1.1.23, the enabled site(s) are persistent ONLY
when set using UI’s graphical interface. Conversely, when ui_Controller is
used to specify the enabled site(s) the persistent values read from the UI.ini file
are not considered.

• This UI user variable is only usable from a Windows command line, or from a
batch file (see ui_BatchFile).

• Values set using ui_Controller are displayed in UI’s Advanced splash screen.
Changes made in the splash screen will overwrite those set using
ui_Controller. Since, normally, ui_Controller is used to start UI and load a
test program without requiring the user to interact with the UI, it is recommended
that ui_NoLogo also be used. This allows the batch file or command line
sequence to start UI and immediately load the test program, bypassing the splash
screen.

Beginning in software release h1.1.23, ui_Controller can be used to specify which sites
are enabled using a syntax which specifies a chassis number plus a site number (slot
number, HSB number, etc.). The syntax is:

chassis_site

I.e.

ui_Controller = 1_1
ui_Controller = 1_2

Sites which are not explicitly enabled are not loaded. For example, the following batch file
loads a test program only on the first 2 sites (HSBs) of the first four chassis:

ui_NoLogo = 1
ui_Controller = clear
ui_Controller = 1_1
ui_Controller = 1_2
ui_Controller = 2_1
ui_Controller = 2_2
ui_Controller = 3_1
ui_Controller = 3_2
ui_Controller = 4_1
ui_Controller = 4_2
ui_Open = D:\myProg\Debug\myProgram.exe
 2/27/09 Pg-2338

Advanced Topics User Variables
This same results are obtained using the following command line (shown on multiple lines
for clarity):

ui /nologo /c=clear /c=1_1 /c=1_2 /c=2_1 /c=2_2 /c=3_1 /c=3_2
/c=4_1 /c=4_2 /TP="D:\myProg\Debug\myProgram.exe"

By default, the sites which load a test program are sequentially numbered. Thus, in the
examples above, from the test program's perspective (i.e. the value returned by
site_num()), sites 1 through 8 have loaded the test program. However, the physical site
numbering can be retained by explicitly skipping those sites which are not loading the test
program, using ui_Controller = skip, as follows:

ui_NoLogo = 1
ui_Controller = clear
ui_Controller = 1_1
ui_Controller = 1_2
ui_Controller = skip # Skip 1_3
ui_Controller = skip # Skip 1_4
ui_Controller = skip # Skip 1_5
ui_Controller = 2_1
ui_Controller = 2_2
ui_Controller = skip # Skip 2_3
ui_Controller = skip # Skip 2_4
ui_Controller = skip # Skip 2_5
ui_Controller = 3_1
ui_Controller = 3_2
ui_Controller = skip # Skip 3_3
ui_Controller = skip # Skip 3_4
ui_Controller = skip # Skip 3_5
ui_Controller = 4_1
ui_Controller = 4_2
ui_Open = D:\myProg\Debug\myProgram.exe

Or, from the command line (a shorter-hand syntax follows):

ui /nologo /c=clear /c=1_1 /c=1_2 /c=skip /c=skip /c=skip /c=2_1
/c=2_2 /c=skip /c=skip /c=skip /c=3_1 /c=3_2 /c=skip /c=skip
/c=skip /c=4_1 /c=4_2 /c=skip /c=skip /c=skip
/TP="D:\myProg\Debug\myProgram.exe"

In these examples, the test program is loaded on physical sites 1, 2, 6, 7, 11, 12, 16, and 17
and these will be the values returned by site_num() executing on these sites.
 2/27/09 Pg-2339

Advanced Topics User Variables
It is even possible (although not very useful) to control which site_num() a given
chassis/site will return. For example, the following command line enables chassis-1/site-1
and chassis-1/site-2 (out of order), but site_num() executing in chassis-1/site-1 will return
3 and site_num() executing in chassis-1/site-2 will return 1:

ui /c=1_2 /c=skip /c=1_1 /nologo

A shorter-hand version of the command line syntax allows multiple, comma-delimited,
values to be assigned to /c. For example, the following results in the same operation as the
longer version above. Note the quotations:

ui /nologo /c="clear, 1_1, 1_2, skip, skip, skip, 2_1, 2_2, skip,
skip, skip, 3_1, 3_2, skip, skip, skip, 4_1, 4_2, skip, skip, skip"
/TP="D:\myProg\Debug\myProgram.exe"

When multiple ui_Controller (batch file) or the /c (command line) options are specified,
i.e. a comma separated list of values, an automatic ui_Controller=clear is executed
prior to setting the first ui_Controller value. Thus, the following is even shorter:

ui /nologo /c="1_1, 1_2", skip, skip, skip, 2_1, 2_2, skip, skip,
skip, 3_1, 3_2, skip, skip, skip, 4_1, 4_2, skip, skip, skip /
TP="D:\myProg\Debug\myProgram.exe"

To inhibit the auto-clear operation use ui_Controller=keep, i.e.:

ui /nologo /c=keep /c="1_1, 1_2" /c=2_1 /TP="D:\myProg\Debug\myProgram.exe"

Usage
CSTRING_VARIABLE(ui_Controller, "", "")

From command line:

Long form: /U:ui_Controller=<value>

Short form: /C=<value>

From within a batch file:

ui_Controller=<value>

where <value> is one of:

• localhost

• An IP address i.e. 188.192.0.0
• clear

• skip

• keep
 2/27/09 Pg-2340

Advanced Topics User Variables
• Host name i.e. the computer name obtained by executing ipconfig /all in a
Windows shell.

Example
These two examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_Controller=clear /U:ui_Controller=188.192.0.0
C:\> ui /C=clear /C=188.192.0.0

Example batch file:

ui_Controller=clear
ui_Controller=localhost

7.1.11.36 ui_CurrentBitmapScheme
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_CurrentBitmapScheme.

Description
This Callback UI User Variable is invoked by UI any time a new Bitmap scheme is selected
in BitmapTool.

If ui_CurrentBitmapScheme is defined in the test program and/or User Tools its body
code will be executed any time a new Bitmap scheme is selected in BitmapTool.

Usage
CSTRING_VARIABLE(ui_CurrentBitmapScheme, "", "") { [body] }

where:

ui_CurrentBitmapScheme is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_CurrentBitmapScheme in their test
program or User Tools.

Examples
This example sets the size of the BitmapTool window when a new BitmapTool is selected. If
the main and zoom window are displayed separately this sizes the zoom window only:
 2/27/09 Pg-2341

Advanced Topics User Variables
CSTRING_VARIABLE(ui_CurrentBitmapScheme, "", "Bitmap scheme"){
CSize size;
size.cx = 256; // X size
size.cy = 256; // Y size
__int64 wsize = __int64(size.cy) << 32;
wsize |= size.cx;
remote_set("ui_BitmapVisibleSize", wsize, -1, TRUE, INFINITE);

}

7.1.11.37 ui_DbmDialogDecMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_DbmDialogDecMode.

Note: first available in software release h1.1.23.

Description
This UI user variable is used to set the Hex/Decimal display mode for DBMTool. This is the
control displayed in the upper-right corner of DBMTool. Note the following:

• Setting the value to TRUE causes DBMTool to display row/column header values
in decimal, FALSE in hexadecimal.

• This setting does not affect the values displayed in DBMTool’s main grid area, which
are always displayed in hexadecimal.

• ui_DbmDialogDecMode is only effective if sent to UI before DBMTool has been
started. It was created to allow User Dialogs or User Tools to set the default state
of the DBMTool display mode. The default mode is TRUE.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).

Example
The following example will set DBMTool’s row/column header display mode to hexadecimal
when DBMTool is next invoked:
 2/27/09 Pg-2342

Advanced Topics User Variables
remote_set("ui_DbmDialogDecMode",
FALSE,
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:

BOOL val = remote_get("ui_DbmDialogDecMode", -1);
output(" State => %s", val ? "TRUE" : "FALSE");

7.1.11.38 ui_DutBoardStatusCheckDisable
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_DutBoardStatusCheckDisable.

Note: first available in software release h1.1.23.

Description
This UI user variable is used to disable the DUT Board Status Check.

By default, the DUT board status check is performed when any test program is loaded on a
Magnum 1/2/2x Test System. Note the following:

• ui_DutBoardStatusCheckDisable is a BOOL_VARIABLE, which can be set to
TRUE or FALSE (default). There is no benefit in setting
ui_DutBoardStatusCheckDisable = FALSE.

• ui_DutBoardStatusCheckDisable is set using remote_set(), and must be
sent to UI (site = -1). See Usage.

• Proper operation requires that ui_DutBoardStatusCheckDisable be set from
a HOST_CONFIGURATION() block. See Usage.

• The current value of ui_DutBoardStatusCheckDisable may be retrieved from
UI using remote_get():

BOOL b = remote_get(ui_DutBoardStatusCheckDisable, -1);

• Once the program load process has exited the HOST_CONFIGURATION() block,
setting ui_DutBoardStatusCheckDisable has no effect.
 2/27/09 Pg-2343

Advanced Topics User Variables
• When a test program unloads, ui_DutBoardStatusCheckDisable is
set = FALSE. This ensures the next program loaded has independent control over
this option.

Usage
HOST_CONFIGURATION(HB1){ // See HOST_CONFIGURATION()

remote_set("ui_DutBoardStatusCheckDisable", TRUE, -1);
}

Example
See Usage.

7.1.11.39 ui_ECRDialogDecMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ECRDialogDecMode.

Note: first available in software release h1.1.23.

Description
This UI user variable is used to set the Hex/Decimal display mode for ECRTool. This is the
control displayed in the upper-right corner of ECRTool. Note the following:

• Setting the value to TRUE causes ECRTool to display row/column header values
in decimal, FALSE in hexadecimal.

• This setting does not affect the values displayed in ECRTool’s main grid area, which
are always displayed in hexadecimal.

• ui_ECRDialogDecMode is only effective if sent to UI before ECRTool has been
started. It was created to allow User Dialogs or User Tools to set the default state
of the ECRTool display mode. The default mode is TRUE.

Usage
Intended usage is via remote_set() and remote_get() from within user-written C-code.
The variable is only valid when sent to UI (site = -1).
 2/27/09 Pg-2344

Advanced Topics User Variables
Example
The following example will set ECRTool’s row/column header display mode to hexadecimal
when ECRTool is next invoked:

remote_set("ui_ECRDialogDecMode",
FALSE,
-1,
TRUE,
INFINITE);

The following example retrieves and outputs the current state of this variable:

BOOL val = remote_get("ui_ECRDialogDecMode", -1);
output(" State => %s", val ? "TRUE" : "FALSE");

7.1.11.40 ui_EngineeringMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_EngineeringMode.

Description
Engineering mode must be set (TRUE) to enable the graphical tools in UI.

This mode is normally set using the UI graphic interface (above) but can also be done using
ui_EngineeringMode.

Engineering
Mode
Control
 2/27/09 Pg-2345

Advanced Topics User Variables
This UI user variable can be used from a Windows command line, from within a batch file
(see ui_BatchFile), or from within user-written C-code. From C-code it is possible to
enable/disable engineering mode even though UI is running and/or a test program is loaded.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_EngineeringMode=<value>

Short form: /E=<value>

Short form: /E

The latter short form assumes value = 1 (TRUE).

From batch file:

ui_EngineeringMode=<value>

where <value> is 0 (FALSE) or 1 (TRUE). The default is FALSE.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). Legal values assigned to this user variable must be 0
(FALSE) or 1 (TRUE).

Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_EngineeringMode=1

C:\> ui /E=1

C:\> ui /E

This example sets the mode from user-written C-code:

remote_set("ui_EngineeringMode", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_EngineeringMode", -1);

output(" Get ui_EngineeringMode => %s", val);
 2/27/09 Pg-2346

Advanced Topics User Variables
7.1.11.41 ui_ExcelAppEvent
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ExcelAppEvent.

Description
This Callback UI User Variable is invoked by UI when it receives an event from Excel.

ui_ExcelAppEvent must be enabled using the EnableExcelAppEvents() function.
If ui_ExcelAppEvent enabled and defined in the test program and/or User Tools, its body
code will be executed by UI when it receives an event from Excel, which occurs when the
user clicks in an Excel spreadsheet.
When it is executed, the value of ui_ExcelAppEvent will be one of the following
ExcelAppEventsType values, indicating the nature of the event:

enum ExcelAppEventsType {
WindowResize,
WindowActivate,
WindowDeactivate,
SheetSelectionChange,
SheetBeforeDoubleClick,
SheetBeforeRightClick,
SheetActivate,
SheetDeactivate,
SheetCalculate,
SheetChange,
NewWorkbook,
WorkbookOpen,
WorkbookActivate,
WorkbookDeactivate,
WorkbookBeforeClose,
WorkbookBeforeSave,
WorkbookBeforePrint,
WorkbookNewSheet,
WorkbookAddinInstall,
WorkbookAddinUninstall

};
 2/27/09 Pg-2347

Advanced Topics User Variables
Usage
INT_VARIABLE(ui_ExcelAppEvent, 0, "") { [body code] }

where:
ui_ExcelAppEvent is a Callback UI User Variable.
body is the C-code the user adds to the body of ui_ExcelAppEvent in their test program
or User Tools.

Example
This example executes any time the user clicks in Excel. If the cursor is clicked in a
worksheet cell, the event type will be SheetSelectionChange, and the code below will
then read the coordinates of the cell:

INT_VARIABLE(ui_ExcelAppEvent, 0, "") {
if (ui_ExcelAppEvent == SheetSelectionChange) {

int row, col;
GetActiveCell(&row, &col);
output(" Row => %d : Col => %d", row, col);

}
}

7.1.11.42 ui_Exit
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_Exit.

Description
This UI user variable is used to terminate UI from user-written C-code, as if selecting the
File Exit option in the UI File Menu. This will also terminate any loaded test programs.

Usage
Intended usage is via remote_set() from within user-written C-code. The variable is only
valid when sent to UI (site = -1). The value assigned to the variable is ignored. See example:

Example
This example will immediately terminate UI and close any loaded test programs.
 2/27/09 Pg-2348

Advanced Topics User Variables
remote_set("ui_Exit", -999, -1); // Value (-999) is ignored

7.1.11.43 ui_ExitAfterRun
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ExitAfterRun.

Description
This UI user variable can be used to set a mode which causes UI to be terminated after
executing the Sequence & Binning Table of the currently loaded test program
ui_RunTestProgram times (default = 1).

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_ExitAfterRun=<value>

Short form: /ER=<value>

Short form: /ER

The latter short form assumes value = 1 (TRUE).

From batch file:

ui_ExitAfterRun=<value>

where <value> is 0 (FALSE) or 1 (TRUE). The default is FALSE.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). Legal values assigned to this user variable must be 0
(FALSE) or 1 (TRUE).

Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_ExitAfterRun=1

C:\> ui /ER=1

C:\> ui /ER
 2/27/09 Pg-2349

Advanced Topics User Variables
This example sets the mode from user-written C-code:

remote_set("ui_ExitAfterRun", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_ExitAfterRun", -1);

output(" Get ui_ExitAfterRun => %s", val);

7.1.11.44 ui_HideTool
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_HideTool.

Note: first available in software release h1.1.23.

This UI user variable can be used to hide most of UI’s Interactive Tools from user C-code. In
this context, hide means to cause the tool display to be hidden.

ui_HideTool is the complement of ui_ShowTool. Details for both are documented in
ui_ShowTool.

7.1.11.45 ui_HostDebug
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_HostDebug.
 2/27/09 Pg-2350

Advanced Topics User Variables
Description
Host Debug mode must be set (TRUE) to enable source code debugging using Developer
Studio

This mode is normally set using the UI graphic interface (above) but can also be done using
ui_HostDebug.

This UI user variable can be used from a Windows command line, or from within a batch file
(see ui_BatchFile).

It is possible to use ui_HostDebug from C-code but this has limited value because it has
no effect until the currently loaded test program is closed, and another test program is
loaded, and only during the existing invocation of UI.

The value is NOT persistent after UI is terminated (via the UI.ini file).

A similar UI user variable is available to enable site debug: see ui_SiteDebug.

Usage
From command line:

Long form: /U:ui_HostDebug=<value>

Short form: /HD=<value>

Short form: /HD

The latter short form assumes value = 1 (TRUE).

From batch file:

Host Debug
Mode
Control
 2/27/09 Pg-2351

Advanced Topics User Variables
ui_HostDebug=<value>

where <value> is 0 (FALSE) or 1 (TRUE). The default is FALSE.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1).

Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_HostDebug=1

C:\> ui /HD=1

C:\> ui /HD

This example sets the mode from user-written C-code:

remote_set("ui_HostDebug", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_HostDebug", -1);

output(" Get ui_HostDebug => %s", val);

7.1.11.46 ui_HostModeCommandLine
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_HostModeCommandLine.

Description
This UI user variable is used to specify command line arguments which will be executed in
the Host process.

This is targeted at setting the value of one or more user variables in the Host process, using
command line or batch file methods (see ui_BatchFile). Similar capabilities exist for the
Site using ui_SiteModeCommandLine.

A single string value is assigned to ui_HostModeCommandLine, within which the /h: and
/H: delimiters are used to:

• Delimit each user variable value pair
 2/27/09 Pg-2352

Advanced Topics User Variables
• Designate whether the specified user variable initialization is to occur before
(/h:) the CONFIGURATION() block executes (i.e. before any program initialization
has begun) or after (/H:) the INITIALIZATION_HOOK() executes (i.e. after all
program initialization has completed).

Prior to being initialized by ui_HostModeCommandLine the user variable value is
determined by the value set in the program source code.

Only one ui_HostModeCommandLine exists, the last one specified replaces any that were
previously defined.

The body code of the user variable(s) being initialized executes in the Host process. If
multiple values are assigned to a user variable, which can be done using separate instances
of /H: or /h:, the body code will execute once for each value. It is possible to set both /h:
and /H: for the same user variable giving it one value before program initialization and a
different value afterwards.

Normally, the command string only executes once, while loading the first test program after
UI starts. Any other test programs loaded during the same UI invocation will not be affected.
Using the Reload option the initialization will occur for each test program loaded using the
current UI invocation.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Two error types are reported, which occur during program loading:

• An invalid user variable name results in a warning message in the Host output
window. When this occurs, the test program continues to load/execute. In the
example warning message below the invalid user variable name is: Host_XCS2:
Warning: Attempt to set undefined user-variable "Host_XCS2" from site 0 ignored.
Warning: This message will not be repeated for user-variable "Host_XCS2".

• An invalid command string results in the following error popup (the program name
will be different). After the OK button is clicked the test program continues to load/
execute:
 2/27/09 Pg-2353

Advanced Topics User Variables
Usage
CSTRING_VARIABLE(ui_HostModeCommandLine, "", "")

From command line:

Long form: /U:ui_HostModeCommandLine="command string"

Short form: /HC="command string"

From batch file:

ui_HostModeCommandLine="command string"

where command string utilizes two delimiters to separate user variable value pairs:

• /h:

• /H:

Using lowercase /h: causes the specified user variable to be initialized before the
CONFIGURATION() block executes (i.e. before any program initialization has begun). Using
the uppercase /H: causes the specified user variable to be initialized after the
INITIALIZATION_HOOK() executes (i.e. after all program initialization has completed).

A timeout value can optionally be specified for a user variable by appending {time} to the
statement. The value -1 sets INFINITY. For example, to set the timeout value for the user
variable names uVAR1 to 1000mS:

C:\> ui /HC="/H:uVAR1=xxx{1000}

Example
These two examples perform identically when executed at a Windows command line. Two
user variables are initialized, one before program initialization starts (uVAR1) and one after
initialization had completed (uVAR2):

C:\> ui /U:ui_HostModeCommandLine="/H:uVAR1=xxx /h:uVAR2=yyy"

C:\> ui /HC="/H:uVAR1=xxx /h:uVAR2=yyy"

Given the following user variable definitions exist in the test program, the output noted below
will occur when either of the examples above is used:

CSTRING_VARIABLE(uVAR1, "?", "") {output("uVAR1 => %s", uVAR1);}

CSTRING_VARIABLE(uVAR2, "?", "") {output("uVAR2 => %s", uVAR2);}

Output messages in Host window:

uVAR2 => yyy
 2/27/09 Pg-2354

Advanced Topics User Variables
The test program is loaded

uVAR1 => xxx

7.1.11.47 ui_HostTimeOut
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_HostTimeOut.

Description
This UI user variable can be used to specify a Host timeout value.

Setting ui_HostTimeOut has the same effect as setting the value in UI:

ui_HostTimeOut can be used from a Windows command line, or from within a batch file
(see ui_BatchFile). While it is possible to use ui_HostTimeOut from user-written
C-code this has limited value. Setting a new value from C-code has no effect until the next
test program is loaded.

The value specified is in mS. The default value is 10000 (10 seconds). The value INFINITE
can be set using -1.

The value IS persistent after UI is terminated (via the UI.ini file).

From command line:

Long form: /U:ui_HostTimeOut=<value>

Host
Timeout
Value
 2/27/09 Pg-2355

Advanced Topics User Variables
Short form: /HT=<value>

Short form: /HT

The latter short form assumes value = -1 i.e. INFINITY.

From batch file:

ui_HostTimeOut=<value>

where <value> is in milliseconds, or -1 (INFINITY).

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). As noted above, this has limited value.

Example
These two examples perform identically when executed at a Windows command line. Both
examples set the Host timeout value to the original default value:

C:\> ui /U:ui_HostTimeOut=10000

C:\> ui /HT=10000

This example sets the mode from user-written C-code:

remote_set("ui_HostTimeOut", 10000, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_HostTimeOut", -1);

output(" Get ui_HostTimeOut => %s", val);

7.1.11.48 ui_LoadTimeOut
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_LoadTimeOut.

Description
This UI user variable can be used to specify a program load timeout value.
 2/27/09 Pg-2356

Advanced Topics User Variables
Setting ui_LoadTimeOut has the same effect as setting the value in UI:

ui_LoadTimeOut can be used from a Windows command line, or from within a batch file
(see ui_BatchFile). While it is possible to use ui_LoadTimeOut from user-written
C-code this has limited value. Setting a new value from C-code has no effect until the next
test program is loaded.

The value specified is in mS. The default value is -1 (INFINITE).

The value IS persistent after UI is terminated (via the UI.ini file).

If the program load timeout value is too small, some or all of the following error popups will
be displayed

Program Load
Timeout
Value
 2/27/09 Pg-2357

Advanced Topics User Variables
From command line:

Long form: /U:ui_LoadTimeOut=<value>

Short form: /LT=<value>

Short form: /LT

The latter short form assumes value = -1 i.e. INFINITY.

From batch file:

ui_LoadTimeOut=<value>

where <value> is in milliseconds, or -1 (INFINITY).

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). As noted above, this has limited value.

Example
These two examples perform identically when executed at a Windows command line. Both
examples set the program load timeout value to the original default value:

C:\> ui /U:ui_LoadTimeOut=-1

C:\> ui /LT=-1

This example sets the mode from user-written C-code:

remote_set("ui_LoadTimeOut", -1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_LoadTimeOut", -1);

output(" Get ui_LoadTimeOut => %s", val);

7.1.11.49 ui_LoadedMask
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_LoadedMask.

Description
This UI user variable can be used to determine the Site(s) on which a test program is
loaded.
 2/27/09 Pg-2358

Advanced Topics User Variables
ui_LoadedMask is only usable from user-written C-code. This is a read-only value from UI.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From C-code, intended usage is via remote_get() only. The variable is only valid when
sent to UI (site = -1). A bit mask is returned with a logic-1 indicating the test program is
loaded on a given Site. The LSB is Site-1.

Example
The following example will read back and output the state of this variable from user C-code.
Note that the value returned by remote_get() is a CString representation of the DWORD
bit mask value of ui_LoadedMask:

CString val = remote_get("ui_LoadedMask", -1);

output(" Get ui_LoadedMask => %s", val);

7.1.11.50 ui_MonitorPort
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_MonitorPort.

Description
This UI user variable can be used to specify a Monitor Port value.
 2/27/09 Pg-2359

Advanced Topics User Variables
Setting ui_MonitorPort has the same effect as setting the value in UI:

ui_MonitorPort can be used from a Windows command line, or from within a batch file
(see ui_BatchFile). While it is possible to use ui_MonitorPort from user-written
C-code this has limited value. Setting a new value from C-code has no effect until the next
test program is loaded.

The default monitor port for Site-1 is 2000.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_MonitorPort=<value>

Short form: /MP=<value>

From batch file:

ui_MonitorPort=<value>

where <value> is the desired monitor port number.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). As noted above, this has limited value.

Example
These two examples perform identically when executed at a Windows command line. Both
examples set the Monitor Port value to the original default value:

Monitor
Port
Value
 2/27/09 Pg-2360

Advanced Topics User Variables
C:\> ui /U:ui_MonitorPort=2000

C:\> ui /MP=2000

This example sets the monitor port from user-written C-code:

remote_set("ui_MonitorPort", 2000, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_MonitorPort", -1);

output(" Get ui_MonitorPort => %s", val);

7.1.11.51 ui_MonitorTimeOut
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_MonitorTimeOut.

Description
This UI user variable can be used to specify a Monitor Port value.

Setting ui_MonitorTimeOut has the same effect as setting the value in UI:

ui_MonitorTimeOut can be used from a Windows command line, or from within a batch
file (see ui_BatchFile). While it is possible to use ui_MonitorTimeOut from user-
written C-code this has limited value. Setting a new value from C-code has no effect until the
next test program is loaded.

Monitor
Timeout
Value
 2/27/09 Pg-2361

Advanced Topics User Variables
The default monitor timeout value is 5000. The value -1 can be used to set INFINITY.

The value IS persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_MonitorTimeOut=<value>

Short form: /MT=<value>

Short form: /MT

The latter short form assumes value = -1 i.e. INFINITY.

From batch file:

ui_MonitorTimeOut=<value>

where <value> is in mS, or -1 to set INFINITY.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1). As noted above, this has limited value.

Example
These two examples perform identically when executed at a Windows command line. Both
examples set the monitor timeout value to the original default value:

C:\> ui /U:ui_MonitorTimeOut=5000

C:\> ui /MT=5000

This example sets the monitor timeout value from user-written C-code:

remote_set("ui_MonitorTimeOut", 5000, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_MonitorTimeOut", -1);

output(" Get ui_MonitorTimeOut => %s", val);

7.1.11.52 ui_NoLogo
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_NoLogo.
 2/27/09 Pg-2362

Advanced Topics User Variables
Description
This UI user variable is used to disable (skip) the initial UI logo screen.

ui_nologo is targeted at applications where UI is to be invoked from a command line or
batch file and no user interface is desired.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_NoLogo=<value>

Short form: /NOLOGO

From batch file:

ui_NoLogo=<value>

where <value> is 1 (TRUE) to disable the initial UI display.

Example
These two examples perform identically when executed at a Windows command line. Both
examples inhibit the initial UI display:

C:\> ui /U:ui_NoLogo=1

C:\> ui /NOLOGO

7.1.11.53 ui_Open
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_Open.

Description
This UI user variable allows User Tools to specify and load a test program.

This has the same effect as selecting File Open Test Program in UI, entering the
desired test program name, and selecting Open. Note that UI must already be running to
start User Tools.
 2/27/09 Pg-2363

Advanced Topics User Variables
If the specified test program is not found two or more (one Host and one for each Site) error
popups, similar to that below, are displayed:

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
Intended usage is via remote_set() and remote_get() from C-code within User Tools.
The variable is only valid when sent to UI (site = -1). The value assigned is the file name of
the test program executable file, with an optional path to the file. The default file name
extension is .exe. If a complete path is not specified the environment PATH is searched for
the test program.

Example
The following example will cause UI to load the test program named my_prog.exe located
at d:\path\my_prog\Debug\.

remote_set("ui_Open", "d:\path\my_prog\Debug\my_prog", -1);

The following example retrieves and outputs the value of this user variable:

CString val = remote_get("ui_Open", -1);

output(" Test program => %s", val);

7.1.11.54 ui_OutputAutoOpen
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_OutputAutoOpen.
 2/27/09 Pg-2364

Advanced Topics User Variables
Description
This UI user variable can be used, via remote_set(), to control whether UI’s output
window will open (if closed) when a new message is displayed. This allows UI’s output
window to stay closed even though new messages have been displayed.

Note the following:

• The default state is set at the time UI is started. It is not otherwise changed by
system software, including when a given program is loaded, unloaded, or a
different program is loaded.

• The default state causes UI’s output window to be automatically opened
(displayed) any time an output(), warning() and fatal() is executed from
user code and when any messages are sent from UI.

• ui_OutputAutoOpen does not open or close UI’s output window. If the window is
currently open, the auto-open state has no effect when a new message is
displayed.

• UI knows whether ui_OutputAutoOpen is set from a Host, Site, or User Tools
process, allowing UI to react differently to messages from each sender This allows,
for example, Host messages to open the window while Site messages do not. To
ensure that UI’s output window remains closed in all situations requires setting
ui_OutputAutoOpen from each Site, Host, and any User Tools.

• Setting ui_OutputAutoOpen from the Host process also determines whether
UI’s output window will open when a message is sent from UI. UI most commonly
sends load/time and run-time error messages and test results at the end of each
Sequence & Binning Table execution.

• When auto-open is FALSE, the intercept() function combined with
ui_OutputOpen can be used to selectively over-ride this state for messages
generated using output(), warning() and fatal(). See Example. Note that
messages generated directly by UI are NOT displayed using output(),
warning() or fatal(), thus the intercept() call-back function is not invoked
for these messages.

Usage
BOOL_VARIABLE(ui_OutputAutoOpen, TRUE, "")

ui_OutputAutoOpen can be set from user C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1):

remote_set ("ui_OutputAutoOpen", FALSE, -1);
 2/27/09 Pg-2365

Advanced Topics User Variables
Example
The following example will inhibit UI from opening its output window, when messages are
sent from any site which executes this code:

remote_set ("ui_OutputAutoOpen", FALSE, -1);

7.1.11.55 ui_OutputFile
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_OutputFile.

Note: ui_OutputFile supports using the %S token in place of the %d token. This
was done for compatability with ui_ShmooOutputFile. For backwards
compatibility the %d token continues to operate as previously documented,
however the information below now only refers to the %S token.

Description
This UI user variable can be used to specify the path/file-name of a text file used to log the
messages displayed in UI’s Host and/or Site output windows.

ui_OutputFile can be used from a Windows command line, from within a batch file (see
ui_BatchFile), or from user-written C-code.

Rules:

• BEWARE: no checks are made to prevent over-writing (clobbering) an existing file
of the same name. Example 5: shows how to create a file name containing a date-
time stamp which prevents accidentally clobbering an existing file.

• Folders will be created i.e. if the specified path contains folders which do not exist
they will be created. If a file exists with the same name as a folder a run-time error
message will be displayed.

• It is NOT possible for more than one site (Host, Sites 1..n, or User Tools) to log to
a given file. The %S token can be used in the path/file-name string assigned to
ui_OutputFile to represent the site_num() of the process which executes the
remote_set() to define ui_OutputFile. This will create a unique file, or folder,
for Host vs. Site vs. User Tools messages. Using this method, remote_set() is
called multiple times, each executing independently in each process. See Example
2: and Example 4:.
 2/27/09 Pg-2366

Advanced Topics User Variables
• Using remote_get() to read back the value of ui_OutputFile will return only
the last value sent to UI, even though UI may have received several instances of
ui_OutputFile to set up different log files for Host vs. Site vs. Tool.

• Setting a new value to ui_OutputFile will cause a currently open file to be
closed.

• The actual output may be spooled in system RAM until the current Sequence &
Binning Table execution is complete, at which time it is flushed to the output file.

• To terminate logging to a file either terminate UI, or from C-code use
remote_set() to set ui_OutputFile to a NULL path/file-name value i.e.

remote_set("ui_OutputFile", "", -1);.

• The value is NOT persistent after UI is terminated (via the UI.ini file).
• The scope of ui_OutputFile is the test program process. This means that

closing a test program closes any open files. And, if a subsequent test program
defines an identical log file path/file-name, the original file will be clobbered
(overwritten).

• Regardless of the value of ui_OutputFile, output messages continue to be
displayed in the UI Host and Site output windows.

An alternate, and more versatile, methodology is available using the intercept() and
fumble() functions.

Usage
CSTRING_VARIABLE(ui_OutputFile, "", "")

ui_OutputFile can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1). UI knows whether the sender is a Host, Site, or Tool process and will
process output messages correctly for each process.

remote_set ("ui_OutputFile", "path", -1);

It is possible to set ui_OutputFile from a command line or batch file using
ui_HostModeCommandLine and/or ui_SiteModeCommandLine.

From command line, to define a Host output file:

Long/long form: /ui_HostModeCommandLine="/U:ui_OutputFile=<path>"

Short/long form:/HC=/U:ui_OutputFile=<path>

Short form: /HOF=<path>

From command line, to define a Site output file:
 2/27/09 Pg-2367

Advanced Topics User Variables
Long/long form: /ui_SiteModeCommandLine="/U:ui_OutputFile=<path>"

Long/short form: /SC=/U:ui_OutputFile=<path>

Short form: /SOF=<path>

From batch file:

ui_HostModeCommandLine="/U:ui_OutputFile=<path>"

ui_SiteModeCommandLine="/U:ui_OutputFile=<path>"

where <path> is the desired path/file-name of the log file.

Example

Example 1:
These three examples perform identically when executed at a Windows command line.
These all use a form of ui_HostModeCommandLine to define an output log file for the Host
process:

ui /HOF=D:\logfile.txt

ui /HC=/U:ui_OutputFile=D:\testlog.txt

ui /U:ui_HostModeCommandLine="/U:ui_OutputFile=D:\testlog.txt"

Example 2:
This example executes from a batch file (see ui_BatchFile). It uses a form of
ui_SiteModeCommandLine to define a unique output log file for each Site process. Note
the use of %S in the file name:

ui_SiteModeCommandLine="/U:ui_OutputFile=D:\testlog_%S.txt"

Example 3:
This example executes from user C-code. If executed from Host code this will cause all Host
messages to be logged to the file. Similarly, if executed from Site-1, Site-2, etc. or User
Tools code the output messages from those sites will be logged to the file.

remote_set ("ui_OutputFile", "C:/logfile.txt", -1);

However, because the file name is constant, this example will only function correctly when
executed from one site (Host, or Site 1..n, or User Tools). Any attempt to execute this twice
will result in a run-time error. See next example:
 2/27/09 Pg-2368

Advanced Topics User Variables
Example 4:
This example creates a file name containing the site_num() of the process which
executes the code; note the %S token in the file name. Thus, this code can be executed,
without change, in Host, and/or Site, and/or User Tools code with confidence that each
process will specify a unique file name.

remote_set ("ui_OutputFile", "D:/logfile_%S", -1);

Example 5:

As noted above, no file clobber checks are done. To prevent over-writing an existing file the
following example adds a date/time stamp to the file name.

CString s = "D:/logfile_%S_";

s += CTime::GetCurrentTime().Format("%y%m%d_%H%M%S.txt");

remote_set ("ui_OutputFile", s, -1);

Use the F1 key in Developer Studio to research CTime, and the format tokens seen above.
Note that the %d used in the CTime format represents an integer day value (01..31) not the
site_num() noted earlier.

Executing the code above from User Tools creates the following file name:

Note that the site_num() of User Tools is dynamic and > 1024.

7.1.11.56 ui_OutputFormat
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_OutputFormat.

logfile_2608_010418_165925.txt

site_num() of the user tool
Year

Month
Day

Hour
Minutes
Seconds
 2/27/09 Pg-2369

Advanced Topics User Variables
Note: ui_OutputFormat supports using the %S token in place of the %d token. This
was done for compatability with ui_ShmooOutputFile. For backwards
compatibility the %d token continues to operate as previously documented,
however the information below now only refers to the %S token.

Description
This UI user variable can be used to add a prefix to messages output in UI’s Host and/or Site
windows.

Messages from Host and Site do not have a default prefix. Messages from User Tools
have a default message prefix which can be modified using ui_OutputFormat. Adding a
prefix using ui_OutputFormat affects all messages including those generated by
system software.

The message prefix can include combinations of:

• User-defined text
• The site_num() of the process generating the message, using the %%S token
• Date and/or time information, using CTime tokens

The examples below show all three options.

The value is NOT persistent after UI is terminated (via the UI.ini file).

The scope of ui_OutputFile is the UI process. This means that closing a test program
and loading a different program does not, in itself, change the state of ui_OutputFormat.

An alternate, and more versatile, methodology is available using the intercept() and
fumble() functions.

Usage
CSTRING_VARIABLE(ui_OutputFormat, "", "")

ui_OutputFormat can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1). UI knows whether the sender is a Host, Site, or Tool process and will
process output messages correctly for each process.

remote_set ("ui_OutputFormat", "prefix", -1);

It is possible to set ui_OutputFormat from a command line or batch file using
ui_HostModeCommandLine and/or ui_SiteModeCommandLine.
 2/27/09 Pg-2370

Advanced Topics User Variables
From command line, to define a Host output file:

Long form:/U:ui_HostModeCommandLine="/U:ui_OutputFormat=<prefix>"

Short form:/HC="/U:ui_OutputFormat=<prefix>"

From command line, to define a Site output file:

Long form:/U:ui_SiteModeCommandLine="/U:ui_OutputFormat=<prefix>"

Short form:/SC="/U:ui_OutputFormat=<prefix>"

From batch file:

ui_HostModeCommandLine="/U:ui_OutputFormat=<prefix>"

ui_SiteModeCommandLine="/U:ui_OutputFormat=<prefix>"

where <prefix> is the desired prefix.

Example

Example 1:
The following example adds a fixed prefix (Msg =>) to any messages generated from any
process which executes this code (Host, Site, or User Tools processes):

remote_set ("ui_OutputFormat", "Msg =>", -1);

Example 2:
This example uses the %%S token to add the site_num() of the process which executes
this code (Host, Site, or User Tools process) to the message prefix:

remote_set ("ui_OutputFormat", "Site_%%S => ", -1);

Example 3:
This example uses both the %%S token and tokens used by CTime (%y, %m, %d, %H, %M, %S)
to create a prefix containing the site_num() of the process generating the message and a
date/time stamp for each message generated:

remote_set ("ui_OutputFormat", "Site_%%S %y%m%d_%H%M%S: ", -1)
 2/27/09 Pg-2371

Advanced Topics User Variables
If this is executed from Host, Site and Tool code the following prefixs are typical. The %%S
portion of the prefix will depend on which process generated the message:

Using this example note that the date/time information shown will change as each message
is printed.

7.1.11.57 ui_OutputOpen
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_OutputOpen.

Description
This UI user variable can be used, via remote_set(), to open or close UI’s output window.
Note the following:

• The current state of ui_OutputAutoOpen is ignored i.e. UI’s output window will
open or close independent of ui_OutputAutoOpen.

• The intercept() function combined with ui_OutputOpen can selectively over-
ride the effect of ui_OutputAutoOpen for messages generated using output(),
warning() and fatal(). See Example below.

Usage
BOOL_VARIABLE(ui_OutputOpen, TRUE, "")

ui_OutputOpen can be set from user C-code using remote_set(). The variable is only
valid when sent to UI (site = -1):

remote_set ("ui_OutputOpen", FALSE, -1); // Close the window

Host process: Site_0 010102_093247: rest of message
Site process: Site_1 010102_093249: rest of message
Tool process: Site_2401 010102_093256: rest of message

Process site_num()
Year
Month
Day
Hour

Minutes
Seconds
 2/27/09 Pg-2372

Advanced Topics User Variables
remote_set ("ui_OutputOpen", TRUE, -1); // Open the window

Example
The following example, selectively over-rides the operation of ui_OutputAutoOpen, to
cause warning() and fatal() but not output() messages to be displayed when sent
from the Host process (the Host Begin Block mechanism is used for convenience here):

HOST_BEGIN_BLOCK(HBB1) { // See HOST_BEGIN_BLOCK()
// Register callback function in the Host processes
intercept(myCallback);

// Inhibit opening UI output window when messages from Host are
// displayed
remote_set("ui_OutputAutoOpen", FALSE, -1);

}

BOOL myCallback(char type, CString string) {
// Open UI’s output window for warning() and fatal() but not
// output()
if(! type == 'o')

remote_set("ui_OutputOpen", TRUE, -1);
}

Note the following about this example:

• Since this example did not set ui_OutputAutoOpen from Site code, it must be
assumed that messages from Site code will open UI’s output window normally.
However, if ui_OutputAutoOpen = FALSE was also sent to UI from Site code,
this example would not have any effect when messages are sent from Site code,
because the call-back is registered from the Host only.

• Since ui_OutputAutoOpen was sent from Host code, if UI’s output window is
closed, it will NOT be opened when messages generated by UI are displayed.
Messages generated by UI are not displayed using output(), warning() or
fatal() and the intercept() call-back function is not invoked to open the
window.

7.1.11.58 ui_ProgLoaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ProgLoaded.
 2/27/09 Pg-2373

Advanced Topics User Variables
Description
This Callback UI User Variable is invoked by UI when a test program load has completed on
all enabled sites.

If ui_ProgLoaded is defined in the test program and/or User Tools its body code will be
executed once UI determines that test program load has completed on all enabled sites.
This is typically used to synchronize code in the HOST_BEGIN_BLOCK() and/or
TOOL_BEGIN_BLOCK() with site operation, see Host Waiting for Site to Load.

If any test site fails to load the test program, the ui_ProgLoaded body code will not be
executed and the Host Process will be terminated. Similarly, ui_ProgLoaded body code
will not be executed in User Tools but the tool will not be terminated.

A similar UI user variable reports when each site has completed loading the test program.
See ui_SiteLoaded.

Usage
VOID_VARIABLE(ui_ProgLoaded, "") { [body code] }

where:

ui_ProgLoaded is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_ProgLoaded in their test program or
User Tools.

Examples

Example 1:
This simple example outputs a message when ui_ProgLoaded is invoked by UI. This code
will execute in the Host process if ui_ProgLoaded is defined in the test program. This code
will execute in the Tool process if ui_ProgLoaded is defined in User Tools.

VOID_VARIABLE(ui_ProgLoaded, "") {
output("Received ui_ProgLoaded notification from UI");

}

Example 2:
This example is typical of a synchronization implementation, where code in the
HOST_BEGIN_BLOCK() needs to wait for the test program to completely load on all used
sites. The body code of ui_ProgLoaded executes when UI sends the ui_ProgLoaded
notification. The HOST_BEGIN_BLOCK() code is waiting to receive a signal named
 2/27/09 Pg-2374

Advanced Topics User Variables
my_ProgLoaded_signal which is generated when the body code of ui_ProgLoaded
executes:

VOID_VARIABLE(ui_ProgLoaded, "") {
// Send a signal to corresponding remote_wait() in
// HOST_BEGIN_BLOCK(), which is waiting for signal before
// continuing.
remote_signal("my_ProgLoaded_signal", 0);

}

HOST_BEGIN+BLOCK(HBB1) { // See HOST_BEGIN_BLOCK()

// ... other code here ...

// Wait here for the signal indicating all used sites have
// completed program loading.
remote_wait("my_ProgLoaded_signal", INFINITE);
output("Test program is loaded. Continue execution...");
// ... other code here ...

}

Example 3:
This example is quite complex, and demonstrates several advanced features:

• ui_LoadedMask

• ui_ProgLoaded

• ui_SiteMask

• A User Tools, which appears only as a menu in UI
• Using builtin_dynload the tool code causes the test program to load a DLL

required by the tool
• How to create a tool and its required DLL in a single Project Workspace

This example is divided into several sections

• User Tool code
• DLL code
• Creating the Project Workspace for both the tool and the DLL

User Tool code
#include "TestProgApp/public.h"
#include <sys/types.h>// For _stat
#include <sys/stat.h>// For _stat
 2/27/09 Pg-2375

Advanced Topics User Variables
#define MAXSITES 60

// Code below causes the site(s) to load the required DLL specified
// by myDLL. File exists is tested in code below.

#define myDLL "D:/Binning_tool_dll/Debug/Binning_tool_dll.dll"

INT64_VARIABLE(ui_SiteMask, 0, "") {} // To be remote_fetched

// Using remote_set(), DLL code sets the value of the bin
// specified using get_bin_val into one_bin_value
INT_VARIABLE(one_bin_value, 0, "") {}

//===

// Output (in Host window) all TestBin values from each used site
void OutputBinValues(void) {

remote_fetch(ui_SiteMask, -1, FALSE);

for (int site = 0; site < MAXSITES; site++) {
// Get list of all TestBins but only from used sites
if ((ui_SiteMask & ((UINT64) 1 << site)))

CStringArray bin_names;

int bin_count =
resource_all_names(S_TestBin, (site + 1), &bin_names);

for (int i = 0; i < bin_count; ++i) {

// Request site update uVar named one_bin_value
// uVar one_bin_value was put into test program via DLL
remote_set("get_bin_val",

bin_names[i],
(site + 1),
TRUE,
INFINITE);

output(" Site=> %d : TestBin => %s = %d",
(site + 1),
bin_names[i],
one_bin_value);

}
}

}
}

 2/27/09 Pg-2376

Advanced Topics User Variables
//===
// Cause used sites to load the required DLL
void LoadDLLonSites(void) {

remote_fetch("ui_SiteMask",
-1,
FALSE); // Bitmask of used sites

for (int site = 0; site < MAXSITES; site++) {
if ((ui_SiteMask & ((UINT64) 1 << site)))

remote_set("builtin_dynload",
myDLL,
(site + 1),
TRUE,
INFINITE);

}
}

//===

// If the tool was started before a test program is loaded
// ui_ProgLoaded will cause the used sites to load the required
// DLL. Otherwise, code in the TOOL_BEGIN_BLOCK will do it.

VOID_VARIABLE(ui_ProgLoaded, "") {
LoadDLLonSites();
OutputBinValues();

}

//===
// Check if the required DLL is found on disk and is a file

BOOL CheckDllFound(char fname[]) {
struct _stat info;
if ((! _stat(fname, &info) == 0) || // Exists on disk

 (! (info.st_mode & _S_IFMT & _S_IFREG))// Is a file
) {

return (FALSE);
}
return (TRUE);

}

//===
// Body code executes when menu item is selected
 2/27/09 Pg-2377

Advanced Topics User Variables
CSTRING_VARIABLE(DoBinSummary,"","DoBinSummary") {
OutputBinValues();

}

// TOOL_BEGIN_BLOCK executes when tool first starts. Confirms DLL
// is found. If test program is already loaded causes it to load
// the required DLL. Inserts a menu in UI used to invoke the bin
// summary

TOOL_BEGIN_BLOCK(TB1) {
// If the required DLL is not found on disk tell the user and
// terminate the tool.

if (! CheckDllFound(myDLL)) {

CString err = "ERROR: required DLL not found\nFile => ";
err += vFormat("%s\nAborting", myDLL);

AfxMessageBox(err);
fatal(err); // Message in Host output window too.

}

// If the test program was loaded before this tool was started
// tell the sites to load the required DLL. Otherwise,
// ui_ProgLoaded body code (above) does it.

CString val = remote_get("ui_LoadedMask", -1);

if(! val.IsEmpty()) LoadDLLonSites();

// Add menu to UI.
menu_add("User Menu/DoBinSummary", DoBinSummary);

}

DLL code
This DLL is inserted into the test program by tool code calling remote_set() of
builtin_dynload. If the DLL doesn’t load correctly all bins will always display a count = 0:

#include "TestProgApp/public.h"

// Binning_tool DLL code. The get_bin_val uVar is inserted
// into the test program by code in the tool. Used to send the value
// of one bin, specified by get_bin_val (set by the sender), back to
// the sender

CSTRING_VARIABLE(get_bin_val, "", "") { // SITE execution
TestBin *bin = TestBin_find(get_bin_val);
int value = get(bin);
 2/27/09 Pg-2378

Advanced Topics User Variables
// Return to sender. No need to invoke body code
remote_set("one_bin_value", value, sender, FALSE);

}

// Outputs message in each Site window when DLL is loaded
INITIALIZATION_HOOK()(IH1) {

output(" The required Binning_tool DLL was loaded");
}

// Next line forces Developer Studio to generate a .lib file. This
// ensures Rebuild All will build both the tool and the DLL.
__declspec(dllexport) int force_lib_generation = 0;

Creating the Project Workspace
This demonstrates the methods used to enable several advanced techniques not normally
used when writing test programs, including:

• User Tools, contained in single source file
• A DLL, also in a single source file, which contains code required by the tool which

must execute on the site(s) as part of the test program, but which is not included
in the test program. In User Tool code above, tool code causes the test program to
load the DLL.

• Both the user tool and the DLL are part of a single Project Workspace. The DLL is
set up as a subproject of the tool. This causes both the tool and the required DLL
to be built when Build Rebuild All is invoked.

The process begins by creating a new minimal test program, adding the tool code,
configuring the project, and compiling the tool. After this is successful, the DLL will be added
to the project and compiled.

1. In Developer Studio invoke File New, select Project Workspace, and click OK:
 2/27/09 Pg-2379

Advanced Topics User Variables
2. In the Project Workspace dialog, select Minimal Test Program, enter the name of the tool
(Binning_tool), and specify the location for the project (D:\Binning_tool). Click
Create. You can choose other names and locations, but this document uses these:

3. Read the New Project Information messages and click OK when done.
 2/27/09 Pg-2380

Advanced Topics User Variables
4. The project created should appear as shown below. Note that the main.cpp file contains
only comments and one line of code. This file will be removed later after the User Tool
code is added to the project.

5. In Developer Studio, add the User Tool code to the project:

• open a new text file: File New, select Text File.
• Copy the User Tool code above into this file.
• Save the file to the new Project Workspace folder: File Save As... The rest

of these instructions assume the file is named Binning_tool.cpp
6. Add the Binning_tool.cpp file to the project:

• Insert Files Into Project...Select the Binning_tool.cpp file and click
Add.

• Note that the Binning_tool.cpp file appears in the Project Workspace window,
just above main.cpp.
 2/27/09 Pg-2381

Advanced Topics User Variables
7. In the Project Workspace window, select the main.cpp file and delete it from the list. This
should leave only Binning_tool.cpp in the list as shown:

8. Remove the Win32 Release configuration (to reduce confusion):

• Select Build Configurations...
• In the Configurations dialog, select Win32 Release and click Remove.
• Click Yes when asked to confirm.

Before

After
 2/27/09 Pg-2382

Advanced Topics User Variables
9. Select Build Update All Dependencies... Click OK. This updates the list of
dependency files (.h files):

10.Edit the Binning_tool.cpp file and change the path the DLL in your version of this tool

#define myDLL "D:/Binning_tool/Binning_tool_dll/Debug/Binning_tool_dll.dll"

11. Compile the tool:

• Build Rebuild All
• No errors should occur.

At this point, the tool has been created, and compiled but it cannot be used until the required
DLL is also created. The next step is to add the DLL code to the project, as a subproject of
the tool.

• Insert the DLL as new project:
• Insert Project...
• Select Dynamic Link Library
• Add the name of the DLL (Binning_tool_dll)
 2/27/09 Pg-2383

Advanced Topics User Variables
• Select the Subproject of radio button and note that Binning_tool appears in the
selection box. The Insert Project dialog should appears as shown:

• Click Create
At this point the Project Workspace will appear as follows:
 2/27/09 Pg-2384

Advanced Topics User Variables
And, a look at the disk will show:

12.Add the DLL source code to the DLL project:

• In the Developer Studio open a new text file: File New, select Text File.
• Copy the DLL code into this file.
• Save the file: File Save As.... In this example, the file is named

Binning_tool_dll.cpp.
13. Insert this file into the subproject:

• In the Project Workspace window select the Binning_tool_dll subproject
• Invoke Insert Files into Project..., select Binning_tool_dll.cpp, and

click Add.
• At this point the Project Workspace will appear as follows:
 2/27/09 Pg-2385

Advanced Topics User Variables
14.Similar to step-8 above, remove the Win32 Release configuration from the
Binning_tool_dll subproject (reduces confusion).

15.For this subproject change the Microsoft Foundation Class to Shared DLL:

• Invoke Build Settings...
• Click the General tab
• In the Settings For window select Binning_tool_dll - Wind32 Debug
• In the Microsoft Foundation Classes list select Use MFC in a Shared Dll
• The display will appear as follows:

• Click OK
 2/27/09 Pg-2386

Advanced Topics User Variables
16. Invoke Build Update All Dependencies... and select both boxes:

Click OK

17. Invoke Build Rebuild All to compile both the DLL and the tool. There should be no
errors.

The tool is now usable:

• Start UI, load any test program
• Start the tool (see Starting/Terminating User Tools). This will insert User Menu into

UI as shown:

• Invoke File Start Testing a few times then invoke the User Menu /
DoBinSummary option. The output is in UI’s Host output window:

[Tool 2186]: Site=> 1 : TestBin => builtin_Pass = 8
[Tool 2186]: Site=> 1 : TestBin => builtin_Fail = 0
[Tool 2186]: Site=> 1 : TestBin => builtin_Interrupt = 0

Menu added by
tool code.
 2/27/09 Pg-2387

Advanced Topics User Variables
This output is typical when using a single site test system. The number of actual bins
displayed will depend on the test program. The 3 bins shown above are the built-in bins,
automatically included in every test program by the system software.

Note that the prefix [Tool 2186]: is automatically added to any output generated by User
Tools. The number is the site number of the tool, which is dynamically assigned. This
prefix can be modified using ui_OutputFormat.

7.1.11.59 ui_ProgUnloaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ProgUnloaded.

Description
This Callback UI User Variable is invoked by UI when a test program has been unload on all
enabled sites.

If ui_ProgUnloaded is defined in the test program and/or User Tools its body code will be
executed once UI determines that a loaded test program has been unloaded on all enabled
sites. This can be used to notify code in User Tools when a test program has been unloaded.

A similar UI user variable reports when a given site has reported the test program is
unloaded. See ui_SiteUnloaded.

A related UI user variable reports when all sites have reported the test program is loaded.
See ui_ProgLoaded.

Usage
VOID_VARIABLE(ui_ProgUnloaded, "") { [body_code] }

where:

ui_ProgUnloaded is a Callback UI User Variable.

body_code is user-written C-code added to the body of ui_ProgUnloaded.

Example
This example can be included in User Tools code to execute when UI notifies the tool that
the test program has been unloaded:

VOID_VARIABLE(ui_ProgUnloaded, "") {
 2/27/09 Pg-2388

Advanced Topics User Variables
// ... code here to execute when a test program is unloaded.

}

7.1.11.60 ui_ResourceInitialized
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ResourceInitialized.

Description
This Callback UI User Variable is invoked in the host process as each resource is loaded on
each enabled test site. This can be used to track program load progress, but is quite
verbose. An Example Output is included below, from a test program executing on a single
site system (PT).

If ui_ResourceInitialized is defined in the test program its body code will be executed
once, in the host process, for each resource loaded on a site. Each time
ui_ResourceInitialized is invoked its value will reflect the resource just loaded. The
sender parameter can be used within the body code to determine which site caused
ui_ResourceInitialized to be invoked (see example).

Usage
CSTRING_VARIABLE(ui_ResourceInitialized, "", "") { [body code] }

where:

ui_ResourceInitialized is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_ResourceInitialized in their test
program.

Example
This simple example outputs a message in the Host output window as each resource is
loaded on each enabled test site. Below the code is an Example Output:

CSTRING_VARIABLE(ui_ResourceInitialized, "", "x") {

output("ui_ResourceInitialized on Site[%d] => %s",
sender,
ui_ResourceInitialized);
 2/27/09 Pg-2389

Advanced Topics User Variables
}

Example Output
ui_ResourceInitialized on Site[1] => Variable_int

ui_ResourceInitialized on Site[1] => Variable_BOOL

ui_ResourceInitialized on Site[1] => Variable_DWORD

ui_ResourceInitialized on Site[1] => Variable_float

ui_ResourceInitialized on Site[1] => Variable_double

ui_ResourceInitialized on Site[1] => Variable_int64

ui_ResourceInitialized on Site[1] => Variable_CString

ui_ResourceInitialized on Site[1] => Variable_OneOf

ui_ResourceInitialized on Site[1] => Variable_void

ui_ResourceInitialized on Site[1] => TesterHW

ui_ResourceInitialized on Site[1] => ATCBoardList

ui_ResourceInitialized on Site[1] => AVSPinList

ui_ResourceInitialized on Site[1] => Variable_int

ui_ResourceInitialized on Site[1] => Variable_BOOL

ui_ResourceInitialized on Site[1] => Variable_DWORD

ui_ResourceInitialized on Site[1] => Variable_float

ui_ResourceInitialized on Site[1] => Variable_double

ui_ResourceInitialized on Site[1] => Variable_int64

ui_ResourceInitialized on Site[1] => Variable_CString

ui_ResourceInitialized on Site[1] => Variable_OneOf

ui_ResourceInitialized on Site[1] => Variable_void

ui_ResourceInitialized on Site[1] => Dialog

ui_ResourceInitialized on Site[1] => Snapshot

ui_ResourceInitialized on Site[1] => Configuration

ui_ResourceInitialized on Site[1] => SiteConfiguration

ui_ResourceInitialized on Site[1] => PinAssignments

ui_ResourceInitialized on Site[1] => PinScramble

ui_ResourceInitialized on Site[1] => PEBoardList
 2/27/09 Pg-2390

Advanced Topics User Variables
ui_ResourceInitialized on Site[1] => CurrentShare

ui_ResourceInitialized on Site[1] => PinList

ui_ResourceInitialized on Site[1] => VihhMap

ui_ResourceInitialized on Site[1] => TestBin

ui_ResourceInitialized on Site[1] => TestBinGroup

ui_ResourceInitialized on Site[1] => TestBlock

ui_ResourceInitialized on Site[1] => BeforeTestingBlock

ui_ResourceInitialized on Site[1] => AfterTestingBlock

ui_ResourceInitialized on Site[1] => SequenceTable

ui_ResourceInitialized on Site[1] => ScanPattern

ui_ResourceInitialized on Site[1] => LogicVector

ui_ResourceInitialized on Site[1] => SiteBeginBlock

ui_ResourceInitialized on Site[1] => Pattern

ui_ResourceInitialized on Site[1] => PatternSet

ui_ResourceInitialized on Site[1] => SiteEndBlock

ui_ResourceInitialized on Site[1] => InitializationHook

ui_ResourceInitialized on Site[1] => Resource

7.1.11.61 ui_RunTestProgram
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_RunTestProgram.

Description
This UI user variable can be used to specify the number of times the Sequence & Binning
Table is to execute.

This is targeted at applications where UI and the test program are invoked from a command
line or a batch file (see ui_BatchFile). The value can be set or read back using
remote_set() and remote_get() from test program code or from User Tools code.

This can be combined with ui_CloseAfterRun to cause the program to unload after
executing, or ui_ExitAfterRun to terminate UI after executing.
 2/27/09 Pg-2391

Advanced Topics User Variables
The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
From command line:

Long form: /U:ui_RunTestProgram=<value>

Short form: /R=<value>

Short form: /R

The latter short form assumes value = 1.

From batch file:

ui_RunTestProgram=<value>

where <value> is the number of times the Sequence & Binning Table is to execute.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1).

Examples

Example 1:
These three examples perform identically when executed at a Windows command line. In all
three cases UI will start normally. After the user loads a test program and invokes File
Start Testing the Sequence & Binning Table will execute once and the program will
unload:

C:\> ui /U:ui_CloseAfterRun=1 /U:ui_RunTestProgram=1
C:\> ui /CR=1 /R=1
C:\> ui /CR /R

This example sets ui_RunTestProgram from user-written C-code:

remote_set("ui_RunTestProgram", 1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_RunTestProgram", -1);

output(" Get ui_RunTestProgram => %s", val);
 2/27/09 Pg-2392

Advanced Topics User Variables
Example 2:
The following is an example of a batch file which will start UI, load the test program
D:/MinTestProg/Debug/MinTestProg, execute the Sequence & Binning Table 3 times, and
then unload the test program:

ui_NoLogo=1
ui_CloseAfterRun=1
ui_RunTestProgram=3
ui_TestProgName=D:/MinTestProg/Debug/MinTestProg

If these statements are in the file C:\test3_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test3_batch.txt

7.1.11.62 ui_ShmooDone
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShmooDone.

Note: first available in software release h1.1.23.

Description
This UI user variable is used by UI to notify Site processes when a search/shmoo execution
has completed, typically after executing a shmoo/search defined using ShmooTool /
SearchTool and which is triggered by a breakpoint set using BreakpointTool (see Shmoo/
Search Execution). This is targeted for use in conjunction with search_results_get().

If this user variable is defined in the test program its body code will be executed, on sites
only, any time UI determines that a shmoo or search execution has completed.

Usage
CSTRING_VARIABLE(ui_ShmooDone, "", "")
 2/27/09 Pg-2393

Advanced Topics User Variables
Example
CSTRING_VARIABLE(ui_ShmooDone, "", ""){

SearchResultArray result;
int c = search_results_get(&results); // search_results_get();

}

7.1.11.63 ui_ShmooInput
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShmooInput.

Description
This UI user variable can be used to specify the path/file-name of a shmoo/search definition
file to load when the next test program is loaded. For file format and other rules see
Shmoo Definition File.

This is targeted at applications where UI and the test program are invoked from a command
line or a batch file (see ui_BatchFile). ui_ShmooInput can be accessed from
C-code both to set its value and/or get the current value however this has limited value
because setting a new value does not take effect until the current test program is unloaded
and another program loaded, within the same instance of UI.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
CSTRING_VARIABLE(ui_ShmooInput, "", "")

From command line:

Long form: /U:ui_ShmooInput=<path>

Short form: /SI=<path>

From batch file:

ui_ShmooInput=<path>

where <path> is the path/file-name to a previously created Shmoo Definition File. When an
absolute path is not specified the environmental PATH is searched.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1).
 2/27/09 Pg-2394

Advanced Topics User Variables
Examples

Example 1:
These two examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_ShmooInput=C:/myprogram/shmoodefs1.txt

C:\> ui /SI=C:/myprogram/shmoodefs1.txt

This example sets ui_RunTestProgram from user-written C-code:

remote_set("ui_ShmooInput", "C:/myprogram/shmoodefs1.txt", -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_ShmooInput", -1);

output(" Get ui_ShmooInput => %s", val);

Example 2:
The following is an example of a batch file which will start UI, enable Engineering Mode, load
the test program D:/MinTestProg/Debug/MinTestProg, and load the Shmoo Definition File at
D:/UIVar_tool/Shmoo1.txt:

ui_NoLogo=1
ui_EngineeringMode=1
ui_ShmooInput=D:/UIVar_tool/Shmoo1.txt
ui_TestProgName=D:/MinTestProg/Debug/MinTestProg

If these statements are in the file C:\test4_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test4_batch.txt

7.1.11.64 ui_ShmooOutputFile
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShmooOutputFile.

Description
This UI user variable can be used to specify the path/file-name of a file used to capture an
ASCII version of shmoo/search output. By default, ShmooTool generates a shmoo output
window per-controller (per-site). If Multi-DUT Shmoos are enabled a window is generated
 2/27/09 Pg-2395

Advanced Topics User Variables
per-DUT, per-controller (per-site). Multi-DUT Shmoos are always enabled in Multi-DUT Test
Programs.

Note the following:

• ui_ShmooOutputFile must only be set from Site code, using remote_set().
Setting ui_ShmooOutputFile from the Host or User Tool code is silently
ignored.

• The %S token can be used in the file name specification to add the Site number
generating the shmoo to the file name. Using the %S token does not cause any
additional output files to be created.

• When Multi-DUT Shmoos are enabled, the %D token can be used in the file name
specification to add the DUT number to the file name. See Example 2: and
Example 3:. Using the %D token causes an additional output file to be created for
each DUT in the test program. Note that no shmoo is sent to any file(s) for DUT(s)
which are inactive at the time the scmoo is executed; i.e. the output file may be
empty.

• If %D is used in when Multi-DUT Shmoos are not enabled the character ‘1’ is added
to the file name anyway.

• When Multi-DUT Shmoos are enabled and %D is not explicitly added to the file
name specification the system software appends _%D to the file name, prior to any
file name extension. And, a file is opened for each DUT, as noted above.

• Except as noted in the previous bullet, the system software does not add any
under-score characters to the file name.

• The system software does not add a file extension to the file name.
• File(s) are created on disk at the time is ui_ShmooOutputFile sent to UI, using

remote_set().
• Files are closed several ways:

• Setting ui_ShmooOutputFile with an empty file name.
• Setting ui_ShmooOutputFile with a different file name closes the previous

file(s).
• The test program is unloaded.

• Existing files will be silently over-written (clobbered) when ui_ShmooOutputFile
is set with a file name specification which matches existing files on disk.

• When using ui_ShmooOutputFile the actual shmoo output may be spooled in
system RAM until the currently executing shmoo is complete, at which time it is
flushed to the output file.

• The value is NOT persistent after UI is terminated (via the UI.ini file).
 2/27/09 Pg-2396

Advanced Topics User Variables
Usage
CSTRING_VARIABLE(ui_ShmooOutputFile, "", "")

ui_ShmooOutputFile must only be set from user-written C-code, executed on the Site,
using remote_set(). remote_get() can be used to read back the current value. The
variable is only valid when sent to UI (Site = -1).

remote_set ("ui_ShmooOutputFile", "path", -1);

Examples

Example 1:
This example sets ui_ShmooOutputFile from Site code:

CString fname = "D:/shmoo_out.txt";
remote_set("ui_ShmooOutputFile", fname, -1);

This example gets the current value of ui_ShmooOutputFile. This could be executed
from Host, Site or User Tools code:

CString val = remote_get("ui_ShmooOutputFile", -1);
output(" Get ui_ShmooOutputFile => %S", val);

Example 2:
This example uses the %S token to add the Site number generating each shmoo to the file
name. Then, assuming multiple sites execute the same shmoo, each will be saved to a file
with its name made unique by including the site number:

remote_set("ui_ShmooOutputFile", "D:/shmoo_out_%S.txt", -1);

Using this example the file names generated will be:

D:/shmoo_out_1.txt for Site-1
D:/shmoo_out_2.txt for Site-2
Etc.

Example 3:
When Multi-DUT Shmoos are enabled the %D token can be used to represent the DUT
number to the file name. For example:

remote_set("ui_ShmooOutputFile", "D:/shmoo_out_%S_%D.txt", -1);

Using this example the file names generated will be:
 2/27/09 Pg-2397

Advanced Topics User Variables
D:/shmoo_out_1_1.txt for Site-1 DUT-1
D:/shmoo_out_1_2.txt for Site-1 DUT-2
D:/shmoo_out_2_1.txt for Site-2 DUT-1
Etc.

7.1.11.65 ui_ShowOutputTab
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShowOutputTab.

Description
This UI user variable can be used to select a specific tab in UI’s output window.

The value assigned determines which output tab is selected. The value matches the site
number paradigm, where:

• 0 = Host tab
• 1 = Controller-1 (Site-1) tab
• 2 = Controller-2 (Site-2) tab
• etc.

Values up to 60 are valid (assuming a Magnum 1 with all 60 sites in use).

Usage
ui_ShowOutputTab can only be set from user-written C-code using remote_set(). The
variable is only valid when sent to UI (site = -1). Other rules apply, see Description:

remote_set ("ui_ShowOutputTab", value, -1);

where value identifies which tab is selected. See Description.

Example
In the following example, the Controller-2 (Site-2) tab is selected in UI’s output window:

remote_set("ui_ShowOutputTab", 2, -1);// Send to Ui
 2/27/09 Pg-2398

Advanced Topics User Variables
7.1.11.66 ui_Show
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_Show.

Note: first available in software release h1.1.23.

ui_Show may be added to User Tools managed by ToolLauncher, to enable ui_HideTool
and ui_ShowTool to control the user tool display state much the same as UI tools. See
ui_ShowTool / ui_HideTool Support.

Note the following:

• ui_Show is only used in the context described in ui_ShowTool / ui_HideTool
Support.

• By default, when ui_ShowTool is invoked on a user tool manged by
ToolLauncher, if ui_Show is not defined in the tool nothing happens, and
ui_HideTool terminates the tool process.

• When ui_Show is defined in a user tool, invoking ui_ShowTool or ui_HideTool
on that tool will cause the value of ui_Show to be set and the body code to be
executed:
• ui_ShowTool sets ui_Show = TRUE
• ui_HideTool sets ui_Show = FALSE
Then, the body code of ui_Show determines what additional actions are taken.
The example shown in ui_ShowTool / ui_HideTool Support causes the user tool to
operate like UI’s tools, as described in ui_ShowTool.

Usage
BOOL_VARIABLE(ui_Show, TRUE, ""){}

ui_ShowTool is set and body code invoked as a side effect of using ui_ShowTool or
ui_HideTool. See Description.

Example
See ui_ShowTool / ui_HideTool Support.
 2/27/09 Pg-2399

Advanced Topics User Variables
7.1.11.67 ui_ShowTool
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShowTool.

This UI user variable can be used to invoke most of UI’s Interactive Tools from user C-code.

ui_ShowTool is the complement of ui_HideTool. Details for both are documented here.
ui_HideTool was first available in software release h1.1.23.

UI’s tool display paradigm is somewhat different than other Windows applications. UI's tools
will always be in one of the following states:

• Not started: the tool process is not running
• Started: the tool process is running. The tool is in one of the following states:

• Tool is visible
• Tool is visible but minimized; it is seen in the taskbar
• Tool is hidden; i.e. not displayed and not seen in the taskbar

In normal use, the latter state is entered by first starting the tool and then clicking the cancel
button (the in the upper-right corner of the tool). ui_HideTool also puts a tool into this
state. As indicated, hiding a UI tool this does not terminate the tool process. Instead, it hides
the display; the tool does not appear in the task bar nor on the display. Starting the tool or
using ui_ShowTool makes the tool visible again. This operation allows the tool to be
hidden without losing any information.

Specific rules apply when using ui_ShowTool and ui_HideTool:

• Both are only usable from user-written C-code.
• Both are only usable after a test program has been loaded on all sites. See

Example.
 2/27/09 Pg-2400

Advanced Topics User Variables
• Both are supported by the following UI tools, by specifying a value from the
following table:

• ui_ShowTool and ui_HideTool are both ONEOF_VARIABLEs. At any given
time, a ONEOF_VARIABLE represents a single value, but has an associated list of
legal values. Using ui_ShowTool and ui_HideTool the list of legal values are
shown in the table above.

• To show or hide multiple tools requires executing ui_ShowTool and
ui_HideTool multiple times, each specifying one tool.

• Beginning in software release h1.1.23, ui_ShowTool and ui_HideTool will also
operate on User Tools which are started/managed by ToolLauncher. See
ToolLauncher and ui_Show. In this situation, the value of the user tool is the
name of the tool’s executable file, exclusing .exe.

Table 7.1.11.67-1ui_ShowTool / ui_HideTool Values

Value Tool

"Bitmap" BitmapTool

"Break" Breakpoint Monitor

"DBM" DBMTool

"ECR" ECRTool

"Front" FrontPanelTool

"LECTool" LEC Tool

"LVM" LVMTool

"Pattern" PatternDebugTool

"Shmoo" ShmooTool / SearchTool

"Summary" Default Summary Tool

"Timing" TimingTool

"V/I" Voltage and Current Tool

"Variables" User Variables Tool

"WafermapTool" WafermapTool
 2/27/09 Pg-2401

Advanced Topics User Variables
Usage
ONEOF_VARIABLE(ui_ShowTool, "", ""){}

ui_ShowTool can only be set from user-written C-code using remote_set(). The
variable is only valid when sent to UI (site = -1). Other rules apply, see Description:

remote_set ("ui_ShowTool", "value", -1);

where value identifies which tool to be started. Must be one of the values from the table
above, specified as a quoted string.

Example
In the example below, the user code in the HOST_BEGIN_BLOCK waits for all sites to load a
test program before using remote_set() to send ui_ShowTool to UI, to start
FrontPanelTool. The ui_ProgLoaded code is required to support this operation:

// Use ui_ProgLoaded to send a signal to the HOST when a test
// program load has completed on all sites
VOID_VARIABLE(ui_ProgLoaded, "") {

remote_signal("ProgLoaded", site_num());
}

HOST_BEGIN_BLOCK(myHBB){
//... other code as desired ...

// Use remote_wait() here to wait until program load has
// completed on all sites
remote_wait("ProgLoaded", INFINITE);
remote_set("ui_ShowTool", "Front", - 1);// Send to Ui

//... other code as desired ...
}

The following code hides FrontPanelTool:

remote_set("ui_HideTool", "Front", -1);

7.1.11.68 ui_ShutDown
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ShutDown.
 2/27/09 Pg-2402

Advanced Topics User Variables
Description
This UI user variable is identical to ui_Exit, and exists for backwards compatibility only.

7.1.11.69 ui_SiteDebug
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteDebug.

Description
Site Debug mode must be set (TRUE) to enable source code debugging using Developer
Studio

This mode is normally set using the UI graphic interface (above) but can also be done using
ui_SiteDebug.

ui_SiteDebug defines a bit-wise mask, where a logic-1 in a given bit position enables site
debug on the corresponding site. The LSB is site-1. Setting the value to -1 enables site
debug for all used sites.

This UI user variable can be used from a Windows command line, or from within a batch file
(see ui_BatchFile).

It is possible to use ui_SiteDebug from C-code but this has limited value because it has
no effect until the currently loaded test program is closed, and another test program is
loaded, and only during the existing invocation of UI.

Site Debug
Mode
Control
 2/27/09 Pg-2403

Advanced Topics User Variables
The value is NOT persistent after UI is terminated (via the UI.ini file).

A similar UI user variable is available to enable site debug: see ui_HostDebug.

Usage
From command line:

Long form: /U:ui_SiteDebug=<value>

Short form: /SD=<value>

Short form: /SD

The latter short form assumes value = -1.

From batch file:

ui_SiteDebug=<value>

where <value> defines a bit-wise mask, where a logic-1 in a given bit position enables site
debug on the corresponding site. The LSB is site-1. Setting the value to -1 enables site
debug for all used sites.

From C-code, intended usage is via remote_set() and remote_get(). The variable is
only valid when sent to UI (site = -1).

Example
These three examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_SiteDebug=-1

C:\> ui /SD=-1

C:\> ui /SD

This example sets the mask from a batch file:

ui_SiteDebug=-1

This example sets the mask from user-written C-code:

remote_set("ui_SiteDebug", -1, -1);

The following example will read back and output the state of this variable from user C-code:

CString val = remote_get("ui_SiteDebug", -1);

output(" Get ui_SiteDebug => %s", val);
 2/27/09 Pg-2404

Advanced Topics User Variables
7.1.11.70 ui_SiteDone
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteDone.

Note: first available in software release h1.1.23.

Description
This Callback UI User Variable is invoked by UI each time execution of the Sequence &
Binning Table completes on a given site.

If ui_SiteDone is defined in the test program and/or User Tools its body code will be
executed any time UI signals ui_SiteDone. The value assigned to ui_SiteDone consists
of the site which triggered the call-back plus a comma separated string of bin values from
that site.

Also see ui_TestDone.

Usage
CSTRING_VARIABLE(ui_SiteDone, "", "") { [body code] }

where:

ui_SiteDone is a Callback UI User Variable.

body code is the C-code the user adds to the body of ui_SiteDone in their test program
or User Tools.

Example
The following example executes in the Host process to output the information assigned to
ui_SiteDone by the site which triggered the call-back. This will also execute in the Tool
process if this ui_SiteDone code is included in a User Tools.

CSTRING_VARIABLE(ui_SiteDone, "", "") {
output(" ui_SiteDone => %s", ui_SiteDone);

}

The following example is typical of the output generated using the previous example on a
two site system:
 2/27/09 Pg-2405

Advanced Topics User Variables
ui_SiteDone => 2:bin1,bin2
ui_SiteDone => 1:bin2,bin1

7.1.11.71 ui_SiteLoaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteLoaded.

Description
This Callback UI User Variable is invoked by UI when a test program load has completed on
each site.

If ui_SiteLoaded is defined in the test program and/or User Tools its body code will be
executed once UI determines that test program loading has completed on a site. This can be
used to synchronize code in the HOST_BEGIN_BLOCK() and/or TOOL_BEGIN_BLOCK()
with site operation.

When invoked, the value of the variable is set to the site which reported the program loaded.

A similar UI user variable reports when all sites have reported the test program is loaded.
See ui_ProgLoaded.

A related UI user variable reports when a site reports the test program is un-loaded. See
ui_SiteUnloaded.

Usage
INT_VARIABLE(ui_SiteLoaded, 0, "") { [body code] }

where:

ui_SiteLoaded is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_SiteLoaded in their test program or
User Tools.

Example
This simple example outputs a message when ui_SiteLoaded is invoked by UI. This code
will execute in the Host process if ui_SiteLoaded is defined in the test program. This code
will execute in the Tool process if ui_SiteLoaded is defined in User Tools.
 2/27/09 Pg-2406

Advanced Topics User Variables
INT_VARIABLE(ui_SiteLoaded, 0, "") {
output("ui_SiteLoaded from Site-%d", ui_SiteLoaded);

}

7.1.11.72 ui_SiteMask
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteMask.

Description
This UI user variable can be used to determine which sites are currently enabled, and
modify or set which sites are enabled.

As a practical matter, ui_SiteMask can be thought of as indicating which sites will execute
the Sequence & Binning Table when File Start Testing is invoked. ui_SiteMask can
be set during program loading, to match handler or prober capabilities, or modified later to
disable defective sockets in parallel test operations.

ui_SiteMask is a bit-wise value where a logic-1 in a given bit position indicates that the
site is enabled. The LSB is Site-1.

The value in ui_SiteMask always reflects all existing 128-pin sites, even when test sites
are slaved together using Sites-per-Controller > 1. Thus when evaluating or setting
the individual bits of ui_SiteMask, C-code should ignore bits based on the value of
Sites-per-Controller. See Example 2:.

When getting the value of ui_SiteMask it is necessary to wait for program loading on all
sites to complete. This suggests using ui_ProgLoaded or ui_LoadedMask to ensure
results are valid. See Example 2:.

By default, a site will initially be enabled if all of the following are true:
 2/27/09 Pg-2407

Advanced Topics User Variables
• The associated Controller is active as set in UI’s Controller List (displayed when
UI is first started):.

• UI was able to communicate with that controller when it started.
• The Controller was not disabled using the Controller Enable tab of UI’s

Tools Options.

This UI user variable can be used from a Windows command line, from within a batch file
(see ui_BatchFile), or from within user-written C-code.

The value is NOT persistent after UI is terminated (via the UI.ini file).

UI’s Controller List
 2/27/09 Pg-2408

Advanced Topics User Variables
Usage
ui_SiteMask can be set from user-written C-code using remote_set() or
remote_send(). remote_get() and remote_fetch() can be used to read back the
current value. The variable is only valid when sent to UI (site = -1).

UINT64_VARIABLE(ui_SiteMask, 0x1, ""){}
remote_set ("ui_SiteMask", ui_SiteMask, -1);

remote_get ("ui_SiteMask", -1);

It is possible to set ui_SiteMask from a command line or batch file (see ui_BatchFile):

• From a command line:
Long form: /U:ui_SiteMask=<mask>

Short form: /SM=<mask>

• From a batch file:
ui_SiteMask=<mask>

where <mask> is the bit-mask as noted above.

Examples

Example 1:
These two examples perform identically when executed at a Windows command line:

C:\> ui /U:ui_SiteMask=1

C:\> ui /SM=1

This example sets the mask from a batch file:

ui_SiteMask=1

This example sets the mask from user-written C-code:

remote_set("ui_SiteMask", 1, -1);

The following example will read back and output the state of this variable from user C-code:

UINT64_VARIABLE(ui_SiteMask, 0, ""){}
remote_get("ui_SiteMask", -1);
output(" Get ui_SiteMask => %I64d", ui_SiteMask);
 2/27/09 Pg-2409

Advanced Topics User Variables
Example 2:
This example uses ui_SiteMask in HOST_BEGIN_BLOCK() code. ui_ProgLoaded is
used to signal the HOST_BEGIN_BLOCK() code when program loading has completed on
all sites. The HOST_BEGIN_BLOCK() code execution then continues, to retrieve the current
value of ui_SiteMask and, compensating for the value of sites_per_controller(),
output a message indicating each enabled site:

// When UI reports all sites have completed loading the test
// program, send a signal to the HOST_BEGIN_BLOCK() to continue
// execution
VOID_VARIABLE(ui_ProgLoaded, "") {

remote_signal("AllSitesLoaded", 0);
}

UINT64_VARIABLE(ui_SiteMask, 0, "") {}

HOST_BEGIN_BLOCK(example) { // See HOST_BEGIN_BLOCK()

// ... other code here ...

// HOST_BEGIN_BLOCK() execution waits here for the signal
// that all sites have completed loading the test program
if (remote_wait("AllSitesLoaded", INFINITE) == -1)

fatal("ERROR: programs didn't load");

// Get the value of ui_SiteMask from UI
remote_get("ui_SiteMask", -1);

// Output a message for each enabled site. Ignore ganged sites
// using sites_per_controller()
for (int bit = 0; bit < 60; bit += sites_per_controller())

if ((ui_SiteMask & ((UINT64) 1 << bit)) == 1)
output("Site %d is active", (bit + 1)); // bit 0 = site-1

// ... other code here ...

}

7.1.11.73 ui_SiteModeCommandLine
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteModeCommandLine.
 2/27/09 Pg-2410

Advanced Topics User Variables
Description
This UI user variable is used to specify command line arguments which will be executed in
each active Site process.

This is targeted at setting the value of one or more user variables in the Site process(es),
using command line or batch file methods (see ui_BatchFile). Similar capabilities exist
for the Host using ui_HostModeCommandLine and the Tool using
ui_ToolModeCommandLine.

A single string value is assigned to ui_SiteModeCommandLine, within which the /s: and
/S: delimiters are used to:

• Delimit each user variable value pair
• Designate whether the specified user variable initialization is to occur before

(/s:) the CONFIGURATION() block executes (i.e. before any program initialization
has begun) or after (/S:) the INITIALIZATION_HOOK() executes (i.e. after all
program initialization has completed).

Prior to being initialized by ui_SiteModeCommandLine the user variable value is
determined by the value set in the program source code.

Only one ui_SiteModeCommandLine exists, the last one specified replaces any that were
previously defined.

The body code of the user variable(s) being initialized executes in each enabled Site
process. If multiple values are assigned to a user variable, which can be done using
separate instances of /S: or /s:, the body code will execute once for each value. It is
possible to set both /s: and /S: for the same user variable giving it one value before
program initialization and a different value afterwards.

Normally, the command string only executes once, while loading the first test program after
UI starts. Any other test programs loaded during the same UI invocation will not be affected.
Using the Reload option the initialization will occur for each test program loaded using the
current UI invocation.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Two error types are reported, which occur during program loading:

• An invalid user variable name results in a warning message in each enabled Site
output window. When this occurs, the test program continues to load/execute. In
the example warning message below the invalid user variable name is: uVar1:
Warning: Attempt to set undefined user-variable "uVar1" from site 1 ignored.
Warning: This message will not be repeated for user-variable "uVar1".
 2/27/09 Pg-2411

Advanced Topics User Variables
• An invalid command string results in the following error popup (the program name
will be different). After the OK button is clicked the test program continues to load/
execute:

Usage
CSTRING_VARIABLE(ui_SiteModeCommandLine, "", "")

From command line:

Long form: /U:ui_SiteModeCommandLine="command string"

Short form: /SC="command string"

From batch file:

ui_SiteModeCommandLine="command string"

where command string utilizes two delimiters to separate user variable value pairs:

• /s:

• /S:

Using lowercase /s: causes the specified user variable to be initialized before the
CONFIGURATION() block executes (i.e. before any program initialization has begun). Using
the uppercase /S: causes the specified user variable to be initialized after the
INITIALIZATION_HOOK() executes (i.e. after all program initialization has completed).

A timeout value can optionally be specified for a user variable by appending {time} to the
statement. The value -1 sets INFINITY. For example, to set the timeout value for the user
variable names uVAR1 to 1000mS:

C:\> ui /SC="/S:uVAR1=xxx{1000}

Example
These two examples perform identically when executed at a Windows command line. Two
user variables are initialized, one before program initialization starts (uVAR1) and one after
initialization had completed (uVAR2):
 2/27/09 Pg-2412

Advanced Topics User Variables
C:\> ui /U:ui_SiteModeCommandLine="/S:uVAR1=xxx /s:uVAR2=yyy"

C:\> ui /SC="/S:uVAR1=xxx /s:uVAR2=yyy"

Given the following user variable definitions exist in the test program, the output noted below
will occur when either of the examples above is used:

CSTRING_VARIABLE(uVAR1, "?", "") {
output("Site[%d] uVAR1 => %s ", site_num(), uVAR1);

}

CSTRING_VARIABLE(uVAR2, "?", "") {
output("Site[%d] uVAR2 => %s ", site_num(), uVAR2);

}

Output messages in Site window on a single site system (PT):

Site[1] uVAR2 => yyy

The test program is loaded

Site[1] uVAR1 => xxx

7.1.11.74 ui_SiteUnloaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_SiteUnloaded.

Description
This Callback UI User Variable is invoked by UI when a test program is unloaded on each
site.

If ui_SiteUnloaded is defined in the test program and/or User Tools its body code will be
executed once UI determines that a test program has been unloaded on each site. This can
be used to synchronize code in the HOST_END_BLOCK() and/or User Tools code with site
operation.

When invoked, the value of the variable is set to the site which reported the program
unloaded.

A similar UI user variable reports when all sites have reported the test program is unloaded.
See ui_ProgUnloaded.

A related UI user variable reports when each site reports the test program is loaded. See
ui_SiteLoaded.
 2/27/09 Pg-2413

Advanced Topics User Variables
Usage
INT_VARIABLE(ui_SiteUnloaded, 0, "") { [body code] }

where:

ui_SiteUnloaded is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_SiteUnloaded in their test program or
User Tools.

Example
This simple example outputs a message when ui_SiteUnloaded is invoked by UI. This
code will execute in the Host process if ui_SiteUnloaded is defined in the test program.
This code will execute in the Tool process if ui_SiteUnloaded is defined in User Tools.

INT_VARIABLE(ui_SiteUnloaded, 0, "") {
output("ui_SiteUnloaded from Site-%d", ui_SiteUnloaded);

}

7.1.11.75 ui_StartTest
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_StartTest.

Description
This UI user variable is used to send a Start Testing signal to UI.

ui_StartTest can be used from Host code or User Tools code.

ui_StartTest should only be used:

• After test program loading has completed on all enabled sites (see
ui_ProgLoaded)

• After a previous start test has completed (see ui_TestDone).
Typically, after test program loading is complete, execution waits (indefinitely) for a Start
Testing signal. The Start Testing signal can be invoked several ways:

• From the keyboard, by typing control-T
• Using UI’s File Start Testing menu option
 2/27/09 Pg-2414

Advanced Topics User Variables
• Using the ui_StartTest user variable in user-written C-code.
Each time Start Testing is invoked, one iteration through the Sequence & Binning Table is
executed.

When using automated IC handlers or wafer prober equipment it is common for a code loop
in the HOST_BEGIN_BLOCK() to receive a start test signal from the equipment and forward
it to UI using ui_StartTest (see Example). The code loop then waits to receive
ui_TestDone from UI, indicating that all test sites enabled in the ui_SiteMask have
completed testing. Execution then continues to, for example, retrieve binning information
from the sites which is forwarded to the handler/prober equipment. The code loop then waits
for the equipment to send another start test signal, etc.

Also see ui_StopTest.

Usage
Intended usage is via remote_send() from within user-written C-code, typically from User
Dialogs or User Tools. The variable is only valid when sent to UI (site = -1).

Example
This is a simplified example showing the use ui_ProgLoaded, ui_StartTest, and
ui_TestDone in a HOST_BEGIN_BLOCK() code loop as described above. Not shown is
the equipment specific code which interfaces with a handler/prober to receive start test, and
send binning information.

VOID_VARIABLE(ui_ProgLoaded, "") {

// Send a signal to the corresponding remote_wait() in
// the HOST_BEGIN_BLOCK() indicating that all sites have

completed
// loading the test program
remote_signal("AllSitesLoaded", 0);

}~

VOID_VARIABLE(ui_TestDone, "") {

// Send a signal to the corresponding remote_wait() in
// the HOST_BEGIN_BLOCK() indicating that all sites have

reported
// Sequence & Binning Table execution has completed.
remote_signal("TestDone", 0);

}

 2/27/09 Pg-2415

Advanced Topics User Variables
HOST_BEGIN_BLOCK(myHBB) { // See HOST_BEGIN_BLOCK()

// Wait here for all sites to report the test program is loaded
remote_wait("AllSitesLoaded", INFINITE);

output("All sites report test program is loaded");

while(1) { // Unload the test program to terminate the while(1)

// Wait here for handler/prober start test signal

// Send ui_StartTest to UI, which signals all enabled sites
// to execute the Sequence & Binning Table. Note that since
// no body code is needed in ui_StartTest there is no need to
// define it locally i.e. just send "the name"

remote_send("ui_StartTest", -1, TRUE);

// Wait here for UI notification that testing has completed
// on all sites
remote_wait("TestDone", INFINITE);

// Gather up any desired binning information here
// Send to handler/prober, etc.

}
}

7.1.11.76 ui_StartTool
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_StartTool.

Description
This UI user variable can be used to invoke User Tools from user C-code.

ui_StartTool can be used from a Windows command line, from within a batch file (see
ui_BatchFile), or from user-written C-code.

ui_StartTool can also be used to start LEC Tool (LECTool.exe) and ScanTool
(scantool.exe). These tools can’t be started using ui_ShowTool.

Usage
CSTRING_VARIABLE(ui_StartTool, "", "")
 2/27/09 Pg-2416

Advanced Topics User Variables
ui_StartTool can be set from user-written C-code using remote_set().
remote_get() can be used to read back the value of ui_StartTool. The variable is only
valid when sent to UI (site = -1).

remote_set ("ui_StartTool", "path", -1);

Note that using remote_get() will return the value of ui_StartTool, regardless of
whether a tool was actually started or not i.e. the return value is the same if the specified tool
did not exist or the path was wrong, etc.

It is possible to set ui_StartTool from a command line or batch file (see
ui_BatchFile). In both cases it is possible to start multiple User Tools using multiple
instances of ui_StartTool.

From a command line:

Long form: /U:ui_StartTool=<path>

Short form: /TOOL=<path>

From a batch file:

ui_StartTool=<path>

where <path> is the desired path/file-name of the User Tools executable file.

Example
The following example will start the user tool at C:/myTool/Debug/myTool.exe:

CString path = "C:/myTool/Debug/myTool.exe;

remote_set("ui_StartTool", path, -1);

These two examples perform identically when executed at a Windows command line:

ui /U:ui_StartTool=C:/myTool/Debug/myTool.exe

ui /TOOL=C:/myTool/Debug/myTool.exe

This example starts the same tool from a batch file:

ui_StartTool=C:/myTool/Debug/myTool.exe

7.1.11.77 ui_StopTest
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_StopTest.
 2/27/09 Pg-2417

Advanced Topics User Variables
Description
This UI user variable can be used to cause UI to send a Stop Testing signal to the enabled
site controllers. In most cases, this will interrupt execution of the Sequence & Binning Table.

The Stop Testing signal can be invoked several ways:

• From the keyboard, by typing control-S
• Using UI’s File Stop Testing menu option
• Using the ui_StopTest user variable in user-written C-code

Note: the ability to actually stop testing is limited. In general, testing will stop at the
beginning of the next Nextest function to execute after the Stop Test signal sent
to the site controllers by UI. If the APG pattern generator is active (i.e.
executing a test pattern) it will be stopped and execution will halt. However, if a
user-written code segment (or code loop) is executing which does not call any
of the Nextest functions that code cannot be halted.

See ui_StartTest.

Usage
Intended usage is via remote_send() from within user-written C-code, typically from User
Dialogs or User Tools. The variable is only valid when sent to UI (site = -1).

Example
remote_send("ui_StopTest", -1, TRUE);

7.1.11.78 ui_TestDone
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TestDone.

Description
This Callback UI User Variable is invoked by UI each time execution of the Sequence &
Binning Table completes on all enabled test sites.
 2/27/09 Pg-2418

Advanced Topics User Variables
If ui_TestDone is defined in the test program and/or User Tools its body code will be
executed any time UI signals ui_TestDone. This is typically used to synchronize code in
the Host C-code and/or user tool C-code with site operations.

Two versions (overloads) of ui_TestDone are available:

• The VOID version has no inherent value; i.e. it only executes the body code.
• The CSTRING version is assigned information sent from the last site which

completed execution of the Sequence & Binning Table. The body code can use this
information as desired. More below.

As indicated, the CSTRING version of ui_TestDone represents a CString variable.
When the call-back is triggered the value assigned to ui_TestDone consists of the last
site which completed execution of the Sequence & Binning Table plus a comma separated
string of bin values from that site. ui_TestDone is useful on single-site systems to deliver
binning information to Host code and/or User Tool code at the end of Sequence & Binning
Table execution. However, when using multi-site systems, ui_SiteDone should be used
instead, to allow binning information from all sites to be delivered to Host code and/or User
Tool code.

Also see ui_TestStarted.

Usage
VOID_VARIABLE(ui_TestDone, "") { [body code] }

CSTRING_VARIABLE(ui_TestDone, "", "") { [body code] }

where:

ui_TestDone is a Callback UI User Variable.

body code is user code added to the body of ui_TestDone.

Example
The following example outputs a message when ui_TestDone is issued by UI. This code
will execute in the Host process if ui_TestDone is defined in the test program. This code
will execute in the Tool process if ui_TestDone is defined in User Tools:

VOID_VARIABLE(ui_TestDone, "", "") {
output(" ui_TestDone received from UI");

}

 2/27/09 Pg-2419

Advanced Topics User Variables
7.1.11.79 ui_TestProgConfiguration
UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TestProgConfiguration.

Description
This UI user variable can be used to specify a CONFIGURATION() to be used as the test
program loads.

ui_TestProgConfiguration is only useful when the test program contains multiple
CONFIGURATION() blocks. Note that this has no effect on HOST_CONFIGURATION(),
SITE_CONFIGURATION(), or TOOL_CONFIGURATION() selections.

This UI user variable is targeted for use from a Windows command line, or from within a
batch file (see ui_BatchFile). While it is possible to set ui_TestProgConfiguration
from user-written C-code it has no effect on the currently loaded test program, but will affect
the next program loaded within the same instance of UI.

The value is NOT persistent after UI is terminated (via the UI.ini file). The value is cleared
when a test program is loaded.

Usage
CSTRING_VARIABLE(ui_TestProgConfiguration, "", "")

ui_TestProgConfiguration can be set from a command line or batch file (see
ui_BatchFile).

From a command line:

Long form: /U:ui_TestProgConfiguration=<name>

Short form: /TPC=<name>

From a batch file:

ui_TestProgConfiguration=<name>"

where <name> is the desired name of the a CONFIGURATION() block in the test program to
be loaded next. The name must be exact, and is case sensitive. An invalid name is ignored,
with no warnings.

Example
The examples below assume the next test program loaded will contain the following:
 2/27/09 Pg-2420

Advanced Topics User Variables
CONFIGURATION(Config1) {
// ... some code here

}

CONFIGURATION(Config2) {
// ... some code here

}

Example 1:
These two examples perform identically when executed at a Windows command line.

ui /TPC=Config2

ui /U:ui_TestProgConfiguration=Config2

Example 2:
The following is an example of a batch file which will start UI, enable Engineering Mode, load
the test program D:/MinTestProg/Debug/MinTestProg, and select the Config1
CONFIGURATION() block:

ui_NoLogo=1
ui_EngineeringMode=1
ui_TestProgConfiguration=Config1
ui_TestProgName=D:/MinTestProg/Debug/MinTestProg

If these statements are in the file C:\test6_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test6_batch.txt

Example 3:
This example sets ui_TestProgConfiguration from C-code which can execute in Host,
Site or User Tools code. As noted above, this has limited value:

CString name = "Config2";

remote_set("ui_TestProgConfiguration", name, -1);

This example gets the current value of ui_TestProgConfiguration from C-code which
can execute in Host, Site or User Tools code. Note, however, that loading a test program
clears the value in ui_TestProgConfiguration, thus this example is only useful before
the test program is loaded i.e. from user tool code when the tool is started before the test
program:

CString val = remote_get("ui_TestProgConfiguration", -1);
 2/27/09 Pg-2421

Advanced Topics User Variables
output(" Get ui_TestProgConfiguration => %s", val)

7.1.11.80 ui_TestProgDirPath
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TestProgDirPath.

Description
This UI user variable can be used to specify the initial location displayed in UI’s File Open
Test Program browser.

ui_TestProgDirPath is targeted for use from a Windows command line, from within a
batch file (see ui_BatchFile), or from user-written Host, Site or User Tools C-code.

An invalid path is ignored.

The value IS persistent after UI is terminated (via the UI.ini file).

Usage
CSTRING_VARIABLE(ui_TestProgDirPath, "", "")

ui_TestProgDirPath can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1).

remote_set ("ui_TestProgDirPath", "path", -1);

CString path = remote_get ("ui_TestProgDirPath", -1);

ui_TestProgDirPath can be set from a command line or batch file (see
ui_BatchFile).

From a command line:

Long form: /U:ui_TestProgDirPath=<path>

Short form: /TD=<path>

From a batch file:

ui_TestProgDirPath=<path>"

where <path> is the desired path to the test program to be loaded next.
 2/27/09 Pg-2422

Advanced Topics User Variables
Example

Example 1:
These two examples perform identically when executed at a Windows command line.

ui /TD=D:/MinTestProg/Debug

ui /U:ui_TestProgDirPath=D:/MinTestProg/Debug

Example 2:
The following is an example of a batch file which will start UI, enable Engineering Mode, set
a path to the next program loaded = D:/MinTestProg/Debug, and load the test program
at that location:

ui_NoLogo=1
ui_EngineeringMode=1
ui_TestProgDirPath=D:/MinTestProg/Debug
ui_TestProgName=MinTestProg

If these statements are in the file C:\test7_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test7_batch.txt

Example 3:
This example sets ui_TestProgDirPath from C-code which can execute in Host, Site or
User Tools code:

CString path = "D:/MinTestProg/Debug";

remote_set("ui_TestProgDirPath", path, -1);

This example gets the current value of ui_TestProgDirPath from C-code which can
execute in Host, Site or User Tools code:

CString path = remote_get("ui_TestProgDirPath", -1);

output(" Get ui_TestProgDirPath => %s", path)

7.1.11.81 ui_TestProgName
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TestProgName.
 2/27/09 Pg-2423

Advanced Topics User Variables
Description
This UI user variable can be used to specify the name of a test program to load.

When using ui_TestProgName, if a full path to the test program executable is not
specified, the location of the test program will be resolved using the default environmental
path value, unless ui_TestProgDirPath is used.

ui_TestProgName is targeted for use from a Windows command line, or from within a
batch file (see ui_BatchFile).

Use remote_get() of ui_TestProgName to get the complete path/program-name to the
currently loaded test program from user C-code. No valid application exists for setting
ui_TestProgName from user-written C-code.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
CSTRING_VARIABLE(ui_TestProgName, "", "")

ui_TestProgName can be set from a command line or batch file (see ui_BatchFile).

From a command line:

Long form: /U:ui_TestProgName=<name>

Short form: /TP=<name>

From a batch file:

ui_TestProgName=<name>"

where <name> is the name of the desired test program executable file.

Example

Example 1:
These two examples perform identically when executed at a Windows command line.

ui /TP=D:/MinTestProg/Debug/MinTestProg.exe

ui /U:ui_TestProgName=D:/MinTestProg/Debug/MinTestProg.exe

Example 2:
The following is an example of a batch file which will start UI, enable Engineering Mode, and
load the test program = D:/MinTestProg/Debug/MinTestProg.exe:
 2/27/09 Pg-2424

Advanced Topics User Variables
ui_NoLogo=1
ui_EngineeringMode=1
ui_TestProgName=D:/MinTestProg/Debug/MinTestProg.exe

If these statements are in the file C:\test8_batch.txt the batch file can be executed
from the command line using

C:\ui /BATCH=C:\test8_batch.txt

Example 3:
This example gets the current value of the currently loaded test program from C-code, which
can execute in Host, Site or User Tools code:

CString name = remote_get("ui_TestProgName", -1);

output(" Get ui_TestProgName => %s", name);

7.1.11.82 ui_TestStarted
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TestStarted.

Description
This Callback UI User Variable is invoked by UI each time it sends the Start Test signal to the
test sites.

If ui_TestStarted is defined in the test program and/or User Tools its body code will be
executed any time UI signals ui_TestStarted. This is typically used to synchronize code
in the Host C-code and/or user tool C-code with site operations.

Note that the type of this variable was initially VOID_VARIABLE but later changed to
UINT64_VARIABLE. After this change, the value of ui_TestStarted is set to a bit-wise
mask of the sites which are receiving the start-test signal.

Also see ui_TestDone, ui_SiteDone.

Usage
UINT64_VARIABLE(ui_TestStarted, "") { [body code] }

where:

ui_TestStarted is a Callback UI User Variable.
 2/27/09 Pg-2425

Advanced Topics User Variables
body code is the C-code the user adds to the body of ui_TestStarted in their test
program or User Tools.

Example
This simple example outputs a message when ui_TestStarted is issued by UI. This code
will execute in the Host process if ui_TestStarted is defined in the test program. This
code will execute in the Tool process if ui_TestStarted is defined in User Tools.

UINT64_VARIABLE(ui_TestStarted, "") {
output("ui_TestStarted received");
output(" Site mask = 0x%I64x", ui_TestStarted);

}

7.1.11.83 ui_TimingToolPinLists
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_TimingToolPinLists.
 2/27/09 Pg-2426

Advanced Topics User Variables
Description
By default, TimingTool displays all pin lists defined in the test program, regardless whether
the pin lists are used to define timing or not. In the example below, note the pin list named
all_pins_of_my_test_program is displayed, even though it isn’t useful in TimingTool.

User C-code can be used to both specify which pin lists are displayed in TimingTool, and to
enable runtime modification of this list.

ui_TimingToolPinLists can only be used from user-written C-code.

Note the following:

• Pay close attention to the spelling of the pin list names, including case.
• Pin lists which are not valid for the test program in use are ignored, no warning

messages are generated.
• If all pin lists specified are invalid TimingTool won’t display any timing values.
• Setting the value to ““ (null string) will restore default operation i.e. display all pin

lists in the test program.
• If TimingTool is open when ui_TimingToolPinLists is modified, it must be

terminated and restarted to see the changes.
 2/27/09 Pg-2427

Advanced Topics User Variables
• The value is NOT persistent after the current test program is unloaded or when UI
is terminated (via the UI.ini file).

Usage
CSTRING_VARIABLE(ui_TimingToolPinLists, "", "")

ui_TimingToolPinLists can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1).

Multiple pin lists are specified as a comma separated CString:

remote_set ("ui_TimingToolPinLists", "pl_1, pl_2, pl_n", -1);

Examples

Example 1:
If interactive changes of the list of pin lists are not needed use remote_set() in the Host
Begin Block with the desired pin lists coded directly:

HOST_BEGIN_BLOCK(your_host_begin_block_name){

... other code ...

remote_set("ui_TimingToolPinLists",
"pl_1, pl2, pl_n",
-1);

... other code ...
}

Example 2:
This code will retrieve the current value of ui_TimingToolPinLists and print it as a
comma separated string:

CString myPL = remote_get ("ui_TimingToolPinLists", -1);

output(" myPL => %s", myPL);

Example 3:
It is also possible to use a CSTRING_VARIABLE to specify the list of pin lists. When this is
done, the list can be modified interactively using UI’s User Variables Tool. In this example,
TimingPinLists is set at compile-time to an explicit list of pin list names, and invoked in
 2/27/09 Pg-2428

Advanced Topics User Variables
the HOST_BEGIN_BLOCK(). With no interactive changes, TimingTool will start and display
these pin lists:

CSTRING_VARIABLE(TimingPinLists,
"pl_1, pl2, pl_n",
"Timing Pin Lists") {

remote_set("ui_TimingToolPinLists", TimingPinLists, -1);

}

HOST_BEGIN_BLOCK(your_host_begin_block_name) {

... other code ...

invoke (TimingPinLists); // Execute uVar body code

... other code ...

}

Example 4:
In the following example, the CSTRING_VARIABLE sets ui_TimingToolPinLists to
contain every pin list in the test program. The user variable can still be interactively modified
using UI’s User Variables Tool:

CSTRING_VARIABLE(TimingPinLists,
resource_all_names(S_PinList),
"Timing Pin Lists") {

// set it in Ui
remote_set("ui_TimingToolPinLists", TimingPinLists, -1);

}

Note that Initially TimingPinLists contains a comma separated list of every pin list in the
test program. This happens during program initialization because the 2nd argument to the
CSTRING_VARIABLE definition executes resource_all_names(), which returns a list of
all pin lists in the program. TimingPinLists is then set to that list.

7.1.11.84 ui_ToolLoaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ToolLoaded.
 2/27/09 Pg-2429

Advanced Topics User Variables
Description
This Callback UI User Variable is invoked by UI any time a User Tools has started and has
completely initialized.

If ui_ToolLoaded is defined in the test program or in User Tools code, its body code will be
executed each time UI invokes this user variable. Note that this notification is limited to Host
process and User Tools only i.e. it is not invoked in any site process. The value UI assigns to
ui_ToolLoaded will be the site number of the tool just started.

Note: ui_ToolLoaded is not sent by UI until after the tool is completely initialized i.e.
after the TOOL_BEGIN_BLOCK and INITIALIZATION_HOOK executions have
completed.

Also see ui_ToolUnloaded.

Usage
INT_VARIABLE(ui_ToolLoaded, 0, "") { [body code] }

where:

ui_ToolLoaded is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_ToolLoaded in their User Tools.

Example
This simple example outputs a message when ui_ToolLoaded is invoked by UI. This code
will execute in the Host process and in each running user tool process in which
ui_ToolLoaded is defined:

INT_VARIABLE(ui_ToolLoaded, 0, "") {
output("ui_ToolLoaded for Site Number => %d", ui_ToolLoaded);

}

7.1.11.85 ui_ToolModeCommandLine
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ToolModeCommandLine.
 2/27/09 Pg-2430

Advanced Topics User Variables
Description
This UI user variable is used to specify command line arguments when UI is started, but
these arguments which effect the first User Tools started by UI.

This is targeted at using command line or batch file methods (see ui_BatchFile) to start UI,
where the command line or batch file needs to set the value of one or more user variables
used by the first User Tools started from UI.

Several key differences exist between ui_ToolModeCommandLine and the rather similar
capabilities provided for Site options (using ui_SiteModeCommandLine) and Host options
(using ui_HostModeCommandLine):

• ui_ToolModeCommandLine sets options when starting UI, but which are only
effective if and when the first User Tool is subsequently started from UI (using the
Tools > Open Tool... menu option). A User Tool started using any other
method does not receive the command line parameters.

• Once the first User Tool is started, the command line arguments assigned to
ui_ToolModeCommandLine are cleared.

• ui_ToolModeCommandLine does not have Reload support.
A single string value is assigned to ui_ToolModeCommandLine, within which the /t: and
/T: delimiters are used to:

• Delimit each user variable value pair
• Designate whether the specified user variable initialization is to occur before

(/t:) the CONFIGURATION() block executes (i.e. before any tool initialization has
begun) or after (/T:) the INITIALIZATION_HOOK() executes (i.e. after all tool
initialization has completed).

Prior to being initialized by ui_ToolModeCommandLine the user variable value is
determined by the value set in the program source code.

Only one ui_ToolModeCommandLine value exists, the last one specified replaces any that
were previously defined.

The body code of each user variable(s) being initialized executes in the Tool process. If
multiple values are assigned to a user variable, which can be done using separate instances
of /T: or /t:, the body code will execute once for each value. It is possible to set both
/t: and /T: for the same user variable giving it one value before program initialization and
a different value afterwards.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Two error types are reported, which occur during Tool loading:
 2/27/09 Pg-2431

Advanced Topics User Variables
• An invalid user variable name results in a warning message in the Host output
window, when the tool is loading. When this occurs, the tool continues to load/
execute.

• An invalid command string results in the following error popup (the program name
will be different). After the OK button is clicked UI will continue to load/execute:

Usage
CSTRING_VARIABLE(ui_ToolModeCommandLine, "", "")

From command line:

Long form: /U:ui_ToolModeCommandLine="command string"

Short form: /TC="command string"

From batch file:

ui_ToolModeCommandLine="command string"

where command string utilizes two delimiters to separate user variable value pairs:

• /t:
• /T:

Using lowercase /t: causes the specified user variable to be initialized before the
CONFIGURATION() block executes (i.e. before any program initialization has begun). Using
the uppercase /T: causes the specified user variable to be initialized after the
INITIALIZATION_HOOK() executes (i.e. after all program initialization has completed).

A time out value can optionally be specified for a user variable by appending {time} to the
statement. The value -1 sets INFINITY. For example, to set the time out value for the user
variable names uVAR1 to 1000mS:

C:\> ui /TC="/T:uVAR1=xxx{1000}
 2/27/09 Pg-2432

Advanced Topics User Variables
Example
These two examples perform identically when executed at a Windows command line.
Values for two user variables are specified, one to be applied before tool initialization starts
(uVAR1) and one after initialization has completed (uVAR2):

C:\> ui /U:ui_ToolModeCommandLine="/T:uVAR1=xxx /t:uVAR2=yyy"

C:\> ui /TC="/T:uVAR1=xxx /t:uVAR2=yyy"

Given the following user variable definitions exist in the tool, the output noted below will
occur when either of the examples above is used:

CSTRING_VARIABLE(uVAR1, "?", "") {output("uVAR1 => %s", uVAR1);}

CSTRING_VARIABLE(uVAR2, "?", "") {output("uVAR2 => %s", uVAR2);}

Output messages in Host window (the Tools site number may vary):

[Tool 2511]: uVAR2 => yyy

[Tool 2511]: uVAR1 => xxx

7.1.11.86 ui_ToolUnloaded
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_ToolUnloaded.

Description
This Callback UI User Variable is invoked by UI any time a User Tools is terminated.

If ui_ToolUnloaded is defined in the test program or User Tools code, its body code will
be executed each time UI invokes this user variable. Note that this notification is limited to
Host process and User Tools only i.e. it is not invoked in any Site processes. The value UI
assigns to ui_ToolUnloaded will be the site number of the tool just unloaded.

Note: ui_ToolUnloaded is not sent by UI until after the tool is completely unloaded
i.e. after the TOOL_END_BLOCK execution has completed.

Also see ui_ToolLoaded.

Usage
INT_VARIABLE(ui_ToolUnloaded, 0, "") { [body] }
 2/27/09 Pg-2433

Advanced Topics User Variables
where:

ui_ToolUnloaded is a Callback UI User Variable.

body is the C-code the user adds to the body of ui_ToolUnloaded in their User Tools.

Example
This simple example outputs a message when ui_ToolUnloaded is invoked by UI. This
code will execute in each running user tool process in which ui_ToolUnloaded is defined:

VOID_VARIABLE(ui_ToolUnloaded, "") {
 output("ui_ToolUnloaded for Site Number => %d", ui_ToolUnloaded);
}

7.1.11.87 ui_UserVarSiteMode
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_UserVarSiteMode.

Description
This UI User Variable can be used to select the initial state of the radio button in UI's User
Variables Tool, to be either Host or Controller:

ui_UserVarSiteMode can be used from a Windows command line, from within a batch
file (see ui_BatchFile), or from within user-written C-code.

The value IS persistent after UI is terminated (via the UI.ini file).
 2/27/09 Pg-2434

Advanced Topics User Variables
Usage
ui_UserVarSiteMode can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1).

remote_set ("ui_UserVarSiteMode", value, -1);

CString val = remote_get("ui_UserVarSiteMode", -1);

where <value> is 0 to enable the Host radio button, or 1 which enables the Controller radio
button.

From command line:

Long form: /U:ui_UserVarSiteMode=<value>

Short form: /UVS=<value>

Short/short form: /UVS

The latter short form assumes value = 1 i.e. Controller is selected.

From batch file:

ui_UserVarSiteMode=<value>

where <value> is 0 to enable the Host radio button, or 1 which enables the Controller radio
button.

Example
These two examples perform identically when executed at a Windows command line. Both
cause the Controller radio button to be enabled:

C:\> ui /U:ui_UserVarSiteMode=1

C:\> ui /UVS=1

This example sets ui_UserVarSiteMode from C-code which can execute in Host, Site or
User Tools code:

remote_set("ui_UserVarSiteMode", 1, -1);

This example gets the current value of ui_UserVarSiteMode from C-code which can
execute in Host, Site or User Tools code:

CString val = remote_get("ui_UserVarSiteMode", -1);

output(" Get ui_UserVarSiteMode => %s", val);
 2/27/09 Pg-2435

Advanced Topics User Variables
7.1.11.88 ui_UserVariableTimeout
All UI User Variables are also listed in UI User Variables, Alphabetical Listing. See
ui_UserVariableTimeout.

Description
This UI user variable can be used to modify the default timeout value applied when
executing User Variables body code.

The default value = 5000 i.e. 5 seconds

ui_UserVariableTimeout can be used from a Windows command line, from within a
batch file (see ui_BatchFile), or from within user-written C-code. See Usage below.

The value is NOT persistent after UI is terminated (via the UI.ini file).

Usage
ui_UserVariableTimeout can be set from user-written C-code using remote_set().
remote_get() can be used to read back the current value. The variable is only valid when
sent to UI (site = -1).

remote_set ("ui_UserVariableTimeout", value, -1);

CString val = remote_get("ui_UserVariableTimeout", -1);

where <value> is the desired timeout value in milliseconds (mS).

Example
This example sets ui_UserVariableTimeout from C-code which can execute in Host,
Site or User Tools code:

remote_set("ui_UserVariableTimeout", 5000, -1);

This example gets the current value of ui_UserVariableTimeout from C-code which
can execute in Host, Site or User Tools code:

CString val = remote_get("ui_UserVariableTimeout", -1);

output(" Get ui_UserVariableTimeout => %s", val);
 2/27/09 Pg-2436

Advanced Topics Host / Site / Tool Communication
7.2 Host / Site / Tool Communication

Note: see Overview in Binning for an explanation of the different processes noted in
the following sections.

The Host process, each Site process, and all Tool processes execute independently.
However, there may be occasions when some synchronization or exchange of information is
needed between these processes.

Execution synchronization between process can use the remote_signal(),
remote_wait() functions, to cause one process to wait for a signal from another process
before execution continues.

Information exchange between processes is done via User Variables:

• The remote_send() and remote_fetch() functions can be used to
synchronize the values of User Variables between processes. Optionally, the body
code of the user variable can be executed in the receiving process. These
functions work with single user variable or with a snapshot (see SNAPSHOT()).

• The remote_set()function can be used to change the value of User Variables in
a remote process. The remote_get()function can be used to retrieve the value
of User Variables from another process. Optionally, the body code of the user
variable can be executed in the receiving process.

• The contents of arbitrary user-defined data structures can be sent between
processes using the Transferring User-defined Data Structures (Serialization)
mechanism.

7.2.1 remote_signal(), remote_wait()

Note: see Overview in Binning for an explanation of the different processes noted
below.
 2/27/09 Pg-2437

Advanced Topics Host / Site / Tool Communication
Description
The Host process, each Site process, and all Tool processes execute independently.
However, there may be occasions when some synchronization is needed between
processes.

For example, when using an IC handler or prober, the handler/prober code executes in the
Host process, and needs to wait for the test program to completely load on all Sites before
the first start test signal is sent. This means that the Host process needs to wait for all Site
processes to signal they are ready to execute tests. The remote_signal() and
remote_wait() functions can be used to implement this type of synchronization.

The remote_signal() function is used to send a synchronization signal from one process
to another. Arguments to this function determine the name of the signal, and which process
(site) to send it to.

The remote_wait() function is used check if a specific synchronization signal has been
received. remote_wait() can also be used to check if any of several signals have been
received. In either case, an optional timeout can be specified to control how long
remote_wait() actually waits for a signal before continuing.

Usage
void remote_signal(LPCTSTR name, int target);

int remote_wait(LPCTSTR name,
DWORD timeout DEFAULT_VALUE(INFINITE));

int remote_wait(CStringArray &names,
DWORD timeout DEFAULT_VALUE(INFINITE),
int *index DEFAULT_VALUE(0));

where:

name is the user-defined name of the synchronization signal. To obtain the desired
operation, the name must be identical in code used in both the remote_signal() process
and the remote_wait() process. A misspelling of names means the two computers will
not communicate on that synchronization signal.

names is an array of user-defined signal names, which can be used when multiple signals
are to be monitored. The remote_wait() function using names will return if any of these
signals are received. The index parameter will indicate which signal was received (see
below).
 2/27/09 Pg-2438

Advanced Topics Host / Site / Tool Communication
target is one of the standard site numbers identifying the process that will receive the
remote_signal(), as follows:

• 0 = Host process
• 1 through 60 represent Site1 through Site60 processes
• A value > 1024 is a User Tools (see site_num()).

timeout specifies how long the function will wait before proceeding, in milliseconds. If not
specified, the timeout value defaults to INFINITE, which can also be used explicitly to wait
indefinitely. If the proper signal is not received before the timeout elapses
remote_wait() returns -1. If the proper signal is received before the timeout elapses
remote_wait() returns the site number of the process that sent the synchronization signal
(name).

index is used when multiple signals are monitored, to identify which signal was received by
remote_wait(). When a signal is received by remote_wait() index returns the index
in the names array of the signal received.

Examples

Example 1:
This simple example has the Host process waiting up to 10 seconds to receive a signal
named “Site Ready”. This example would apply only to a one site system, as will be
discussed below. The Site process (SITE_BEGIN_BLOCK()) sends the signal when it is
ready for Host execution (HOST_BEGIN_BLOCK()) to continue execution.

HOST_BEGIN_BLOCK(HBB1) {
// Other code here to set up Host
if (int site = remote_wait("Site Ready", 10000) == -1)

warning("Site 1 did not respond.");
else

output("Site Ready signal received from site => %d", site);
// Other code here to complete Host setup

}

SITE_BEGIN_BLOCK(SBB1) {
// Other code here to set up Site
remote_signal("Site Ready", 0); // 0 = send to Host process

}

In the Host Begin Block, the remote_wait() function waits for 10 seconds (10000
milliseconds) to receive the signal. If the signal is not received before the 10 sec. timeout
 2/27/09 Pg-2439

Advanced Topics Host / Site / Tool Communication
elapses, remote_wait() returns -1 and the warning message is printed. If the signal is
received the Host outputs a message indicating which site sent the signal.

Example 2:
As mentioned above, the previous example would apply only to a one site system. In a multi-
site system, all sites execute the identical SITE_BEGIN_BLOCK() code, thus the first site
which sent the signal would cause the HOST_BEGIN_BLOCK() code to proceed, possibly
before other sites are ready. Therefore, using a multiple site system the remote_wait()
code needs to confirm that all sites are ready. The code below does this.

// UI sends a signal to the HOST_BEGIN_BLOCK() when all sites
// have reported the test program load has completed.
VOID_VARIABLE(ui_ProgLoaded, "") {

remote_signal ("Prog Loaded", 0);
}

HOST_BEGIN_BLOCK(HBB1) {
// Other host code before waiting for sites to complete
remote_wait("Prog Loaded"); // Uses default INFINITE timeout

}

7.2.2 remote_send()

Note: see Overview in Program Execution Control for an explanation of the different
processes noted below.

Descriptionc

Note: the term local process is used below to indicate the process which executes
remote_send(). The term remote process indicates the process which is being
modified.

The remote_send() function is used to synchronize the values of User Variables between
the local process and a remote process. This can be used to synchronize user variable
values between Host process, and/or Site(s) process, and/or User Tools processes.

remote_send() causes the current value of a user variable in the local process to be
assigned to the same user variable in the remote process. Optionally, the body code of the
 2/27/09 Pg-2440

Advanced Topics Host / Site / Tool Communication
user variable can be executed in the remote process, and the local process has the option of
waiting for the transaction to complete, including execution of the body code, before the
local execution continues.

Using remote_send() requires that the referenced user variable(s) be defined in both
local and remote processes. In contrast, remote_set() can be used to directly transmit a
new value to a user variable in a remote process, without the need to declare that user
variable in the local process. Or, if the user variable exists in both processes,
remote_set() can modify the value in a remote process without changing the value in the
local process.

remote_send() is used in two contexts:

• Referencing one user variable
• Referencing a snapshot (see SNAPSHOT())

When remote_send() references a snapshot all of the user variables defined in the
SNAPSHOT() are synchronized. The current values of the associated user variables in the
local process are assigned to the corresponding user variables in the remote process.

Using the timeout parameter, the local process has the option of waiting for the remote
process to receive the data and to complete the execution of the user variable body code
before the local process execution continues. When a snapshot is referenced, the sequence
of user variable body code execution follows the order the user variables are listed in the
SNAPSHOT(), and body code execution of each user variable will complete before the body
code of the next user variable begins.

Usage
BOOL remote_send(VariableProxy v,

int site,
BOOL invoke,
DWORD timeout DEFAULT_VALUE(0));

BOOL remote_send(Snapshot *snapshot,
int site,
BOOL invoke,
DWORD timeout DEFAULT_VALUE(0));

where:

v represents one user variable to be synchronized. A VariableProxy type refers to User
Variables and can be:

• A user variable name
 2/27/09 Pg-2441

Advanced Topics Host / Site / Tool Communication
• A quoted user variable name (string)
• A pointer to a user variable

snapshot represents a snapshot; i.e. a set of user variables. All user variables in the
snapshot will be synchronized. See SNAPSHOT().

site is one of the standard site numbers identifying the remote process i.e. the site in which
the user variable or snapshot is to be modified, as follows:

• -1 = UI - User Interface process, used with UI User Variables only
• 0 = Host process
• 1 through 60 represent Site1 through Site60 processes
• A value > 1024 is a User Tools (see site_num())

invoke determines whether the body code of the user variable is executed in the remote
process. TRUE will cause the body code to execute, FALSE will not. When a snapshot is
referenced the body code of all user variables in the SNAPSHOT() will execute (see above).

timeout specifies how long the function will wait before proceeding, in milliseconds. This
includes any time spent executing the user variable body code in the remote process. If not
specified, the timeout value defaults to zero. The value INFINITE can be specified to wait
indefinitely. If the transaction completes before time expires, remote_send() returns
TRUE, otherwise it returns FALSE.

Example
This example can be used to allow only one site at a time to perform some action. This
example is based on the fact that all access to a particular user variable's body code is
serialized by the Host process. All of the action starts with TEST_BLOCK(abc) below.

EXTERN_VOID_VARIABLE(need_x); // Forward declaration

EXTERN_VOID_VARIABLE(got_x); // Forward declaration

TEST_BLOCK(abc) {// Runs on site, as part of the Sequence table

// Cause the Host to execute the body code of need_x, then wait
// for execution to complete before proceeding.

remote_send(need_x, 0, TRUE, INFINITE); // 0 = send to Host

return TRUE;

}

 2/27/09 Pg-2442

Advanced Topics Host / Site / Tool Communication
// The need_x user variable body code is designed to run in the
// Host process, as triggered by remote_send() from a site.
// Like any user variable body, only one invocation of this body is
// possible at a time; therefore all need_x requests by the sites
// are automatically serialized and synchronized.

VOID_VARIABLE(need_x, "") {

// Execute the body code of got_x on the site which invoked
// need_x, and wait until that transaction completes. The
// built-in variable 'sender' is part of every user variable, and
// can be used to identify which site invoked remote_send() or
// remote_set().
remote_send(got_x, sender, TRUE, INFINITE);

// Execute any host code to process the value in need_x, now that
// the site 'sender' has completed setting things up.

}

VOID_VARIABLE(got_x, "") {

// Execute site code here needed before allowing the host
// to continue, as described in need_x above.

}

7.2.3 remote_fetch()

Note: see Overview in Binning for an explanation of the different processes noted
below.

Description

Note: the term local process is used below to indicate the process which executed
remote_fetch(). The term remote process indicates the other process.

Like remote_send(), the remote_fetch() function is used to synchronize the values of
User Variables in separate processes (on separate sites). This can be used to synchronize
user variables between Host, and/or Site(s), and/or User Tools processes.
 2/27/09 Pg-2443

Advanced Topics Host / Site / Tool Communication
Using remote_fetch() requires that the referenced user variable(s) be defined in both
processes. In contrast, remote_get() can be used to read a user variable value from a
remote process without the need to create the user variable in the local process. Or, if the
user variable exists in both processes, remote_get() can be used to read a user variable
value from the remote process without modifying the same user variable in the local
process.

remote_fetch() pulls the current value of the user variable from the remote process and
assigns it to the same user variable in the local process. Optionally, the body code of the
user variable can be executed in the local process, after the new value has been assigned to
the user variable. The local process has the option of waiting for the transaction to complete
before execution continues.

remote_fetch() is used in two contexts:

• Referencing one user variable
• Referencing a snapshot (see SNAPSHOT())

When remote_fetch() references a snapshot all of the user variables defined in the
SNAPSHOT are synchronized. The current values of the associated user variables in the
remote process are assigned to the corresponding user variables in the local process. Using
the timeout parameter, the local process has the option of waiting for the entire transaction
to complete before execution continues. The sequence of user variable body code execution
follows the order the user variables are listed in the SNAPSHOT(), and body code execution
of each user variable will complete before the body code of the next user variable begins.

Usage
BOOL remote_fetch(VariableProxy v,

int site,
BOOL invoke,
DWORD timeout DEFAULT_VALUE(INFINITE));

BOOL remote_fetch(Snapshot *snapshot,
int site,
BOOL invoke,
DWORD timeout DEFAULT_VALUE(INFINITE));

where:

v represents one user variable to be synchronized. A VariableProxy type refers to User
Variables and can be:

• A user variable name
• A quoted user variable name (string)
 2/27/09 Pg-2444

Advanced Topics Host / Site / Tool Communication
• A pointer to a user variable
snapshot represents a snapshot; i.e. a collection of user variables. All user variables in the
SNAPSHOT() will be synchronized.

site is one of the standard site numbers identifying the remote process i.e. the site from
which the user variable value, or snapshot, will be read, as follows:

• -1 = UI - User Interface process, used with UI User Variables only
• 0 = Host process
• 1 through 60 represent Site1 through Site60 processes
• A value > 1024 is a User Tools (see site_num())

invoke determines whether the body code of the user variable is executed in the local
process. TRUE will cause the body code to execute, FALSE will not. When a snapshot is
referenced the body code of all user variables in the SNAPSHOT() will execute (see above).

timeout specifies how long the function will wait before proceeding, in milliseconds. This
includes any time spent executing the user variable body code in the local process. If not
specified, the timeout value defaults to INFINITE, which can also be used explicitly to wait
indefinitely. If the transaction completes before time expires, remote_fetch() returns
TRUE, otherwise it returns FALSE.

Example
This example shows the Host process fetching the value of the user variable named
my_val from Site 2.

INT_VARIABLE(my_val, 0, "") {}

HOST_BEGIN_BLOCK(HBB1) {
// Other code here as needed
if (! remote_fetch (my_val, 2, FALSE, INFINITE))

warning(" Warning: Host did not receive my_val from Site 2");
else

output(" my_val from site 2 => %d", my_val);
}

 2/27/09 Pg-2445

Advanced Topics Host / Site / Tool Communication
7.2.4 remote_set(), remote_get()

Note: see Overview in Binning for an explanation of the different processes noted
below.

Description

Note: the term local process is used below to indicate the process which executed
remote_get()or remote_set(). The term remote process indicates the other
process.

The remote_set() function is used to explicitly set the value of a user variable in a remote
process. The remote_get() function is used to retrieve the value of a user variable from a
remote process.

This allows code in a Host process, Site process, or User Tools process to set or get the
value of a user variable from one of the other process.

Unlike remote_send() and remote_fetch(), which are used to synchronize user
variable values between processes, the remote_set() and remote_get() are used to
transmit information between processes. Using remote_send() or remote_fetch()
requires that the user variable be defined in both the local and remote site. In contrast,
remote_set() and remote_get() can be used to directly transmit and receive values
between two processes without the need for a common user variable.

Usage
BOOL remote_set(VariableProxy v,

ValueProxy value,
int site,
BOOL invoke DEFAULT_VALUE(TRUE),
DWORD timeout DEFAULT_VALUE(0));

CString remote_get(VariableProxy v,
int site,
BOOL invoke DEFAULT_VALUE(FALSE),
DWORD timeout DEFAULT_VALUE(INFINITE));

where:
 2/27/09 Pg-2446

Advanced Topics Host / Site / Tool Communication
v represents one user variable to be accessed. It is not legal to access a VOID_VARIABLE.
A VariableProxy type refers to User Variables and can be:

• A user variable name
• A quoted user variable name (string)
• A pointer to a user variable

value is the value to be set, using remote_set(), in the specified user variable. The
value parameter must be of a type compatible with the user variable being modified
(BOOL_VARIABLE, FLOAT_VARIABLE, etc. The value parameter is sent to the remote
process as a CString, but is converted to the proper type before being assigned to the
user variable. Error checking is done for proper type matching.

site is one of the standard site numbers identifying the remote process, as follows:

• -1 = UI - User Interface process
• 0 = Host process
• 1 through 60 represent Site1 through Site60 processes
• A value > 1024 is a User Tools (see site_num()).

invoke determines whether the body code of the user variable is executed in the receiving
process. TRUE will cause the body code to execute, FALSE will not. The receiving process
for remote_set() is the remote process specified by the site parameter. The invoke
should always be set = FALSE (default) when using remote_get().

timeout specifies how long the function will wait before proceeding, in milliseconds. This
includes any time spent executing the user variable body code. If not specified, the
timeout value defaults to zero. The value INFINITE can be used to wait indefinitely for
the transaction to complete. If the transaction completes before time expires,
remote_set() returns TRUE, otherwise it returns FALSE. If the transaction completes
before time expires, remote_get() returns the value read from the remote site as a
CString, which must be converted to the desired type as needed (using atoi(), atof(),
etc.). remote_get() returns a NULL string if a timeout occurs.

Examples

Example 1:
This example causes the body code of ui_StartTest (see UI User Variables) to execute
in the UI - User Interface process (-1). The default timeout (0) is used i.e. execution does not
wait.

// Cause UI to send a start test signal to all sites
 2/27/09 Pg-2447

Advanced Topics Host / Site / Tool Communication
remote_set("ui_StartTest", "", -1, TRUE); // Value is unused

Example 2:
This example also references one of the UI User Variables (ui_SiteMask). The local
process (could be Host, Site, or User Tools) requests the current value of ui_SiteMask
from UI - User Interface (-1), converts the returned value from string to int and assigns it
to the local variable mask.

// Get the UI's current sitemask. Don’t forget remote_get() returns
// a string

DWORD mask = atoi(remote_get("ui_SiteMask", -1));

Example 3:
This example causes the body code of user variable remote_message_box to execute in
the Host process to display a message box.

// Intended for Host execution
CSTRING_VARIABLE(remote_message_box, "", "") {

// Note that 'sender' is implicitly available in user variable
// bodies
AfxMessageBox(vFormat("The message is %s from %d",

remote_message_box, sender));

}

SITE_BEGIN_BLOCK(SB1) {
// Display a message box on the Host, wait until it's dismissed
remote_set(remote_message_box,

"Hello, Mr. Host",
0,
TRUE,
INFINITE);

output("Message box done");
}

Example 4:
The following example is a contrast between remote_send() and remote_set(). In this
example, to use remote_send() requires that ui_StartTest be declared in the test
program:
 2/27/09 Pg-2448

Advanced Topics Host / Site / Tool Communication
VOID_VARIABLE(ui_StartTest, "") {}
void func() {

remote_send(ui_StartTest, -1, TRUE);
}

Using remote_set() is more direct, but the spelling must be exact - no error checking is
done at compile-time:

void func() {
// Value doesn't matter for ui_StartTest
remote_set("ui_StartTest", "", -1);

}

Example 5:
The following example is a contrast between remote_fetch() and remote_get(). In
this example, to use remote_fetch() requires that ui_SiteMask be declared in the test
program:

DWORD_VARIABLE(ui_SiteMask, "", "") {}
void func() {

remote_fetch(ui_SiteMask, -1, FALSE);
}

Using remote_get() is simpler:

void func() {
// Note: remote_get() returns an ASCII string
DWORD mask = atoi (remote_get("ui_SiteMask", -1));

}

7.2.5 Transferring Multiple User Variables

Description
A snapshot is used to define a set of User Variables.

A snapshot can be used in conjunction with remote_send() and remote_fetch() to
synchronize multiple user variables with a single function call.

Using remote_send() and remote_fetch(), the body code of each user variable in the
snapshot can be executed. When this option is used, the order of execution follows the
 2/27/09 Pg-2449

Advanced Topics Host / Site / Tool Communication
order the user variables are listed in the snapshot. And, the body code of one user variable
executes to completion before execution of the body code of the next user variable begins.

The SNAPSHOT() macro is used to create a new snapshot.

The VARIABLE() macro is used in the SNAPSHOT() macro body-code to add one User
Variables to the snapshot.

The VARIABLES() macro is used in the SNAPSHOT() macro body-code to add all User
Variables from a specified User Dialog to the snapshot.

The REMOVE_VARIABLE() macro is used in the SNAPSHOT() macro body-code to remove
one specified User Variables from the snapshot.

The INCLUDE_SNAPSHOT() macro is used in the SNAPSHOT() macro body-code to add all
of the User Variables from an existing snapshot to the new snapshot.

The EXTERN_SNAPSHOT() macro is used to make a forward or external declaration.

Usage
EXTERN_SNAPSHOT(other_snapshot) // Defined somewhere else

SNAPSHOT(snapshot_name) {

INCLUDE_SNAPSHOT(other_snapshot)

REMOVE_VARIABLE(some_uvar_from_other_snapshot);

VARIABLE(single_var);

VARIABLES(dialog_name);

}

where:

EXTERN_SNAPSHOT is a Test System Macro used to declare an external snapshot i.e. one
created elsewhere (or below a reference in the same file).

SNAPSHOT is a Test System Macro used to create a new snapshot.

snapshot_name is a user-defined name for the collection of variables in this SNAPSHOT. To
transfer multiple user variables at one time, this name is used as the user variable in a
remote_send() or a remote_fetch().
 2/27/09 Pg-2450

Advanced Topics Host / Site / Tool Communication
INCLUDE_SNAPSHOT is a Test System Macro used to add the user variables contained in
another snapshot to the one being created. Multiple lines of INCLUDE_SNAPSHOT may be
included in the snapshot macro.

REMOVE_VARIABLE is a Test System Macro used to remove a single user variable from the
snapshot. Multiple lines of REMOVE_VARIABLE may be included in the SNAPSHOT macro.

VARIABLE is a Test System Macro used to define a single user variable named
single_var. Multiple lines of VARIABLE may be included in the SNAPSHOT macro.

VARIABLES is a Test System Macro used to add all user variables associated with a specific
User Dialog. Multiple lines of VARIABLES may be included in the SNAPSHOT macro.

dialog_name identifies a User Dialog. All user variables tied to resources in the specified
dialog are added to the snapshot.

Example
In the example below, three user variables are defined and added to the snapshot named
DUT_type. The num_DUT_pins user variable is removed from the list (just to show how it
is done). Then, when the HOST_BEGIN_BLOCK() executes, the snapshot is sent to Site 1
using one remote_send() function call.

INT_VARIABLE(num_DUT_pins, 0, "") {}
BOOL_VARIABLE(high_speed, FALSE, "") {}
FLOAT_VARIABLE(DUT_VCC, 5.0, "") {}

SNAPSHOT(DUT_type) {
VARIABLE(num_DUT_pins);
VARIABLE(high_speed);
VARIABLE(DUT_VCC);
REMOVE_VARIABLE(num_DUT_pins); // Removed it

}

HOST_BEGIN_BLOCK(hbb1) {
remote_send(DUT_type, 1, FALSE) {} // Send to Site 1

}

 2/27/09 Pg-2451

Advanced Topics Host / Site / Tool Communication
7.2.6 Transferring User-defined Data Structures (Serialization)

Description
The CALL_SERIALIZE() macro may be used to transfer arbitrary user-defined variables
and/or data structures between Host/Site/Tool processes.

In general, a CSTRING_VARIABLE user variable is used to pass the information between
processes. In the source site (process), the user-defined variables and/or data structures
are serialized into this user variable. Then remote_send(), or remote_fetch() are
used to transfer the user variable from source to destination process, after which the
information is un-serialized in the destination process. The serialization mechanism is built-
in to the Microsoft libraries, and can be researched using the on-line help in Developer
Studio.

The methodology used has several steps, best described with examples, but also outlined in
more detail here:

• Create the user-defined structure(s) as desired. These definitions must be
identical in both the source and destination sites (processes):

struct myStruct {
int myInt;
myType myTypeVar; // Must also spec Serialize()

}

• Within each data structure definition specify a Serialize() function. The body
code of this function must specify how to both serialize (CArchive.IsStoring)
and un-serialize (CArchive.IsLoading) the data elements of interest. Note that
only those data elements to be serialized need to be specified i.e. any elements
which are not included will be ignored. For data types with built-in serialization
support (i.e. int, CString, etc.), the >> and << operators must be used. For data
types which don’t have <</>> support, the .Serialize operator must be used:

struct myStruct {
int myInt;
CString myString;
myType myTypeVar;

void Serialize(CArchive &ar) {
// The order of the elements below doesn't matter, but they
// MUST be the same for both parts of the 'if'.
if (ar.IsLoading()) {
 2/27/09 Pg-2452

Advanced Topics Host / Site / Tool Communication
ar >> myInt; // Supported variable syntax
ar >> myString;

}
else { // ar.IsStoring()

ar << myInt;
ar << myString;

}
myTypeVar.Serialize (ar); // Class/struct syntax

};

• The CALL_SERIALIZE() Test System Macro is invoked once for each data
structure to be serialized:

CALL_SERIALIZE(myStruct)

CALL_SERIALIZE enables the << and >> operators for use in C-code to serialize
and un-serialize data via the CSTRING_VARIABLE container noted below.

• Create variables of the struct as desired:
myStruct instance1;

• Create a CSTRING_VARIABLE to be used as the container for the serialized data.
This definition must be shared in both the source and destination sites
(processes).

• As needed, serialize the desired data into this CSTRING_VARIABLE in the source
process.

// All CStringArchive's used in this way must be in their own
// block, so that their destructor gets a chance to update
// serialized_myStruct.
{

CStringArchive ar(&serialized_myStruct);
ar << instance1;

}

The example below shows how the body code of this user variable can be used to
perform the un-serialize step noted below.

• Use remote_send(), or remote_fetch() to update the user variable between
processes.

• Un-serialize the user variable into the appropriate variable in the destination
process:

// All CStringArchive's used in this way must be in their own
// block, so that their destructor gets a chance to update
// serialized_myStruct.
 2/27/09 Pg-2453

Advanced Topics Host / Site / Tool Communication
{
CStringArchive ar(&serialized_myStruct);
instance1 >> ar;

}

Usage
See Description and Examples.

Example
This example is rather large and consists of:

• Program Code
• Dialog Image
• Example Host Output
• Example Site Output

Program Code
This is a complete, single file, test program. The program does not perform any of the
normal testing functions but does demonstrate how information in nested user-defined
structures can be transferred from Site to Host.

The program defines a dialog (see Dialog Image) containing a single button. This is used to
invoke the process, each time the Site changes some struct data values and they are
transferred to the Host.

Note: the WARNING in the body code of the user variable named site_get_info:

#include "TestProgApp/public.h"
#include "resource.h"

// Two user-defined structs. The local Serialize() function in each
// is required to support sending data between sites via CSTRING
// uVar.

struct myStruct1 {

doublemyDouble1, myDouble2;
int myInt1, myInt2;
CString myCString1, myCString2;
 2/27/09 Pg-2454

Advanced Topics Host / Site / Tool Communication
// Everything below this line is the 'serializer', needed to
// support sending this struct between sites. By defining this
// function as part of the struct and using CALL_SERIALIZE
// below, many details are handled.

void Serialize(CArchive &ar) {
// The order of the elements below doesn't matter, but they
// MUST be the same for both parts of the 'if'. Syntax is for
// 'supported' types (see MsDev doc and next struct).
if (ar.IsLoading()){

ar >> myDouble1;
ar >> myDouble2;
ar >> myInt1;
ar >> myInt2;
ar >> myCString1;
ar >> myCString2;

}
else { // ar.IsStoring()

ar << myDouble1;
ar << myDouble2;
ar << myInt1;
ar << myInt2;
ar << myCString1;
ar << myCString2;

}
}

};

struct myStruct2 {
float myFloat1;
myStruct1 mS1a, mS1b; // See above
BOOL myBool1;

// Note that syntax used below is different for 'supported'
// types vs. Class/structs.
void Serialize(CArchive &ar) {

if (ar.IsLoading()){
ar >> myFloat1; // Variable syntax
ar >> myBool1;

}
else { // ar.IsStoring()

ar << myFloat1;
 2/27/09 Pg-2455

Advanced Topics Host / Site / Tool Communication
ar << myBool1;
}

mS1a.Serialize(ar); // Class or struct syntax
mS1b.Serialize(ar);

}
};

// Enable the << and >> operators for use in C-code.
CALL_SERIALIZE(myStruct2)
CALL_SERIALIZE(myStruct1)

//===
// Make one
myStruct2 myVar1;

int cnt = 0; // demo only

//===
// CSTRING uVar used to contain serialized data to be passed
// between sites. Data is put into this uVar by the body code of
// the uVar site_get_info, which is invoked using remote_set() from
// the Host/Tool. Then, the data is retrieved from by the Host/Tool
// using remote_fetch(), which executes this body code to
// un-serialize the data.

CSTRING_VARIABLE(serialized_myVar1, "", "") { // Host Execution
myVar1.Serialize(CStringArchive(serialized_myVar1));

}

//===
// Print values to see things change. The Example Host Output and
// Example Site Output were generated by code which included
// prettier formatting (was’t very readable here).

void print_vals(myStruct2 *v) {
output("\n======= --- Modified %d Times --- =======", cnt++);
output("myVar1.myBool1 => %s", v->myBool1 ? "TRUE" : "FALSE");
output("myVar1.myFloat1 => %3.3f", v->myFloat1);
output("myVar1.mS1a.myDouble1 => %4.4f", v->mS1a.myDouble1);
output("myVar1.mS1a.myDouble2 => %4.4f", v->mS1a.myDouble2);
output("myVar1.mS1a.myInt1 => %d", v->mS1a.myInt1);
output("myVar1.mS1a.myInt2 => %d", v->mS1a.myInt2);
output("myVar1.mS1a.myCString1 => %s", v->mS1a.myCString1);
output("myVar1.mS1a.myCString2 => %s", v->mS1a.myCString2);

}

 2/27/09 Pg-2456

Advanced Topics Host / Site / Tool Communication
//===
// Host/Tool uses remote_send() to invoke this uVar on the Site.
// The body code serializes the desired data into the uVar
// serialized_myVar1. The Host/Tool uses remote_fetch() to
// retrieve it.

VOID_VARIABLE(site_get_info, "") { // Site execution

// Modify values on Site.
myVar1.myBool1 = ! myVar1.myBool1;
myVar1.myFloat1= myVar1.myFloat1 + 101.101;
myVar1.mS1a.myDouble1= myVar1.mS1a.myDouble1 * 2;
myVar1.mS1a.myDouble2= myVar1.mS1a.myDouble1 + myVar1.myFloat1;
myVar1.mS1a.myInt1= myVar1.mS1a.myInt1 - 1;
myVar1.mS1a.myInt2= myVar1.mS1a.myInt1 + 1;
myVar1.mS1a.myCString1= "Updated Site Values ";
myVar1.mS1a.myCString2 += "X";
print_vals(&myVar1);

// Serialize the data into the CSTRING uVar serialized_myVar1.
// WARNING: all CStringArchive's used in this way must be scoped
// to their own block, so that their destructor completely
// updates the archive (data is spooled). ONLY this code should
// be within the braces.
{

CStringArchive ar(&serialized_myVar1);
ar << myVar1;

}
}

//===
// Dialog button requests site to return info, which is
// done via the uVar serialized_myVar1.

VOID_VARIABLE(Button1, "") { // HOST execution. See Dialog Image
// Signal site to serialize the data into the uVar
// serialized_myVar1
remote_send(site_get_info, 1, TRUE, INFINITE);

// Retrieve the serialized data, and invoke the body code
// here to un-serialize it in this thread.
remote_fetch(serialized_myVar1, 1, TRUE, INFINITE);
 2/27/09 Pg-2457

Advanced Topics Host / Site / Tool Communication
// See the changes in Host window
print_vals(&myVar1);

}

DIALOG(myDialog) {
IMMEDIATE_CONTROL(IDC_Button1, Button1) // See Dialog Image

}

// Invoke dialog only after the program has loaded and
// the initial values are printed
VOID_VARIABLE(ui_ProgLoaded,"") {

run_modeless (myDialog);
}

HOST_BEGIN_BLOCK (HBB1) {
// Set some initial values on Host
myVar1.myBool1 = FALSE;
myVar1.myFloat1= -1.1;
myVar1.mS1a.myDouble1= -1.1;
myVar1.mS1a.myDouble2= -1.1;
myVar1.mS1a.myInt1= -1;
myVar1.mS1a.myInt2= -1;
myVar1.mS1a.myCString1= "Initial Host values";
myVar1.mS1a.myCString1= "";
output("\n======= --- Initial Host Values --- =======\\");
print_vals(&myVar1);

}

SITE_BEGIN_BLOCK(SBB1) {
// Set some initial values on Site
myVar1.myBool1 = FALSE;
myVar1.myFloat1= 0.0;
myVar1.mS1a.myDouble1= 0;
myVar1.mS1a.myDouble2= 0.0;
myVar1.mS1a.myInt1= 0;
myVar1.mS1a.myInt2= 0;
myVar1.mS1a.myCString1= "Initial Site values";
myVar1.mS1a.myCString1= "";
output("\n======= --- Initial Site Values --- =======\\");
print_vals(&myVar1);

}

 2/27/09 Pg-2458

Advanced Topics Host / Site / Tool Communication
Dialog Image

The dialog ID is "MYDIALOG". The button ID is IDC_Button1.

Example Host Output
======= --- Initial Host Values --- =======
======= --- Modified 0 Times --- =======
 myVar1.myBool1 => FALSE
 myVar1.myFloat1 => -1.100
 myVar1.mS1a.myDouble1 => -1.1000
 myVar1.mS1a.myDouble2 => -1.1000
 myVar1.mS1a.myInt1 => -1
 myVar1.mS1a.myInt2 => -1
 myVar1.mS1a.myCString1 =>
 myVar1.mS1a.myCString2 =>

======= --- Modified 1 Times --- =======
 myVar1.myBool1 => TRUE
 myVar1.myFloat1 => 101.101
 myVar1.mS1a.myDouble1 => 0.0000
 myVar1.mS1a.myDouble2 => 101.1010
 myVar1.mS1a.myInt1 => -1
 myVar1.mS1a.myInt2 => 0
 myVar1.mS1a.myCString1 => Updated Site Values
 myVar1.mS1a.myCString2 => X

======= --- Modified 2 Times --- =======
 myVar1.myBool1 => FALSE
 myVar1.myFloat1 => 202.202
 myVar1.mS1a.myDouble1 => 0.0000
 myVar1.mS1a.myDouble2 => 202.2020
 myVar1.mS1a.myInt1 => -2
 myVar1.mS1a.myInt2 => -1
 myVar1.mS1a.myCString1 => Updated Site Values
 myVar1.mS1a.myCString2 => XX
 2/27/09 Pg-2459

Advanced Topics Host / Site / Tool Communication
Example Site Output
======= --- Initial Site Values --- =======
======= --- Modified 0 Times --- =======
 myVar1.myBool1 => FALSE
 myVar1.myFloat1 => 0.000
 myVar1.mS1a.myDouble1 => 0.0000
 myVar1.mS1a.myDouble2 => 0.0000
 myVar1.mS1a.myInt1 => 0
 myVar1.mS1a.myInt2 => 0
 myVar1.mS1a.myCString1 =>
 myVar1.mS1a.myCString2 =>
The test program is loaded

======= --- Modified 1 Times --- =======
 myVar1.myBool1 => TRUE
 myVar1.myFloat1 => 101.101
 myVar1.mS1a.myDouble1 => 0.0000
 myVar1.mS1a.myDouble2 => 101.1010
 myVar1.mS1a.myInt1 => -1
 myVar1.mS1a.myInt2 => 0
 myVar1.mS1a.myCString1 => Updated Site Values
 myVar1.mS1a.myCString2 => X

======= --- Modified 2 Times --- =======
 myVar1.myBool1 => FALSE
 myVar1.myFloat1 => 202.202
 myVar1.mS1a.myDouble1 => 0.0000
 myVar1.mS1a.myDouble2 => 202.2020
 myVar1.mS1a.myInt1 => -2
 myVar1.mS1a.myInt2 => -1
 myVar1.mS1a.myCString1 => Updated Site Values
 myVar1.mS1a.myCString2 => XX
 2/27/09 Pg-2460

Advanced Topics Host / Site / Tool Communication
7.2.7 SiteMask() Support

Note: see Overview in Binning for an explanation of the different processes noted
below.

Description

SiteMask() may be used as an argument to many of the Nextest functions to specify
which site(s) are to execute the function.

Note: the SiteMask() function is NOT usable as a stand-alone function - it is only
used as an argument to other Nextest functions.

By default, the functions which communicate directly with tester hardware are executed in
site process(es) only. These functions access such basics as voltages, timing, executing
tests, accessing the APG, PMU, DPS, etc.

When it is necessary for user-written code executing in Host or Tool processes to
communicate with tester hardware two basic methodologies are available:

• Execute User Variables body code using the remote functions: remote_set(),
remote_get(), remote_send(), remote_fetch(), etc.

• Use the SiteMask() versions of the functions which communicate with hardware.
In very early test programs option-1 was the only option. Legacy test programs in which
User Dialogs interacted with tester hardware used this methodology. The dialog code
executed in the Host process and remote_send() was used to invoke user variable body
code designed to interacted with the tester hardware in Site processes. Then either the body
code sent results back to the Host process, or the Host code used remote_fetch() read
back any information wanted from the site. This methodology works well but makes the
solution somewhat program specific, because the user variables containing the needed
body code were compiled into the test program.

Option-2 mostly eliminates the need to use user variable body code solely to interact with
tester hardware, and thus simplifies the design of User Dialogs and User Tools.

Most of the Nextest functions which interact with tester hardware have a version which
accepts a SiteMask() as the first argument to the function. For example:

vil (2 V); // Site execution only
 2/27/09 Pg-2461

Advanced Topics Host / Site / Tool Communication
vil (SiteMask(0x3), 2 V); // Host, Tool (or Site) execution

The first example can only execute in a Site process. The second can execute in Host or
Tool processes. It can also execute in Site processes but this isn’t good practice, and will
execute slower than normal.

Using a SiteMask() argument enables the system software to transparently handle the
inter-process communications between Host or Tool, and Site processes. All of the functions
which accept a SiteMask() argument (see below) use the SiteMask() similarly.

The SiteMask() function takes one argument, which is a bit-wise value specifying on
which sites the function is to be executed. A value of 0x1 causes the function to be executed
on site 1 only. A value of 0xF would execute the command on sites 1,2,3,4.

Thus, the two vil() examples above are not equivalent. The first programs vil() on all
signal pins used in the test program, on all used sites. The second programs vil() on all
used pins on sites 1 and 2 (SiteMask(0x3)).

The functions which can use the SiteMask() option are listed in two tables below. Two
tables are used to differentiate between functions which write to hardware (setter functions)
and those which read from hardware (getter functions). Some functions appear in both
tables and it is the other arguments and the function return value which distinguish a setter
from a getter.

The getter functions must be used with a SiteMask() which accesses only one site i.e.
0x1, 0x2, 0x4, 0x8, etc. This allows the existing functions to get (read) a single value as
they were originally designed.

The SiteMask() option is NOT documented with each of the individual functions; it is an
advanced feature and only documented here.

Note: functions in magenta below are not yet documented, or not released. Use with
caution.

Table 7.2.7.0-1 Getter Functions Supporting SiteMask() Argument

abase() actualdata() afield()

amain() amax() back_voltage()

back_voltage_enable() bin_get() count()

cycle() data_reg_width() dmain()
dbase()

dbm_size()
 2/27/09 Pg-2462

Advanced Topics Host / Site / Tool Communication
 dps()

dps_current_high() dps_current_low() dps_vpulse()

dutadr() dutdata() dutmar()

dutxadr() dutyadr()

ecr_board_present() edge_strobe() erradr()

errmar() errvar() errxadr()

erryadr() expectdata() funtest()

getedge1() getedge2()

getedge3() getedge4()

getioedge1() getioedge2()

get_xdtopo() get_ydtopo()

intadr()

ipar_force() ipar_high() ipar_low()

jamreg() lbdata()

measure() negative_clamp() no_dps()

numx() numy() ParametricMode()

partest() partime() pattern_paused()

pe_board_mask() positive_clamp() prevadr()

prevdata() prevmar() prevxadr()

prevyadr() ReadColRAM()

ReadNextError() ReadRowRAM() reload()

scandata()

sdutadr() sdutxadr() sdutyadr()

serradr() serrxadr() serryadr()

sites_per_controller() sprevadr() sprevxadr()

sprevyadr() test_pin_first_error()

tgmode() total_all_bins()

vecdata() vih() vihh()

vil() voh() vol()

Table 7.2.7.0-1 Getter Functions Supporting SiteMask() Argument (Continued)
 2/27/09 Pg-2463

Advanced Topics Host / Site / Tool Communication
vpar_force() vpar_high() vpar_low()

vz() xbase() xfield()

xmain() xmax() x_fast_axis()

ybase() yfield() yindex()

ymain() ymax()

Table 7.2.7.0-2 Setter Functions Supporting SiteMask() Argument

abase() afield() amain()

back_voltage() back_voltage_enable() bin_set()

count() cycle() data_reg_width()

data_strobe() dmain()
dbase()

dps_current_high() dps_current_low() dps_vpulse()

edge_strobe() dps() intadr()

ipar_force()

ipar_high() ipar_low() jamreg()

lbdata() lvm_error_mode()

measure() negative_clamp()

numx() numy()

partime() pipe_clear() positive_clamp()

reload() restart() scandata()

setedge1() setedge2()

setedge3() setedge4() setioedge1()

setioedge2() settime()

tgmode() timer()

vecdata() vih() vihh()

vil() voh() vol()

vpar_force() vpar_high() vpar_low()

vz() WriteColRAM() WriteMainArray()

Table 7.2.7.0-1 Getter Functions Supporting SiteMask() Argument (Continued)
 2/27/09 Pg-2464

Advanced Topics Host / Site / Tool Communication
Note:

WriteRowRAM() xbase() xfield()

xmain() x_fast_axis() ybase()

yfield() yindex() ymain()

Table 7.2.7.0-2 Setter Functions Supporting SiteMask() Argument (Continued)
 2/27/09 Pg-2465

Resources
7.3 Resources

7.3.1 Overview
See Resources.

The term resource is used generically, to refer to key software components of a Magnum
1/2/2x test program.

For example, pin lists, test blocks, bins, etc. each have a Nextest-defined Resource Types.
In any given test program there may be zero, one, or many instances of these resource
types.

The user may also define resources. For example, AllPins, IOpins, Databus, etc. are
examples of user-defined pin list resources.

The reason resources are important are the support functions available in the Magnum 1/
2/2x software. Using these functions it is possible to:

• Obtain a list of names of every member of a given resource type. See
resource_all_names()

• Given a pointer to a specific resource lookup its name. See resource_name()
• Given the name of a specific resource lookup to a pointer to it. See Resource Find

Functions
• The definition of many user-defined resources can be modified at runtime. See

resource_deallocate() and resource_initialize().
• The automatic runtime initialization of some resources can be inhibited, and

managed explicitly. See resource_ignore().
• The selection of Single Resource Types can be changed without reloading the test

program. See Resource Use Functions.
In most cases, the term resource refers to software objects that are created using Nextest-
defined macros. These macros are normally executed once, and create a corresponding
object which may be referenced once or repeatedly. For example:

• User-defined pin lists are created using the PINLIST() macro, which are normally
only executed once, as the program loads. Each macro creates a PinList object
which may be referenced throughout the test program. The
 2/27/09 Pg-2466

Resources
resource_deallocate() and resource_initialize() functions can be
used at runtime to re-execute the original PINLIST macro, which can contain
conditional code to create different versions of a given pin list each time it is
executed.

• The SEQUENCE_TABLE() macro, used to define Sequence & Binning Tables, is
executed once, as the program loads. This creates a corresponding software state
machine which is executed each time a Start Test is invoked. The
resource_deallocate() and resource_initialize() functions can be
used at runtime to re-execute the currently selected SEQUENCE_TABLE() macro
(which can contain conditional code), or can be combined with Resource Use
Functions to select a different active SeqBinTable.

However, not all resources have similarly useful runtime capabilities. For example:

• Test blocks are resources. The test block body code and name can’t be changed
at runtime thus treating test blocks as resources at runtime isn’t useful.

• User variables are resources, but in the context of a resource the only thing that
can be done at runtime is to modify the user variables value, which is done easily
by assigning a new value to the variable.

The key point here is that resources enable some useful capabilities, but not universally. The
most useful capability are mostly constrained to resources of the following Resource Types:

• S_Pattern

• S_PEBoardList

• S_PinList

• S_PinScramble

• S_ScanPattern

• S_SequenceTable

• S_VihhMap

7.3.2 Resource Types
See Resources.
 2/27/09 Pg-2467

Resources
Resources are organized in a three level hierarchy:

Expanding this example, note that the names shown in level-1 and level-2 are Nextest-
defined. S_Resource is the only level-1 resource, and provides a programmatic handle
usable to access all other resources.

In the example below, Level-2 displays only 3 (S_PinList, S_Pattern, and
S_SequenceTable) of the possible Defined Resource Types:

The names and quantity of each resource type in level-3 are user-defined. Any given test
program may have zero, one, or many level-3 resources defined for each of the Defined
Resource Types.

Some of the defined resource types are constrained, at runtime, to a single active instance.
This means that the program may define multiple instances of that resource type, but at
runtime one active instance must be selected. For example, at runtime only one Sequence &
Binning Table can be active. See Single Resource Types and Single Resource Runtime
Selection. These are flagged in left column of Defined Resource Types.

User-defined Resources

Nextest Defined Resource Types

S_Resource

...S_PinList S_Pattern S_SequenceTable...

AllPins DataBus IOpins

MinMaxPat CkbdPat

ClassFlow SortFlow

Level-1

Level-2

Level-3

S_Resource
 2/27/09 Pg-2468

Resources
The table on the next few pages shows the defined resource types. Note that S_Resource
is included in this list. The left column indicates which types are Single Resource Types.
Note that these resource types are all type LPCTSTR.

Table 7.3.2.0-1 Defined Resource Types

Single
Resource
Type? Resource Type Reference

No S_AfterTestingBlock See AFTER_TESTING_BLOCK()

No S_ATCBoardList See ATC_BOARD_LIST in separate ATC
Manual

No S_AVSPinList See AVS_PINLIST in separate ATC Manual

No S_BeforeTestingBlock See BEFORE_TESTING_BLOCK()

Yes S_Configuration See Configuration Macros

Yes S_CurrentShare See DPS Current Sharing

No S_Dialog See User Dialogs

No S_DutPin See DUT Pins

Yes S_HostBeginBlock See Host Begin Block

Yes S_HostEndBlock See Host End Block

Yes S_HostConfiguration See HOST_CONFIGURATION()

No S_InitializationHook See Initialization Hook

No S_LogicVector Each Logic Vector file (LVC file). See
Compiling Test Patterns

No S_Pattern See Pattern Overview and Naming

Yes S_PinAssignments See Pin Assignment Table

No S_PinList See Pin Lists

Yes S_PinScramble See Pin Scramble Map

No S_Resource See note 1.

No S_ScanPattern See Scan Test Patterns
 2/27/09 Pg-2469

Resources
Notes:

1) S_Resource can be used as a wild card, referencing all Nextest-defined resource types.

Yes S_SequenceTable See Sequence & Binning Table

Yes S_SiteBeginBlock See Site Begin Block

Yes S_SiteEndBlock See Site End Block

Yes S_SiteConfiguration See SITE_CONFIGURATION()

No S_Snapshot See User Variables

No S_TestBin See TEST_BIN()

No S_TestBinGroup See TEST_BIN_GROUP()

No S_TestBlock See Test Blocks

No S_ToolBegin See Tool Begin Block

No S_ToolConfiguration See TOOL_CONFIGURATION()

No S_ToolEnd See Tool End Block

No S_Variable See note 2.

No S_Variable_BOOL See User Variables

No S_Variable_CString See User Variables

No S_Variable_double See User Variables

No S_Variable_DWORD See User Variables

No S_Variable_float See User Variables

No S_Variable_int See User Variables

No S_Variable_int64 See User Variables

No S_Variable_OneOf See User Variables

No S_Variable_void See User Variables

Yes S_VihhMap See VIHH Maps

Table 7.3.2.0-1 Defined Resource Types (Continued)

Single
Resource
Type? Resource Type Reference
 2/27/09 Pg-2470

Resources
2) S_Variable can be used as a wild card, referencing User Variables of all types.

7.3.3 Resource Name Functions
See Resources.

Description

Given a pointer to an initialized resource, the resource_name() function returns the user-
defined name of that resource.

The resource may be user-defined or one of the Nextest Defined Resource Types. The
types of resources which are initialized will be different in each of the different execution
contexts: Site, Host, UI, or Tool. See below.

The resource_all_names() function provides a way to obtain a list of names for all
initialized instances of a specified resource type. Resource types are organized
hierarchically, thus the names reported by resource_all_names()will depend on which
resource level is referenced. Refer to the diagrams in Resource Types and note the
following:

• If the resource argument passed to resource_all_names() is S_Resource
the returned list will contain the names of the initialized Nextest Defined Resource
Types.

• If the resource argument passed to resource_all_names() is one of the
Nextest Defined Resource Types other than S_Resource, the returned list will
contain the names of initialized user-defined resources of the specified resource
type.

• The types of resources which are initialized will be different in each of the different
execution contexts: Site, Host, UI, or TOOL. For example, Sites will initialize
PinLists, whereas TOOLs won’t. See Overview.

Usage
LPCTSTR resource_name(type *obj);

These versions of resource_all_names() returns an integer count of the number of
names returned in the CStringArray argument.

int resource_all_names(LPCTSTR resource, CStringArray *names);
 2/27/09 Pg-2471

Resources
int resource_all_names(LPCTSTR resource,
int site,
CStringArray *names);

int resource_all_names(Resource *resource, CStringArray *names);

These versions of resource_all_names() returns a comma separated list of names
suitable for use in ONEOF User Variables.

CString resource_all_names(LPCTSTR resource);

CString resource_all_names(LPCTSTR resource, int site);

where:

obj is a pointer to the resource of interest, which can be a user-defined or Nextest-defined
resource.

resource is the name of the resource of interest. These can be a user-defined or Nextest-
defined resource. The names of Nextest-defined resources are listed in the Defined
Resource Types.

*resource is a pointer to the resource of interest, which can be a user-defined or Nextest-
defined resource.

names is a CStringArray. The user’s program code declares a variable of
CStringArray (not a pointer to a CStringArray) and the resource_all_names()
function adds elements to the array. The value returned by resource_all_names() is the
number of elements in the array.

site is an integer value which identifies the Site to be queried, and specified as follows:

• -1 = UI - User Interface process
• 0 = Host process
• 1 through 32 represent Site1 through Site32 processes
• A value > 1024 is a User Tools (see site_num())

Examples

Example 1:
This example uses the Nextest-defined S_PinList resource type. Three pin lists are used
in the example, but the members of the pin list are not important to the example.

PINLIST (SomePins) {
 2/27/09 Pg-2472

Resources
// Define pin list members here
}
PINLIST (MorePins) {

// Define pin list members here
}

PINLIST (MostPins) {
INCLUDE_PINLIST (MorePins)
// Add more pin list members here

}

// Get a list of the names of all PinLists in the program
CStringArray plist_array;
int plist_count = resource_all_names(S_PinList, &plist_array);
output (" This program has %d PinLists", plist_count);

// Process every PinList in the program...
for (int i = 0; i < plist_count; ++i) {

// If the PinList name contains "Mo" print MATCHED + PinList name
// In this example, this will print "MorePins" and "MostPins"
if (plist_array[i].Find("Mo") == 0) {

output (" MATCHED pin list => %s", plist_array[i]);
}
else // Print SKIPPED + PinList name i.e. "SomePins"

output (" SKIPPED pin list => %s", plist_array[i]);

// Given a PinList name, look-up a pointer to that PinList
PinList* plist = PinList_find (plist_array[i]);
// Use the pointer here as needed.
vol (1 V, plist);

}

// Given a pointer to the PinList "SomePins", look-up its name
CString plist_name_str = resource_name (SomePins);
output (" Pin List Name => %s", plist_name_str);

Example 2:
The following example will NOT work because the namearray variable is the wrong type; it
is incorrectly declared as a pointer to a CStringArray variable rather than a variable of
type CStringArray.

CStringArray *namearray;
int plist_count = resource_all_names(S_PinList, namearray);
 2/27/09 Pg-2473

Resources
This is a common programming error which is difficult to debug. It is syntactically legal, but
functionally defective. The symptoms are unpredictable and often cause programs to crash,
basically because memory is being clobbered in some undefined area of the program
memory space. Below is the correct syntax:

CStringArray namearray;
int plist_count = resource_all_names(S_PinList, &namearray);

7.3.4 Resource Find Functions
See Resources.

Description
Given the name of a specific resource, the functions below return a pointer to that resource.

Each function is named after one of the Defined Resource Types. To obtain the desired
functionality the user must use the appropriate function for each resource type.

AfterTestingBlock_find()

ATCBoardList_find()

AVSPinList_find()

BeforeTestingBlock_find()

Configuration_find()

CurrentShare_find()

Dialog_find()

HostBeginBlock_find()

HostEndBlock_find()

HostConfiguration_find()

InitializationHook_find()

LogicVector_find()

Pattern_find()

PatternSet_find()

PEBoardList_find()

PinAssignments_find()
 2/27/09 Pg-2474

Resources
PinList_find()

PinScramble_find()

Resource_find()

ScanPattern_find()

SequenceTable_find()

SiteBeginBlock_find()

SiteEndBlock_find()

SiteConfiguration_find()

Snapshot_find()

TestBin_find()

TestBinGroup_find()

TestBlock_find()

ToolBegin_find()

ToolConfiguration_find()

ToolEnd_find()

Variable_find()

Variable_BOOL_find()

Variable_CString_find()

Variable_double_find()

Variable_DWORD_find()

Variable_float_find()

Variable_int_find()

Variable_int64_find()

Variable_OneOf_find()

Variable_void_find()

VihhMap_find()

Usage
type* type##_find(LPCTSTR instance);

where:
 2/27/09 Pg-2475

Resources
type## represents the prefix portion of the function name i.e. everything except _find().

instance is the name of a specific resource, of the type compatible with the _find()
function name. For the single-resource types (see Defined Resource Types) the currently
used resource can be determined by specifying 0 as the instance value.

The returned value is a pointer to the resource. If the resource is not found NULL is
returned.

Example
This example returns a pointer to the pin list named SomePins. That pointer is then used to
program VOL on those pins.

CString name = resource_select(S_PinList); // resource_select()
if (name) {

PinList* plist = PinList_find (name);
vol (1 V, plist);

}

7.3.5 Resource Control Functions
See Resources.

Description
The resource_deallocate() function is used to uninitialize resources. This resets the
specified resource to its uninitialized state (the resource is not destroyed), and sets a flag
indicating the resource is uninitialized. An uninitialized resource must be initialized before it
can be used in the normal context.

The resource_initialize() function causes the re-execution of the macro which was
used to originally create the resource. Normally, these macros are only executed once,
during program loading. If the macro contains conditional code, re-executing it allows the
resource to be defined conditionally i.e. change the resource’s values or attributes. The
resource_initialize() function only (re)initialize resources which are currently
uninitialized.

Both resource_deallocate() and resource_initialize() have an optional
argument which can be used to specify a specific resource to process. This argument can
be one of the Nextest Defined Resource Types or a user-defined resource (pin list, VIHH
 2/27/09 Pg-2476

Resources
Map, etc.). When no resource argument is specified the default is S_Resource, i.e. all
resources in the test program.

When a user-defined resource is specified, only that resource is processed (initialized, or
uninitialized). When one of the Nextest Defined Resource Types is specified all of the
dependent resources are processed. For examples, note the diagram below:

• If resource_initialize(DataBus) or resource_deallocate(DataBus) is
called, only the DataBus pin list resource is processed. And,
resource_initialize() will only initialize DataBus if it is currently
uninitialized.

• If resource_initialize(S_PinList) or
resource_deallocate(S_PinList) is called, all pin lists are processed. And,
resource_initialize() will only initialize pin lists which are currently
uninitialized.

• If resource_initialize(S_Resource) or
resource_deallocate(S_Resource) is called, every resource in the program
is processed. Again, resource_initialize() will only initialize resources
which are currently uninitialized.

...S_PinList S_Pattern S_SequenceTable...

AllPins DataBus IOpins

MinMaxPat CkbdPat

ClassFlow SortFlow

Level-1

Level-2

Level-3

S_Resource
 2/27/09 Pg-2477

Resources
Note: resource_deallocate() and resource_initialize() are low level
commands. At this level, the system software does not automatically update
dependent resources when a given resource is deallocated, modified, and
reinitialized. For example, modifying the tester pin channel mapping using
S_PinAssignments alone will likely result in defective operation because
many other resources must also be deallocated/initialized to acquire the
changes made to pin assignments. Until these dependencies are documented it
is recommended that the S_PinAssignments resource NOT be specifically
reinitialized. Rather, use the one method which guarantees that all
dependencies are updated:
 resource_initialize(S_Resource);

With Single Resource Types, to switch to an alternative resource requires that the currently
selected resource be uninitialized (resource_deallocate()). Then Resource Use
Functions are called to select the new resource, followed by resource_initialize()
to initialize that resource and make it usable. This can be done, for example, to switch
Sequence & Binning Tables at runtime.

It is possible to inhibit the initialization of resources as the program loads using
resource_ignore(). This can be used, for example, to prevent patterns from
automatically loading as the program loads. Then, later, patterns can be loaded using
resource_initialize(S_Pattern).

7.3.5.1 resource_deallocate()
See Resources.

Description
The resource_deallocate() function is used to uninitialize resources. See detailed
introduction in Resource Control Functions.

When not specified, the default resource is S_Resource i.e. all resources in the program.

Usage
The resource_deallocate() function returns TRUE if the specified resource is found
and was initialized, otherwise FALSE is returned.
 2/27/09 Pg-2478

Resources
BOOL resource_deallocate (
LPCTSTR resource DEFAULT_VALUE(S_Resource));

BOOL resource_deallocate(Resource *resource);

where:

resource is optional, and identifies the resource being deallocated or initialized. See
Resource Types. If not specified, the argument defaults to S_Resource i.e. all resources of
all types.

*resource is a pointer to a specific resource instance being initialized.

Example

7.3.5.2 resource_initialize()
See Resources.

Description
The resource_initialize() function is used to (re)initialize resources. See detailed
introduction in Resource Control Functions.

When not specified, the default resource is S_Resource i.e. all resources in the program.

Specific initialization details are not documented, and vary for each resource type. In
general, the following is handled:

• Memory management
• Evaluation and/or set up of SOME dependencies (see Note above)
• Initialize default values
• Error checks
• Setting the initialization flag

Usage
The resource_initialize() function returns TRUE if the specified resource is found
and is uninitialized, otherwise FALSE is returned.

BOOL resource_initialize (
LPCTSTR resource DEFAULT_VALUE(S_Resource));
 2/27/09 Pg-2479

Resources
BOOL resource_initialize (Resource *resource);

where:

resource is optional, and identifies the resource being deallocated or initialized. See
Resource Types. If not specified, the argument defaults to S_Resource i.e. all resources of
all types.

*resource is a pointer to a specific resource instance being initialized.

Example
See Example

7.3.5.3 resource_ignore()
See Resources.

Description
The resource_ignore() function can be used to inhibit automatic resource initialization
as the test program loads.

This will be most useful in preventing test patterns from automatically loading (S_Pattern,
S_ScanPattern). Then, later in the test program, resource_initialize() can be
used to cause test patterns to load.

In many cases, the resource_ignore() needs to be executed before resources are first
initialized. In these situations this means before Configuring the Tester to the DUT i.e. within
the CONFIGURATION() block code. In general, this applies to all resources except patterns,
which are initialized after the various begin blocks have executed (HOST_BEGIN_BLOCK(),
SITE_BEGIN_BLOCK(), or TOOL_BEGIN_BLOCK()).

Usage
The resource_ignore() function returns TRUE if the specified resource is found and is
uninitialized, otherwise FALSE is returned.

BOOL resource_ignore(type *obj);

where:

obj is a pointer to the resource of interest, which can be a user-defined or Nextest-defined
resource.
 2/27/09 Pg-2480

Resources
Example
The following example demonstrates how automatic loading of Memory Test Patterns and
Logic Test Patterns can be inhibited.

SITE_BEGIN_BLOCK(SBB) {

// ... other code here

resource_ignore(Resource_find (S_Pattern));

// ... other code here

}

7.3.6 Resource Use Functions
See Resources.

Description
As noted in Single Resource Runtime Selection, the common method for selecting specific
instances of Single Resource Types utilizes the CONFIGURATION() macro, which provides
compile-time resource selection. Or, if the test program defines more than one instance of a
given Single Resource Types, and one is not specified using the CONFIGURATION()
macro, a dialog is presented at runtime requiring the user to make a selection. The resource
use functions documented here provide an alternative runtime method.

The resource use functions are used to select a specific instance of one of the Single
Resource Types and make it the active instance. Each of the Single Resource Types has a
specific use function (see below).

To use these functions requires the following sequence:

• If necessary, use resource_deallocate() to uninitialize the currently selected
resource. The currently selected resource can be identified using the appropriate
Resource Find Functions and passing ‘0’ as the argument. See Examples.

• Execute one of the resource use functions to select the desired resource
• resource_initialize() to initialize the newly selected resource
 2/27/09 Pg-2481

Resources
Note: resource_deallocate() and resource_initialize() are low level
commands. At this level, the system software does not automatically update
dependent resources when a given resource is deallocated, modified, and
reinitialized. For example, modifying the tester pin channel mapping using
S_PinAssignments alone will likely result in defective operation because
many other resources must also be deallocated/initialized to acquire the
changes made to pin assignments. Until these dependencies are documented it
is recommended that the S_PinAssignments resource NOT be specifically
reinitialized. Rather, use the one method which guarantees that all
dependencies are udpated:
 resource_initialize(S_Resource);

Each of the resource use functions below is named after one of the Single Resource Types.
To obtain the desired functionality the user must use the appropriate function for each
resource type.

Configuration_use();

CurrentShare_use();

HostBeginBlock_use();

HostEndBlock_use();

HostConfiguration_use();

PinAssignments_use();

PinScramble_use();

SequenceTable_use();

SiteBeginBlock_use();

SiteEndBlock_use();

SiteConfiguration_use();

VihhMap_use();

Usage
BOOL *type##_use(LPCTSTR instance);

where:

*type## represents the prefix portion of the function name i.e. everything except _use().
 2/27/09 Pg-2482

Resources
instance is the name of a specific resource, of the type compatible with the _use() function
name.

The returned value is TRUE if the specified resource name is valid and the use operation
succeeds, otherwise FALSE is returned.

Examples
// Uninitialize the currently used SeqBinTable
resource_deallocate(S_SequenceTable);

// Select a new SeqBinTable to use
if (SequenceTable_use("SeqTab2") == FALSE) {

output (" ERROR: specified SeqTable not found");
return FAIL;

}

// Initialize it. This executes the SEQUENCE_TABLE() macro code
// to construct the executable SeqBinTable
resource_initialize(S_SequenceTable);

7.3.7 resource_select()
See Resources.

Description
The resource_select() function displays a dialog containing the names of all instances
of the specified resource, allows user to select one, and the name of the selected resource.

This uses the same dialog that is presented during program loading when two or more
instances of a Single Resource Types are defined in the test program and no
CONFIGURATION() is specified to select one of the instances. However,
resource_select() will operate on any of the Defined Resource Types (but not user-
defined resources).

The resource_select() function will not display a dialog in the following situations:

• Zero instances of the specified Defined Resource Types exist.
resource_select() returns NULL.
 2/27/09 Pg-2483

Resources
• One instance of the specified Defined Resource Types exist.
resource_select() returns the name of that instance without presenting the
selection dialog.

Usage
The return value is the name of the selected resource. See above for details.

CString resource_select(LPCTSTR resource);

where:

resource is one of the Defined Resource Types.

Example
This example presents a selection dialog displaying the names of all pin lists in the program.

CString name = resource_select(S_PinList);
if (name) {

PinList* plist = PinList_find (name);
vol (1 V, plist);

}

The returned name parameter will be NULL if the program contains no pin lists, or will be the
name of the selected pin list. If name is not NULL a pointer to the pin list is found and VOL is
programmed to 1V on those pins. Note that this will not function correctly if any DPS pins are
in the selected pin list.

7.3.8 invoke()
See Resources.

Description
The invoke() function executes user-written C code associated with various types of
Resources.

The invoke() function has several versions (overloads), each targeted at specific
Resource Types. Only the following Resource Types have invoke() support:

• Dialog - invoke the specified User Dialog to start a modal dialog.
• TestBin - invoke the optional function defined for a specified Test Bin.
 2/27/09 Pg-2484

Resources
• HostBeginBlock - invoke the specified Host Begin Block.
• SequenceTable - invoke the specified Sequence & Binning Table.
• TestBlock - invoke the specified TEST_BLOCK.
• Pattern - invoke the Pattern Initial Conditions of the specified test pattern.
• VariableProxy - invoke the body code, if any, of the specified User Variables.

Some versions of the invoke() function return a value, others do not. See Usage.

Usage
As noted above, invoke() has several versions (overloads). These are all listed below,
then documented separately.

int invoke(Dialog *dialog);

int invoke(TestBin* obj); // See Test Bin invoke() Function

void invoke(HostBeginBlock *obj);

TestBin *invoke(SequenceTable *obj,
int firstNode DEFAULT_VALUE(0),
int lastNode DEFAULT_VALUE(-1));

int invoke(TestBlock *obj);

void invoke(Pattern *obj);

void invoke(VariableProxy v,
int sender DEFAULT_VALUE(site_num()));

The invoke(Dialog) function starts a modal User Dialog. The value returned by
invoke() is the value returned by MFC's CDialog::DoModal() i.e one of:

• IDOK if user clicked OK button
• IDCANCEL is user clicked the CANCEL button or hit the escape key
• IDABORT if there was a problem
• The value passed to dismiss(Dialog *dialog, int result) if used.

The invoke(HostBeginBlock) function executes the specified HostBeginBlock.
This is not recommended.

The invoke(SequenceTable) function executes the specified SequenceTable.
Executing invoke(0) will execute the current sequence table. The value returned by
invoke() is the final Test Bin. The Sequence & Binning Table can also be executed using
ui_StartTest (see UI User Variables). The firstNode and lastNode arguments are
 2/27/09 Pg-2485

Resources
both optional, and are used to specify a starting and/or ending test block. When used, the
starting and/or ending test block is specified by number, which is the position the test block
is found in UI’s UI Sequence and Binning sub-window.

The invoke(TestBlock) function executes the specified TestBlock. The value
returned by invoke() is the value returned by the test block code. See Test Block Integer
Return Values. When executed using invoke() many of the built-in support facilities are
not operational (Test Numbers, Setup Numbers, breakpoints, etc.). These are available
using invoke(SequenceTable). The Before-testing Block and After-testing Block are
executed. See Examples for an example of how to execute a single test block plus the
Before-testing Block and After-testing Block.

The invoke(Pattern) function executes the Pattern Initial Conditions associated with
the specified test pattern.

The invoke(VariableProxy) function executes the body code of the User Variables
named by the VariableProxy. A User Variable always has associated body code, which
sometimes does nothing. The optional sender argument can be used to pass an integer
value to the body code, which accesses the value using the built-in sender variable which
is local to the body code of every User Variable. The default value passed to the body code
is the site_num() of the process which executes invoke().

Examples
The following example is a user written function which will execute a single test block,
specified by the tblock argument, plus the Before-testing Block and After-testing Block. This
provides the same functionality as if the Run Only This option available via the
right-mouse context menu in UI’s Sequence/Binning Table sub-window:

TestBin *run_only_this(TestBlock *tblock) {

 // Get the current sequence table
SequenceTable *st = SequenceTable_find(0);

 // Find all instances of tblock in the selected sequence table
IntArray array;
int size = get_nodes(st, tblock, &array);

 // If the specified tblock is found execute it via the
// sequence table. This causes the the Before-testing Block and
// After-testing Block to be executed also.
TestBin* bin;
if(size) {

bin = invoke(st, array[0], array[0]);
return(bin);
 2/27/09 Pg-2486

Resources
}
else{

output("ERROR: TestBlock NOT found in current Seq/Bin");
return(0);

}
}

 2/27/09 Pg-2487

User Tools
7.4 User Tools
This section contains the following:

• Overview
• Creating User Tools
• Starting/Terminating User Tools

• Single Instance Code Example
• User Tool Output Messages
• User Tool Initialization
• User Tool Functions

• get_all_tools()
• User Tool Example
• ToolLauncher

• Tool Registration Requirements
• Operation
• Required Functions
• setup_menus()
• setup_toolbars()
• site_loaded()
• MenuLayout.cpp
• ToolLauncher DLL Setup
• Example User Tool

7.4.1 Overview
User tools consist of user-written C-code compiled and executed independent of a test
program, but which can communicate with UI - User Interface. And, if a test program is
loaded, the user tool code can also communicate with the Host and Site instances of the test
program.
 2/27/09 Pg-2488

User Tools
The following diagrams shows how the various software processes communicate:

Each user tool and the Host and all Site copies of the test program execute as a separate
process. Each process has a site_num(), which allows use of the various remote_*
functions (more later). Using the site_num() mechanism allows the programmer to
basically ignore the communication links between the various processes.

The blue paths (solid lines) are established when a test program is loaded - these are the
standard program communications paths. Only Site processes can communicate directly
with the tester hardware.

The red paths (dotted lines) are established when a user tool is started. They are used when
the tool communicates with UI - User Interface. And, if a test program is loaded user tool
code can communicate with the test program, in the Host process and all Site processes.

The tool communication paths are important because not all of the Nextest functions and
macros are designed to execute in the tool (or Host) context. For example, the funtest()
function typically used in Test Blocks executes in the Site process, and cannot be used (as
is) to execute a test from a user tool (or from the Host process). As with any software, the
programmer (tool creator) must be aware of, and use, the appropriate methods to obtain the
desired results - see Creating User Tools.

The following information applies equally to user tool code, and the Host/Site test program
code:

Site2 Controller

Site40 Controller

User Tool 1
process

Host Computer
Site1 ControllerHost Computer

site_num > 1024

UI
process

site_num = -1

Host
process

site_num = 0

Site-1
process

site_num = 1

Site-2
process

site_num = 2

Site-40
process

site_num = 40

User Tool 2
process

Host Computer

site_num > 1024

Test System

Sites 3..40 and pins a/b129-a/b2560 not shown
Pins

a1985-a2560
b1985-b2560

Pins
a65-a128
b65-b128

Pins
a1-a64
b1-b64

Host/Site processes only start
 when a test program is loaded
 2/27/09 Pg-2489

User Tools
• As shown in the diagram above, each is a separate process (separate execution
context), and is independent of the UI - User Interface process. The various
processes are discussed in the Overview section of Binning.

• Connection is automatically made between the user tool process and UI - User
Interface process. Similarly, when a test program is loaded, connections are
automatically established between UI - User Interface and the Host and each Site
copy of the test program. These connections enable communications between the
various processes using User Variables, the remote_* functions, and the
site_num() of each process.

• The user-written C code must contain a reference to the Nextest libraries to allow
use of the various Nextest functions and macros. See Creating User Tools.

• Test programs and user tools do not have a user-written main(). The main() is
handled by Nextest software. Initialization capabilities are provided by a set of
macros. See User Tool Initialization and Binning.

• User tool code (and Host/Site code) can define and invoke User Dialogs. Each
dialog executes in its local process, but can communicate with the other
processes using User Variables, the remote_* functions, and the site_num() of
each process.

• User Variables provide for exchange of information between processes. Optional
user variable body code allows user-written code in one process to invoke user-
written code in a different process.

• User-written code in one process can cause a different process to load a Dynamic
Link Library (DLL). For example, user tool code can cause a test program to load
a DLL, possibly containing the definitions of User Variables needed by the tool to
communicate or control the test program.

• Available inter-process communication functions uses the site_num() of each
process as an ID. The remote_signal(), remote_wait() functions can be
used to synchronize execution between processes. The remote_send() and
remote_fetch() functions can be used to synchronize the values of User
Variables between processes. The remote_set() and remote_get() functions
can be used to directly access User Variables in other processes

• The functions which directly interact with tester hardware normally execute only in
Site process(es). However, special versions of these functions can be executed
from user tool code or Host code, allowing the system software to transparently
handle any necessary inter-process communication. See SiteMask() Support.

• User-defined pull-down menus can be added to the UI - User Interface menu bar
via user tool code, or Host or Site code. Selecting from that menu executes code
in the process which added the menu to UI - User Interface. See User Menus in UI.
 2/27/09 Pg-2490

User Tools
Note: in any MFC application, it is required that there is one and only one CWinApp-
derived instance. Nextest test programs already define a CWinApp-derived
instance which is used for many things, including connecting to UI, initializing
software structures and tester hardware. This functionality is provided by the
include file "TestProgApp.h", which is required in every test program and every
user-tool. Therefore, to merge an existing MFC program with Nextest software,
it is required that you remove your CWinApp-derived object. In some cases an
INITIALIZATION_HOOK() can be useful to perform one-time initialization.
Often your CWinApp-derived instance is concerned with tasks that are not even
relevant, and can simply be deleted.

7.4.2 Creating User Tools

Note: the techniques used to create a User Tool using Developer Studio 4.2 were
deleted @ 7/2002. If you are using a Nextest software release which depends
upon Developer Studio 4.2, refer to the Programmer’s Manual shipped with that
release.

As noted in Overview, user tools consist of user-written C-code compiled, and executed,
independent of a test program, but which can communicate with UI - User Interface. The
following steps are used to create a simple user tool, consisting of one source file:

1. Identify (or create) a disk location to store the user tool source files (the project
workspace).

2. Start Developer Studio 6.0 (MSDS) - do not open an existing Project Workspace.
 2/27/09 Pg-2491

User Tools
3. In Developer Studio, use File: New, select Win32 Application, enter the Project name
and Location information, ensure the Create new workspace and Platforms
Win32 are checked, and click OK

4. In the next dialog, make sure the An empty project. option is checked, then click
Finish.

5. Click OK in the New Project Information dialog (not shown).
 2/27/09 Pg-2492

User Tools
At this point, the project workspace folder is created on disk, at the specified location, and
will contain 3 files and an empty Debug folder:

In Developer Studio, the project workspace will contain 3 empty folders:

6. In Developer Studio, select Project: Settings...
 2/27/09 Pg-2493

User Tools
In the Microsoft Foundation Classes select Use MFC in a Shared DLL. Don’t
change anything else. Click OK.

7. In Developer Studio, use File:New to create a new text file in the same location as the
project. You should only need to select Text File and add the File name. Name the
file using the .cpp file name extension:

Note that this step also automatically adds the file to the project.

8. In this file, add the following line at the top of the file:

#include "tester.h"

Adding this #include statement to any source file causes that file to be compiled (built)
with the Nextest libraries. This allows user code in that file to access the Nextest
 2/27/09 Pg-2494

User Tools
functions and macros, which in turn, enables that code to communicate with
UI - User Interface and, if loaded, a test program, tester hardware, and other user tools.

9. In Developer Studio, compile (build) the project. Since no user code has been added yet,
no compile-time errors should occur (yet). If compile-time errors do occur, correct them
before proceeding.

The remaining steps are to add code to the tool source file(s) to perform the desired actions
when the tool executes. This can be as simple as “Hello World” (below) or as complex as
time and creativity allow. Insert new source files to the tool as desired - except for the
#include noted earlier it is just a C program (without a main()).

10.Using the example above, add the following to the file: MyUserToolSrc.cpp:

TOOL_BEGIN_BLOCK()(my_TBB_name) {
output("Hello World");

}

Compile the program again. No errors should occur. TOOL_BEGIN_BLOCK() is a
Nextest macro which, if included in user tool code, executes automatically when the tool
execution starts.

11. If, when compiling a user tool, the following link-time error occurs it means that at least
one instance of the tool is currently running.

Linking...
LINK : fatal error LNK1168: cannot open Debug/

my_user_tool.exe for writing
Error executing link.exe.
Tool_code.exe - 1 error(s), 0 warning(s)

Terminating UI will terminate all instances of attached user tools. More details about
terminating user tools are noted in Starting/Terminating User Tools.

7.4.3 Starting/Terminating User Tools
Note the following about starting and terminating a user tool:

• UI - User Interface must be running before a user tool can be started. If UI is not
running an error will occur and the tool will not start.
 2/27/09 Pg-2495

User Tools
• It is not required that a test program be loaded before starting a user tool. Of
course, depending on the functions called from the user tool, proper tool operation
may require that a test program to be running, and/or a tester hardware be
available.

• Any number of user tools can be started/running at a time. Each will have a
unique site_num() which can be used as a tool ID.

• User tool code will connect/disconnect with UI as needed.
• Unless explicitly coded by the test program (rare, and not good form), unloading a

test program does not unload a user tool.
• Terminating UI - User Interface will terminate any connected user tools.
• To terminate a user tool in C-code the testprogexit() function must be used.
• It is possible to concurrently execute multiple instances of a given user tool.

However this may have side effects. See Single Instance Code Example.
User tools can be starting using the following methods. The path and file names seen below
are a continuation of those used above in Creating User Tools:

1. From a Windows shell command line:

D:\tmp\MyUserTool\Debug\my_user_tool -t

The -t option causes the executing program to connect to the UI - User Interface
process and execute as a Magnum 1/2/2x user tool. The other methods used to invoke
user tool code all use the -t option, sometimes transparently.

2. Executing a command file (.bat file).

ui /tool=D:\tmp\MyUserTool\my_user_tool.exe /nologo

Also see ui_BatchFile.

3. From C-code, using remote_set() and ui_StartTool

CString tool_path = "D:\tmp\MyUserTool\Debug\my_user_tool";

remote_set("ui_StartTool", tool_path, -1, TRUE);

Using this method, do NOT include the -t command line option.
 2/27/09 Pg-2496

User Tools
4. Manually, using the UI - User Interface Tools: OpenTool menu selection

In the file browser, locate and select the executable file (.exe) of the user tool and click
Open to start the tool. The -t command line option is handled automatically. Don’t forget
that executable files will typically be in the Debug folder of the user tool Project.

7.4.3.1 Single Instance Code Example
It is possible to concurrently execute multiple instances of a given user tool. However this
has at least one potential negative side effect, related to User Menus in UI.

It is common for user tools to add a menu to UI, to enable various tool functions via the
menu. And, often the menu provides for terminating the tool. However, only one process can
own a given user menu in UI, thus any attempts to add the same menu again are ignored. In
other words, invoking a user tool multiple times will only add the menu to UI one time, with
the first instance of the tool owning the menu. Terminating the first tool instance will
terminate the menu, but any other instances of the same tool will continue to exist, with no
menu displayed.

These other instances of the tool can be very annoying. The most common side effect
(problem) occurs when trying to re-compile the tool. The following error message appears,
indicating that the tool executable is running:

Selecting Open Tool invokes
standard File browser
 2/27/09 Pg-2497

User Tools
Error: Could not delete file "D:\tool_path\Debug\tool_code.exe" :
Access is denied.

When this occurs it is possible to terminate individual instances of a tool using the Windows
Task Manager, or all tools will be terminated by terminating UI.

The code below can be called from the user tool code to prevent multiple instances of a
given tool from being started:

// user-written routine used to ensure a second instance of a user
// tool won't start.
void EnsureSingleInstance(){

char *name = __argv[0]; // Note: __argv[0] = tool name
if (FindWindow("static", name))

fatal ("[%s] already running. Terminate to restart.", name);
else CreateWindow("static", name, 0, 0, 0, 0, 0, 0, 0, 0, 0);

}

// TOOL_BEGIN_BLOCK executes every time the tool is started.
TOOL_BEGIN_BLOCK(my_tool_BB){

EnsureSingleInstance(); // Prevent starting multiple tool
} // instances

7.4.4 User Tool Output Messages
When output(), warning(), fatal(), vFormat() are called from user tool code
the output message will be seen in UI - User Interface’s Host output window.
 2/27/09 Pg-2498

User Tools
By default, each message will have a prepended prefix indicating that the message was
from a user tool and the current site_num() of that tool. For example, the output below
was generated from the example code on page 2495:

This prefix can be modified from user code using the ui_OutputFormat.

Note that this output message occurred even though a test program was not currently
loaded, however, the same format would have been seen if a program was loaded. Also
note that the site_num() of user tools is dynamic, and will change each time the tool is
started. See Execution Context Functions.

7.4.5 User Tool Initialization
The following macros can be used to automatically execute user-written code within a user
tool. Any of these macros which are included in the user tool code are called, in the order
shown.

• TOOL_CONFIGURATION()// Executed only as the tool is started
• TOOL_BEGIN_BLOCK() // Executed only as the tool is started
• INITIALIZATION_HOOK()// Executed only as the tool is started
• TOOL_END_BLOCK() // Executed only as the tool is terminated

These macros are global in scope i.e. they can’t be used within the body of a C function or
another macro.
 2/27/09 Pg-2499

User Tools
7.4.6 User Tool Functions
In general, User Tools communicate with the Host process, and/or the test program
executinging in a Site process, and/or UI. See the Overview section of Binning for
descriptions of these processes.

User Variables play a key role in this communication, as does the methodology covered in
Host / Site / Tool Communication.

The site_num() and OnTool() functions, documented elsewhere, are also useful.

The remaining functions in this section address needs specific to User Tools.

7.4.6.1 get_all_tools()
The get_all_tools() function can be used in any of the Host, Site, or Tool processes to
obtain a list of site number(s), one for each User Tools currently attached to UI - User
Interface.

Note: a given User Tool will not appear in the list until that tool has completely
initialized, including execution of the tool’s TOOL_CONFIGURATION(),
TOOL_BEGIN_BLOCK() and INITIALIZATION_HOOK(), if defined.

Usage
int get_all_tools(IntArray *array);

where:

array is a pointer to an existing IntArray variable. This variable is modified by
get_all_tools() to contain the site_num() of each User Tools currently connected to
UI. See Note: above.

get_all_tools() returns the number of tools identified, which also represents the
number of values in array.

Example
IntArray tools;

int count = get_all_tools(&tools);
 2/27/09 Pg-2500

User Tools
output("There are %d user tools currently connected", count);

for (int i = 0; i < count; i++)
output("Tool %d uses site_num => %d", i+1, tools[i]);

7.4.7 User Tool Example
The following example implements the following features in a user tool:

• User Menus in UI: two menus are added to UI.
• Via the menu, set vil() on all used signal pins using the SiteMask() option.
• Start two simple user dialogs. A button in each dialog causes the display in the

other dialog to be modified.
• Confirmer dialogs are displayed when terminating either dialog or the user tool.
• The user tool’s site_num() is obtained and printed
• Single Instance Code Example is implemented and called from the

TOOL_BEGIN_BLOCK().

• Except for the visual dialog components, the example code is contained in a single
source file.

Note: because the visual dialog components cannot be included below, this code
example will not compile. There are 4 dialogs. The 2 confirmer dialogs contain
only the default IDCANCEL and IDOK buttons. Only TOOLDIALOG1 and
TOOLDIALOG2 contain user-defined components: each has one user-defined
push buttons, plus two user-defined text items. Images of these dialogs are
included at the end of this section, and include the identifiers for each user-
defined component.

#include "TestProgApp/public.h"
#include "resource.h" // For dialog use

//---
// Example of code which communicates with hardware. Most functions
// which program tester hardware support using SiteMask() as the
// first argument to the function. This directs the function to
// execute on all Sites enabled with a '1' in the SiteMask value.
// This example uses a mask of 0x1 i.e. write to Site 1 only.
 2/27/09 Pg-2501

User Tools
// Body code converts string value to double value then executes
// vil() with that value, on sites specified by the bit-wise
// SiteMask()
CSTRING_VARIABLE(set_vil_volts, "", "uVar: set_vil_volts") {

output(" set_vil_volts (string) => [%s]", set_vil_volts);
// In this example, the value of 'set_vil_volts' is established
// by the last portion of the first argument to menu_add() i.e.
// everything after the last '/'. This is a string which, in this
// example, must be converted to a double value to be

// subsequently used as arg-1 to the vil() function.
double value = (atof(set_vil_volts) * (1 V));
output(" set_vil_volts (double) => %1.3f", value);
// Set vil on sites enabled via SiteMask() value
vil(SiteMask(0x1), value, builtin_UsedPins);

}

//---
// Create a confirmer dialog to confirm termination of user dialog
// via user-defined IDCANCEL handler.
DIALOG(CONFIRM_EXIT_DIALOG) {}
VOID_VARIABLE(cancel_handler_void, "") {
 if (invoke(CONFIRM_EXIT_DIALOG) == IDOK)

focus(variable);
}

//---
EXTERN_DIALOG(TOOLDIALOG1) // Forward
EXTERN_DIALOG(TOOLDIALOG2) // Forward
EXTERN_CSTRING_VARIABLE(dialog_msg2) // Forward

// These strings will be modified by clicking a button in one
// dialog and updating the value and display in the other dialog.
CSTRING_VARIABLE(dialog_msg1, "Original dialog-1 Message", "") {}
CSTRING_VARIABLE(dialog_msg2, "Original dialog-2 Message", "") {}

// Clicking this button in Tool Dialog 1 causes the value in the
// other dialog to change.
VOID_VARIABLE(ToolButton1, "") {

static int times = 0;
dialog_msg2 =vFormat ("Message changed from dialog-1 => %d

times", ++times);
redisplay_modeless(TOOLDIALOG2); // Update value in dialog

}

 2/27/09 Pg-2502

User Tools
// Clicking this button in Tool Dialog 2 causes the value in the
// other dialog to change.
VOID_VARIABLE(ToolButton2, "") {

static int times = 0;
dialog_msg1 = vFormat ("Message changed from dialog-2 => %d

times", ++times);
redisplay_modeless(TOOLDIALOG1); // Update value in dialog

}

//---
// Optionally used to set up initial conditions in the dialog as it
// is being created. Arg is required by prototype definition but
// not used
void set_initial_dialog_conditions(BOOL xxx) {

output(" set_initial_dialog_conditions()");
}

//---
// Two dialogs invoked as the tool starts, or from the my_Tools
// menu in UI. Each has a button and a message. Clicking the button
// in one dialog causes the message to change in the other dialog.
// The default IDCANCEL is intercepted and handled by code above,
// which presents a confirmer.
DIALOG(TOOLDIALOG1) {

output(" ToolDialog1 from => %d", site_num());
TOPMOST(FALSE) // Allows iconifying, etc.
CONTROL(IDC_dialog_msg1, dialog_msg1)
IMMEDIATE_CONTROL(IDC_ToolButton1, ToolButton1)
CONTROL(IDCANCEL, cancel_handler_void);//Intercept Cancel event
ONINITDIALOG(set_initial_dialog_conditions)

}

DIALOG(TOOLDIALOG2) {
output(" ToolDialog2 from => %d", site_num());
TOPMOST(FALSE) // Allows iconifying, etc.
CONTROL(IDC_dialog_msg2, dialog_msg2)
IMMEDIATE_CONTROL(IDC_ToolButton2, ToolButton2)
CONTROL(IDCANCEL, cancel_handler_void);//Intercept Cancel event
ONINITDIALOG(set_initial_dialog_conditions)

}

 2/27/09 Pg-2503

User Tools
//---
// Used in my_Tool menu to restart one of the dialogs. This can be
// used if the dialogs, which are automatically started when the
// tool starts, are terminated.
VOID_VARIABLE(start_dialog1, "Start Dialog1") {

output(" VOID_VARIABLE: start_dialog1 from => %d", site_num());
run_modeless(TOOLDIALOG1);

}

VOID_VARIABLE(start_dialog2, "Start Dialog2") {
output(" VOID_VARIABLE: start_dialog2 from => %d", site_num());
run_modeless(TOOLDIALOG2);

}

//---
// Demonstrates how to automatically set a uVar = tool's site_num()
// value when a test program load completes. This example uses the
// uVar (tool_site_num) in the tool process but it could be in Site
// or Host too.
INT_VARIABLE(tool_site_num, -99, "tool_site_num") {

output(" ui_ProgLoaded triggered uVar body code\\");
output("using remote_set()");
output(" Tool site_num => %d", tool_site_num);

}

// ui_ProgLoaded is automatically invoked by UI when a test program
// load completes. In this example, remote_set() is called to set
// the value of the tool_site_num uVar to the tool's site_num()
// value.
VOID_VARIABLE(ui_ProgLoaded, "") {

output(" VOID_VARIABLE: ui_ProgLoaded from => %d", sender);
// Using remote_set(), the uVar name as a String means this
// doesn't get resolved until executed. Quoted name must be
// identical with uVar name. uVar must exist at destination
// site to be useful.

remote_set("tool_site_num", site_num(), site_num(), TRUE,
INFINITE);

}

//---
// Create a confirmer dialog to confirm termination of my_Tool.
// This also unconditionally terminates any dialogs created by the
// tool.
 2/27/09 Pg-2504

User Tools
DIALOG(CONFIRM_EXIT_TOOL){}
VOID_VARIABLE(ExitTool, "Exit Tool") {

output(" Terminating Tool");
if (invoke(CONFIRM_EXIT_TOOL) == IDOK)

testprogexit();
}

//---
// Body code executes when my_Tools/Msg-1 is selected in UI. Output
// messages appear in UI's Host window.
CSTRING_VARIABLE(print_tool_msg1, "", "uVar: print_tool_msg1") {

output(" Msg-1");
}

// Body code executes when my_Tools/Msg-2 is selected in UI. Output
// messages appear in UI's Host window.
CSTRING_VARIABLE(print_tool_msg2, "", "uVar: print_tool_msg2") {

output(" Msg-2");
}

//---
// uVars used with "My Menu 2"
CSTRING_VARIABLE(menu_load_test_program, "", "Load program") {

CString prog = get_open_file_name();
remote_set("ui_Open", prog, -1);

}

CSTRING_VARIABLE(menu_start_test, "", "Issue Start Test") {
remote_set("ui_StartTest", "", -1);

}

CSTRING_VARIABLE(menu_stop_testing, "", "Issue Stop Testing") {
remote_set("ui_StopTest", "", -1);

}

CSTRING_VARIABLE(menu_close_program, "", "Close test program") {
remote_set("ui_Close", "", -1);

}

CSTRING_VARIABLE(menu_terminate_UI, "", "Terminate UI") {
remote_set("ui_Exit", "", -1);

}

//---
// Routine to ensure tool won't start if currently running.
// This is trick, using methods not documented here.
 2/27/09 Pg-2505

User Tools
void EnsureSingleInstance(){
char *name = __argv[0]; // __argv[0] = tool name
if (FindWindow("static", name))

fatal("Only one copy of this tool can be run at a time");
else

CreateWindow("static", name, 0, 0, 0, 0, 0, 0, 0, 0, 0);
}

//---
// These macros all execute automatically.
// Executes automatically, first
CONFIGURATION(C1){

output(" CONFIGURATION: site number => %d", site_num());
}

// Executes automatically, after CONFIGURATION.
TOOL_CONFIGURATION(TC1){

output(" TOOL_CONFIGURATION: site number => %d", site_num());
}

// Executes automatically, after TOOL_CONFIGURATION. Note that
// toolbar_add() could also be used below.
TOOL_BEGIN_BLOCK(TBB1){

 // Prevent multiple tool instances from starting
EnsureSingleInstance(); // See Single Instance Code Example
output(" TOOL_BEGIN_BLOCK: site number => %d", site_num());
// Add a menu to UI
menu_add("My Menu 1/Msg-1", print_tool_msg1);
menu_add("My Menu 1/Msg-2", print_tool_msg2);
menu_add("My Menu 1/Set Vil/0 V", set_vil_volts);
menu_add("My Menu 1/Set Vil/1 V", set_vil_volts);
menu_add("My Menu 1/Start Dialog1", start_dialog1);
menu_add("My Menu 1/Start Dialog2", start_dialog2);
menu_add("My Menu 1/Exit Tool", ExitTool);
// Add another menu to UI
menu_add("My Menu 2/Load Program", menu_load_test_program);
menu_add("My Menu 2/Start Test", menu_start_test);
menu_add("My Menu 2/Stop Test", menu_stop_testing);
menu_add("My Menu 2/Close Program", menu_close_program);
menu_add("My Menu 2/Terminate UI", menu_terminate_UI);
// Start two dialogs, each running in its own thread.
 2/27/09 Pg-2506

User Tools
run_modeless(TOOLDIALOG1);
run_modeless(TOOLDIALOG2);

}

// Executes automatically, as tool terminates.
TOOL_END_BLOCK(TE1){

output(" TOOL_END_BLOCK: site number => %d", site_num());
}

// Executes automatically, after TOOL_BEGIN_BLOCK.
INITIALIZATION_HOOK(IH1) {

output(" INITIALIZATION_HOOK: site number => %d", site_num());
}

Example dialog images and component identifiers

TOOLDIALOG2

IDC_dialog_msg2

IDC_ToolButton2

IDC_STATIC

TOOLDIALOG1

IDC_dialog_msg1

IDC_ToolButton1

IDC_STATIC
 2/27/09 Pg-2507

User Tools
7.4.8 ToolLauncher
ToolLauncher extends support for User Tools. The key features of ToolLauncher include:

• User-defined menu items are automatically added to UI’s tool bar for each user
tool registered with ToolLauncher. Registration is simple, see Tool Registration
Requirements.

• Registered tools are not loaded or started until a menu item is selected. This
reduces program load time, and memory is not consumed until the tool is actually
started.

• When a tool is started, menu management can be mostly automatic, using
cookbook code.

• Loading or unloading a test program can enable or disable user menu items,
whether the tool is running or not.

• Beginning in software release h1.1.23, ui_ShowTool and ui_HideTool operate
on User Tools which are started/managed by ToolLauncher. However, some user
code is required, see ui_ShowTool / ui_HideTool Support.

7.4.8.1 Tool Registration Requirements
See ToolLauncher.

For a User Tools to be automatically detected (registered) by ToolLauncher requires the
following:

• Each tool (i.e. MyTool) must contain both an executable file (i.e.
...\MyTool\Debug\MyTool.exe) and a DLL (i.e. ...\MyTool\Debug\MyTool.dll). Both
files must be located in the same folder on disk and have the same root name. If
the steps outlined in ToolLauncher DLL Setup are followed properly these two files
are automatically set up.

• Each tool and associated DLL must define and share three Required Functions:
- setup_menus()
- setup_toolbars()
- site_loaded()
 2/27/09 Pg-2508

User Tools
7.4.8.2 Operation
See ToolLauncher.

This section documents the basic operation of ToolLauncher:

• ToolLauncher is automatically started by UI.
• When started, ToolLauncher registers any User Tools which meets the Tool

Registration Requirements, by searching locations specified using the
DEFERRED_TOOL_PATH environment variable (see Environmental Variables). For
each location specified in DEFERRED_TOOL_PATH, that folder and all sub-folders
are recursively checked for user tools meeting the defined Tool Registration
Requirements.

• ToolLauncher loads the DLL for each registered tool and executes the
setup_menus() function from the DLL. This adds user-defined menu item(s) to
UI’s tool bar. The DLL is then unloaded.

The following sequence occurs when a menu selection is made for a user tool registered
with ToolLauncher:

• ToolLauncher removes all menu item(s) from UI’s tool bar which were inserted by
the DLL for the selected tool. This is required to allow tool code to subsequently
manage its own menu items (more below).

• ToolLauncher starts the user tool, which executes normally (see User Tools).
• Code in the tool may (easily) restore the menu item(s), as desired. See

setup_menus().
The following sequence occurs when a user tool which is registered with ToolLauncher is
terminated:

• ToolLauncher detects that the tool is terminated.
• The DLL for that tool is loaded and the setup_menus() function in the DLL is

executed. This adds user-defined menu item(s) to UI’s tool bar.
• The DLL is then unloaded.

7.4.8.3 Required Functions
See ToolLauncher.
 2/27/09 Pg-2509

User Tools
As noted in Tool Registration Requirements, ToolLauncher requires that each user tool, and
its associated DLL, define and share two functions:

• setup_menus() - a Nextest-defined callback function containing user-written
code which defines how user tool menu item(s) are to be displayed in UI’s tool bar.
Executed by ToolLauncher to set up menu item(s) before a registered user tool is
started or after the tool is terminated (see Operation). May also be executed by the
user tool code restore menu items as the tool starts. This will typically occur via the
tool’s TOOL_BEGIN_BLOCK. See Example User Tool.

• setup_toolbars() - a Nextest-defined callback function containing user-written
code which adds items to UI’s toolbar.

• site_loaded() - a Nextest-defined callback function containing user-written
code used to manage (enable, disable, etc.) existing user tool menu items.
site_loaded() is executed to notify ToolLauncher when a test program is loaded
or unloaded, on the Host or any Site(s). Then, for any registered user tool(s) which
are not currently executing, the corresponding DLL is loaded, the site_loaded()
function is executed, and the DLL is unloaded. site_loaded() may also be
executed by user tool code as desired. See Example User Tool.

A single instance of these functions (i.e. a single source file) must be shared between the
user tool code and the associated DLL (see MenuLayout.cpp). As noted in ToolLauncher
DLL Setup, the tool’s project workspace will contain two projects: the user tool and the DLL,
both of which will include the MenuLayout.cpp file.

7.4.8.4 setup_menus()
See ToolLauncher.

See ToolLauncher, Required Functions.

Description
The setup_menus() function is a Nextest-defined callback, targeted to contain user-
written code which defines menu items to be displayed in UI’s tool bar. This is one of the
ToolLauncher Required Functions.

As noted in Operation, setup_menus() is executed by ToolLauncher to add items to UI’s
Tool menu. This occurs when ToolLauncher first registers a user tool and any time a
registered tool is terminated. When a given tool is started, ToolLauncher automatically
removes all associated menu items from the Tool menu, to allow tool code to manage its
own menu items.
 2/27/09 Pg-2510

User Tools
Tool code can execute setup_menus(), typically from the tool’s TOOL_BEGIN_BLOCK, to
obtain the menu items originally displayed when ToolLauncher started.

Usage
The function prototype is defined by Nextest, but the body code is all user-written:

void setup_menus(menu_func mf,
BOOL deferred /* = FALSE */)

{ ... user-written callback body code ... }

where:

mf is a pointer to a function to be called from within setup_menus(). When
setup_menus() is executed from user tool code, the anticipated usage requires this to be
the menu_add() function. See Example below and Example User Tool.

deferred will be TRUE when setup_menus() is executed by ToolLauncher. When
setup_menus() is executed from user code deferred should not be specified, which
results in FALSE being passed. deferred allows code within setup_menus() to react to
how it was called.

Example
This example shows how setup_menus() will typically be called from user tool code to
add menu item(s) the same as when ToolLauncher first started (which passes the address of
menu_add() as the mf argument):

setup_menus(menu_add); // Passing address of menu_add()

When executed, the body code of setup_menus() will execute the menu_add() function
each place the mf token is used.

Also see Example User Tool.

7.4.8.5 setup_toolbars()
See ToolLauncher.

See ToolLauncher, Required Functions.
 2/27/09 Pg-2511

User Tools
Description
The setup_toolbars() function is a Nextest-defined callback, containing user-written
code which defines items to be displayed in UI’s tool bar. This is one of the ToolLauncher
Required Functions.

As noted in Operation, setup_toolbars() is executed by ToolLauncher to add items to
UI’s tool bar. This occurs when ToolLauncher first registers a user tool and any time a
registered tool is terminated. When a given tool is started, ToolLauncher automatically
removes all associated items from the tool bar, to allow tool code to manage its own tool bar
items.

Tool code can execute setup_toolbars(), typically from the tool’s TOOL_BEGIN_BLOCK,
to obtain the tool bar items originally displayed when ToolLauncher started.

Usage
void setup_toolbars(toolbar_func tf, BOOL deferred = FALSE);

where:

tf is a pointer to a function to be called from within setup_toolbars(). When
setup_toolbars() is executed from user tool code, the anticipated usage requires this to
be the toolbar_add() function. See Example below and Example User Tool.

deferred will be TRUE when setup_toolbars() is executed by ToolLauncher. When
setup_toolbars() is executed from user code deferred should not be specified, which
results in FALSE being passed. deferred allows code within setup_toolbars() to react
to how it was called.

Example
This example shows how setup_toolbars() will typically be called from user tool code to
add toolbar item(s) the same as when ToolLauncher first started (which passes the address
of toolbar_add() as the tf argument):

setup_toolbars(toolbar_add); // Passing address of toolbar_add()

When executed, the body code of setup_toolbars() will execute the toolbar_add()
function each place the tf token is used.

Also see Example User Tool.
 2/27/09 Pg-2512

User Tools
7.4.8.6 site_loaded()
See ToolLauncher, Required Functions.

Description
The site_loaded() function is a Nextest-defined callback, containing user-written code
used to manage (enable, disable, etc.) menu items for user tools registered with
ToolLauncher. This is one of the ToolLauncher Required Functions.

Any time a test program is loaded or unloaded, on the Host or any Site(s), ToolLauncher is
notified, and the following actions occur:

• For each user tool registered with ToolLauncher which is not currently loaded, the
associated DLL is loaded.

• The site_loaded() function is executed from the DLL.
• The DLL is unloaded.

This allows menu items for user tools which are not running to be modified when a test
program loads or unloads.

site_loaded() may also be executed from user tool code, as desired. This allows an
executing user tool to use the same code as ToolLauncher, to manage/change menu items
as test programs load/unload. See Example below and Example User Tool.

Usage
void site_loaded(int site,

BOOL loaded,
BOOL deferred /* = FALSE */)

{ ... user-written callback body code ... }

where:

site indicates which site triggered the callback. Host = 0, Site-1 = 1, etc. This is automatic
when site_loaded() is executed from ToolLauncher. If site_loaded() is called from
user tool code the value of site is determined by that code.

loaded is TRUE if site_loaded() was triggered because a test program was loaded or
FALSE if unloaded. This is automatic when site_loaded() is executed from
ToolLauncher. If site_loaded() is executed from user code the value of loaded is
determined by that code.
 2/27/09 Pg-2513

User Tools
deferred is TRUE if site_loaded() is called by ToolLauncher, indicating that the
associated user tool is not currently executing (i.e. execution is deferred). When
site_loaded() is executed from user code deferred should not be specified, which
results in FALSE being passed. deferred allows code within site_loaded() to react to
how it was called.

Example
This example shows how site_loaded() might be used in user tool code:

VOID_VARIABLE(ui_ProgLoaded, ""){
site_loaded(0, TRUE);

}

VOID_VARIABLE(ui_ProgUnloaded, ""){
site_loaded(0, FALSE);

}

INT_VARIABLE(ui_SiteLoaded, 0, ""){
site_loaded(ui_SiteLoaded, TRUE);

}

INT_VARIABLE(ui_SiteUnloaded, 0, ""){
site_loaded(ui_SiteUnloaded, FALSE);

}

The effect of this code is to cause the same results as when site_loaded() is executed
by ToolLauncher.

Also see Example User Tool.

7.4.8.7 ui_ShowTool / ui_HideTool Support
See ToolLauncher, User Tools, Required Functions.

As indicated above, beginning in software release h1.1.23, ui_ShowTool and
ui_HideTool operate on User Tools which are started/managed by ToolLauncher.

However, in order for operation to be consistent with that seen with UI’s tools a bit of user
code is required, as follows:

BOOL_VARIABLE(ui_Show, TRUE, ""){
if (ui_Show)
 run_modeless(myDialog);
 2/27/09 Pg-2514

User Tools
else
 kill_modeless(myDialog); // Dismiss the tool dialog
// Or, use testprogexit() to terminate the tool process

}

Note the following:

• The ui_Show user variable, and related code, must be added to the user tool
code. It should NOT be added to the MenuLayout.cpp file required by
ToolLauncher.

• The purpose of ui_Show is to allow UI to invoked the tool if/when ui_ShowTool
is applied to the tool and to hide the tool when ui_HideTool is applied to the
tool. The code in the example above performs these tasks.

• If the code above does not exist, UI will not have the mechanism needed for
ui_ShowTool to start the tool and and ui_HideTool will kill the tool process
rather than just dismiss the dialog; the latter operation is described in the
ui_ShowTool documentation.

7.4.8.8 MenuLayout.cpp
See ToolLauncher.

Note: the MenuLayout.cpp file included here is an example implementation
(recommended), demonstrating key features of the ToolLauncher Required
Functions source file. Note that ToolLauncher DLL Setup assumes the
MenuLayout.cpp file name is used.

As noted in Tool Registration Requirements, ToolLauncher requires that the Required
Functions be shared between the user tool code and the associated DLL. The example
below is contained in a single source file named MenuLayout.cpp, and contains only the
Required Functions (highly recommended):

// This code is shared by the user tool and associated DLL
#include "deferred_tool.h" // Replaces "tester.h"

void setup_menus(menu_func mf, BOOL deferred) { // setup_menus()
mf("MyTools/Func1", "MyFunc1", "C-a", FALSE);
mf("MyTools/Func2", "MyFunc2", "C-b", FALSE);
mf("MyTools/MyDialog", "StartMyDialog", "C-c");

}

 2/27/09 Pg-2515

User Tools
void setup_toolbars(toolbar_func tf, BOOL deferred){
// Set up toolbar items here. See setup_toolbars()
}

void site_loaded(int site, BOOL loaded, BOOL deferred) {
output(" site_loaded() reports program %s on Site => %d %s",

loaded ? "Loaded" : "UNloaded", site);

// Execute the following only when a test program is loaded or
// unloaded on the Host. This will only occur after all sites
// are loaded or unloaded.
if (site == 0) {

menu_enable("MyTools/Func1", loaded);
menu_enable("MyTools/Func2", loaded);

}
}

Note the following:

• A different #include must be used in any source file(s) which reference
setup_menus(), setup_toolbars() or site_loaded():

#include "deferred_tool.h"

The deferred_tool.h file includes and thus replaces:
#include "tester.h"

Note: collisions with user additions to the tester.h file should be rare, but are
possible, and must be resolved by moving the problem definitions outside the
Nextest include file structure.

• The MenuLayout.cpp file contains only the ToolLauncher Required Functions:
setup_menus(), setup_toolbars() and site_loaded(). The prototypes of
both functions are defined by Nextest, and cannot be changed.

• In setup_menus(), the mf function is called once to define each user tool menu
item; the arguments define the menu options. ToolLauncher will add these menu
items as outlined in Operation. The following code from the setup_menus()
example above defines one menu entry:

mf("MyTools/Func1", "MyFunc1", "C-a", FALSE);

where:
"MyTools/Func1" defines the menu to modify or create (MyTools) and the menu
item text to be added (Func1)
 2/27/09 Pg-2516

User Tools
”MyFunc1” identifies a user variable. The body code of this user variable will be
executed when the menu item is selected. Note that the user variable name must
be "quoted". This is because these user variable(s) are not defined (and should
not be defined) within the scope of setup_menus().
“C-a“ defines a keyboard shortcut (control-A) which will activate the menu item.
FALSE specifies that the menu item will be disabled. If this argument is not
specified the menu item is enabled.
Note: user menus are documented in detail in User Menus in UI.

• User tool code may also call setup_toolbars() to insert items into UI’s toolbar.
• User tool code may also call setup_menus() to execute the same code as

ToolLauncher. From user code, the mf function should be the address of
menu_add(). As the example shows, multiple menu items can be added by
calling mf() multiple times.

• The example site_loaded() code above does the following:
- Always outputs a message showing the values of the passed arguments.
- Enables two menu items when a test program is loaded on the Host.
- Disables two menu items when a test program is unloaded on the Host.

The Example User Tool uses this same code.

7.4.8.9 ToolLauncher DLL Setup
See ToolLauncher.

As noted in Tool Registration Requirements, the Required Functions must be shared
between the user tool code and the associated DLL, and the DLL and tool executable files
must be located together. How this is managed is documented here.

User tools to be supported by ToolLauncher will contain two projects:

• The user tool project
• The DLL project

Both projects will contain the MenuLayout.cpp file.

Before dealing with the DLL, the user tool project is first set up normally, as documented in
the User Tools. Create the MenuLayout.cpp file and add it to the user tool project. Build the
tool and correct any compile-time errors.
 2/27/09 Pg-2517

User Tools
Note: the procedures below all assume the user tool is named MyTool, and that the
MenuLayout.cpp file name is used.

To add the DLL, perform the following:

1. In the same workspace as the user tool, add the DLL project:

• In the File View window, select the workspace, then select Project -> Add
to Project -> New...:

• In the New dialog, select the Projects tab, then select Win32 Dynamic Link
Library.

• In the Project name field, enter the project name for the DLL. The name
specified here does not matter - the setup done in step-5 causes the actuall DLL
to be renamed when it is copied to the final location. However, do make this
name clearly indicate the project is a DLL. Don’t change any other fields.
 2/27/09 Pg-2518

User Tools
• Click OK:

• In the Wizard dialog which appears next, the default option (An empty DLL
project) is correct. Click Finish.

• Terminate the New Project Information dialog which appears next.
2. Set the DLL project to use MFC as a Shared DLL:

• In the File View window, select the DLL project.
• Select Project -> Settings...
 2/27/09 Pg-2519

User Tools
• In the Project Settings dialog, ensure the DLL project is selected in the left panel.
• In the Project Settings dialog, locate and select the General tab
• In the Microsoft Foundation Classes pull-down menu select:

Use MFC in a Shared DLL

• Click OK

3. Add the MenuLayout.cpp file containing the Required Functions to the DLL project:

• In the File View window, select the Source Files folder from newly added DLL
project (not the tool project).

• Select Project -> Add to Project -> Files...

• In the file browser, select the MenuLayout.cpp file and click OK.
 2/27/09 Pg-2520

User Tools
• Confirm the MenuLayout.cpp appears in both the tool project and the DLL
project:

4. Set up a dependency between the user tool project and the DLL:

This step is optional. Doing this ensures that invoking Build -> Rebuild All
will always compile both projects, in the proper order. If this step is skipped, the
user is responsible for manually selecting the project to compile, and the tool
\Debug\ folder must exist before custom build step (below) for the DLL will
execute.
• Select Project -> Dependencies...
• In the Project Dependencies dialog make sure the tool project is dependent on

the DLL project.

MenuLayout.cpp shared
with both the user tool
andthe DLL projects.
 2/27/09 Pg-2521

User Tools
• Click OK:

5. Set up a custom build step for the DLL project:

This will copy the DLL’s .exe file to the tool’s \Debug\ folder so that it is in the
same location as the tool’s .exe file (as noted in Tool Registration Requirements).
The .dll file is also renamed to match the .exe file name.
• In the File View window, select the DLL project.
• Select Project -> Settings....
• In the Project Settings dialog, ensure the DLL project is selected in the left panel.
• In the Project Settings dialog, locate and select the Custom Build tab.
• In the Commands window enter the following command, exactly as shown (use

copy/paste but don’t get the end-of-line):
copy "$(TargetPath)" "$(WkspDir)\$(OutDir)\$(WkspName).dll"

• In the Outputs window enter the following command, exactly as shown(use
copy/paste but don’t get the end-of-line):

.\always-do-it
 2/27/09 Pg-2522

User Tools
• Click OK.

6. Set the user tool project (not the DLL project) as the active project:

• In the File View window, select the user tool project.
• Using the right-mouse select Set as Active Project
• Confirm the user tool project is selected.

7. Select Build -> Rebuild All to compile both the tool project and the DLL.

7.4.8.10 Example User Tool
See ToolLauncher.

Most of the important details about this example are discussed previously in earlier sections.
Other details can be found in the User Tools.
 2/27/09 Pg-2523

User Tools
This example adds one menu (MyTools) and 3 menu items (Func1, Func2, MyDialog) to UI’s
tool bar:

Note the following

• The Func1 and Func2 items are initially disabled (greyed out). The MyDialog item is
enabled.

• Func1 and Func2 will be enabled any time a test program is loaded, and disabled
any time a test program is not loaded. This is true whether the tool is loaded or
not.

• In this example, Func1 and Func2 only output a message when the menu item is
selected. When MyDialog is selected the dialog (see MultiDialog.rc File below)
starts (its display may be minimized). The dialog does nothing interesting.

This example is contained in the following files:

• MyTool.cpp
• MenuLayout.cpp File
• MultiDialog.rc File

Note that the information and images seen in ToolLauncher DLL Setup was obtained using
example below.

MyTool.cpp
// This is user tool code.
#include "deferred_tool.h" // Replaces "tester.h"

EXTERN_DIALOG(MyDialog) // Forward

CSTRING_VARIABLE(MyFunc1, "MyFunc1", "") {
output(" Executing %s from site=>%d",

resource_name(variable), sender);
}

 2/27/09 Pg-2524

User Tools
CSTRING_VARIABLE(MyFunc2, "MyFunc2", "") {
output(" Executing %s from site=>%d",

resource_name(variable), sender);
}

CSTRING_VARIABLE(StartMyDialog, "StartMyDialog", "") {
output(" Executing %s from site=>%d",

resource_name(variable), sender);
run_modeless(MyDialog); // Start my tool dialog

}

DIALOG(MyDialog) {
TOPMOST(FALSE) // Allows iconifying, etc.

}

// If the tool is running, make it enable menu items the same as
// ToolLauncher would if the tool was not running.
VOID_VARIABLE(ui_ProgLoaded, ""){ site_loaded(0, TRUE); }
VOID_VARIABLE(ui_ProgUnloaded, ""){ site_loaded(0, FALSE); }
INT_VARIABLE(ui_SiteLoaded, 0, ""){

site_loaded(ui_SiteLoaded, TRUE);
}
INT_VARIABLE(ui_SiteUnloaded, 0, ""){

site_loaded(ui_SiteUnloaded, FALSE);
}

// When the tool starts, set up the menu and/or toolbar items the
// same as ToolLauncher did.
TOOL_BEGIN_BLOCK(TBB1){

setup_menus(menu_add); // Optional
setup_toolbars(toolbar_add); // Optional

}

MenuLayout.cpp File
Use the code from MenuLayout.cpp.
 2/27/09 Pg-2525

User Tools
MultiDialog.rc File
The dialog below, containing only the Cancel button, is one of the tools (MyDialog) started
from this code:
 2/27/09 Pg-2526

User Dialogs
7.5 User Dialogs
This section includes:

• Overview
• Supported Dialog Components
• Creating a User Dialog

- Creating the Dialog C-code
- Creating the Dialog Graphic
- Adding Dialog Components to the Dialog
- IDCANCEL and IDOK
- Dialog Editor Tips

• Changing Dialog Button Text
• Setting Tab Order
• Creating Bitmap Dialog Components
• Bitmap Usage
• Dialog Progress Resource
• Radio Buttons and ONEOF User Variables
• Sliders & Scroll-bars
• User Dialog Functions

- Transferring Values to/from Dialog Resources
- for_each()
- top_most()

• Grid Usage
- Functions not listed here, go to Grid Usage

7.5.1 Overview

Terminology Used
The terminology used in this section is a mix of formal terms used by Microsoft Developer
Studio and more common or generic terms used by the rest of the world. These latter terms
are only used when the formal terms are obscure and/or risk confusion.
 2/27/09 Pg-2527

User Dialogs
User Dialog A graphic dialog and related C-code created by
the user.

Dialog Component A sub-component of a user dialog: a button, text
box, radio button, etc. This term used here in
place of “Dialog Resource” to aid clarity.

Dialog Resource The formal term used in Developer Studio (tools,
etc.) for a Dialog Component.

User Variable A Nextest-created software object consisting of
a variable, with optional body code which can be
selectively executed. User variables are a key
component in making user dialogs easy to use. See
User Variables.

MSDS Microsoft Developer Studio

MFC Microsoft Foundation Class Libraries. This is the
underlying library of functions used to support
the complete set of Visual graphic capabilities
in Visual C++. In most cases, user-created
dialogs do NOT directly use MFC library calls.
See Supported Dialog Components

7.5.2 Supported Dialog Components
The Microsoft Visual C++ Developer Studio (MSDS) supports a broad range of predefined
graphic dialog components, including buttons, text boxes, radio buttons, etc. To fully utilize
these resources requires a broad knowledge of the Microsoft Foundation Class Libraries
(MFC) included with MSDS. This is not a trivial learning experience and is not supported by
Nextest.

Instead, the Nextest software provides a set of macroS and functions which, when
combined with User Variables, make the most commonly used dialog components
accessible to the typical user. However, by necessity, the scope of support provided by
Nextest software is a subset of the full capabilities available via the MFC libraries.
 2/27/09 Pg-2528

User Dialogs
The various combinations of user variable vs. supported dialog components are:

Nextest software does not provide any support for the following dialog components:

• Horizontal or Vertical Scroll Bars, other than as automatically supported by the
components above.

• Animate
• Tab Control
• Tree Control
• List Control
• Hot Key
• Slider
• Spin
• Custom Control

User Variable
Type Supported Control Types

BOOL_VARIABLE Checkbox

CSTRING_VARIABLE Edit Box, Static Text, Bitmap4

DOUBLE_VARIABLE Edit Box, Static Text, Progress3, Bitmap3,4

DWORD_VARIABLE Edit Box, Static Text, Progress3, Bitmap3,4

FLOAT_VARIABLE Edit Box, Static Text, Progress3, Bitmap3,4

INT_VARIABLE Edit Box, Static Text, Progress3, Bitmap3,4

INT64_VARIABLE Edit Box, Static Text, Progress3, Bitmap3,4

ONEOF_VARIABLE
ListBox, Dropdown ComboBox, Drop List
ComboBox, Tab, Static Text, RadioButton2,
Bitmap3,4

VOID_VARIABLE Button, Bitmap4, Group Box2

Notes
1) No immediate mode
2) Maverick-I/-II Software release v1.26.21 or later
3) Maverick-I/-II Software release v2.4.7 or later.
 All Magnum 1/2/2x releases.
4) See Bitmap Usage.
 2/27/09 Pg-2529

User Dialogs
• Rich Edit
• Date/Time Picker
• Month Calendar
• IP Address
• Extended Combo Box

7.5.3 Creating a User Dialog

Definition
A user dialog consists of two part

• Creating the Dialog C-code
• Creating the Dialog Graphic

The C-code is created/edited using the same methods used for the other test program
source code. The test program created using the Program Wizard contains a number of
simple example dialogs, with supporting C-code contained in the file dialogs.cpp.

The dialog’s graphic components are edited visually, using different Developer Studio tools.

It does not matter whether the C-code or graphic components are created first, however
error free compiling may not be possible until both parts are completed.

Note: it is recommended that user dialogs be created incrementally, by adding only a
few features at a time, and compiling, and testing often. Occasionally, when
things go wrong, the only course of recovery is to delete things, both code and
graphic components, until the problem is corrected.

7.5.3.1 Creating the Dialog C-code
Nextest software provides a set of Test System Macro and functions which, when combined
with User Variables, make the most commonly used dialog components accessible to the
typical user. These are listed below, and elsewhere in this section of the manual.
 2/27/09 Pg-2530

User Dialogs
Note: Nextest does NOT provide any level of direct support for the Microsoft
Foundation Class Libraries (MFC). All Nextest support for user dialogs is
provided through the macros and functions documented in this manual.

The Program Wizard stores the example user dialog C-code in the file dialogs.cpp, and this
file name will be used here when referring to dialog source code. However, the file name is
totally up to the user.

The DIALOG() macro is used to create and name a user dialog. Multiple dialogs can be
created in the test program, each with a unique name. The remainder of the
macros/functions below are used within the DIALOG() macro body-code.

The CONTROL() macro is used in the body-code of the DIALOG() macro to used to link a
non-immediate dialog resource to one BOOL_VARIABLE, DOUBLE_VARIABLE,
DWORD_VARIABLE, FLOAT_VARIABLE, INT_VARIABLE, INT64_VARIABLE,
UINT64_VARIABLE or CSTRING_VARIABLE User-defined User Variables. The term
non-immediate means that activating that dialog component does not cause an (immediate)
execution of the associated user variable body code i.e. any selection or value change made
in the dialog component must be explicitly read, using update_variable() or
update_variables(). Using the CONTROL() macro defaults to displaying numerical
values in decimal. However, when entering numerical values in the dialog component either
decimal, or hex, values can be entered, using the appropriate syntax (0x prefix for hex).

The HEX_CONTROL() macro is similar to CONTROL except that it defaults to displaying
hexadecimal numerical values. Both decimal and hex values can be entered using the
appropriate syntax.

The IMMEDIATE_CONTROL() macro is used in the body-code of the DIALOG() macro to
link an immediate dialog resource to a VOID_VARIABLE, BOOL_VARIABLE, or
ONEOF_VARIABLE User-defined User Variables. The term immediate means that invoking
that dialog component causes an immediate execution of the associated user variable body
code.

The TOPMOST() macro is used in the body-code of the DIALOG() macro to determine
whether the dialog will remain on-top of other UI dialogs (TRUE) or will allow other dialogs to
be on top of it (FALSE).

The ONINITDIALOG() macro is used in the body-code of the DIALOG() macro to specify a
function which will be executed when the dialog is first created. The common application is
to set up the dialog's initial conditions. Function required prototype is:
 2/27/09 Pg-2531

User Dialogs
void funcID(BOOL created)

where the name of the function is user-defined, and is the argument passed to the
ONINITDIALOG(). During dialog creation the specified function is executed twice, once
before any dialog resources are created (created = FALSE) and once after all dialog
resources are created (created = TRUE). In situations where the initial values to be
displayed in the dialog are not the default values of the User-defined User Variables tied to
the dialog components this function can be used to establish the desired values. See User
Tool Example.

The GRAPHIC() macro is used in the body-code of the DIALOG() macro to ???.

The hex_display() function is used in the body-code of the DIALOG() macro to modify
the numerical base used to display integer values. More below.

Usage
DIALOG(dialog_name) { body_code }

CONTROL(control_id, uVar)

HEX_CONTROL(control_id, uVar)

IMMEDIATE_CONTROL(control_id, uVar)

TOPMOST(mode)

ONINITDIALOG(func)

GRAPHIC(id, func)

hex_display(uVar, TRUE)

where:

dialog_name is used to link the main graphic dialog to user-written C-code, and to invoke
the dialog. The name must exactly match the Dialog Properties ID, which can be viewed and
edited using the Dialog Properties display. See Creating the Dialog Graphic.

control_id represents the resource ID of the dialog component (button, list box, etc.)
being associated with the specified user variable, uVar. In the MSDS Resource View,
display the target dialog and double-click on a dialog component (resource) to display it's
properties, including it's ID. Except for the predefined IDCANCEL and IDOK resource IDs, a
given dialog component is not programmatically useful unless it is tied to a user variable.

uVar is the name of one user-defined User-defined User Variables.

mode specifies the desired numerical display mode of the dialog component tied to the user
variable uVar. Specifying TRUE = hexadecimal. FALSE = decimal. This can be used to
 2/27/09 Pg-2532

User Dialogs
override the default radix setup using the CONTROL() and HEX_CONTROL() macros. This
function only applies when:

• The user variable is an INT_VARIABLE, DWORD_VARIABLE or INT64_VARIABLE
• The associated dialog component displays numerical values: text box, edit box,

etc.
Note that the user may enter values in the dialog component using hex or decimal
regardless of the hex_display() mode setting. But, if the value displayed in the dialog is
updated from C-code (update_variable() or update_variables()) the new value
displayed will be in the default radix as modified by hex_display(). The prefix 0x is used
to enter hex values.

7.5.3.2 Creating the Dialog Graphic
The following steps outline how to create a new dialog in Developer Studio. The examples
below reflect a test program which contains no dialogs. If the program already contains user
dialogs the images below will be different, but the process is the same.

1. Open the Project Workspace of the target test program.

2. Select Insert: Resource.

3. In the Insert Resource display, left click on Dialog, and click OK
 2/27/09 Pg-2533

User Dialogs
4. In the Project Workspace window, select the ResourceView tab

5. Click the + to open the Dialog folder and note the new dialog resource appears in the list
of dialogs. Double click on the dialog icon to display the dialog resource for editing.

6. Double click on the background of the dialog, and enter the name of the dialog in the ID
field. This name must be in DOUBLE QUOTES. It is important that this name exactly
match the name used in the corresponding DIALOG() macro.

7. Click anywhere outside the Dialog Properties box to cause it to close. No explicit Save is
required (or possible).

8. The dialog properties can be edited at any time, using this Dialog Properties box. Click

on the icon for an explanation of each property seen under each tab.

This ID must exactly
match the dialog name
used in the C-code.
It must be double
quoted here (unlike the
ID for other dialog
components).
 2/27/09 Pg-2534

User Dialogs
7.5.3.3 Adding Dialog Components to the Dialog
Dialog components are added to the main dialog using drag/drop methods. The source of
dialog components is the Controls Tool Bar.

This tool bar may be Hidden, by you or a prior user. If it is not visible, select View:
Toolbars... and make sure the Controls option is checked. The Controls Tool Bar may
be positioned anywhere in the Developer Studio window.

Example
To add a Combo Box, for example, to the dialog:

1. In the Controls Tool Bar, locate the Edit Box icon

2. Left click-and-drag into the main dialog display.

3. Resize and position the component as desired. This can also be changed at any time.
 2/27/09 Pg-2535

User Dialogs
4. Double-click on the Edit Box component to display the Edit Box Properties dialog.

5. Edit the ID to a meaningful name. In this example, the name was changed to
IDC_options_list. Note that the IDC_ prefix is a convention, allowing easy identification of
dialog component IDs from other program identifiers. This ID (name) will be used as
argument-2 to one of CONTROL(), IMMEDIATE_CONTROL(), etc. macros in the C-code.
The ID (name) for dialog components is NOT quoted (unlike the ID for the parent dialog).

6. Position and size the Edit Box as desired. Use the Dialog Tool Box controls as desired.

This tool bar may be hidden, by you or a previous user. If it is not visible, select View:
Toolbars... and make sure the Dialog option is checked. The Dialog Tool Bar may be
positioned anywhere in the Developer Studio window.

7.5.3.4 IDCANCEL and IDOK
By default, each new dialog will automatically contain a Cancel and OK button. The ID
property of the OK button is IDOK. The ID property of the Cancel button is IDCANCEL. Both
IDOK and IDCANCEL have predefined functionality i.e. no user C-code is needed to support
these components.

However, it is possible for user-written C-code to replace the built-in functionality. This is
done by defining an IMMEDIATE_CONTROL() with IDCANCEL or IDOK as the first
argument. The second argument must be the name of an existing VOID_VARIABLE. It is the
 2/27/09 Pg-2536

User Dialogs
body code of the VOID_VARIABLE which will execute when the OK or Cancel button is
clicked. It is this body code which takes all responsibility for terminating the dialog (or not).

The focus() function is used to set the focus to a specific resource in a dialog. It is also
used to terminate a dialog. Note the following:

• When used to terminate a dialog, the syntax is fixed regardless of the dialog
name, ID, etc. Use the following in the body-code of the user variable:

focus(variable); // Literally “variable” not the uVar name

When the variable is a VOID_VARIABLE it must be tied to IDCANCEL (see
IDCANCEL and IDOK).

• When used to move the focus to a specific dialog component the name of the
User Variables linked to the component is specified i.e. focus(uVar_name).

• When focus(uVar_name) is called from the body-code of a user variable
execution immediately exits the body-code, AND any other body-code in the
current execution hierarchy. In other words, if the body code of uVar1 invokes the
body code of uVar2 which invokes the body code if uVar3, if
focus(any_uVar_name) is called in uVar3 no more body code from any of the
three user variables will be executed.

• When it is desired to undefine the focus use focus(0);

Usage
void focus(VariableProxy v);

where:

v identifies which variable will receive the focus, see Description for more details.

Example
VOID_VARIABLE(my_CANCEL_var, "Dismiss current dialog") {

if (update_values(current_dialog())) { // Optional
focus(variable);

}
}

 2/27/09 Pg-2537

User Dialogs
7.5.4 Setting Tab Order

Description
In use, it is possible to move the cursor between components of User Dialogs using the tab
key. This section documents how to configure how the cursor moves when the tab key is
used.

In most cases a will configured tab order is only a convenience to the end user. However, a
contiguous tab order is required when using Radio Buttons and ONEOF User Variables.

In the images below, the left dialog shows the order tab movement would occur before any
invervention. The order is somewhat random, likely base on the order the dialog
components were added. The right image shows how the order was modified.

Usage
The process begins by displaying the dialog in Developer Studio. Type control-D (^d) to
display the existing tab order.

To set the order starting with position 1 just start clicking on dialog components.

Before

After
 2/27/09 Pg-2538

User Dialogs
To modify the order at other than position 1, shift-left click to select a position number as a
reference. The next left-click will set that dialog component to the next number and shift all
higher order numbers accordingly. The Developer Studion on-line help covers this in more
detail (search for tab order).

7.5.4.1 Dialog Editor Tips
• In general, the default styles are appropriate. Test any non-default styles carefully!
• Control-Z undo works when editing the dialog graphic
• Use the arrow keys to move dialog components in small increments
• Use the Dialog tools to align, size, etc. dialog components

7.5.5 Changing Dialog Button Text

Note: first available in h2.2.7/h1.2.7.

The example below shows how to change the text displayed in a dialog button control. In
this example, each time the button is clicked the text is changed, cycling through 4 values:

Example
#include "tester.h"
#include "resource.h"

Below, this button’s resource ID = IDC_BUTTON1
 2/27/09 Pg-2539

User Dialogs
VOID_VARIABLE(Button_1, ""){
CString t = get_window_text(Button_1);
if(t == "Button_1") set_window_text(Button_1, "Button_2");
else

if(t == "Button_2") set_window_text(Button_1, "Button_3");
else

if(t == "Button_3") set_window_text(Button_1, "Button_4");
else

if(t == "Button_4") set_window_text(Button_1, "Button_1");
}

DIALOG(dialog){

CONTROL(IDC_BUTTON1, Button_1)
}

SITE_BEGIN_BLOCK(SB1){
invoke(dialog);

}

7.5.6 Creating Bitmap Dialog Components
A bitmap graphic can be created in a user dialog. The example below creates a bitmap used
to display a BIG RED FAIL in the dialog. Supporting C-code can conditionally make a dialog
component, in this case the bitmap image, visible or invisible. Using this bitmap the
application C-code would hide the Fail bitmap and show a Pass bitmap when appropriate.

To use Bitmaps in a dialog requires the following basic steps. The first two steps are further
outlined in detail below.

• Create the bitmap and add it to the project
• Add a Picture dialog component to the dialog and link it to the bitmap
• Create the C-code needed to use the bitmap. This is optional if the bitmap image

serves no purpose other than as a static image.
To create and add a bitmap to a user dialog do the following steps:

1. Create the desired bitmap and insert it into the project:

a. Select Insert: Resource...
 2/27/09 Pg-2540

User Dialogs
b. In the Insert Resource dialog click the Bitmap icon and click OK.

c. Click the ResourceView tab and note that a new Bitmap resource appeared. If this is
the first Bitmap in this test program, it will be named IDB_Bitmap1 by default. Note
also that the MSDS bitmap editor is displayed and ready to use.

The new Bitmap
resource.
 2/27/09 Pg-2541

User Dialogs
2. Using the MDSD bitmap editor, create the picture you want. In this example, the BIG
RED FAIL is created.

3. Double-click on the border of the drawn bitmap image to display the property editor.
Change the ID to something meaningful. In the example, the ID was changed to IDB_fail.
The IDB_ prefix is the preferred convention for all bitmap IDs. Note, that the bitmap will
be saved to a file named after the ID. The file will be located with the other program
source files.

To add a Picture dialog component to the dialog and link it to the bitmap do the following:
 2/27/09 Pg-2542

User Dialogs
1. In the MSDS ResourceView, double-click on the target dialog to open it for editing.

2. From the Controls tool bar select and add a Picture component to the dialog.

3. Double-click on the edge of the picture component to display the Picture Properties box.

a. Edit the ID to a meaningful name. IDC_ is the preferred prefix for all dialog
component IDs.

b. In the Type window select Bitmap.

c. In the Image window select the specific bitmap to be linked to this Picture.

d. Review and select other properties as needed. The most basic property is whether
the image is initially visible. Supporting C-code can conditionally make the image
visible or invisible, which is commonly done to, for example, hide a Fail bitmap and
show a Pass bitmap (and vice versa). It is the Picture ID (IDC_fail) which is
referenced in the C-code to change the visibility state. The example properties looked
like this:

e. Optionally write the C-code to use the Picture.

7.5.7 Bitmap Usage
In the context of User Dialogs, a bitmap is a [simple] user-created image which can be
displayed or hidden, or used as a button. This allows the user to display pictorial objects in a
 2/27/09 Pg-2543

User Dialogs
dialog or easily implement a custom button image. For example, the dialog below displays 6
bitmaps, one of which is used as a button (Toggle) the others are for display only:

The code in Example 2: implements this dialog. In this example, when the Toggle bitmap is
clicked, the following occurs:

• The Pass bitmap is replaced with the FAIL bitmap (or vice versa)
• The other 4 bitmaps are changed.

Bitmap support increased in Maverick software release v2.4.7. Prior to this release:

• A bitmap could only be associated with CSTRING_VARIABLEs, which were then
used to hide/show the desired bitmap. This is capability is seen in Example 1:
below.
 2/27/09 Pg-2544

User Dialogs
• Bitmaps were always explicitly inserted into the user dialog using the resource
Control dialog, and selecting and inserting a Picture resource into the dialog.
Then, in the Pictures Properties dialog, the Type is changed to Bitmap, and
the Image is selected:

Starting in Maverick software release v2.4.7, and for all Magnum 1/2/2x releases, the
following features are available:

• The association of a given bitmap with a specific user variable can be done in
program code.

• Bitmaps can be associated with most user variable types. Refer to Supported
Dialog Components which shows the types of user variables which support the
progress resource.

• The value of the user variable can be used to select the desired bitmap to be
displayed.

These new features are seen in the two dialogs above, which are implemented in
Example 2:

As noted above, and in Supported Dialog Components, a bitmap can be associated with
most types of User-defined User Variables. Usage rules vary depending on the underlying
type of the user variable:

• CSTRING_VARIABLE: if the value assigned to the variable is the (quoted) resource
ID of a bitmap that bitmap will be displayed when the dialog or the control is
updated. See Example 2:

• VOID_VARIABLE: if associated with a bitmap, clicking that bitmap invokes the
body code of the variable.
 2/27/09 Pg-2545

User Dialogs
• DOUBLE_VARIABLE, FLOAT_VARIABLE, INT64_VARIABLE, INT_VARIABLE, and
DWORD_VARIABLE all share he same rules. If the value of the variable is assigned
to a bitmap resource ID, that bitmap will be displayed when the dialog or the
control is updated.

• ONEOF_VARIABLE: the value list can represent n-bitmaps, where each value is the
(quoted) resource ID of one bitmap. If the value of the variable is changed, the
associated bitmap will be displayed when the dialog or the control is updated.

These are all demonstrated using Example 2:.

Examples

Example 1:
This example is supported in all software releases. The code below was used to implement
the dialog below, shown in the two states which result when the Toggle button is clicked:

Note that the association of bitmap-to-user variable is done via the Picture Properties ID in
the dialog resource editor (i.e. it isn’t seen in C source code):

CSTRING_VARIABLE(uvTestPass, "uvTestPass", "") {}
CSTRING_VARIABLE(uvTestFail, "uvTestFail", "") {}

Clicking the button labled Toggle alternates hiding one bitmap and showing the other:

VOID_VARIABLE(uvToggle, "") {
static BOOL toggle = TRUE;
if (toggle = !toggle) {

ShowWindow(get_HWND(uvTestPass), SW_SHOW);
ShowWindow(get_HWND(uvTestFail), SW_HIDE);

} else {
ShowWindow(get_HWND(uvTestPass), SW_HIDE);
 2/27/09 Pg-2546

User Dialogs
ShowWindow(get_HWND(uvTestFail), SW_SHOW);
}

}

DIALOG(MyDialog) {
IMMEDIATE_CONTROL(IDC_uvToggle, uvToggle)// Button
CONTROL(IDC_uvTestPass, uvTestPass) // Bitmap
CONTROL(IDC_uvTestFail, uvTestFail) // Bitmap

}

Example 2:
This example implements the dialog shown at the beginning of this section. It uses the
features described above:

EXTERN_DIALOG(MyDialog1) // Forward
INT_VARIABLE(uvInt1, IDB_Int1, ""){}
INT_VARIABLE(uvInt2, IDB_Int2, ""){}
INT_VARIABLE(uvInt3, IDB_Int3, ""){}
INT_VARIABLE(uvInt4, IDB_Int4, ""){}

ONEOF_VARIABLE(uvOfTest,"IDB_OfPass,IDB_OfFail,IDB_OfBusy",""){}

VOID_VARIABLE(uvToggle1, "") {
static int v = 0;
switch (v) {
case 0 :

uvInt1 = IDB_Int1;
uvInt2 = IDB_Int2;
uvInt3 = IDB_Int3;
uvInt4 = IDB_Int4;
uvOfTest = "IDB_OfBusy"; v++; break;

case 1 :
uvInt1 = IDB_Int2;
uvInt2 = IDB_Int3;
uvInt3 = IDB_Int4;
uvInt4 = IDB_Int1;
uvOfTest = "IDB_OfFail"; v++; break;

case 2 :
uvInt1 = IDB_Int3;
uvInt2 = IDB_Int4;
uvInt3 = IDB_Int1;
uvInt4 = IDB_Int2;
uvOfTest = "IDB_OfBusy"; v++; break;
 2/27/09 Pg-2547

User Dialogs
case 3 :
uvInt1 = IDB_Int4;
uvInt2 = IDB_Int1;
uvInt3 = IDB_Int2;
uvInt4 = IDB_Int3;
uvOfTest = "IDB_OfPass"; v = 0; break;

}
update_controls(MyDialog1);

}

DIALOG(MyDialog1) {
IMMEDIATE_CONTROL(IDC_uvToggle1, uvToggle1)
CONTROL(IDC_uvOfTest, uvOfTest)
CONTROL(IDC_Int1, uvInt1)
CONTROL(IDC_Int2, uvInt2)
CONTROL(IDC_Int3, uvInt3)
CONTROL(IDC_Int4, uvInt4)

}

7.5.8 Dialog Progress Resource
The User Dialog below contains two resources:

• A button resource labeled START
• A progress resource i.e. the standard bar graph used to indicate some software

activity or progress.
 2/27/09 Pg-2548

User Dialogs
A progress resource object is added to User Dialogs the same way as other resource types,
using the Controls dialog to select the resource type, then clicking in the user dialog to
insert and locate the new resource. The image below shows the Progress resource::

Refer to Supported Dialog Components which shows the types of user variables which
support the progress resource.

The number of segments displayed in a progress bar is determined by the value assigned to
the associated user variable:

The following example code implements the dialog above. When the Start button is
clicked, the progress resource is set to 0, then incrementally modified up and down. Try it.

INT_VARIABLE(progress, 50, "") {}

VOID_VARIABLE(TEST_START, "") {
output(" TEST_START");
for(int j = 0; j < 10; j++) {

for(int i = 0; i < j*10; i++){
progress = i;
update_control(progress);
Sleep(10);

}
for(i = j*10; i >= 0; i--){

progress = i;

Progress Resource

User Variable = 0 User Variable = 50 User Variable = 100
 2/27/09 Pg-2549

User Dialogs
update_control(progress);
Sleep(10);

}
}

}

DIALOG(MyDialog3) { // Progress resource
IMMEDIATE_CONTROL(IDC_TEST_START, TEST_START)
CONTROL(IDC_PROGRESS1, progress)

}

7.5.9 Radio Buttons and ONEOF User Variables
Radio buttons must be associated with ONEOF_VARIABLE user variables. The following
example shows 4 radio buttons with the names Seq-1 through Seq-4. The example below
uses this dialog:.

The following steps should be followed to use radio buttons:

1. Determine the number of options which are needed, and define a unique name for each
option. In the example above, 4 options are shown with the names Seq-1, Seq-2, etc.
 2/27/09 Pg-2550

User Dialogs
2. Create a ONEOF_VARIABLE user variable and include the names in the comma
separated list:

ONEOF_VARIABLE(my_var, "Seq-1,Seq-2,Seq-3,Seq-4", "") {...}

The names in the ONEOF list will be automatically displayed by the radio buttons (more
below).

3. In the visual dialog, add the same number of radio buttons as there are options defined
for the ONEOF_VARIABLE user variable. The example above shows this. The Label
property of the radio buttons doesn’t matter.

4. Only the first Dialog Radio Button Properties ID is actually used in the test program. The
default ID for radio buttons must be used: IDC_RADIO1. Any radio button subseqently
added will have sequential IDs (IDC_RADIO2, IDC_RADIO3, etc.). Note that this
ordering is important, as noted below.

5. These radio buttons be contiguous in the tab order setting. See Setting Tab Order.

6. Any values set in Caption field of the Radio Button Properties dialog are replaced by
the values assigned in the comma separated list of values defined for the
ONEOF_VARIABLE. However, the size of the display field seen in the dialog must be set
manually.

7. In the dialog definition code, associate the ONEOF_VARIABLE user variable with the first
radio button in the series:

DIALOG(my_dialog) {
IMMEDIATE_CONTROL(IDC_RADIO1, my_var);

}

At this point, proper operation assumes that since there are 4 ONEOF values there will
also be 4 radio buttons, with the ID of each sequentially named after the one seen above
i.e. IDC_RADIO2, IDC_RADIO3, IDC_RADIO4. Having too few radio buttons vs.
ONEOF values is harmless. Having too many is bad.

8. Note that the IMMEDIATE_CONTROL() macro was used above. This means that the
body code of the associated ONEOF user variable will execute immediately when a new
radio button is selected. If this is not desired, use the CONTROL() macro instead, plus
update_variable() to explicitly read the radio button value from C-code.

9. Invoke the dialog as desired.
 2/27/09 Pg-2551

User Dialogs
Example
The example below uses radio buttons and supporting code to switch between Sequence/
Binning tables using a dialog. Note that this switching can be done any time test execution is
not occurring, and as many times as desired.

The radio button display above determined the following images. The associated code is
included below.

The images below show the Sequence/Binning table display in UI for each of the first three
options selected using the radio buttons above and the code below:

The example above has the following parts:

• Dialog Code
• Test Block Code
• Sequence/Binning Code

Dialog Code
#include "tester.h"
#include "resource.h"

ONEOF_VARIABLE(seqbin_selection, "Seq-1,Seq-2,Seq-3,Seq-4", "x"){
if (OnHost()) // Seq/Bin table must be mod on both HOST/SITE

remote_send(seqbin_selection, 1, TRUE, INFINITE);

// Uninitialize currently selected Seq/Bin table
resource_deallocate(S_SequenceTable);
 2/27/09 Pg-2552

User Dialogs
// Select which new Seq/Bin table is to be used
if (seqbin_selection == "Seq-1") SequenceTable_use("SeqTab1");
if (seqbin_selection == "Seq-2") SequenceTable_use("SeqTab2");
if (seqbin_selection == "Seq-3") SequenceTable_use("SeqTab3");
if (seqbin_selection == "Seq-4") SequenceTable_use("SeqTab4");

// Initialize new S/B table. This executes the SeqBin macro code
// again to construct a new executable SeqBinTable.
resource_initialize(S_SequenceTable);

}

DIALOG(my_dialog) {
IMMEDIATE_CONTROL(IDC_RADIO1, seqbin_selection);

}

Test Block Code
#include "tester.h"
TEST_BLOCK(TB1) {

output(" Executing Test Block => %s", current_test_block());
return PASS;

}

TEST_BLOCK(TB2) {
output(" Executing Test Block => %s", current_test_block());
return PASS;

}

TEST_BLOCK(TB3) {
output(" Executing Test Block => %s", current_test_block());
return PASS;

}

TEST_BLOCK(TB4) {
output(" Executing Test Block => %s", current_test_block());
return PASS;

}

TEST_BLOCK(TB5) {
output(" Executing Test Block => %s", current_test_block());
return PASS;

}

 2/27/09 Pg-2553

User Dialogs
Sequence/Binning Code
#include "tester.h"

SEQUENCE_TABLE(SeqTab1) {
SEQUENCE_TABLE_INIT
TEST(TB1,NEXT, STOP)
TEST(TB2,NEXT, STOP)
TEST(TB3,NEXT, STOP)
TEST(TB4,NEXT, STOP)
TEST(TB5,STOP, STOP)

}

SEQUENCE_TABLE(SeqTab2) {
SEQUENCE_TABLE_INIT
TEST(TB2,NEXT, STOP)
TEST(TB3,STOP, STOP)

}

SEQUENCE_TABLE(SeqTab3) {
SEQUENCE_TABLE_INIT
TEST(TB5,NEXT, STOP)
TEST(TB4,NEXT, STOP)
TEST(TB3,NEXT, STOP)
TEST(TB2,STOP, STOP)

}

SEQUENCE_TABLE(SeqTab4) {
SEQUENCE_TABLE_INIT
TEST(TB4,STOP, STOP)

}

7.5.10 Sliders & Scroll-bars

Note: first available in software release h3.5.xx.

The example User Dialog below contains several resources:

• A horizontal slider button resource labeled Value 1 with an adjacent check-box
labeled Toggle Range.
 2/27/09 Pg-2554

User Dialogs
• A vertical slider button resource labeled Value 2 with an adjacent check-box
labeled Toggle Range.

• A horizontal scroll-bar resource labeled Value 3 with an adjacent check-box
labeled Toggle Range.

• A vertical scroll-bar resource labeled Value 4 with an adjacent check-box labeled
Toggle Range.

• The OK and Cancel buttons.

Figure-171: Dialog with Sliders & Scroll-bars
A slider or scroll-bar resource object is added to User Dialogs the same way as other
resource types, using the Controls dialog to select the resource type, then clicking in the

Sliders Scroll-bars
 2/27/09 Pg-2555

User Dialogs
User Dialog to insert and locate the new resource. The image below shows the related
resource selections :

Figure-172: Slider & Scroll-bar Resource Selection
Rules:

• Sliders and/or scroll-bars represent positive integer values and may be associated
with the following types of User Variables: INT_VARIABLE, DWORD_VARIABLE,
INT64_VARIABLE, UINT64_VARIABLE.

• Slider and/or scroll-bar resources are always treated as immediate; i.e. clicking on
or moving the slider or scroll-bar control immediately sends an event to the User
Dialog, which causes the body-code of the associated User Variable to execute. Use
the IMMEDIATE_CONTROL() macro to map a slider or scroll-bar resource to User
Variables. This behavior cannot be changed.

• The default range of sliders and scroll-bars is 0 to 100, regardless of the initial value
assigned to the associated User Variable. This range can be changed as noted
below. Alternatively, the body code of the associated User Variable can scale and/or
modify the value as desired.

• As indicated above, after a given User Dialog is invoked, the range represented by
a member slider or scroll-bar can be changed, however the method used is different
for sliders vs. scroll-bars (thank Microsoft):
 2/27/09 Pg-2556

User Dialogs
• For sliders, the SendMessage() function is used, if necessary twice: once to set
the range minimum value and again to set range maximum value, see Example.

• For scroll-bars, the SetScrollRange() function is used, see Example.

Example
The example code below implements the dialog shown in Dialog with Sliders & Scroll-bars
and below. For reference, the dialog resource identities are shown below:

#include "tester.h"
#include "resource.h"

EXTERN_DIALOG(MyDialog)

INT_VARIABLE(mySlider1, 2019, ""){
output("mySlider1 = %d", mySlider1);

}

INT_VARIABLE(mySlider2, -44, ""){
output("mySlider2 = %d", mySlider2);

}

INT_VARIABLE(myScrollBar1, 33, ""){
output("myScrollBar1 = %d", myScrollBar1);

}

INT_VARIABLE(myScrollBar2, 51, ""){
output("myScrollBar2 = %d", myScrollBar2);

}

IDC_mySlider1 IDC_CHECK1

IDC_mySlider2

IDC_CHECK2

IDC_myScrollBar1

IDC_CHECK3

IDC_myScrollBar2

IDC_CHECK4
 2/27/09 Pg-2557

User Dialogs
// Control to toggle max range value of mySlider1
BOOL_VARIABLE(mySlider1_range_toggle, FALSE, ""){

output("mySlider1_range_toggle => %s",
(mySlider1_range_toggle? "TRUE":"FALSE"));

// Change only the max range value
SendMessage(get_HWND(mySlider1),

TBM_SETRANGEMAX,
TRUE,
(mySlider1_range_toggle ? 1000 : 10));

update_variable(mySlider1);
}

// Control to toggle both min and max range value of mySlider2
BOOL_VARIABLE(mySlider2_range_toggle, FALSE, ""){

output("mySlider2_range_toggle => %s",
(mySlider2_range_toggle? "TRUE":"FALSE"));

SendMessage(get_HWND(mySlider2),
TBM_SETRANGEMIN,
TRUE,
(mySlider2_range_toggle ? 0 : 150));

SendMessage(get_HWND(mySlider2),
TBM_SETRANGEMAX,
TRUE,
(mySlider2_range_toggle ? 10000 : 250));

update_variable(mySlider2);
}

// Control to toggle max range value of myScrollBar1
BOOL_VARIABLE(myScrollBar1_range_toggle, FALSE, ""){

output("myScrollBar1_range_toggle => %s",
(myScrollBar1_range_toggle? "TRUE":"FALSE"));

SetScrollRange(get_HWND(myScrollBar1),
SB_CTL,
0,
(myScrollBar1_range_toggle ? 1000 : 10),
TRUE);

update_variable(myScrollBar1);
}

// Control to toggle both min and max range value of myScrollBar2
BOOL_VARIABLE(myScrollBar2_range_toggle, FALSE, ""){

output("myScrollBar2_range_toggle => %s",
(myScrollBar2_range_toggle? "TRUE":"FALSE"));
 2/27/09 Pg-2558

User Dialogs
SetScrollRange(get_HWND(myScrollBar2),
SB_CTL,
(myScrollBar2_range_toggle ? 0 : 35), // Min
(myScrollBar2_range_toggle ? 275 : 55), // Max
TRUE);

update_variable(myScrollBar2);
}

DIALOG(MyDialog){
CONTROL(IDC_mySlider1, mySlider1)
IMMEDIATE_CONTROL(IDC_CHECK1, mySlider1_range_toggle)
CONTROL(IDC_mySlider2, mySlider2)
IMMEDIATE_CONTROL(IDC_CHECK2, mySlider2_range_toggle)
CONTROL(IDC_myScrollBar1, myScrollBar1)
IMMEDIATE_CONTROL(IDC_CHECK3, myScrollBar1_range_toggle)
CONTROL(IDC_myScrollBar2, myScrollBar2)
IMMEDIATE_CONTROL(IDC_CHECK4, myScrollBar2_range_toggle)

}

HOST_BEGIN_BLOCK(HB1){

invoke(MyDialog);
}

7.5.11 User Dialog Functions
• Transferring Values to/from Dialog Resources
• for_each()

• top_most()

7.5.11.1 Transferring Values to/from Dialog Resources

Definition
The functions documented here are used to transfer values to/from dialog resources from/to
User Variables.
 2/27/09 Pg-2559

User Dialogs
The update_variable() function is used to set the value of the specified user variable to
the value currently in its associated dialog component. The user variable value is only
modified in the Host process. Two versions of update_variable() are available: one
version which accepts an explicit dialog argument, to be used when the program contains
more than one dialog, and one version which has no dialog argument, which can be used
when a single dialog exists in the test program.

The update_variables() function is similar except that it updates all of the user
variables assiociated with the specified dialog. The user variable values are only modified in
the Host process.

The update_control() function is used to write the value of the specified user variable
(in the Host process) to its associated dialog component. Two versions of
update_control() are available: one version which accepts an explicit dialog argument,
to be used when the program contains more than one dialog, and one version which has no
dialog argument, which can be used when a single dialog exists in the test program.

The update_controls() function is similar except that it updates all of a dialogs
components with the values in their associated user variables (in the Host process).

Usage
BOOL update_variables(Dialog *dialog);

BOOL update_variable(VariableProxy variable);

BOOL update_variable(Dialog *dialog, VariableProxy variable);

BOOL update_controls(Dialog *dialog);

BOOL update_controls();

BOOL update_control(VariableProxy variable);

BOOL update_control(Dialog *dialog, VariableProxy variable);

where:

dialog identifies the dialog of interest, to be read from or updated.

variable identifies a specific user variable.

These functions return TRUE when the operation is successful, otherwise FALSE is returned.
This is important with specifying a user variable as a CString value because the compiler
cannot check to see if the name is valid.
 2/27/09 Pg-2560

User Dialogs
Example
INT_VARIABLE(int_val, 1, ""){}

DIALOG(some_dialog) {
CONTROL(IDC_name, int_val);

}

// Some user C-code executing in the host process
... other code here ...

update_variable (int_val); // Get current value from dialog
output ("The current dialog value for name is => %s", int_val);
int_val++;
update_control(int_val); // Update dialog /w new value
... other code here ...

7.5.11.2 for_each()

Description
This version of the for_each() function provides an iteration capability used to process
dialog components (resources).

When called, for_each() iterates over each component, of the specified User Dialog,
which is tied to a User Variable (using the CONTROL/IMMEDIATE_CONTROL macros).

For each iteration (for each dialog component) the specified user-defined call-back function
is executed, and passed a pointer to the DialogEntry information about that component.
The DialogEntry definition is:

struct DialogEntry {
int id;
Variable *variable;
BOOL callFunc;
BOOL immediate;
BOOL hexdisplay;
void (*graphic)(window w);
window window;
CString name;

};
 2/27/09 Pg-2561

User Dialogs
Note: some of the DialogEntry parameters will not be useful in user-written C-code.

Usage
void for_each(Dialog *dialog,

BOOL (*func)(DialogEntry *entry));

where:

dialog is the dialog of interest.

*func is a pointer to a user-written C-function to be called for each iteration of the
for_each() function. The function prototype is:

BOOL func(DialogEntry *entry)

where:

func is the user-defined name of the call-back function.

entry is a pointer to a variable, created by the system software, used to pass information
about the dialog component to the call-back.

The call-back function code should return TRUE to continue the iteration, or can return
FALSE to terminate iteration.

Example
???

7.5.11.3 top_most()

Description
The top_most() function was added to allow user-written C-code to set or modify the
top-most attribute of a User Dialog.

When a dialog’s top-most attribute is TRUE, that dialog will remain visible at all times (except
when another top-most dialog is invoked later). If FALSE, other windows and dialogs can be
placed on top of the dialog, partially or completely hiding it.
 2/27/09 Pg-2562

User Dialogs
Usage
void top_most(Dialog *dialog, BOOL mode);

where:

dialog is the User Dialog of interest.

mode is TRUE to set the top-most attribute and FALSE to reset the top-most attribute.

Example
???
 2/27/09 Pg-2563

User Dialogs
7.5.12 Grid Usage
See Creating a User Dialog, Supported Dialog Components.

Note: first available in software release h1.1.23.

This section covers the following:

• Overview
• Adding a Grid to a Dialog
• GRID_CONTROL() Macro
• ONINITDIALOG: Defining the Grid
• Grid Functions

• Types, Enums, etc.
• grid_create()
• grid_setup()
• grid_fixed_col_width_set()
• grid_fixed_row_height_set()
• grid_column_pixel_width_set()
• grid_row_pixel_height_set()
• grid_initialize()
• grid_update()
• grid_focus_cell_get()
• grid_reset()

• Grid Call-back Functions

7.5.12.1 Overview
See Grid Usage.
 2/27/09 Pg-2564

User Dialogs
A Grid is a graphic resource which can be used in User Dialogs. A Grid is a matrix of cells
which can display color and/or text under control of user written code. For example, the
following images show a Grid in three user dialogs:
 2/27/09 Pg-2565

User Dialogs
Figure-173: Example Dialogs with Grid
In the previous image, the left-most dialog implements a vertical bar-graph in which cells
selectively use color and text to display the value of an associated integer value. The upper
right dialog demonstrates many of the available programmable attributes including cell text,
cell background color, selected cell color, focussed cell color, etc. The lower-right dialog also
contains a bar-graph in which the main cells are defined using pixel dimensions rather than
text dimensions. Note that these dialogs also include other features which are not specific to
Grid use but were used to experiment with the grid options, cell content, cell color, etc.

Using a Grid requires the following sequence:

• Graphically Adding a Grid to a Dialog.
• Programmatically adding the grid using the GRID_CONTROL() Macro. This also

registers the Grid Call-back Functions which are used to determine many of the
various Grid Attributes.

• Using ONINITDIALOG: Defining the Grid. This includes the number of rows/
columns, number of fixed rows/columns, row height and column width, etc.

Normally, the previous steps are performed once, to define the Grid. Then grid_update()
is executed to refresh/modify the information displayed by the Grid. The various call-back
functions specified using the GRID_CONTROL() Macro are executed to actually update the
Grid’s display.

As indicated, a Grid has many attributes which are defined and controlled by user code:

Figure-174: Grid Attributes

Cell Background Color = Yellow

Focus Cell Background Color = Blue

Cell Background Color = Green

Cell Text Color = Red

Cell Text (every cell)

Fixed Rows = Column Labels

Selected Cell Background
Color = Magenta

Fixed Columns = Row Labels

Cell Format: text in some cells is left justified, in others center or right justified
 2/27/09 Pg-2566

User Dialogs
The following table describes these Grid attributes:

Attribute Description

Fixed Rows

Zero or more rows fixed at the top of the Grid, typically used for
column label(s). The number of fixed rows is set using the
fixed_rows argument to grid_setup(), executed by
ONINITDIALOG: Defining the Grid. The height of fixed rows is
set using the grid_fixed_row_height_set() function,
executed by ONINITDIALOG: Defining the Grid. The text
orientation (vertical vs. horizontal) is set by the verticalLabel
argument to the GRID_CONTROL() Macro. Text content is
controlled by the GridCellTextCallback Call-back Function. Text
color is set by the GridTextColorCallback Call-back Function.
Text justification cannot be modified. The call-backs are
registered using the GRID_CONTROL() Macro and executed
during grid_initialize() and grid_update().

Fixed Columns

Zero or more columns fixed at the left of the Grid, typically used
for row label(s). The number of fixed columns is set using the
fixed_cols argument to grid_setup(), executed by
ONINITDIALOG: Defining the Grid. The width of fixed columns is
set using the grid_fixed_col_width_set() function,
executed by ONINITDIALOG: Defining the Grid. Text orientation
is always horizontal. Text content is controlled by the
GridCellTextCallback Call-back Function. Text color is set by the
GridTextColorCallback Call-back Function. Text justification is set
by the GridCellFormatCallback Call-back Function. The call-
backs are registered using the GRID_CONTROL() Macro and
executed during grid_initialize() and grid_update().

Cell Text

The text displayed in each cell. Controlled by the
GridCellTextCallback Call-back Function which is registered
using the GRID_CONTROL() Macro and executed during
grid_initialize() and grid_update().

Cell Text Color

The color of text displayed in each cell. Controlled by the
GridTextColorCallback Call-back Function which is registered
using the GRID_CONTROL() Macro and executed during
grid_initialize() and grid_update().
 2/27/09 Pg-2567

User Dialogs
During grid_initialize() and grid_update(), the various Grid Call-back Functions
functions are executed once for each cell in the Grid and receive the row and column
coordinate of a cell. These coordinate values allow user code to conditionally determine the
value to be set for a given cell. For example, the text and background color for a cell a
row/column 3/1 can be set differently than that in row/column 3/2, etc.

Cell Format

The text justification for a most cells. Controlled by the
GridCellFormatCallback Call-back Function which is registered
using the GRID_CONTROL() Macro and executed during
grid_initialize() and grid_update().

Cell Background
Color

The background color of non-fixed cells. Controlled by the
GridBackgndColorCallback Call-back Function which is
registered using the GRID_CONTROL() Macro and executed
during grid_initialize() and grid_update().

Selected Cell
Text Color

The color of text in non-fixed cell(s) which are selected.
Controlled by the GridSelectedTextColorCallback Call-back
Function which is registered using the GRID_CONTROL() Macro
and executed during grid_initialize() and
grid_update().

Selected Cell
Background

Color

The background color of selected non-fixed cell(s). Controlled by
the GridSelectedBackgndColorCallback Call-back Function
which is registered using the GRID_CONTROL() Macro and
executed during grid_initialize() and grid_update().

Focus Cell
Background

Color

The background color of the non-fixed cell with which currently
has focus. Controlled by the GridFocusBackgndColorCallback
Call-back Function which is registered using the
GRID_CONTROL() Macro and executed during
grid_initialize() and grid_update().

Attribute Description
 2/27/09 Pg-2568

User Dialogs
In all cases, these call-back functions are executed for every cell in the Grid, including any
fixed row or fixed column cells. The Grid cell numbering system is shown in the image
below:

Figure-175: Grid Row/Column Numbering

7.5.12.2 Adding a Grid to a Dialog
See Overview.

Adding a Grid resource to User Dialogs is done using the Developer Studio resource editor,
much like adding a Button, edit box, etc. However, a Grid has more details to manage than
the other dialog resources. The images below show the key editing controls used to add a
Grid to a dialog:

Column 0 1 2 3 4 5 6 7 8 9

Row

0

1
2
3
4
5
6
7
8

 2/27/09 Pg-2569

User Dialogs
:

Figure-176: Resource Editor Grid Controls
Note the following:

• See Creating the Dialog Graphic for an overview of the general process of adding
a resource to a dialog.

• Using the Controls dialog select the Custom Control and click in the dialog
frame to insert the Grid resource.

• Note that the image displayed for a Grid resource is as shown above; i.e. it will not
look like the resulting grid seen in the actual dialog.

Your Resource ID

Class: must = GRID

Caption is not used

Do NOT Change
Style and ExStyle

Select Custom
Control to add
a Grid resource

to the dialog
 2/27/09 Pg-2570

User Dialogs
• Position the upper-left corner of the Grid resource to the desired location. It is OK
to resize the visual Grid resource but note that the final Grid size is solely
determined by its configuration, as set using various Grid Functions in
ONINITDIALOG: Defining the Grid.

Note: using a Grid, an iterative sequence is required to obtain the desired dialog
layout. The upper-left corner of each Grid is visually positioned in the dialog,
using the resource editor, whereas the Grid’s width and height are solely
determined by user code, using grid_setup(),
grid_fixed_col_width_set(), grid_fixed_row_height_set(),
grid_column_pixel_width_set(), grid_row_pixel_height_set(). All
other dialog resources are positioned and sized visually, using the resource
editor. The actual dialog layout can only be tested by executing the test
program and viewing the dialog.

• Double-click the Grid resource to display its properties (the Custom Control
Properties dialog), as shown above. In this dialog make only the following
changes:
• Change the resource ID, as desired, to a meaningful identifier. This becomes the

first argument passed to the GRID_CONTROL() Macro, to programmatically
associate the grid to the dialog.

• Change the Class value to GRID. This makes the Custom Control a Grid.
• Do NOT change the Style and ExStyle values.
• The Caption is not used and can be ignored.
 2/27/09 Pg-2571

User Dialogs
7.5.12.3 GRID_CONTROL() Macro
See Overview, Adding a Grid to a Dialog.

Description

The GRID_CONTROL() macro is used to programmatically add a Grid resource to a dialog
and to identify the call-back functions which will execute when updating the Grid’s display.
See Creating the Dialog C-code for an overview of this topic.

For example:

DIALOG(myDialog) {
CONTROL(...other controls...)
IMMEDIATE_CONTROL(...other controls...)
GRID_CONTROL(

IDC_MY_GRID,
FALSE, // TRUE = Vertical text in Fixed Rows
0, // Set = 0, reserved for future
myCellTextCallback,
myCellTextFormatCallback,
myCellTextColorCallback,
mySelectedCellTextColorCallback,
myCellClickedCallback,
myCellBGColorCallback,
mySelectedCellBGColorCallback,
myFocusBGColorCallback)

ONINITDIALOG(myGridInitFunc)
}

• Note that the GRID_CONTROL() Macro has a number of arguments, each of
which must be specified. The value 0 can be specified for any of the various
call-back functions which are not needed by a given Grid application.

• In any dialog containing a Grid, use the ONINITDIALOG() macro to specify the a
function used to initialize the various Grid attributes. Details are covered in
ONINITDIALOG: Defining the Grid. Note that an ONINITDIALOG function may also
contain code unrelated to Grid applications.
 2/27/09 Pg-2572

User Dialogs
Usage
GRID_CONTROL(

int IDCustom,
BOOL verticalLabel,
GridReadCallback readFunc,
GridCellTextCallback cellTextFunc,
GridCellFormatCallback cellFormatFunc,
GridTextColorCallback textColorFunc,
GridSelectedTextColorCallback selTextColorFunc,
GridCellClickedCallback cellClickedFunc,
GridBackgndColorCallback backColorFunc,
GridSelectedBackgndColorCallback selBackColorFunc,
GridFocusBackgndColorCallback focusBackColorFunc);

)

where:

IDCustom is the resource ID of the Grid, as set using the Custom Control Properties
dialog. The example in Figure-176: uses IDC_MY_GRID.

verticalLabel determines whether text in Fixed Rows (only) is displayed vertically or
horizontally. The upper-right example in Figure-173: has vertical text (verticalLabel =
TRUE) and the lower example has horizontal text (verticalLabel = FALSE). This setting
affects all fixed rows. Setting verticalLabel = FALSE requires that the Grid’s row width,
set using grid_setup(), be adequate to display the widest string used in any fixed row
cell. Setting verticalLabel = TRUE requires that the fixed row height, set using
grid_row_pixel_height_set(), be adequate to display the tallest string used in any
fixed row cell. Both grid_setup() and grid_row_pixel_height_set() are executed
in the ONINITDIALOG: Defining the Grid.

readFunc is reserved for future applications. This value should be set = 0.

cellTextFunc is optional and used to register a user-written GridCellTextCallback Call-
back Function. This function determines the Cell Text displayed in every Grid cell. Set this
argument = 0 if no text is to be displayed in the Grid (including in any Fixed Rows and/or
Fixed Columns). See GridCellTextCallback Call-back Function for more details.

cellFormatFunc is optional and used to register a user-written GridCellFormatCallback
Call-back Function. This function determines the text justification (left, center, right) for any
text displayed in the main cell area or in Fixed Columns. Default = center. Set this argument
= 0 if no text justification is required. See GridCellFormatCallback Call-back Function for
more details.
 2/27/09 Pg-2573

User Dialogs
textColorFunc is optional and used to register a user-written GridTextColorCallback Call-
back Function. This function determines the Cell Text Color displayed in every Grid cell. Set
this argument = 0 if no non-default text color is to be displayed in the Grid (including in any
Fixed Rows and/or Fixed Columns). See GridTextColorCallback Call-back Function for more
details.

selTextColorFunc is optional and used to register a user-written
GridSelectedTextColorCallback Call-back Function. This function determines the Selected
Cell Text Color displayed in selected non-fixed Grid cells. Set this argument = 0 if no non-
default text color is to be displayed in selected cells. See GridSelectedTextColorCallback
Call-back Function for more details.

cellClickedFunc is optional and used to register a user-written GridCellClickedCallback
Call-back Function. If registered, this call-back is executed any time the user clicks a Grid
cell. The row/column coordinates of the cell with focus are passed to the call-back function.
See GridCellClickedCallback Call-back Function for more details.

backColorFunc is optional and used to register a user-written GridBackgndColorCallback.
This function determines the Cell Background Color displayed in every non-fixed Grid cell.
Set this argument = 0 if no non-default background cell color is to be displayed in the Grid.
See GridBackgndColorCallback for more details.

selBackColorFunc is optional and used to register a user-written
GridSelectedBackgndColorCallback. This function determines the Selected Cell
Background Color displayed in every selected non-fixed Grid cell. Set this argument = 0 if no
non-default background cell color is to be displayed in selected Grid cells. See Selected Cell
Background Color for more details.

focusBackColorFunc is optional and used to register a user-written
GridFocusBackgndColorCallback. This function determines the Focus Cell Background
Color displayed in the non-fixed Grid cell which has focus. Set this argument = 0 if no non-
default background cell color is to be displayed in the Grid cell with focus. See
GridFocusBackgndColorCallback for more details.

Example
See Description.

7.5.12.4 ONINITDIALOG: Defining the Grid
See Overview, Adding a Grid to a Dialog.
 2/27/09 Pg-2574

User Dialogs
Description
In any dialog containing a Grid, some aspects of the Grid are defined using an
ONINITDIALOG function. This is a user-written function which is identified in the dialog
definition code using the ONINITDIALOG() macro. The function name and code are user-
written, the function prototype is defined by Nextest:

void funcID (BOOL created)

where the name of the function is user-defined, and is the argument passed to the
ONINITDIALOG() macro. During dialog creation the specified function is executed twice,
once before any dialog resources are created (created = FALSE) and once after all dialog
resources are created (created = TRUE). The Grid definition code must only execute in
the latter case (see Example).

The Grid-related tasks performed in the ONINITDIALOG function code must follow the
following sequence:

• Get the handle to the Dialog containing the Grid. This is needed by
grid_create(), next.

• Execute grid_create() to create the Grid and get a handle to it.
• Execute grid_setup() to define various required Grid attributes:

• Number of Grid rows
• Number of Grid columns
• Number of Fixed Rows
• Number of Fixed Columns
• Row height, in characters
• Column width, in characters
Note that the row height and column width may be subsequently redefined using
pixel dimensions using grid_row_pixel_height_set() and
grid_column_pixel_width_set() and that fixed rows/column sizes may be
set using grid_fixed_row_height_set() and
grid_fixed_col_width_set().
Also note that a Grid’s physical display size is affected by this function and several
others. It may be necessary to iteratively adjust the dialog’s size and/or the
location of other dialog components to obtain the desired visual display. See Note:.

• If appropriate, execute grid_fixed_col_width_set() once for each fixed
column, to adjust the width of any Fixed Columns.
 2/27/09 Pg-2575

User Dialogs
• If appropriate, execute grid_fixed_row_height_set() once for each fixed
row, to adjust the height of any Fixed Rows. This height must be adjusted if fixed
row text is displayed vertically vs. horizontally (set by the verticalLabel
argument of GRID_CONTROL()).

• Execute grid_initialize() to update the initial Grid display. Any registered
Grid Call-back Functions which affect the Grid display will be executed, once for
each cell in the Grid. These user-written Grid Call-back Functions solely determine
the text, colors, etc. displayed in each cell.

Example
The following example is used to describe the various Grid-related details. This example
ONINITDIALOG function is referenced, by name, in the GRID_CONTROL() Macro example:

HWND hMyGrid; // Handle to a Grid. Also used elsewhere by Grid APIs

void myGridInitFunc(BOOL created){

if (!created) return; // Dialog must be created to define a Grid

// Get handle to Dialog containing the Grid
HWND hDialog = get_HWND(myDialog);

// Create a specific Grid and get a handle to it
hMyGrid = grid_create(hDialog, IDC_MY_GRID); // grid_create()

// Set required Grid attributes
grid_setup(hMyGrid, // grid_setup()

8, // Number of Grid rows
10, // Number of Grid columns
1, // Number of Fixed Rows
1, // Number of Fixed Columns
1, // Row height, in characters
3); // Column width, in characters

// Set width of first (0) fixed width column, in characters
grid_fixed_col_width_set(hMyGrid, 0, 6);

// Set height of first (0) fixed height row. in characters
grid_fixed_row_height_set(hMyGrid, 0, 1);

grid_initialize(hMyGrid); // grid_initialize()
}

 2/27/09 Pg-2576

User Dialogs
7.5.12.5 Grid Functions
See Overview, ONINITDIALOG: Defining the Grid.

This section covers the following. They are documented in the order normally used:

• Types, Enums, etc.
The following functions are normally only used in the user-written ONINITDIALOG function,
to define initial Grid attributes. See ONINITDIALOG: Defining the Grid:

• grid_create()
• grid_setup()
• grid_fixed_col_width_set()
• grid_fixed_row_height_set()

• grid_column_pixel_width_set()

• grid_row_pixel_height_set()
• grid_initialize()

The following functions are used after a dialog is created:

• grid_update() - update the information displayed by the Grid. Executes any
registered Grid Call-back Functions.

• grid_focus_cell_get() - get the cell coordinates for the cell with the focus.
See Grid Row/Column Numbering.

• grid_reset() - resets the selection and moves focus to the first non-fixed cell.

7.5.12.6 Types, Enums, etc.
See Grid Functions, Grid Call-back Functions.

Description
The following structure is used in support of various Grid Functions and Grid Call-back
Functions.
 2/27/09 Pg-2577

User Dialogs
Usage
The GridCell structure is used by various Grid Functions and Grid Call-back Functions to
identify a specific cell in a Grid. Location 0, 0 is the top left cell in the grid (see Grid Row/
Column Numbering):

struct GridCell {
int row;
int col;

};

7.5.12.7 grid_create()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_create() function is used to create a Grid and return a handle to it. Note the
following:

• The grid_create() function is executed in the user-written ONINITDIALOG
function (see ONINITDIALOG: Defining the Grid).

• A given user dialog may contain more than one Grid. The returned Grid’s handle
is used as an argument to other Grid-related functions to identify a specific Grid.
Since some of these functions will be executed outside the context of the
ONINITDIALOG function the scope of the handle variable (HWND hMyGrid in the
earlier example) must be considered.

Usage
HWND grid_create(HWND hDlg, int nIDCustom);

where:

hDlg is a previously initialized HWND variable identifying the dialog containing the target
Grid. See Example.

nIDCustom is the Grid’s resource ID, as set using the Custom Control Properties
dialog. See Resource Editor Grid Controls. In that example the resource ID is
IDC_MY_GRID.

grid_create() returns a handle to the Grid being created.
 2/27/09 Pg-2578

User Dialogs
Example
See Example.

7.5.12.8 grid_setup()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_setup() function is used define a Grid’s initial attributes. Note the following:

• The grid_setup() function is executed in the user-written ONINITDIALOG
function (see ONINITDIALOG: Defining the Grid).

• A Grid’s physical display size is affected by this function and several others. It may
be necessary to iteratively adjust the dialog’s size and/or the location of other
dialog components to obtain the desired visual display. See Note:.

• Grid cells do not change size based on content which is later displayed in that cell.
The row width and column height must be sized anticipating the largest string
which will be displayed in any cell.

Usage
void grid_setup(HWND hGrid,

int rows,
int cols,
int fixed_rows,
int fixed_cols,
int rowCharHeight,
int colCharWidth);

where:

hGrid is a handle to the target Grid, as returned by grid_create().

rows and cols specifies the number of non-fixed rows and columns in the Grid.

fixed_rows and fixed_cols specifies the number of Fixed Rows and Fixed Columns in
the Grid.
 2/27/09 Pg-2579

User Dialogs
rowCharHeight specifies the height of rows, in characters. Row height may subsequently
be set in pixel counts using grid_row_pixel_height_set(). Fixed row height may
subsequently be set using grid_fixed_row_height_set().

colCharWidth specifies the width of columns, in characters. Column width may
subsequently be set in pixel counts using grid_column_pixel_width_set(). Fixed
column width may subsequently be set using grid_fixed_col_width_set().

Example
See Example.

7.5.12.9 grid_fixed_col_width_set()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_fixed_col_width_set() function is used to specify the width of a Grid’s
Fixed Columns. Note the following:

• grid_fixed_col_width_set() is executed in the user-written ONINITDIALOG
function, see ONINITDIALOG: Defining the Grid.

• grid_fixed_col_width_set() function is normally executed once for each
fixed column.

• If grid_fixed_col_width_set() is not used, the width of any Fixed Columns
is set by the colCharWidth argument to grid_setup().

• A Grid’s physical display size is affected by this function and several others. It may
be necessary to iteratively adjust the dialog’s size and/or the location of other
dialog components to obtain the desired visual display. See Note:.

Usage
void grid_fixed_col_width_set(HWND hGrid, int col, int numChars);

where:

hGrid is a handle to the target Grid, as returned by grid_create().

col is the zero-based column index which identifies which of possibly several Fixed
Columns is being set.
 2/27/09 Pg-2580

User Dialogs
numChars identifies the width of the fixed column, in characters.

Example
See Example.

7.5.12.10 grid_fixed_row_height_set()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_fixed_row_height_set() function is used to specify the height of a Grid’s
Fixed Rows. Note the following:

• grid_fixed_row_height_set() is executed in the user-written
ONINITDIALOG function, see ONINITDIALOG: Defining the Grid.

• grid_fixed_row_height_set() function is normally executed once for each
fixed row.

• If grid_fixed_row_height_set() is not used, the width of any Fixed Rows is
set by the rowCharHeight argument to grid_setup().

• A fixed row’s height is affected by the verticalLabel argument to
GRID_CONTROL(); i.e. whether fixed row text is displayed vertically vs.
horizontally.

• A Grid’s physical display size is affected by this function and several others. It may
be necessary to iteratively adjust the dialog’s size and/or the location of other
dialog components to obtain the desired visual display. See Note:.

Usage
void grid_fixed_row_height_set(HWND hGrid,

int row,
int numChars);

where:

hGrid is a handle to the target Grid, as returned by grid_create().

row is the zero-based row index which identifies which of possibly several Fixed Rows is
being set.
 2/27/09 Pg-2581

User Dialogs
numChars identifies the height of the fixed row, in characters.

Example
See Example.

7.5.12.11 grid_column_pixel_width_set()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_column_pixel_width_set() function is used to specify the width of a Grid’s
non-fixed columns in pixels. Note the following:

• By default, the width of a Grid’s non-fixed column is set by the colCharWidth
argument to grid_setup(). The grid_column_pixel_width_set() function
may subsequently be used to set the column width in pixels.

• grid_column_pixel_width_set() is executed in the user-written
ONINITDIALOG function, see ONINITDIALOG: Defining the Grid.

• A fixed column’s width is not affected by grid_column_pixel_width_set().
• A Grid’s physical display size is affected by this function and several others. It may

be necessary to iteratively adjust the dialog’s size and/or the location of other
dialog components to obtain the desired visual display. See Note:.

Usage
void grid_column_pixel_width_set(

HWND hGrid,
int numpixels,
BOOL bAdjustRect);

where:

hGrid is a handle to the target Grid, as returned by grid_create().

numpixels specifies width of the Grid’s columns, in pixels.

bAdjustRect is used for internal purposes. bAdjustRect should always be set = TRUE.
 2/27/09 Pg-2582

User Dialogs
Example
The example below shows the ONINITDIALOG function which generated the Grid shown in
the bottom dialog in Figure-173: . Note the use of grid_column_pixel_width_set() to
set the Grid’s non-fixed columns width and the use of grid_row_pixel_height_set()
to set the Grid’s non-fixed row height:

HWND hPixelBarGraph; // Handle to Grid

void PixelBarGraphCreate (BOOL created){
if (!created) return;

// Get handle to Dialog containing Grid
hPixelBarGraph = get_HWND(PixelBarGraph_Dialog);

// Create a specific Grid and get a handle to it
hPixelBarGraph = grid_create(hPixelBarGraph, // grid_create()

IDC_PIXEL_BAR_GRAPH);

// Set required Grid attributes
grid_setup(hPixelBarGraph, 50, 10, 2, 0, 1, 1); // grid_setup()

// Set height for two Fixed Rows
grid_fixed_row_height_set(hPixelBarGraph, 0, 1);
grid_fixed_row_height_set(hPixelBarGraph, 1, 1);

// Reset height of rows in pixels, grid_row_pixel_height_set()
grid_row_pixel_height_set(hPixelBarGraph, 7, TRUE);

// Reset width of columns in pixels
grid_column_pixel_width_set(hPixelBarGraph, 40, TRUE);

grid_initialize(hPixelBarGraph); // grid_initialize()
}

7.5.12.12 grid_row_pixel_height_set()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_row_pixel_height_set() function is used to specify the height of a Grid’s
non-fixed rows in pixels. Note the following:
 2/27/09 Pg-2583

User Dialogs
• By default, the height of a Grid’s non-fixed rows is set by the rowCharHeight
argument to grid_setup(). The grid_row_pixel_height_set() function
may subsequently be used to set the row height in pixels.

• grid_row_pixel_height_set() is executed in the user-written
ONINITDIALOG function, see ONINITDIALOG: Defining the Grid.

• A fixed row’s height is not affected by grid_row_pixel_height_set().
• A Grid’s physical display size is affected by this function and several others. It may

be necessary to iteratively adjust the dialog’s size and/or the location of other
dialog components to obtain the desired visual display. See Note:.

Usage
void grid_row_pixel_height_set(

HWND hGrid,
int numpixels,
BOOL bAdjustRect);

where:

hGrid is a handle to the target Grid, as returned by grid_create().

numpixels specifies height of the Grid’s rows, in pixels.

bAdjustRect is used for internal purposes. bAdjustRect should always be set = TRUE.

Example
See Example.

7.5.12.13 grid_initialize()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_initialize() function is used to initialize a new Grid and update its contents.
Note the following:

• grid_initialize() is executed once, at the end of the user-written
ONINITDIALOG function, see ONINITDIALOG: Defining the Grid.
 2/27/09 Pg-2584

User Dialogs
• Executing grid_initialize() causes all of the Grid Call-back Functions
(registered using the GRID_CONTROL() Macro) which affect Grid cell attributes to
be executed, once for each cell in the Grid. This determines, for example, the text
and color displayed in each cell. User code will subsequently execute
grid_update() to modify or refresh the Grid content.

Usage
void grid_initialize(HWND hGrid);

where hGrid is a handle to the target Grid, as returned by grid_create().

Example
See Example and Example.

7.5.12.14 grid_update()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_update() function is used to refresh a Grid’s displayed contents. Note the
following:

• grid_update() may only be used after a given Grid has been defined and
initialized via ONINITDIALOG: Defining the Grid.

• Executing grid_update() causes all of the Grid Call-back Functions (registered
using the GRID_CONTROL() Macro) which affect Grid cell attributes to be
executed, once for each cell in the Grid. This determines, for example, the text
and color displayed in each cell. Code in these call-back functions is the only
mechanism which allows user code to change the contents or attributes of a Grid’s
cells (text, color, selected color, etc.).

Usage
void grid_update(HWND hGrid);

where hGrid is a handle to the target Grid, as returned by grid_create().
 2/27/09 Pg-2585

User Dialogs
Example
The following example shows the data array displayed in the Grid of the upper-right dialog in
Figure-173: . Below the array is the GridCellTextCallback Call-back Function used to display
the array contents in the Grid. Last is the GridCellClickedCallback Call-back Function
executed any time the user clicks in the Grid. It clears the array location associated with the
clicked cell (the cell with focus), then executes grid_update() to refresh the Grid display;
effectively clearing any cell clicked in the main Grid cell area:

static CString celldata [num_sites][num_duts] = {
{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"},
{"11", "12", "13", "14", "15", "16", "17", "18", "19", "20"},
{"21", "22", "23", "24", "25", "26", "27", "28", "29", "30"},
{"31", "32", "33", "34", "35", "36", "37", "38", "39", "40"},
{"41", "42", "43", "44", "45", "46", "47", "48", "49", "50"},
{"??", "??", "??", "??", "??", "??", "??", "??", "??", "??"},
{"61", "62", "63", "64", "65", "66", "67", "68", "69", "70"},
{"71", "72", "73", "74", "75", "76", "77", "78", "79", "80"}

};

// Example GridCellTextCallback Call-back Function
CString CellText(GridCell cell) {

if ((cell.row == 0) && (cell.col == 0))
return "All";

if ((cell.col == 0) && (cell.row > 0))// Row heading
return vFormat("Site%d", cell.row);

if ((cell.row == 0) && (cell.col > 0)) // Col heading
return vFormat("Dut %d", cell.col);

if(cell.col == num_cols - cell.row)
return "";

return(celldata[cell.row -1][cell.col -1]);
}

// Example GridCellClickedCallback Call-back Function
// Executed when Grid cell is clicked
void CellClicked(GridCell cell){

celldata[cell.row -1][cell.col -1] = "";
grid_update(hSiteDutGrid);

}

 2/27/09 Pg-2586

User Dialogs
7.5.12.15 grid_focus_cell_get()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_focus_cell_get() function may be used to get the cell with focus from a
specified Grid. Note the following:

• grid_focus_cell_get() may only be used after a given Grid has been defined
and initialized via ONINITDIALOG: Defining the Grid.

Usage
GridCell grid_focus_cell_get(HWND hGrid);

where hGrid is a handle to the target Grid, as returned by grid_create().

grid_focus_cell_get() returns the cell with focus as a GridCell.

Example
GridCell c = grid_focus_cell_get(hPixelBarGraph);
output(" Focus currently at row => %d, col => %d", c.row, c.col);

7.5.12.16 grid_reset()
See Grid Functions, ONINITDIALOG: Defining the Grid.

Description
The grid_reset() function may be used to clear any Grid selections and move the focus
to the first non-fixed cell (upper-left non-fixed cell). Note the following:

• grid_reset() may only be used after a given Grid has been defined and
initialized via ONINITDIALOG: Defining the Grid.

Usage
void grid_reset(HWND hGrid);

where hGrid is a handle to the target Grid, as returned by grid_create().
 2/27/09 Pg-2587

User Dialogs
Example
grid_reset(hPixelBarGraph);

7.5.12.17 Grid Call-back Functions
See Overview, GRID_CONTROL() Macro.

With one exception (GridCellClickedCallback Call-back Function) the Grid call-back
functions are used determine the following attributes displayed in each Grid cell:

Review the individual call-back function for more details.

7.5.12.18 GridCellTextCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Cell Text displayed in the current cell of the
Grid being updated. Note the following:

• This is the only mechanism allowing user code to modify a Grid cell’s text content.

Attribute Call-back Function

Cell Text GridCellTextCallback Call-back Function

Cell Format GridCellFormatCallback Call-back Function

Cell Text Color GridTextColorCallback Call-back Function

Selected Cell Text Color GridSelectedTextColorCallback Call-back Function

Cell Background Color GridBackgndColorCallback Call-back Function

Selected Cell Background
Color

GridSelectedBackgndColorCallback Call-back
Function

Focus Cell Background Color GridFocusBackgndColorCallback Call-back Function
 2/27/09 Pg-2588

User Dialogs
• The call-back is registered by the cellTextFunc argument to the
GRID_CONTROL() macro.

• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each cell in the Grid, including cells in Fixed Rows and
Fixed Columns.

Usage
The user’s call-back function must conform to the following prototype:

CString(*GridCellTextCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a CString, which defines the Cell Text to be displayed in
GridCell.

Example
The following code uses a two dimensional array to store values displayed in the main cells
of the Grid shown in Figure-175: . The code in the myCellText call-back function returns
different values for the upper-left cell (0/0 = “All”), the Fixed Rows and Fixed Columns, and
the cells in the main Grid area. A diagonal of cells is left empty, to demonstrate that the data
in the array may not always be used:

static CString celldata [8][10] = {
{"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"},
{"11", "12", "13", "14", "15", "16", "17", "18", "19", "20"},
{"21", "22", "23", "24", "25", "26", "27", "28", "29", "30"},
{"31", "32", "33", "34", "35", "36", "37", "38", "39", "40"},
{"41", "42", "43", "44", "45", "46", "47", "48", "49", "50"},
{"??", "??", "??", "??", "??", "??", "??", "??", "??", "??"},
{"61", "62", "63", "64", "65", "66", "67", "68", "69", "70"},
{"71", "72", "73", "74", "75", "76", "77", "78", "79", "80"}

};

CString myCellText(GridCell cell) {
if ((cell.row == 0) && (cell.col == 0))

return "All";

if ((cell.col == 0) && (cell.row > 0)) // Fixed row heading
return vFormat("Site%d", cell.row);

if ((cell.row == 0) && (cell.col > 0)) // Fixed col heading
return vFormat("Dut %d", cell.col);
 2/27/09 Pg-2589

User Dialogs
if(cell.col == num_cols - cell.row) // Blank diagonal
return "";

return(celldata[cell.row -1][cell.col -1]);
}

7.5.12.19 GridCellFormatCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Cell Format of the current cell of the Grid
being updated. This allows the Cell Text to be horizontally justified in the cell. Note the
following:

• User code in the call-back must return one of the following, which determines the
horizontal justification for any text in the current cell:
• DT_CENTER
• DT_LEFT
• DT_RIGHT
These values are defined in the Microsoft libraries and are the only values
supported by this call-back. Other values are silently ignored.

• If no call-back is registered text is center justified in the main Grid cells and in
Fixed Columns.

• This call-back does not affect text in Fixed Rows (column labels)
• This call-back does affect text in Fixed Columns (row labels).
• Cell 0/0 is not affected.
• The call-back is registered by the cellFormatFunc argument to the

GRID_CONTROL() macro.
• If registered, this call-back is executed during grid_initialize() and

grid_update(), once for each cell in the Grid.

Usage
The user’s call-back function must conform to the following prototype:

UINT(*GridCellFormatCallback)(GridCell);
 2/27/09 Pg-2590

User Dialogs
where GridCell identifies the current cell.

The function must return a UINT (one of the values noted above), which defines the Cell
Format to be applied to GridCell.

Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that some cells have left-justified text and some have center-justified text or right-justified
text:

UINT myCellTextFormat (GridCell cell){
int m = (cell.col + cell.row) % 3;
switch(m) {

case 0: return DT_CENTER;
case 1: return DT_LEFT;
case 2: return DT_RIGHT;

}
return DT_CENTER;

}

Note that this example isn’t much use in the real world, but does demonstrate the related
controls.

7.5.12.20 GridTextColorCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Cell Text Color displayed in the current cell
of the Grid being updated. Note the following:

• This call-back affects text in all cells, including in Fixed Rows (column labels) and
in Fixed Columns (row labels). Cell 0/0 is affected.

• The Cell Text Color of non-fixed cells may be superseded by Selected Cell Text
Color if the current cell is selected and a GridSelectedTextColorCallback Call-back
Function is registered.

• The call-back is registered by the textColorFunc argument to the
GRID_CONTROL() macro.
 2/27/09 Pg-2591

User Dialogs
• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each cell in the Grid, including cells in Fixed Rows and
Fixed Columns.

Usage
The user’s call-back function must conform to the following prototype:

COLORREF(*GridTextColorCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a COLORREF, which defines the Cell Text Color to be displayed in
GridCell. This is best done using the RGB macro, which takes three integer values ranging
from 0 to 255 representing red, green and blue. For example:

return RGB(0, 255, 0); // Returns 100% Green

Or, the Microsoft GetSysColor() function can be used to get the default Windows text
color (see Example).

Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that diagonal cells have Red text, cells in row 6 have Blue text, and the rest have the
Windows default text color:

COLORREF myCellTextColor(GridCell cell){

if (cell.row == cell.col) // Set diagonal cells = Red text
return RGB(255, 0, 0);

if(cell.row == 6) // Set row 6 cells = Blue text
return RGB(0, 0, 255);

// All other cells get the default Windows text color
return (GetSysColor(COLOR_WINDOWTEXT));

}

7.5.12.21 GridSelectedTextColorCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.
 2/27/09 Pg-2592

User Dialogs
Description
This call-back allows user-written code to set the Selected Cell Text Color of text in the
current cell of the Grid being updated, if the cell is currently selected. Note the following:

• This call-back affects the color of text in non-fixed cells only; i.e. cells in Fixed
Rows (column labels) and in Fixed Columns (row labels) are not affected.

• If the current cell is selected the Selected Cell Text Color supersedes a color set
using the GridTextColorCallback Call-back Function.

• The call-back is registered by the selTextColorFunc argument to the
GRID_CONTROL() macro.

• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each non-fixed cell in the Grid.

• The call-back must return the Selected Cell Text Color to be applied to the current
cell if it is selected.

Usage
The user’s call-back function must conform to the following prototype:

COLORREF(*GridSelectedTextColorCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a COLORREF, which defines the Selected Cell Text Color to be
displayed in GridCell. This is best done using the RGB macro, which takes three integer
values ranging from 0 to 255 representing red, green and blue. For example:

return RGB(0, 0, 255); // Returns 100% Blue

Or the Microsoft GetSysColor() function can be used to get the default Windows text
color (see Example).

Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that the selected cells (magenta and dark blue) have blue text:

COLORREF mySelectedCellTextColor (GridCell cell){
return RGB(0, 0, 255); // Selected text = Blue

}

 2/27/09 Pg-2593

User Dialogs
7.5.12.22 GridCellClickedCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to execute when a cell is clicked in the Grid. Note the
following:

• If registered, this call-back is executed any time the user clicks a Grid cell.
• The row/column coordinates of the clicked cell (with focus) are passed to the call-

back function (see Grid Row/Column Numbering). If a cell in Fixed Rows or Fixed
Columns is clicked the cell with focus will NOT be the cell which is clicked; it will be
the first cell in the row or column.

• The call-back is registered by the cellClickedFunc argument to the
GRID_CONTROL() macro.

Usage
The user’s call-back function must conform to the following prototype:

void(*GridCellClickedCallback)(GridCell);

where GridCell identifies the clicked cell, see Grid Row/Column Numbering.

Example
The following code depends on the data array used in Example. It outputs the row/column
coordinates of a clicked cell (with focus). It then clears the value stored for that selected cell
in the data array and updates the Grid, effectively clearing any non-fixed cell which is
clicked:

void myCellClicked(GridCell cell){
output("Clicked: Row %d, Col %d", cell.row, cell.col);
celldata[cell.row -1][cell.col -1] = "";
grid_update(hSiteDutGrid); // grid_update()

}

 2/27/09 Pg-2594

User Dialogs
7.5.12.23 GridBackgndColorCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Cell Background Color of the current cell of
the Grid being updated. Note the following:

• This call-back does not affect text in Fixed Rows (column labels) or in Fixed
Columns (row labels). Cell 0/0 is not affected.

• The Cell Background Color may be superseded by Selected Cell Background Color
if the current cell is selected and a GridSelectedBackgndColorCallback Call-back
Function is registered.

• The Cell Background Color may be superseded by Focus Cell Background Color if
the current cell has focus and a GridFocusBackgndColorCallback Call-back
Function is registered.

• The call-back is registered by the backColorFunc argument to the
GRID_CONTROL() macro.

• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each non-fixed cell in the Grid.

• The call-back must return the Cell Background Color to be applied to the current
cell.

Usage
The user’s call-back function must conform to the following prototype:

COLORREF(*GridBackgndColorCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a COLORREF, which defines the Cell Background Color to be
displayed in GridCell. This is best done using the RGB macro, which takes three integer
values ranging from 0 to 255 representing red, green and blue. For example:

return RGB(255, 255, 0); // Returns Yellow

Or the Microsoft GetSysColor() function can be used to get the default Windows
background color (see Example).
 2/27/09 Pg-2595

User Dialogs
Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that the background color of column 5 is green and row 6 is yellow. Also note that the color
of the selected cells (magenta) and focus cell (blue) supersedes the colors set using this
call-back function:

COLORREF myCellBGColor(GridCell cell){

if (cell.col == 5) // Col 5 = Green
return RGB(0, 255, 0);

if(cell.row == 6) // Row 6 = Yellow

return RGB(255, 255, 0);

return (GetSysColor(COLOR_WINDOW));
}

7.5.12.24 GridSelectedBackgndColorCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Selected Cell Background Color of the
current cell of the Grid being updated, if the cell is selected. Note the following:

• This call-back does not affect cells in Fixed Rows (column labels) or in Fixed
Columns (row labels). Cell 0/0 is not affected.

• The Selected Cell Background Color may be superseded by Focus Cell Background
Color if the current cell has focus and a GridFocusBackgndColorCallback Call-back
Function is registered.

• The Selected Cell Background Color supersedes the color set by
GridBackgndColorCallback Call-back Function.

• The call-back is registered by the selBackColorFunc argument to the
GRID_CONTROL() macro.

• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each non-fixed cell in the Grid.

• The call-back must return the Selected Cell Background Color to be applied to the
current cell if it is selected.
 2/27/09 Pg-2596

User Dialogs
Usage
The user’s call-back function must conform to the following prototype:

COLORREF(*GridSelectedBackgndColorCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a COLORREF, which defines the Selected Cell Background Color to
be displayed if GridCell is selected. This is best done using the RGB macro, which takes
three integer values ranging from 0 to 255 representing red, green and blue. For example:

return RGB(0, 255, 0); // Returns 100% Green

Or the Microsoft GetSysColor() function can be used to get the default Windows
background color (see Example).

Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that the background color of the selected cells is magenta and that the focus cell
background color (blue-ish) supersedes the colors set using this call-back function. Also
note that if the cell at location 2/2 was selected it would display the default Windows
background color:

COLORREF mySelectedCellBGColor(GridCell cell){
if(cell.row == 2 && cell.col == 2)

return (GetSysColor(COLOR_WINDOW));

return RGB(255, 0, 255); // Magenta
}

7.5.12.25 GridFocusBackgndColorCallback Call-back Function
See Overview, Grid Call-back Functions, GRID_CONTROL() Macro.

Description
This call-back allows user-written code to set the Focus Cell Background Color of the
current cell of the Grid being updated, if the cell has focus. Note the following:

• This call-back does not affect cells in Fixed Rows (column labels) or in Fixed
Columns (row labels). Cell 0/0 is not affected.
 2/27/09 Pg-2597

User Dialogs
• The Focus Cell Background Color supersedes the color set by a
GridBackgndColorCallback Call-back Function or a
GridSelectedBackgndColorCallback Call-back Function.

• The call-back is registered by the focusBackColorFunc argument to the
GRID_CONTROL() macro.

• If registered, this call-back is executed during grid_initialize() and
grid_update(), once for each non-fixed cell in the Grid.

• The call-back must return the Focus Cell Background Color to be applied to the
current cell if it has focus.

Usage
The user’s call-back function must conform to the following prototype:

COLORREF(*GridFocusBackgndColorCallback)(GridCell);

where GridCell identifies the current cell.

The function must return a COLORREF, which defines the Focus Cell Background Color to be
displayed if GridCell has focus. This is best done using the RGB macro, which takes three
integer values ranging from 0 to 255 representing red, green and blue. For example:

return RGB(0, 255, 0); // Returns 100% Green

Or the Microsoft GetSysColor() function can be used to get the default Windows
background color (see Example).

Example
The following code was used in the Grid example shown in Figure-175: . In that image note
that the background color of the selected cells is magenta and that the focus cell
background color (Blue-ish) supersedes the colors set using the selected call-back function.
Also note that if the cell at location 1/1 had focus it would be set to the default Windows
background color:

COLORREF mySelectedCellBGColor(GridCell cell){

if(cell.row == 1 && cell.col == 1)
return (GetSysColor(COLOR_WINDOW));

return RGB(128, 128, 255); // Blue-ish
}

 2/27/09 Pg-2598

User Dialogs
 2/27/09 Pg-2599

STDF Software
7.6 STDF Software

Note: first available in software release h2.3.19 (Magnum 1), i2.3.19 (Magnum ICP),
h3.5.xx (Magnum 2/2x).

This section describes the Nextest software which supports the Teradyne Standard Test
Data Format (STDF) Specification.

This section includes:

• Overview
• STDF Record Types
• Data Type Codes and Representation
• STDF File Functions

• stdf_file_open()
• stdf_file_write()
• stdf_file_close()

• STDF Record Add Functions
• stdf_ATR_add()
•stdf_BPS_add()

• stdf_DTR_add()
• stdf_EPS_add()
• stdf_FTR_add()
• Generic Data Record (GDR) Functions
• stdf_HBR_add()
• stdf_MIR_add()
• stdf_MPR_add()
• stdf_MRR_add()
• stdf_PCR_add()
• stdf_PGR_add()
• stdf_PIR_add()
• stdf_PLR_add()
 2/27/09 Pg-2600

STDF Software
• stdf_PMR_add()
• stdf_PRR_add()
• stdf_PTR_add()
• stdf_RDR_add()
• stdf_SBR_add()
• stdf_SDR_add()
• stdf_TSR_add()
• stdf_WCR_add()
• stdf_WIR_add()
• stdf_WRR_add()

7.6.1 Overview
See STDF Software.

The Teradyne Standard Test Data Format (STDF) Specification defines simple, flexible,
portable data format standard targeted at test result data.

The Standard Test Data Format (STDF) Specification is documented separately. For
convenience, some information from the STDF specification is included in this document,
however, it is not complete: the user must refer to the STDF specification for complete
information, important to any use of STDF.

Note: Test Data Format (STDF) Specification Version 4 was used as the basis for this
document.

From the Nextest software viewpoint, the STDF software operates as follows:

• Each test program will use the STDF File Functions and STDF Record Add
Functions as appropriate to log the desired test result data to a user-specified
STDF file on disk.
• The STDF functions do not operate when executed in a Site process: a warning

is issued. Conversely, the STDF functions are designed to operate when
executed from the Host process (typically via the Host Begin Block) or a user tool
process (see User Tools). Data to be logged which exists in a Site process must
be transferred to the Host or user tool process using methods which are not
covered in this document. Nextest Applications has representative examples.
 2/27/09 Pg-2601

STDF Software
• The STDF File Functions are used to open, write-to and close an STDF file on
disk.
• The stdf_file_open() function is used to open an STDF file on disk. Only

one STDF file can be open at a time. Specific file naming rules apply, see
stdf_file_open() and the Standard Test Data Format (STDF) Specification.
When stdf_file_open() is executed, presuming the file is open successfully,
the required File Attributes Record (FAR) is automatically generated and written
to the file; i.e. there are no provisions for user-code to manipulate a FAR record.

• The stdf_file_write() function is used to write any records currently in the
STDF record heap (populated using the STDF Record Add Functions, more
below) to the currently open STDF file.

• The stdf_file_close() function is used to close the currently open STDF
file. If any records exist in the STDF record heap when stdf_file_close() is
executed they are written to the STDF file before it is closed.

• The STDF Record Add Functions are used to explicitly store an STDF record in
Host computer memory. For convenience this is called the STDF record heap.
• As noted above, the first required record (File Attributes Record - FAR) is

automatically generated by the STDF software and written to the STDF file first.
All other record types are explicitly managed by user-written code.

• The STDF software automatically adds the required record header to each
recorded added to the heap. This typically consists of the REC_LEN, REC_TYP,
REC_SUB record fields. See Standard Test Data Format (STDF) Specification.

• The user is responsible for adding records to the heap in a valid sequence, as
defined in the Standard Test Data Format (STDF) Specification.

• In this document, details of most record types are simplified. DO refer to the
Standard Test Data Format (STDF) Specification for important additional details for
each record type being used. Many record types have both required information
fields and fields which may not be applicable but must be set to a specific value
when not needed. These details and other important rules are NOT documented
here; see the Standard Test Data Format (STDF) Specification for each record
type.

• It is NOT necessary for an STDF file to be open to add records to the STDF
record heap. It is necessary for an STDF file to be open to write the STDF
record heap to a disk file. See STDF File Functions.

• The STDF record heap is cleared each time it is written to the STDF file.
Additional records may then be added to the heap, followed by additional writes
to STDF file. Etc.
 2/27/09 Pg-2602

STDF Software
• Any records in the STDF record heap at the time the test program is terminated
are lost. The user is responsible for saving the record heap to disk file before the
program is terminated.

• Some STDF data types used as arguments, or components of arguments, to the
STDF Record Add Functions consist of variable-length arrays. See Data Type
Codes and Representation. The Standard Test Data Format (STDF) Specification
specifies the maximum supported size for each of these variable-length arrays
(255 bytes, 65,535 bits, etc.). The STDF Code Example declares arrays using
these maximum sizes.

• The arrays used as arguments to the STDF Record Add Functions each have
specific requirements for the first array element (array[0]). These values are
automatically set by the STDF software..

Note: the arrays used in the STDF software are basic C-language arrays. In use,
user-written code must declare and initialize each array before it can be passed
to the STDF Record Add Functions. During the process of initializing these
arrays it is very important to prevent over-running an array boundary, which is
always BAD. Careless programming can cause incorrect and erratic program
operation and can be very difficult to diagnose. This is the user’s responsibility.

7.6.2 STDF Record Types
See STDF Software, Overview.

The following table lists (alphabetically) the defined STDF record types. Refer to the
Standard Test Data Format (STDF) Specification for additional details:

Table 7.6.2.0-1 STDF Record Types and Add Functions

Token Record Type SDTD-Add Function

ATR Audit Trail Record stdf_ATR_add()

BPS Begin Program Section Record stdf_BPS_add()

DTR Datalog Text Record stdf_DTR_add()

EPS End Program Section Record stdf_EPS_add()
 2/27/09 Pg-2603

STDF Software
FAR File Attributes Record The FAR record is automatically
generated by the STDF software and
added to the STDF file by
stdf_file_open().

FTR Functional Test Record stdf_FTR_add()

GDR Generic Data Record Generic Data Record (GDR) Functions

HBR Hardware Bin Record stdf_HBR_add()

MIR Master Information Record stdf_MIR_add()

MPR Multiple-Result Parametric Record stdf_MPR_add()

MRR Master Results Record stdf_MRR_add()

PCR Part Count Record stdf_PCR_add()

PGR Pin Group Record stdf_PGR_add()

PIR Part Information Record stdf_PIR_add()

PLR Pin List Record stdf_PLR_add()

PMR Pin Map Record stdf_PMR_add()

PRR Part Results Record stdf_PRR_add()

PTR Parametric Test Record stdf_PTR_add()

RDR Retest Data Record stdf_RDR_add()

SBR Software Bin Record stdf_SBR_add()

SDR Site Description Record stdf_SDR_add()

TSR Test Synopsis Record stdf_TSR_add()

WCR Wafer Configuration Record stdf_WCR_add()

WIR Wafer Information Record stdf_WIR_add()

WRR Wafer Results Record stdf_WRR_add()

Table 7.6.2.0-1 STDF Record Types and Add Functions

Token Record Type SDTD-Add Function
 2/27/09 Pg-2604

STDF Software
7.6.3 Data Type Codes and Representation
See STDF Software, Overview.

The following table duplicates information formally documented in the Standard Test Data
Format (STDF) Specification. It is included here for convenience only. The codes shown
below are used when describing arguments to the STDF Record Add Functions. Some of
the data types below warrant special attention: see Note::

Table 7.6.3.0-1 Data Type Codes and Representation

Code Description
C Type

Specifier

C*12 Fixed length character string (this example has length
= 12 but any length is supported). If a fixed length
character string does not fill the entire field, it must be
left-justified and padded with spaces.

char[12]

C*n Variable length character string where n defines the
length. The first byte = unsigned count of bytes to
follow (maximum of 255 bytes). Important: see Note:.

char[n]

C*f Variable length character string where f defines the
length. The string length is stored in another record
field. Important: see Note:.

char[f]

U*1 One byte unsigned integer. unsigned char

U*2 Two byte unsigned integer. unsigned short

U*4 Four byte unsigned integer. unsigned long

I*1 One byte signed integer. char

I*2 Two byte signed integer. short

I*4 Four byte signed integer. long

R*4 Four byte floating point number. float

R*8 Eight byte floating point number. long float
(double)

B*6 Fixed length bit-encoded data (this example has
length = 6 but any length is supported).

char[6]
 2/27/09 Pg-2605

STDF Software
7.6.4 STDF File Functions
See STDF Software, Overview

This section documents the functions used to open, write to and close an STDF file. See
Overview.

This section includes:

• stdf_file_open()

V*n Variable data type field. The data type is specified by
a code in the first byte, and the data follows
(maximum of 255 bytes). Important: see Note:.

B*n Variable length bit-encoded field. First byte = unsigned
count of bytes to follow (maximum of 255 bytes). The
first data item is in the least significant bit of the
second byte of the array. Important: see Note:.

char[]

D*n Variable length bit-encoded field. First two bytes =
unsigned count of bits to follow (maximum of 65,535
bits). The first data item is in the least significant bit of
the third byte of the array. Unused bits in the high end
of the last byte must be zero. Important: see Note:.

char[]

N*1 Unsigned integer data stored in a nibble (nibble = 4
bits of a byte). The first item is in the low 4 bits (low
nibble), the second item in the high 4 bits. If an odd
number of nibbles is indicated, the high nibble of the
byte must be zero. Only whole bytes can be written to
the STDF file.

char

kxTYPE
jxTYPE

Array of data of the type specified. The value of k or j
is the number of elements in the array, which is
defined in an earlier field in the record. For example,
an array of unsigned short integers is defined as
kxU*2 or jxU*2.

TYPE[]

Table 7.6.3.0-1 Data Type Codes and Representation

Code Description
C Type

Specifier
 2/27/09 Pg-2606

STDF Software
• stdf_file_write()
• stdf_file_close()

7.6.4.1 stdf_file_open()
See STDF File Functions, Overview.

Description

The stdf_file_open() function is used to open an STDF file on disk, in preparation for
writing STDF records from the STDF record heap to the file using stdf_file_write().
See Overview.

Note the following:

• stdf_file_open() will operate only when executed in the Host process or user
tool process. See Overview.

• Only one (1) STDF file can be open at a time. Executing stdf_file_open()
when an STDF file is already open generates a warning but is otherwise ignored.

• No file clobber checks are made; i.e. any existing file with the specified file name
will be silently over-written.

• When stdf_file_open() is executed, presuming the file is open successfully, the
required File Attributes Record (FAR) is automatically generated and written to the
file. There are no provisions for user-code to manipulate the FAR record.

• The fname argument identifies the target file name to be opened. fname may
include a drive letter, folder, and file name; i.e. an absolute path/filename similar to
d:/myFolder/mySTDFfile. If an absolute path is not specified, the file will be located
relative to the test program executable file location.

Note: the following file name rules are excerpts from the Standard Test Data Format
(STDF) Specification. The information below is simplified to include only
information which applies when using the Windows operating system. Additional
information and important rules are documented in the STDF Filenames section
of the Standard Test Data Format (STDF) Specification.

• An STDF file name must have the following format:
filename.STD[string]
 2/27/09 Pg-2607

STDF Software
where
filename is any string consisting of 1 to 39 of the ASCII characters A - Z, a - z,
and 0 - 9, plus the underscore (_). The first character must be alphabetic.
.STD[string] is a string beginning with the characters .STD, and continuing with
characters that are legal for filename. The string cannot be longer than 39
characters.
Also note:
• In earlier versions of the STDF specification, the dollar sign ($) was a legal

filename character. It is no longer supported, because its use is incompatible
with certain operating systems.

• The STDF filename can contain only a single period.

Usage
bool stdf_file_open(char* fname);

where fname identifies the target file to be opened. See Description for important rules.

stdf_file_open() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.4.2 stdf_file_write()
See STDF File Functions, Overview.

Description

The stdf_file_write() function is used to write STDF records from the STDF record
heap to an STDF file, previously opened using stdf_file_open(). Note the following:

• stdf_file_write() will operate only when executed in the Host process or
user tool process. See Overview.
 2/27/09 Pg-2608

STDF Software
• stdf_file_write() requires that an STDF file have been previously opened
using stdf_file_open(). Executing stdf_file_write() without an open
STDF file generates a warning but is otherwise ignored (no STDF records in the
STDF record heap are lost).

• stdf_file_write() writes all records currently in the STDF record heap to the
open STDF file. See Overview. This clears the STDF record heap; additional
records may then be added to the heap, followed by additional writes to STDF file.
Etc.

• stdf_file_close() also writes all records currently in the STDF record heap to
the open STDF file then closes the file.

Usage
bool stdf_file_write();

stdf_file_write() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.4.3 stdf_file_close()
See STDF File Functions, Overview.

Description
The stdf_file_close() function is used to close the currently open STDF file. If any
STDF records remain in the STDF record heap they are written to the STDF file before it is
closed. Note the following:

• stdf_file_close() will operate only when executed in the Host process or
user tool process. See Overview.

• stdf_file_close() requires that an STDF file have been previously opened
using stdf_file_open(). Executing stdf_file_close() without an open
STDF file generates a warning but is otherwise ignored (no STDF records in the
STDF record heap are lost).
 2/27/09 Pg-2609

STDF Software
Usage
bool stdf_file_close();

stdf_file_close() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5 STDF Record Add Functions
See STDF Software, Overview

This section documents the functions used to add STDF records to the STDF record heap in
preparation for writing them to an STDF file. See Overview.

Separate functions are used to add each record type, however, for the most part these
functions operate identically: the main difference is the record type being added, which
determines the arguments for each function.

These functions are documented in alphabetical order. However, the user is responsible to
adding records to the STDF record heap in a valid sequence, as defined in the Standard
Test Data Format (STDF) Specification.

This section includes the following:

• stdf_ATR_add() = add a ATR record to the STDF record heap.
• stdf_BPS_add() = add a BPS record to the STDF record heap.
• stdf_DTR_add() = add a DTR record to the STDF record heap.
• stdf_EPS_add() = add a EPS record to the STDF record heap.
• stdf_FTR_add() = add a FTR record to the STDF record heap.
• Generic Data Record (GDR) Functions = add a GDR record to the STDF record

heap.
• stdf_HBR_add() = add a HBR record to the STDF record heap.
• stdf_MIR_add() = add a MIR record to the STDF record heap.
• stdf_MPR_add() = add a MPR record to the STDF record heap.
• stdf_MRR_add() = add a MRR record to the STDF record heap.
• stdf_PCR_add() = add a PCR record to the STDF record heap.
 2/27/09 Pg-2610

STDF Software
• stdf_PGR_add() = add a PGR record to the STDF record heap.
• stdf_PIR_add() = add a PIR record to the STDF record heap.
• stdf_PLR_add() = add a PLR record to the STDF record heap.
• stdf_PMR_add() = add a PMR record to the STDF record heap.
• stdf_PRR_add() = add a PRR record to the STDF record heap.
• stdf_PTR_add() = add a PTR record to the STDF record heap.
• stdf_RDR_add() = add a RDR record to the STDF record heap.
• stdf_SBR_add() = add a SBR record to the STDF record heap.
• stdf_SDR_add() = add a SDR record to the STDF record heap.
• stdf_TSR_add() = add a TSR record to the STDF record heap.
• stdf_WCR_add() = add a WCR record to the STDF record heap.
• stdf_WIR_add() = add a WIR record to the STDF record heap.
• stdf_WRR_add() = add a WRR record to the STDF record heap.

7.6.5.1 stdf_ATR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_ATR_add() function is used to add an ATR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Used to record any operation that alters the contents of the STDF file. The name of the
program and all its parameters should be recorded in the ASCII field provided in this
record [the cmd_line argument]. Typically, this record will be used to track filter
programs that have been applied to the data. Marks the beginning of a new program
section (or sequencer) in the job plan.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.
 2/27/09 Pg-2611

STDF Software
Usage
bool stdf_ATR_add(unsigned long MOD_TIM, char *CMD_LINE);

where:

MOD_TIM specifies the date and time of STDF file modification. The data type of this
argument = U*4 in Data Type Codes and Representation.

CMD_LINE specifies the “Command line of program” (per the STDF specification). The data
type of this argument = C*n in Data Type Codes and Representation. Important: see Note:.

stdf_ATR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.2 stdf_BPS_add()
See STDF Record Add Functions, Overview.

Description

The stdf_BPS_add() function is used to add a BPS record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Marks the beginning of a new program section (or sequencer) in the job plan.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_BPS_add(char *CMD_LINE);

where CMD_LINE identifies the “Program section (or sequencer) name” (per the STDF
specification). The data type of this argument = C*n in Data Type Codes and
Representation. Important: see Note:.
 2/27/09 Pg-2612

STDF Software
stdf_BPS_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.3 stdf_DTR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_DTR_add() function is used to add a DTR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains text information that is to be included in the datalog printout. DTRs may be
written under the control of a job plan: for example, to highlight unexpected test results.
They may also be generated by the tester executive software: for example, to indicate
that the datalog sampling rate has changed. DTRs are placed as comments in the
datalog listing.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_DTR_add(char *TEXT_DAT);

where TEXT_DAT identifies the “ASCII text string” (per the STDF specification). The data
type of this argument = C*n in Data Type Codes and Representation. Important: see Note:.

stdf_DTR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2613

STDF Software
7.6.5.4 stdf_EPS_add()
See STDF Record Add Functions, Overview.

Description

The stdf_EPS_add() function is used to add a EPS record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Marks the end of the current program section (or sequencer) in the job plan.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_EPS_add(void);

stdf_EPS_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.5 stdf_FTR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_FTR_add() function is used to add a FTR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the results of the single execution of a functional test in the test program. The
first occurrence of this record also establishes the default values for all semi-static
 2/27/09 Pg-2614

STDF Software
information about the test. The FTR is related to the Test Synopsis Record (TSR) by test
number, head number, and site number.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_FTR_add(FTRBlock data);

where data is a user-defined FTRBlock variable initialized to define the various
parameters which describe an FTR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct FTRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
float TEST_NUM; Test number U*4
unsigned char HEAD_NUM ; Test head number U*1
unsigned char SITE_NUM; Test site number U*1
char *TEST_FLG; Test flags (fail, alarm, etc.) B*1

(see B*6)
char *OPT_FLAG; Optional data flag B*1

(see B*6)
float CYCL_CNT; Cycle count of vector U*4
float REL_VADR; Relative vector address U*4
float REPT_CNT; Repeat count of vector U*4
float NUM_FAIL; Number of pins with 1 or more failures U*4
int XFAIL_AD; X logical device failure address I*4
int YFAIL_AD; Y logical device failure address I*4
int VECT_OFF; Offset from vector of interest I*2
unsigned int RTN_ICNT; Count (j) of return data PMR indexes U*2
unsigned int PGM_ICNT; Count (k) of programmed state indexes U*2
unsigned int *RTN_INDX; Array of return data PMR indexes jxU*2

(see jxTYPE)
char *RTN_STAT; Array of returned states jxN*1

(see jxTYPE)
unsigned int *PGM_INDX; Array of programmed state indexes kxU*2

(see kxTYPE)
 2/27/09 Pg-2615

STDF Software
stdf_FTR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.6 Generic Data Record (GDR) Functions
See STDF Record Add Functions, Overview.

Description
These functions are used to assemble a GDR record and write it to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains information that does not conform to any other record type defined by the STDF
specification. Such records are intended to be written under the control of job plans
executing on the tester. This data may be used for any purpose that the user desires.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

unsigned char *PGM_STAT; Array of programmed states kxN*1
(see kxTYPE)

int FAIL_PIN_number_of_chars; Number of characters in FAIL_PIN. I*4
char *FAIL_PIN; Failing pin bitfield. A char[] array

containing up to 8198 elements.
D*n

char *VECT_NAM; Vector module pattern name C*n
char *TIME_SET; Time set name "
char *OP_CODE; Vector Op Code "
char *TEST_TXT; Descriptive text or label "
char *ALARM_ID; Name of alarm "
char *PROG_TXT; Additional programmed information "
char *RSLT_TXT; Additional result information "
unsigned char PATG_NUM; Pattern generator number U*1
int SPIN_MAP_number_of_chars; Number of characters stored in SPIN_MAP. I*4
unsigned char *SPIN_MAP; Bit map of enabled comparators. A char[]

array containing up to 8198 elements.
D*n

}

 2/27/09 Pg-2616

STDF Software
The general model for assembling a GDR record is to use the various _add() functions as
desired to assemble one GDR record in the STDF record heap (separate _add() functions
are used to allow a given GDR record to contain a user-defined number of values of different
data types). Once the record is assembled the stdf_GDR_write_record() function is
used to write it to the STDF file.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage

bool stdf_GDR_unsigned_byte_add(int bytes, int data);

bool stdf_GDR_signed_byte_add(int bytes, int data);

bool stdf_GDR_floating_point_add(float data);

bool stdf_GDR_double_add(double data);

bool stdf_GDR_char_add(int number_of_chars, char *data);

bool stdf_GDR_binary_add(int bytes, char *data);

bool stdf_GDR_bit_encoded_add(int bytes, char *data);

bool stdf_GDR_nybble_add(char data);

bool stdf_GDR_write_record();

where:

bytes is used is two contexts:

• Using stdf_GDR_unsigned_byte_add() and
stdf_GDR_signed_byte_add(), bytes is used because the data type being
added has more than one supported size (see Data Type Codes and
Representation). In this context, legal values are 1, 2 and 4. For example, 3 sizes
of unsigned ints are supported (U*1, U*2, U*4). Thus, when using
stdf_GDR_unsigned_byte_add(), the value 2 is specified for the bytes
argument when adding a 2 byte int (U*2) value to the GDR record.

• Using stdf_GDR_binary_add() and stdf_GDR_bit_encoded_add(), bytes
specifies the number of values in the data array to be added.

data specifies the value(s) to be added to the GDR record. When the data argument is a
pointer (i.e. *data) it represents an array of values of the specified type.

number_of_chars is used when adding a character string to the GDR record. It specifies
the number of characters in the data array to be added.
 2/27/09 Pg-2617

STDF Software
These functions return TRUE if the operation was successful, otherwise FALSE is returned.

Example
See STDF Code Example.

7.6.5.7 stdf_HBR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_HBR_add() function is used to add a HBR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Stores a count of the parts “physically” placed in a particular bin after testing. (In wafer
testing, “physical” binning is not an actual transfer of the chip, but rather is represented
by a drop of ink or an entry in a wafer map file.) This bin count can be for a single test site
(when parallel testing) or a total for all test sites. The STDF specification also supports a
Software Bin Record (SBR) for logical binning categories. A part is “physically” placed in
a hardware bin after testing. A part can be “logically” associated with a software bin
during or after testing.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_HBR_add(unsigned char HEAD_NUM,

unsigned char SITE_NUM,
unsigned short HBIN_NUM,
unsigned int HBIN_CNT,
char HBIN_PF,
char *HBIN_NAM);

where:
 2/27/09 Pg-2618

STDF Software
HEAD_NUM identifies the “Test head number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SITE_NUM identifies the “Test site number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

HBIN_NUM identifies the “Hardware bin number” (per the STDF specification). The data type
of this argument = U*2 in Data Type Codes and Representation.

HBIN_CNT identifies the “Number of parts in bin” (per the STDF specification). The data type
of this argument = U*4 in Data Type Codes and Representation.

HBIN_PF identifies the “Pass/fail indication” (per the STDF specification). The data type of
this argument = C*1 in Data Type Codes and Representation (see C*12).

HBIN_NAM identifies the “Name of hardware bin” (per the STDF specification). The data type
of this argument = C*n in Data Type Codes and Representation. Important: see Note:.

stdf_HBR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.8 stdf_MIR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_MIR_add() function is used to add a MIR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

The MIR and the MRR (Master Results Record) contain all the global information that is
to be stored for a tested lot of parts. Each data stream must have exactly one MIR,
immediately after the FAR (and the ATRs, if they are used). This will allow any data
reporting or analysis programs access to this information in the shortest possible amount
of time.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.
 2/27/09 Pg-2619

STDF Software
Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_MIR_add(MIRBlock data);

where:

where data is a user-defined MIRBlock variable initialized to define the various
parameters which describe an MIR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct MIRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
unsigned long SETUPTIME; Date and time of job setup U*4
unsigned long FIRSTPARTTESTTIME; Date and time first part tested U*4
unsigned char STATIONNUMBER; Tester station number U*1
char MODE_COD; Test mode code (e.g. prod, dev) C*1

(see C*12)
char RTST_COD; Lot retest code C*1

(see C*12)
char PROT_COD; Data protection code C*1

(see C*12)
unsigned short BURN_TIM; Burn-in time (in minutes) U*2
char CMOD_COD; Command mode code C*1

(see C*12)
char LOT_ID[255]; Lot ID (customer specified) C*n
char PART_TYP[255]; Part Type (or product ID) "
char NODE_NAM[255]; Name of node that generated data "
char TSTR_TYP[255]; Tester type "
char JOB_NAM[255]; Job name (test program name) "
char JOB_REV[255]; Job (test program) revision number "
char SBLOT_ID[255]; Sublot ID "
char OPER_NAM[255]; Operator name or ID (at setup time) "
char EXEC_TYP[255]; Tester executive software type "
char EXEC_VER[255]; Tester exec software version number "
char TEST_COD[255]; Test phase or step code "
char TST_TEMP[255]; Test temperature "
char USER_TXT[255]; Generic user text "
char AUX_FILE[255]; Name of auxiliary data file "
 2/27/09 Pg-2620

STDF Software
stdf_MIR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.9 stdf_MPR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_MPR_add() function is used to add a MPR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the results of a single execution of a parametric test in the test program where
that test returns multiple values. The first occurrence of this record also establishes the
default values for all semi-static information about the test, such as limits, units, and
scaling. The MPR is related to the Test Synopsis Record (TSR) by test number, head
number, and site number.

char PKG_TYP[255]; Package type "
char FAMLY_ID[255]; Product family ID "
char DATE_COD[255]; Date code "
char FACIL_ID[255]; Test facility ID "
char FLOOR_ID[255]; Test floor ID "
char PROC_ID[255]; Fabrication process ID "
char OPER_FRQ[255]; Operation frequency or step "
char SPEC_NAM[255]; Test specification name "
char SPEC_VER[255]; Test specification version number "
char FLOW_ID[255]; Test flow ID "
char SETUP_ID[255]; Test setup ID "
char DSGN_REV[255]; Device design revision "
char ENG_ID[255]; Engineering lot ID "
char ROM_COD[255]; ROM code ID "
char SERL_NUM[255]; Tester serial number "
char SUPR_NAM[255]; Supervisor name or ID "

}

 2/27/09 Pg-2621

STDF Software
The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_MPR_add(MPRBlock data);

where data is a user-defined MPRBlock variable initialized to define the various
parameters which describe an MPR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct MPRBlock {
Standard Test Data Format (STDF) Specification
Description

Data Type in
Data Type
Codes and

Representation
unsigned long TEST_NUM; Test number U*4
unsigned char HEAD_NUM; Test head number U*1
unsigned char SITE_NUM; Test site number U*1
unsigned char TEST_FLG; Test flags (fail, alarm, etc.) B*1

(see B*n)
unsigned char PARM_FLG; Parametric test flags (drift, etc.) B*1

(see B*n)
short RTN_ICNT; Count (j) of PMR indexes See note U*2
short RSLT_CNT; Count (k) of returned results See note U*2
unsigned char *RTN_STAT; Array of returned states RTN_ICNT = 0 jxN*1

(see
kxTYPE)

double *RTN_RSLT; Array of returned results RSLT_CNT = 0 kxR*4
(see

kxTYPE)
char TEST_TXT[255]; Test description text or label length byte = 0 C*n
char ALARM_ID[255]; Name of alarm length byte = 0 C*n
unsigned char OPT_FLAG; Optional data flag See note B*1

(see B*n)
int RES_SCAL; Test results scaling exponent OPT_FLAG bit 0 = 1 I*1
int LLM_SCAL; Low limit scaling exponent OPT_FLAG bit 4 or 6 = 1 I*1
int HLM_SCAL; High limit scaling exponent OPT_FLAG bit 5 or 7 = 1 I*1
double LO_LIMIT; Low test limit value OPT_FLAG bit 4 or 6 = 1 R*4
double HI_LIMIT; High test limit value OPT_FLAG bit 5 or 7 = 1 R*4
double START_IN; Starting input value (condition) OPT_FLAG bit 1 = 1 R*4
 2/27/09 Pg-2622

STDF Software
stdf_MPR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.10 stdf_MRR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_MRR_add() function is used to add a MRR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

The Master Results Record (MRR) is a logical extension of the Master Information
Record (MIR). The data can be thought of as belonging with the MIR, but it is not
available when the tester writes the MIR information. Each data stream must have
exactly one MRR as the last record in the data stream.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

double INCR_IN; Increment of input condition OPT_FLAG bit 1 = 1 R*4
short *RTN_INDX; Array of PMR indexes RTN_ICNT = 0 jxU*2

(see
kxTYPE)

char UNITS[255]; Test units length byte = 0 C*n
char C_RESFMT[255]; ANSI C result format string length byte = 0 "
char C_LLMFMT[255]; ANSI C low limit format string length byte = 0 "
char C_HLMFMT[255]; ANSI C high limit format string length byte = 0 "
double LO_SPEC; Low specification limit value OPT_FLAG bit 2 = 1 R*4
double HI_SPEC; High specification limit value OPT_FLAG bit 3 = 1 R*4

};
 2/27/09 Pg-2623

STDF Software
Usage
bool stdf_MRR_add(unsigned long FINISH_T,

char DISP_COD,
char *USR_DESC,
char *EXC_DESC);

where:

FINISH_T specifies the “Date and time last part tested” (per the STDF specification). The
data type of this argument = U*4 in Data Type Codes and Representation.

DISP_COD specifies the “Lot disposition code” (per the STDF specification). The data type
of this argument = C*1 in Data Type Codes and Representation (see C*12).

USR_DESC specifies the “Lot description supplied by user” (per the STDF specification). The
data type of this argument = C*n in Data Type Codes and Representation. Important: see
Note:.

EXC_DESC specifies the “Lot description supplied by exec” (per the STDF specification). The
data type of this argument = C*n in Data Type Codes and Representation. Important: see
Note:.

stdf_MRR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.11 stdf_PCR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PCR_add() function is used to add a PCR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the part count totals for one or all test sites. Each data stream must have at
least one PCR to show the part count.
 2/27/09 Pg-2624

STDF Software
The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PCR_add(unsigned char HBIN_NAM,

unsigned char SITE_NUM,
unsigned int PART_CNT,
unsigned int RTST_CNT,
unsigned int ABRT_CNT,
unsigned int GOOD_CNT,
unsigned int FUNC_CNT);

where:

HBIN_NAM specifies the “Test head number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SITE_NUM specifies the “Test site number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

PART_CNT specifies the “Number of parts tested” (per the STDF specification). The data
type of this argument = U*4 in Data Type Codes and Representation.

RTST_CNT specifies the “Number of parts retested” (per the STDF specification). The data
type of this argument = U*4 in Data Type Codes and Representation.

ABRT_CNT specifies the “Number of aborts during” (per the STDF specification). The data
type of this argument = U*4 in Data Type Codes and Representation.

GOOD_CNT specifies the “Number of good (passed) parts tested” (per the STDF
specification). The data type of this argument = U*4 in Data Type Codes and
Representation.

FUNC_CNT specifies the “Number of functional parts tested” (per the STDF specification).
The data type of this argument = U*4 in Data Type Codes and Representation.

stdf_PCR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2625

STDF Software
7.6.5.12 stdf_PGR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PGR_add() function is used to add a PGR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Associates a name with a group of pins. See “Using the Pin Mapping Records”.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PGR_add(short GRP_INDX,

char *GRP_NAM,
short INDX_CNT,
short *PMR_INDX);

where:

GRP_INDX specifies the “Unique index associated with pin group” (per the STDF
specification). The data type of this argument = U*2 in Data Type Codes and
Representation.

GRP_NAM specifies the “Name of pin group” (per the STDF specification). The data type of
this argument = C*n in Data Type Codes and Representation. Important: see Note:.

INDX_CNT specifies the “Count (k) of PMR indexes” (per the STDF specification). The data
type of this argument = U*2 in Data Type Codes and Representation.

PMR_INDX specifies the “Array of indexes for pins in the group” (per the STDF
specification). The data type of this argument = kxU*2 in Data Type Codes and
Representation (see kxTYPE).

stdf_PGR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.
 2/27/09 Pg-2626

STDF Software
Example
See STDF Code Example.

7.6.5.13 stdf_PIR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PIR_add() function is used to add a PIR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Acts as a marker to indicate where testing of a particular part begins for each part tested
by the test program. The PIR and the Part Results Record (PRR) bracket all the stored
information pertaining to one tested part.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PIR_add(int HEADNUM, int SITENUM);

where:

HEADNUM specifies the “Test head number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SITENUM specifies the “Test site number” (per the STDF specification). The data type of this
argument = U*1 in Data Type Codes and Representation.

stdf_PIR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2627

STDF Software
7.6.5.14 stdf_PLR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PLR_add() function is used to add a PLR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Defines the current display radix and operating mode for a pin or pin group. See “Using
the Pin Mapping Records”.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PLR_add(short GRP_CNT,

short *GRP_INDX,
short *GRP_MODE,
unsigned char *GRP_RADIX,
char *PGM_CHAR,
char *RTN_CHAR,
char *PRGM_CHAL,
char *RTN_CHAL);

where:

GRP_CNT specifies the “Count (k) of pins or pin groups” (per the STDF specification). The
data type of this argument = U*2 in Data Type Codes and Representation.

GRP_INDX specifies the “Array of pin or pin group indexes” (per the STDF specification).
The data type of this argument = kxU*2 in Data Type Codes and Representation (see
kxTYPE).

GRP_MODE specifies the “Operating mode of pin group” (per the STDF specification). The
data type of this argument = kxU*2 in Data Type Codes and Representation (see kxTYPE).

GRP_RADIX specifies the “Display radix of pin group” (per the STDF specification). The data
type of this argument = kxU*1 in Data Type Codes and Representation (see kxTYPE).
 2/27/09 Pg-2628

STDF Software
PGM_CHAR specifies the “Program state encoding characters” (per the STDF specification).
The data type of this argument = kxC*n in Data Type Codes and Representation (see
kxTYPE).

RTN_CHAR specifies the “Return state encoding characters” (per the STDF specification).
The data type of this argument = kxC*n in Data Type Codes and Representation (see
kxTYPE).

PRGM_CHAL specifies the “Program state encoding characters” (per the STDF specification).
The data type of this argument = kxC*n in Data Type Codes and Representation (see
kxTYPE).

RTN_CHAL specifies the “Return state encoding characters ” (per the STDF specification).
The data type of this argument = kxC*n in Data Type Codes and Representation (see
kxTYPE).

stdf_PLR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.15 stdf_PMR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PMR_add() function is used to add a PMR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Provides indexing of tester channel names, and maps them to physical and logical pin
names. Each PMR defines the information for a single channel/pin combination. See
“Using the Pin Mapping Records”.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.
 2/27/09 Pg-2629

STDF Software
Usage
bool stdf_PMR_add(unsigned short PMR_INDX,

unsigned short CHAN_TYP,
char *CHAN_NAM,
char *PHY_NAM,
char *LOG_NAM,
unsigned char HEAD_NUM,
unsigned char SITE_NUM);

where:

PMR_INDX specifies the “Unique index associated with pin” (per the STDF specification).
The data type of this argument = U*2 in Data Type Codes and Representation.

CHAN_TYP specifies the “Channel type” (per the STDF specification). The data type of this
argument = U*2 in Data Type Codes and Representation.

CHAN_NAM specifies the “Channel name” (per the STDF specification). The data type of this
argument = C*n in Data Type Codes and Representation. Important: see Note:.

PHY_NAM specifies the “Physical name of pin” (per the STDF specification). The data type of
this argument = C*n in Data Type Codes and Representation. Important: see Note:.

LOG_NAM specifies the “Logical name of pin” (per the STDF specification). The data type of
this argument = C*n in Data Type Codes and Representation. Important: see Note:.

HEAD_NUM specifies the “Head number associated with channel” (per the STDF
specification). The data type of this argument = U*1 in Data Type Codes and
Representation.

SITE_NUM specifies the “Site number associated with channel” (per the STDF
specification). The data type of this argument = U*1 in Data Type Codes and
Representation.

stdf_PMR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2630

STDF Software
7.6.5.16 stdf_PRR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PRR_add() function is used to add a PRR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the result information relating to each part tested by the test program. The PRR
and the Part Information Record (PIR) bracket all the stored information pertaining to one
tested part.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PRR_add(PRRBlock data);

where data is a user-defined PRRBlock variable initialized to define the various
parameters which describe an PRR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct PRRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
unsigned char HEAD_NUM; Test head number U*1
unsigned char SITE_NUM; Test site number U*1
char *PART_FLG; Part information flag B*1

(see B*n)
int NUM_TEST; Number of tests executed U*2
int HARD_BIN; Hardware bin number U*2
int SOFT_BIN; Software bin number U*2
int X_COORD; (Wafer) X coordinate I*2
int Y_COORD; (Wafer) Y coordinate I*2
unsigned long TEST_T; Elapsed test time in milliseconds U*4
 2/27/09 Pg-2631

STDF Software
stdf_PRR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.17 stdf_PTR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_PTR_add() function is used to add a PTR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the results of a single execution of a parametric test in the test program. The
first occurrence of this record also establishes the default values for all semi-static
information about the test, such as limits, units, and scaling. The PTR is related to the
Test Synopsis Record (TSR) by test number, head number, and site number.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_PTR_add(PTRBlock data);

where data is a user-defined PTRBlock variable initialized to define the various
parameters which describe an PTR record, as shown below. Some fields are required,

char *PART_ID; Part identification C*n
char *PART_TXT; Part description text "
char *PART_FIX; Part repair information B*n

}

 2/27/09 Pg-2632

STDF Software
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

stdf_PTR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

struct PTRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
unsigned long TEST_NUM; Test number U*4
unsigned char HEAD_NUM; Test head number U*1
unsigned char SITE_NUM; Test site number U*1
unsigned char TEST_FLG; Test flags (fail, alarm, etc.) B*1

(see B*6)
unsigned char PARM_FLG; Parametric test flags (drift, etc.) B*1

(see B*6)
float RESULT; Test result R*4
char *TEST_TXT; Test description text or label C*n
char *ALARM_ID; Name of alarm "
unsigned char OPT_FLAG; Optional data flag B*1

(see B*6)
int RES_SCAL; Test results scaling exponent I*1
int LLM_SCAL; Low limit scaling exponent I*1
int HLM_SCAL; High limit scaling exponent I*1
float LO_LIMIT; Low test limit value R*4
float HI_LIMIT; High test limit value R*4
char *UNITS; Test units C*n
char *C_RESFMT; ANSI C result format string "
char *C_LLMFMT; ANSI C low limit format string "
char *C_HLMFMT; ANSI C high limit format string "
float LO_SPEC; Low specification limit value R*4
float HI_SPEC; High specification limit value R*4

}

 2/27/09 Pg-2633

STDF Software
7.6.5.18 stdf_RDR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_RDR_add() function is used to add a RDR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Signals that the data in this STDF file is for retested parts. The data in this record,
combined with information in the MIR, tells data filtering programs what data to replace
when processing retest data.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_RDR_add(unsigned short NUM_BINS,

unsigned char* RTSTBINS);

where:

NUM_BINS specifies the “Number (k) of bins being retested” (per the STDF specification).
The data type of this argument = U*2 in Data Type Codes and Representation.

RTSTBINS specifies the “Array of retest bin numbers” (per the STDF specification). The data
type of this argument = kxU*2 in Data Type Codes and Representation (see kxTYPE).

stdf_RDR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2634

STDF Software
7.6.5.19 stdf_SBR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_SBR_add() function is used to add a SBR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Stores a count of the parts associated with a particular logical bin after testing. This bin
count can be for a single test site (when parallel testing) or a total for all test sites. The
STDF specification also supports a Hardware Bin Record (HBR) for actual physical
binning. A part is “physically” placed in a hardware bin after testing. A part can be
“logically” associated with a software bin during or after testing.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_SBR_add(unsigned char HEAD_NUM,

unsigned char SITE_NUM,
unsigned short SBIN_NUM,
unsigned int SBIN_CNT,
char SBIN_PF,
char *SBIN_NAM);

where:

HEAD_NUM specifies the “Test head number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SITE_NUM specifies the “Test site number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SBIN_NUM specifies the “Software bin number” (per the STDF specification). The data type
of this argument = U*2 in Data Type Codes and Representation.

SBIN_CNT specifies the “Number of parts in bin” (per the STDF specification). The data type
of this argument = U*4 in Data Type Codes and Representation.
 2/27/09 Pg-2635

STDF Software
SBIN_PF specifies the “Pass/fail indication” (per the STDF specification). The data type of
this argument = C*1 in Data Type Codes and Representation (see C*12).

SBIN_NAM specifies the “Name of software bin” (per the STDF specification). The data type
of this argument = C*n in Data Type Codes and Representation. Important: see Note:.

stdf_SBR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.20 stdf_SDR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_SDR_add() function is used to add a SDR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the configuration information for one or more test sites, connected to one test
head, that compose a site group.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_SDR_add(SRDBlock data);

where data is a user-defined SRDBlock variable initialized to define the various
parameters which describe an SDR record, as shown below. Some fields are required,
 2/27/09 Pg-2636

STDF Software
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

stdf_SDR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.21 stdf_TSR_add()
See STDF Record Add Functions, Overview.

struct SDRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
unsigned char HEAD_NUM; Test head number U*1
unsigned char SITE_GRP; Site group number U*1
unsigned char SITE_CNT; Number (k) of test sites in site group U*1
unsigned char *SITE_NUM; Array of test site numbers kxU*1 (see

kxTYPE)
char HAND_TYP[255]; Handler or prober type C*n
char HAND_ID[255]; Handler or prober ID "
char CARD_TYP[255]; Probe card type "
char CARD_ID[255]; Probe card ID "
char LOAD_TYP[255]; Load board type "
char LOAD_ID[255]; Load board ID "
char DIB_TYP[255]; DIB board type "
char DIB_ID[255]; DIB board ID "
char CABL_TYP[255]; Interface cable type "
char CABL_ID[255]; Interface cable ID "
char CONT_TYP[255]; Handler contactor type "
char CONT_ID[255]; Handler contactor ID "
char LASR_TYP[255]; Laser type "
char LASR_ID[255]; Laser ID "
char EXTR_TYP[255]; Extra equipment type field "
char EXTR_ID[255]; Extra equipment ID "

}

 2/27/09 Pg-2637

STDF Software
Description

The stdf_TSR_add() function is used to add a TSR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the test execution and failure counts for one parametric or functional test in the
test program. Also contains static information, such as test name. The TSR is related to
the Functional Test Record (FTR), the Parametric Test Record (PTR), and the Multiple
Parametric Test Record (MPR) by test number, head number, and site number.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_TSR_add(TSRBlock data);

where data is a user-defined TSRBlock variable initialized to define the various
parameters which describe an TSR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct TSRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
unsigned char HEAD_NUM; Test head number U*1
unsigned char SITE_NUM; Test site number U*1
char TEST_TYP; Test type C*1

(see C*12)
unsigned long TEST_NUM; Test number U*4
unsigned long EXEC_CNT; Number of test executions U*4
unsigned long FAIL_CNT; Number of test failures U*4
unsigned long ALRM_CNT; Number of alarmed tests U*4
char *TEST_NAM; Test name C*n
char *SEQ_NAME; Sequencer (program segment/flow) name "
char *TEST_LBL; Test label or text "
char OPT_FLAG; Optional data flag B*1

(see B*6)
float TEST_TIM; Average test execution time in seconds R*4
float TEST_MIN; Lowest test result value R*4
 2/27/09 Pg-2638

STDF Software
stdf_TSR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.22 stdf_WCR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_WCR_add() function is used to add a WCR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the configuration information for the wafers tested by the job plan. The WCR
provides the dimensions and orientation information for all wafers and dice in the lot. This
record is used only when testing at wafer probe time.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_WCR_add(double WAFR_SIZ,

double DIE_HT,
double DIE_WD,
int WF_UNITS,
char WF_FLAT,
int CENTER_X,

float TEST_MAX; Highest test result value R*4
float TEST_SUMS; Sum of test result values R*4
float TEST_SQRS; Sum of squares of test result values R*4

}

 2/27/09 Pg-2639

STDF Software
int CENTER_Y,
int POS_X,
int POS_Y);

where:

WAFR_SIZ specifies the “Diameter of wafer in WF_UNITS” (per the STDF specification).
The data type of this argument = R*4 in Data Type Codes and Representation.

DIE_HT specifies the “Height of die in WF_UNITS” (per the STDF specification). The data
type of this argument = R*4 in Data Type Codes and Representation.

DIE_WD specifies the “Width of die in WF_UNITS” (per the STDF specification). The data
type of this argument = R*4 in Data Type Codes and Representation.

WF_UNITS specifies the “Units for wafer and die dimensions” (per the STDF specification).
The data type of this argument = U*1 in Data Type Codes and Representation.

WF_FLAT specifies the “Orientation of wafer flat” (per the STDF specification). The data type
of this argument = C*1 in Data Type Codes and Representation (see C*12).

CENTER_X specifies the “X coordinate of center die on wafer” (per the STDF specification).
The data type of this argument = I*2 in Data Type Codes and Representation.

CENTER_Y specifies the “Y coordinate of center die on wafer” (per the STDF specification).
The data type of this argument = I*2 in Data Type Codes and Representation.

POS_X specifies the “Positive X direction of wafer” (per the STDF specification). The data
type of this argument = C*1 in Data Type Codes and Representation (see C*12).

POS_Y specifies the “Positive Y direction of wafer” (per the STDF specification). The data
type of this argument = C*1 in Data Type Codes and Representation (see C*12).

stdf_WCR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.5.23 stdf_WIR_add()
See STDF Record Add Functions, Overview.
 2/27/09 Pg-2640

STDF Software
Description

The stdf_WIR_add() function is used to add a WIR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Acts mainly as a marker to indicate where testing of a particular wafer begins for each
wafer tested by the job plan. The WIR and the Wafer Results Record (WRR) bracket all
the stored information pertaining to one tested wafer. This record is used only when
testing at wafer probe. A WIR/WRR pair will have the same HEAD_NUM and SITE_GRP
values.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_WIR_add(int HEAD_NUM,

int SITE_GRP,
unsigned long START_T,
char *WAFER_ID);

where:

HEAD_NUM specifies the “Test head number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

SITE_GRP specifies the “Site group number” (per the STDF specification). The data type of
this argument = U*1 in Data Type Codes and Representation.

START_T specifies the “Date and time first part tested” (per the STDF specification). The
data type of this argument = U*4 in Data Type Codes and Representation.

WAFER_ID specifies the “Wafer ID” (per the STDF specification). The data type of this
argument = C*n in Data Type Codes and Representation. Important: see Note:.

stdf_WIR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.
 2/27/09 Pg-2641

STDF Software
7.6.5.24 stdf_WRR_add()
See STDF Record Add Functions, Overview.

Description

The stdf_WRR_add() function is used to add a WRR record to the STDF record heap.

In the Standard Test Data Format (STDF) Specification this record type is described as:

Contains the result information relating to each wafer tested by the job plan. The WRR
and the Wafer Information Record (WIR) bracket all the stored information pertaining to
one tested wafer. This record is used only when testing at wafer probe time. A WIR/WRR
pair will have the same HEAD_NUM and SITE_GRP values.

The Standard Test Data Format (STDF) Specification contains important additional
information about this record type.

Important usage rules which apply to all STDF Record Add Functions are documented in
Overview.

Usage
bool stdf_WRR_add(WRRBlock data);

where data is a user-defined WRRBlock variable initialized to define the various
parameters which describe an WRR record, as shown below. Some fields are required,
others may not be applicable but must be set to a specific value when not needed, see
Standard Test Data Format (STDF) Specification:

struct WRRBlock {
Standard Test Data Format (STDF)
Specification Description

Data Type in
Data Type
Codes and

Representation
int HEAD_NUM; Test head number U*1
int SITE_GRP; Site group number U*1
unsigned long FINISH_T; Date and time last part tested U*4
unsigned long PART_CNT; Number of parts tested U*4
unsigned long RTST_CNT; Number of parts retested U*4
unsigned long ABRT_CNT; Number of aborts during testing U*4
unsigned long GOOD_CNT; Number of good (passed) parts tested U*4
unsigned long FUNC_CNT; Number of functional parts tested U*4
char *WAFER_ID; Wafer ID C*n
 2/27/09 Pg-2642

STDF Software
stdf_WRR_add() returns TRUE if the operation was successful, otherwise FALSE is
returned.

Example
See STDF Code Example.

7.6.6 STDF Code Example
See STDF Software, Overview.

This example compiles and generates a valid STDF file on disk, however many of the values
below are silly and used to show valid C syntax for each supported record type. The output
file name = ../testSTDF_1.std (relative to the test program executable file). To keep the
example simple, none of the bool values returned from the STDF functions are tested for
errors (not recommended).

#include "tester.h"
FTRBlock my_FTR_record;
MIRBlock my_MIR_record;
MPRBlock my_MPR_record
PRRBlock my_PRR_record;
PTRBlock my_PTR_record;
SRDBlock my_SDR_record;
TSRBlock my_TSR_record;
WRRBlock my_WRR_record;
time_t time_now;
bool ok;

// The code below must execute from the Host process or user tool
// process (see Overview). This example puts it into the
// HOST_BEGIN_BLOCK, which will be typcial.
HOST_BEGIN_BLOCK(HB1) {
 // In the real world, there will be many FTRs

char *FABWF_ID; Fab wafer ID "
char *FRAME_ID; Wafer frame ID "
char *MASK_ID; Wafer mask ID "
char *USR_DESC; Wafer description supplied by user "
char *EXC_DESC; Wafer description supplied by exec "

}

 2/27/09 Pg-2643

STDF Software
 my_FTR_record.TEST_NUM = 101;
 my_FTR_record.HEAD_NUM = 1;
 my_FTR_record.SITE_NUM = 1;
 my_FTR_record.TEST_FLG = 42;
 my_FTR_record.OPT_FLAG = 43;
 my_FTR_record.CYCL_CNT = 3535;
 my_FTR_record.REL_VADR = 19;
 my_FTR_record.REPT_CNT = 0;
 my_FTR_record.NUM_FAIL = 8;
 my_FTR_record.XFAIL_AD = 33;
 my_FTR_record.YFAIL_AD = 44;
 my_FTR_record.VECT_OFF = 0;
#define RTN_SIZE 1
 unsigned short rtn_idx[RTN_SIZE] = { 1 };
 unsigned char rtn_stat[RTN_SIZE] = { '6' };
 my_FTR_record.RTN_ICNT = (sizeof(rtn_idx) / sizeof(short)) ;
 my_FTR_record.RTN_INDX = rtn_idx;
 my_FTR_record.RTN_STAT = rtn_stat;
#define PGM_SIZE 1
 unsigned short pgm_idx[PGM_SIZE] = { 1 };
 unsigned char pgm_stat[PGM_SIZE] = { '6' };
 my_FTR_record.PGM_ICNT = (sizeof(pgm_idx) / sizeof(short));
 my_FTR_record.PGM_INDX = pgm_idx;
 my_FTR_record.PGM_STAT = pgm_stat;
 my_FTR_record.FAIL_PIN_number_of_chars = 5;
 strcpy(my_FTR_record.FAIL_PIN, "12345");
 strcpy(my_FTR_record.VECT_NAM, "myMemPat_1");
 strcpy(my_FTR_record.TIME_SET, "LooseAC");
 strcpy(my_FTR_record.OP_CODE, "VEC");
 strcpy(my_FTR_record.TEST_TXT, "Read Seg Address-n");
 strcpy(my_FTR_record.ALARM_ID, "Fire");
 strcpy(my_FTR_record.PROG_TXT, "This example is silly");
 strcpy(my_FTR_record.RSLT_TXT, "Get a real example");
 my_FTR_record.PATG_NUM = 1;
 my_FTR_record.SPIN_MAP_number_of_chars = 5;
 strcpy(my_FTR_record.SPIN_MAP, "12345");

 time(&time_now);
 my_MIR_record.SETUPTIME = time_now;
 my_MIR_record.FIRSTPARTTESTTIME = time_now;
 my_MIR_record.STATIONNUMBER = 101;
 2/27/09 Pg-2644

STDF Software
 my_MIR_record.MODE_COD = 'M';
 my_MIR_record.RTST_COD = 'R';
 my_MIR_record.PROT_COD = 'P' ;
 my_MIR_record.BURN_TIM = 5;
 my_MIR_record.CMOD_COD = 'C';
 strcpy(my_MIR_record.LOT_ID, "Parking");
 strcpy(my_MIR_record.PART_TYP, "XYZZY");
 strcpy(my_MIR_record.NODE_NAM, "Lymph");
 strcpy(my_MIR_record.TSTR_TYP, "Magnum 2x");
 strcpy(my_MIR_record.JOB_NAM, "MostestHotestJob");
 strcpy(my_MIR_record.JOB_REV, "19");
 strcpy(my_MIR_record.SBLOT_ID, "None");
 strcpy(my_MIR_record.OPER_NAM, "Mike P");
 strcpy(my_MIR_record.EXEC_TYP, "UI");
 strcpy(my_MIR_record.EXEC_VER, "h3.4.xx");
 strcpy(my_MIR_record.TEST_COD, "preFinal");
 strcpy(my_MIR_record.TST_TEMP, "3.14K");
 strcpy(my_MIR_record.USER_TXT, "Oops");
 strcpy(my_MIR_record.AUX_FILE, "Rasp");
 strcpy(my_MIR_record.PKG_TYP, "EggCrate");
 strcpy(my_MIR_record.FAMLY_ID, "AdamsFamily");
 strcpy(my_MIR_record.DATE_COD, "Jurassic");
 strcpy(my_MIR_record.FACIL_ID, "Metropolis");
 strcpy(my_MIR_record.FLOOR_ID, "Basement 43");
 strcpy(my_MIR_record.PROC_ID, "LostWax");
 strcpy(my_MIR_record.OPER_FRQ, "ToooooFast");
 strcpy(my_MIR_record.SPEC_NAM, "Mil_0U812");
 strcpy(my_MIR_record.SPEC_VER, "Final_9.3.1.3a");
 strcpy(my_MIR_record.FLOW_ID, "200GPM");
 strcpy(my_MIR_record.SETUP_ID, "769");
 strcpy(my_MIR_record.DSGN_REV, "Prelim_692.3.2");
 strcpy(my_MIR_record.ENG_ID, "427");
 strcpy(my_MIR_record.ROM_COD, "SpaceInvaders");
 strcpy(my_MIR_record.SERL_NUM, "0.0.1");
 strcpy(my_MIR_record.SUPR_NAM, "RobnAdlr");

 my_MPR_record.TEST_NUM = 1;
 my_MPR_record.HEAD_NUM = 1;
 my_MPR_record.SITE_NUM = 1;
 my_MPR_record.TEST_FLG = 0x04;
 my_MPR_record.PARM_FLG = 0x00;
 2/27/09 Pg-2645

STDF Software
 unsigned char rtn_states[1] = { '6' };
 my_MPR_record.RTN_ICNT =

(sizeof(rtn_states) / sizeof(unsigned char));
 my_MPR_record.RTN_STAT = rtn_states;
 double rtn_results[1] = { 0.3e-3 };
 my_MPR_record.RSLT_CNT =

(sizeof(rtn_results) / sizeof(double));
 my_MPR_record.RTN_RSLT = rtn_results;
 strcpy(my_MPR_record.TEST_TXT, "myTest");
 strcpy(my_MPR_record.ALARM_ID, "noAlarm");
 my_MPR_record.OPT_FLAG = 0x00;
 my_MPR_record.RES_SCAL = 1.0e3;
 my_MPR_record.LLM_SCAL = 1.0e3;
 my_MPR_record.HLM_SCAL = 1.0e3;
 my_MPR_record.LO_LIMIT = 0.1e-6;
 my_MPR_record.HI_LIMIT = 31.95e-3;
 my_MPR_record.START_IN = 10.0e-3;
 my_MPR_record.INCR_IN = 0.5e-6;
 short rtn_index[1] = { 9 };
 my_MPR_record.RTN_INDX = rtn_index;
 strcpy(my_MPR_record.UNITS, "uA");
 char tmp1[32];
 sprintf(tmp1, "%7.2f uA", tmp1);
 strcpy(my_MPR_record.C_RESFMT, tmp1);
 strcpy(my_MPR_record.C_LLMFMT, tmp1);
 strcpy(my_MPR_record.C_HLMFMT, tmp1);
 my_MPR_record.LO_SPEC = 0.0;
 my_MPR_record.HI_SPEC = 23.3;

 // In the real world, there will be many PTRs
 my_PTR_record.TEST_NUM = 21;
 my_PTR_record.HEAD_NUM = 1;
 my_PTR_record.SITE_NUM = 1;
 my_PTR_record.TEST_FLG, '3';
 my_PTR_record.PARM_FLG, '0';
 my_PTR_record.RESULT = +23.32e-6;
 strcpy(my_PTR_record.TEST_TXT, "Functional Shorts Test");
 strcpy(my_PTR_record.ALARM_ID, "None");
 my_PTR_record.OPT_FLAG = 'X';
 my_PTR_record.RES_SCAL = -3;
 my_PTR_record.LLM_SCAL = -6;
 2/27/09 Pg-2646

STDF Software
 my_PTR_record.HLM_SCAL = -3;
 my_PTR_record.LO_LIMIT = -1.32e-6;
 my_PTR_record.HI_LIMIT = +44.0e-3;
 strcpy(my_PTR_record.UNITS, "uA");
 strcpy(my_PTR_record.C_RESFMT, "%7.2f");
 strcpy(my_PTR_record.C_LLMFMT, "%7.2f");
 strcpy(my_PTR_record.C_HLMFMT, "%7.2f");
 my_PTR_record.LO_SPEC = -1.0e-6;
 my_PTR_record.HI_SPEC = +40.0e-3;

 my_SDR_record.HEAD_NUM = 1;
 my_SDR_record.SITE_GRP = 1;
 unsigned char sites[10] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 my_SDR_record.SITE_CNT = (sizeof(sites)/sizeof(unsigned char));
 my_SDR_record.SITE_NUM = sites;
 strcpy(my_SDR_record.HAND_TYP, "HandSocket");
 strcpy(my_SDR_record.HAND_ID, "UsuallyLeft");
 strcpy(my_SDR_record.CARD_TYP, "Hoyle Bicycle");
 strcpy(my_SDR_record.CARD_ID, "KingOfClubs");
 strcpy(my_SDR_record.LOAD_TYP, "Bricks");
 strcpy(my_SDR_record.LOAD_ID, "Mike P");
 strcpy(my_SDR_record.DIB_TYP, "None");
 strcpy(my_SDR_record.DIB_ID, "n/a");
 strcpy(my_SDR_record.CABL_TYP, "HDMI");
 strcpy(my_SDR_record.CABL_ID, "JimCarry");
 strcpy(my_SDR_record.CONT_TYP, "Needle");
 strcpy(my_SDR_record.CONT_ID, "SpaceNeedle");
 strcpy(my_SDR_record.LASR_TYP, "StarWars");
 strcpy(my_SDR_record.LASR_ID, "R2D2");
 strcpy(my_SDR_record.EXTR_TYP, "PlazmaNuker");
 strcpy(my_SDR_record.EXTR_ID, "Bruce");

 my_TSR_record.HEAD_NUM = 14;
 my_TSR_record.SITE_NUM = 162;
 my_TSR_record.TEST_TYP = 'F';
 my_TSR_record.TEST_NUM = 12345;
 my_TSR_record.EXEC_CNT = 432;
 my_TSR_record.FAIL_CNT = 6666;
 my_TSR_record.ALRM_CNT = 5432;
 strcpy(my_TSR_record.TEST_NAM, "TestThisOnce");
 strcpy(my_TSR_record.SEQ_NAME, "TestItAgain");
 strcpy(my_TSR_record.TEST_LBL, "ReverseSequence");
 2/27/09 Pg-2647

STDF Software
 my_TSR_record.OPT_FLAG = 0x3f;
 my_TSR_record.TEST_TIM = 3.92;
 my_TSR_record.TEST_MIN = 1.87;
 my_TSR_record.TEST_MAX = 9.987;
 my_TSR_record.TEST_SUMS = 333;
 my_TSR_record.TEST_SQRS = 56768;

 my_WRR_record.HEAD_NUM = 1;
 my_WRR_record.SITE_GRP = 100;
 time(&time_now);
 my_WRR_record.FINISH_T = time_now;
 my_WRR_record.PART_CNT = 45678;
 my_WRR_record.RTST_CNT = 45677;
 my_WRR_record.ABRT_CNT = 0;
 my_WRR_record.GOOD_CNT = 34567;
 my_WRR_record.FUNC_CNT = 45678;
 strcpy(my_WRR_record.WAFER_ID, "Mint");
 strcpy(my_WRR_record.FABWF_ID, "FruityMint");
 strcpy(my_WRR_record.FRAME_ID, "Picture");
 strcpy(my_WRR_record.MASK_ID, "NixonMask");
 strcpy(my_WRR_record.USR_DESC, "ThatRoundOne");
 strcpy(my_WRR_record.EXC_DESC, "ThatCircularOne");

 ok = stdf_file_open("../testSTDF_1.std");
 if(!ok) output("ERROR: stdf_file_open() returned FALSE");

 time(&time_now);
 ok = stdf_ATR_add(time_now, "ui /nologo /E");
 ok = stdf_MIR_add(my_MIR_record);
 ok = stdf_PMR_add(0, 1, "Chan-1" , "Clock" , "Clock" , 1, 1);

 short myPins[10] = { 19, 12, 3, 22, 63, 1, 7, 15, 32, 3 };
 ok = stdf_PGR_add(1,

"myPins",
(sizeof(myPins) / sizeof(short)),
myPins);

#define PSIZE 3
 short pIndx[PSIZE] = { 1, 2, 3 };
 short pMode[PSIZE] = { 20, 20, 20 };
 unsigned char pRadix[PSIZE] = { 0, 10, 16 };
 char pChar[PSIZE] = { 'F', 'P', 'X' };
 char pChal[PSIZE] = { 'l', 's', 'x' };
 char pRtnChar [PSIZE] = { 'l', 's', 'x' };
 2/27/09 Pg-2648

STDF Software
 char pRtnChal [PSIZE] = { 'l', 's', 'x' };
 ok = stdf_PLR_add(3, pIndx, pMode, pRadix,

pChar, pChal,
pRtnChar, pRtnChal);

 unsigned short rbins[10] = { 1, 1, 3, 2, 2, 1, 1, 5, 1, 3 };
 ok = stdf_RDR_add((sizeof(rbins) / sizeof(short)), rbins);
 ok = stdf_SDR_add(my_SDR_record);
 time(&time_now);
 ok = stdf_WIR_add(1, 12, time_now, "VanillaWafer");
 ok = stdf_BPS_add("RedundancyEval");

 ok = stdf_FTR_add(my_FTR_record);
 ok = stdf_PTR_add(my_PTR_record);

 // Log per-DUT info. Bracket each DUT with PIR/PRR.
 // Special datalog for DUT 3 only.
 char tmp[32];
 for(int dut = 1; dut < 10; ++dut){
 ok = stdf_PIR_add(1, dut);
 my_PRR_record.HEAD_NUM = 1;
 my_PRR_record.SITE_NUM = dut;
 strcpy(my_PRR_record.PART_FLG, "3");
 my_PRR_record.NUM_TEST = 91;
 my_PRR_record.HARD_BIN = 3;
 if(dut == 3)
 sprintf(tmp, "Special Datalog -> Dut-%d", dut);
 ok = stdf_DTR_add(tmp);
 my_PRR_record.SOFT_BIN = 33;
 my_PRR_record.X_COORD = -32768;
 my_PRR_record.Y_COORD = -32768;
 my_PRR_record.TEST_T = 3.456;
 sprintf(tmp, "Dut-%d", dut);
 strcpy(my_PRR_record.PART_ID, tmp);
 strcpy(my_PRR_record.PART_TXT, "UglyPart");
 strcpy(my_PRR_record.PART_FIX, "S");
 ok = stdf_PRR_add(my_PRR_record);
 }

 ok = stdf_GDR_unsigned_byte_add(1, 255);
 ok = stdf_GDR_unsigned_byte_add(2, 65535);
 ok = stdf_GDR_unsigned_byte_add(4, 4294967295);
 ok = stdf_GDR_signed_byte_add(1, -255);
 ok = stdf_GDR_signed_byte_add(2, -65535);
 2/27/09 Pg-2649

STDF Software
 ok = stdf_GDR_signed_byte_add(4, -4294967295);
 ok = stdf_GDR_floating_point_add((float) -1.234e-9);
 ok = stdf_GDR_double_add(+1.234e-6);
 char name[] = "myName";
 ok = stdf_GDR_char_add(sizeof(name), name);
 char myBits[] = { 0x0, 0x1, 0x7F };
 ok = stdf_GDR_binary_add((sizeof(myBits)/sizeof(char)),

myBits);
 ok = stdf_GDR_bit_encoded_add((sizeof(myBits)/sizeof(char)),

myBits);
 ok = stdf_GDR_nybble_add(0xF);
 ok = stdf_GDR_write_record();

 ok = stdf_HBR_add(1, 1, 3, 509, 'P', "ThisBin");
 ok = MPRBlock(my_MPR_record);
 ok = stdf_SBR_add(1, 1, 309, 69, 'P', "ThatSWbin");
 ok = stdf_WCR_add(300, 10, 10, 3, 'U', -32768, -32768, 'R', 'D');
 ok = stdf_PCR_add(1, 1, 209, 29, 2, 207, 209);

 ok = stdf_file_write();

 ok = stdf_EPS_add();

 ok = stdf_file_write();

 ok = WRRBlock(my_WRR_record);
 time(&time_now);
 ok = stdf_MRR_add(time_now, 'P', "BigLot", "BossBigLot");

 ok = stdf_file_write();

 ok = stdf_TSR_add(my_TSR_record);

 ok = stdf_file_close();
 if(!ok) output("ERROR: stdf_file_close() returned FALSE");
}

 2/27/09 Pg-2650

Excel Related Functions
7.7 Excel Related Functions
The functions documented in this section allow a Magnum 1/2/2x test program to invoke and
send data and selected commands to Excel.

• Overview
• InvokeExcelEx()
• OpenWorkBookEx()
• AddWorkBook()
• AddWorkSheet()
• SelectWorkSheet()
• GetActiveSheet()
• GetActiveCell()
• GetSelectionRange()
• UpdateScreen()
• RunMacro()
• SaveAs()
• ReleaseExcel(), QuitExcel()
• Excel Value Set/Get Functions

- SetColumnWidth()
- AddVal()
- GetVal()
- AddArray()
- GetArray()

• Excel Event Detection
- EnableExcelAppEvents()

7.7.1 Overview
See Excel Related Functions.

The functions documented in this section allow a Magnum 1/2/2x test program to invoke and
send data and selected commands to Excel.
 2/27/09 Pg-2651

Excel Related Functions
Note: these Excel functions exist solely to support Magnum 1/2/2x Timing Calibration
software and are thus, by design, limited in scope and capability. The Excel
automation library contains thousands of functions most of which are not
supported by corresponding Magnum 1/2/2x functions. Additional functionality
(for example, to create a chart, etc.) must be added by the user, using Excel
macros developed, tested, and debugged within Excel. Then, the RunMacro()
function may be used to execute any number of Excel macros from a Magnum
1/2/2x test program.

The following notes apply ONLY to instances of Excel invoked from a Magnum 1/2/2x test
program:

• The functions documented here were testing using the following versions of Excel:
Excel97, Excel2000.

• The Excel functions documented here can be invoked from either the host or site
process.

• Excel related error checking is very (very) limited in the Magnum 1/2/2x software.
In many cases, when an error occurs, the test program and/or UI will crash or
hang, and it may be necessary to use the Windows task manager to terminate all
offending processes.

Note: Excel itself may issue warnings, errors, and other forms of dialog popups.
Often, these are not noticed by the user because they are displayed behind
other graphic windows, etc. Depending on the nature of the situation, it can
appear as though the test program and/or UI have stopped functioning correctly
(hung). However, before using the task manager to terminate the test program
and/or UI, go to the windows task bar and select Excel (to maximize it). This will
also cause any pending dialogs to display. Often, once the proper action is
taken using Excel, proper test program operation will resume.

• It is legal to invoke more than one workbook from the test program. All will be
available within the same single instance of Excel. Use normal Excel controls to
switch between workbooks. Some of the functions documented here limit or
otherwise affect how workbook(s) operate. Again, Excel support is limited.

• Instances of Excel which were invoked from test program code MUST NOT be
terminated from Excel; if this is done the test program may hang and require using
the Windows task manager to terminate the test program and/or UI.
 2/27/09 Pg-2652

Excel Related Functions
• Any workbook modified from the test program and not saved to disk may, when
Excel is terminated, prompt the user to save or discard the changes. See
ReleaseExcel(), QuitExcel().

• Cell indexing is 0 based i.e. cell A1 is row 0, column (0, 0).

7.7.2 InvokeExcelEx()
See Excel Related Functions.

Description
The InvokeExcelEx() function is used to invoke Excel from a Magnum 1/2/2x test
program. Excel will start and, if visible, contain no workbook(s). Use AddWorkBook() to
create a new workbook or OpenWorkBookEx() to open an existing workbook stored on
disk.

It is NOT legal to invoke more than one instance of Excel at a time. If this is done, the test
program will crash, displaying the following:.

Use ReleaseExcel(), QuitExcel() to terminate an instance of Excel before invoking
Excel again.

Note: Instances of Excel which were invoked from test program code MUST NOT be
terminated from Excel; if this is done the test program may hang and require
using the Windows task manager to terminate the test program and/or UI.

The InvokeExcel() function is included for backwards compatibility but is deprecated.
Please use InvokeExcelEx().
 2/27/09 Pg-2653

Excel Related Functions
Usage
BOOL InvokeExcelEx(BOOL visible);

void InvokeExcel(BOOL visible); // Deprecated

where:

visible determines whether Excel will be displayed (TRUE) or not (FALSE). FALSE means
not displayed (not minimized) i.e. Excel is not accessible by or visible to the user.

InvokeExcelEx() returns TRUE if no errors occur, otherwise FALSE is returned. Error
checking is very limited.

Example
The following example is used to demonstrate all of the Excel Related Functions.

Invoke Excel and do show the display:

if(! InvokeExcelEx(TRUE))
output("ERROR: invoking Excel");

Create a new Excel workbook.

AddWorkBook();

Add one worksheet named Summary. The cell grid-line will be visible. The row headings and
column headings will be displayed.

AddWorkSheet("Summary", TRUE, TRUE); // AddWorkSheet()

Open an existing workbook named test.xls.

if (! OpenWorkBookEx("C:/test.xls")) { // OpenWorkBookEx()
QuitExcel(TRUE, FALSE); // ReleaseExcel(), QuitExcel()
ReleaseExcel();

}

Set the column width of column-0 to 30:

SetColumnWidth(0, 30); // SetColumnWidth()

Set the cell value at row/column B2 = 45:

AddVal(45, 1, 1); // AddVal()

Set the cell value at row/column D9 = “Summary”:

AddVal("Summary", 8, 3); // AddVal()
 2/27/09 Pg-2654

Excel Related Functions
To fill a range of cells, use the AddArray() function rather than calling AddVal() in a C
for loop. The MAKE_2D_ARRAY macro must be used to create the array (but doesn’t
initialize it):

int start_row = 0;
int end_row = 7;
int start_col = 0;
int end_col = 2;

// MAKE_2D_ARRAY is a Nextest Macro, see AddArray()
MAKE_2D_ARRAY(double,

array,
(end_row - start_row +1),
(end_col - start_col +1));

// Initialize the array
for(int row= start_row; row < end_row; row++)

for(int col = start_col; col < end_col; col++)
array[row][col] = (row * 2.5 + col);

AddArray(array, 0, 0); // AddArray()

Update the Excel display:

UpdateScreen(TRUE); // UpdateScreen()

Save the workbook to disk:

SaveAs("c:/summary.xls"); // SaveAs()

Get the value from one cell (row-3/col-7 in this example):

double val;
if(GetVal(3, 7, double &val)) // GetVal()

output(" val => %d", val);
else

output("ERROR: getval() returned an error");

To get the values from a range of contiguous cells use the GetArray() function rather than
calling GetVal() in a C loop. This example uses the array defined using MAKE_2D_ARRAY
above:

if(! GetArray(row, col, array)) // GetArray()
output("ERROR: GetArray() returned FALSE");

Terminate Excel. Order is specific:

QuitExcel(TRUE, FALSE); // ReleaseExcel(), QuitExcel()
ReleaseExcel();
 2/27/09 Pg-2655

Excel Related Functions
7.7.3 OpenWorkBookEx()
See Excel Related Functions.

Description
The OpenWorkBookEx() function is used to open an existing Excel file stored on disk.

The OpenWorkBook() function is included for backwards compatibility but is deprecated.
Please use OpenWorkBookEx().

Usage
BOOL OpenWorkBookEx(LPCTSTR filename);

void OpenWorkBook(LPCTSTR filename); // Deprecated

where:

filename specifies the disk, path and file name of the target Excel workbook.

OpenWorkBookEx() returns TRUE if no errors occur, otherwise FALSE is returned.

Example
See Example.

7.7.4 AddWorkBook()
See Excel Related Functions.

Description
The AddWorkBook() function is used to add a new workbook to the single instance of
Excel invoked using InvokeExcelEx(). Note the following:

• While it is possible to add any number of workbooks, there are no programmatic
mechanisms (no functions) for switching between workbooks, or for closing the
active workbook. If Excel is displayed (see InvokeExcelEx()) it is possible to
manually switch between workbooks, and the active workbook becomes the target
for any Excel functions subsequently executed. However, due to the limitations
noted, it is not normally useful to open more than one workbook at a time.
 2/27/09 Pg-2656

Excel Related Functions
• Workbook naming is automatic, and has no significance until saved to disk.

Usage
void AddWorkBook();

Example
See Example.

7.7.5 AddWorkSheet()
See Excel Related Functions.

Description
The AddWorkSheet() function can be used to add a single worksheet to the currently
active workbook (see AddWorkBook()). Note the following:

• The AddWorkSheet() function only affects the active workbook in the single
instance of Excel invoked from the test program (see InvokeExcelEx()).

• The new worksheet is only added to the active workbook i.e. if multiple workbooks
exist in the open Excel only the visible one will be modified.

• The AddWorkSheet() function deletes other worksheets in the active workbook.
This can cause LOSS OF DATA if the workbook is not saved to disk. No warnings
are displayed.

Usage
void AddWorkSheet(LPCTSTR sheetName, BOOL grid, BOOL heading);

where:

sheetName specifies the name of the worksheet displayed in Excel.

grid is used to define whether grid lines are to be displayed. Legal values are TRUE and
FALSE.

heading is used to define whether row and column headings are to be displayed. Legal
values are TRUE and FALSE.
 2/27/09 Pg-2657

Excel Related Functions
Example
See Example.

7.7.6 SelectWorkSheet()
See Excel Related Functions.

Description
The SelectWorkSheet() function is used to specify the active Excel worksheet. The
following functions only access the active worksheet:

• SetColumnWidth()
• AddVal()
• GetVal()
• AddArray()
• GetArray()
• UpdateScreen()
• RunMacro()

Usage
BOOL SelectWorkSheet(LPCTSTR sheetName);

where:

sheetName is the name of the target worksheet.

SelectWorkSheet() returns TRUE if the worksheet name specified is valid, otherwise
FALSE is returned.

Example
In the following example does the following:

• Start Excel
• Open a Excel workbook named c:/mybook.xls
• Select worksheet named Sheet2
• Get an integer value (val) from the cell at row = 0, col = 1:
 2/27/09 Pg-2658

Excel Related Functions
// The following is test block code...
InvokeExcel(TRUE); // Make Excel visible

LPCTSTR wb = "c:/mybook.xls";
if (! OpenWorkBookEx(wb)) {

output("ERROR: failed to open workbook => %s", wb);
return(FALSE);

}

LPCTSTR sht = "Sheet2";
if (! SelectWorkSheet(sht)) {

output("ERROR: invalid worksheet specified => %s", sht);
return(FALSE);

}

int val;
GetVal(0, 1, &val);

7.7.7 GetActiveSheet()
See Excel Related Functions.

Description
The GetActiveSheet() function is used to get the name of the currently active worksheet
in Excel.

This is useful in the body code of ui_ExcelAppEvent.

Usage
void GetActiveSheet(CString* name);

where:

name is a pointer to an existing CString variable used to return the name of the currently
active Excell worksheet.

Example
CString name;
GetActiveSheet(&name);
 2/27/09 Pg-2659

Excel Related Functions
7.7.8 GetActiveCell()
See Excel Related Functions.

Description
The GetActiveCell() function is used to get the coordinates of the currently selected cell
in Excel.

This is useful in the body code of ui_ExcelAppEvent.

Usage
void GetActiveCell(int* row, int* col);

where:

row and col are the addresses of existing int variables used to return the coordinates of the
currently selected cell in Excel.

Example
int row, col;
GetActiveCell(&row, &col);

7.7.9 GetSelectionRange()
See Excel Related Functions.

Description
The GetSelectionRange() function is used to get the coordinates of the range(s)
currently selected in Excel. Multiple ranges can be selected, and are returned.

This is useful in the body code of ui_ExcelAppEvent.

Usage
typedef CArray< RECT, RECT > RectArray;

void GetSelectionRange(RectArray* range_rects);

where:
 2/27/09 Pg-2660

Excel Related Functions
range_rects returns 0 or more range selections.

Example
RectArray my_array;
GetSelectionRange(&my_array);
int num_rects = my_array.GetSize();
output("Number of ranges selected => %d", num_rects);
for(int i = 0; i < num_rects; ++i) {

RECT r = my_array[i];
output(" Range => %d", i);
output(" Start_row => %d", r.top);
output(" Start_col => %d", r.left);
output(" End_row => %d", r.bottom);
output(" End_col => %d", r.right);

}

7.7.10 UpdateScreen()
See Excel Related Functions.

Description
The UpdateScreen() function causes Excel to repaint its display.

Usage
void UpdateScreen(BOOL val);

where:

val determines whether the Excel screen is updated. Legal values are TRUE and FALSE.

Example
See Example.
 2/27/09 Pg-2661

Excel Related Functions
7.7.11 RunMacro()
See Excel Related Functions.

Description
As mentioned in Note:, the Magnum 1/2/2x software has limited support for Excel. The
RunMacro() function can be used to greatly extend the existing capabilities by causing
Excel to execute any currently loaded macro, by name.

If the specified macro does not exist UI will display a dialog similar to the following. In this
example, the macro name passed to RunMacro() was BadMacroName:

No other actions are taken by UI or the test program, which will continue to execute.

Usage
void RunMacro(LPCTSTR name);

where:

name is the name of the Excel macro to be executed.

Example
See Example.

7.7.12 SaveAs()
See Excel Related Functions.
 2/27/09 Pg-2662

Excel Related Functions
Description
The SaveAs() function can be used to save the active workbook to disk, as an Excel .xls
file.

Note: no file clobbering checks are made i.e. an existing file of the same name will be
over-written.

If any folders in the specified path do not exist an error similar to the following will be
displayed:

Usage
void SaveAs(LPCTSTR filename);

where:

filename specifies the disk, path and file name to be written to disk. Note that any file
name extension, including .xls, must be explicitly specified.

Example
See Example.

7.7.13 ReleaseExcel(), QuitExcel()
See Excel Related Functions.
 2/27/09 Pg-2663

Excel Related Functions
Description

The QuitExcel() function is used to terminate Excel, similar to using Excel’s
File->Exit function. Proper operation also requires executing the ReleaseExcel()
function (next item).

The ReleaseExcel() function causes the Excel process to be terminated. This is
necessary when Excel is invoked from a software application.

Note: proper operation requires that the ReleaseExcel() function be executed after
the QuitExcel() function.

Note: Instances of Excel which were invoked from test program code MUST NOT be
terminated from Excel; if this is done the test program may hang and require
using the Windows task manager to terminate the test program and/or UI.

Usage
void ReleaseExcel();

void QuitExcel(BOOL force, BOOL save);

where:

force specifies whether Excel should be terminated unconditionally. Legal values are TRUE
and FALSE. If TRUE is specified the save argument is valid (see below). If FALSE is
specified, operation is similar to invoking Excel’s File->Exit function i.e. Excel will prompt
the user if unsaved changes exist.

save is valid only when the force argument is TRUE. save specifies whether modifications
should be discarded (FALSE) or saved to disk (TRUE). If TRUE is specified and Excel does
not already know into which file to save the workbook, Excel will prompt the user with a
standard file browser.

Example
See Example.
 2/27/09 Pg-2664

Excel Related Functions
7.7.14 Excel Value Set/Get Functions
These functions are used to manipulate values and attributes within the active Excel
worksheet. See AddWorkSheet().

• SetColumnWidth()

• AddVal()

• GetVal()

• AddArray()

• GetArray()

7.7.14.1 SetColumnWidth()
See Excel Related Functions and Excel Value Set/Get Functions.

Description
The SetColumnWidth() function can be used to set the width of a single column in the
active Excel worksheet (see AddWorkSheet()).

Usage
void SetColumnWidth(int col, float width);

where:

col specifies the target column. Values are zero based.

width specifies the target width. The value used here is the same as when using Excel’s
Format->Column->Width control.

Example
See Example.
 2/27/09 Pg-2665

Excel Related Functions
7.7.14.2 AddVal()
See Excel Related Functions and Excel Value Set/Get Functions.

Description
The AddVal() function can be used to set (not add-to) the value of a single cell in the
active Excel worksheet (see AddWorkSheet()).

See GetVal().

Usage
Three versions are available to support different data types:

void AddVal(int val, int row, int col);

void AddVal(double val, int row, int col);

void AddVal(CString val, int row, int col);

where:

val specifies the desired value. Note that the data types supported are int, double, and
CString.

row and col identify the target cell to modify. Both values are zero based. Any previous
value in the target cell is lost. Cell formatting is set to match the data type.

Example
See Example.

7.7.14.3 GetVal()
See Excel Related Functions and Excel Value Set/Get Functions.

Description
The GetVal() function can be used to get the value of a single cell in the active Excel
worksheet (see AddWorkSheet()).

See AddVal().
 2/27/09 Pg-2666

Excel Related Functions
Usage
Three versions are available to support different data types:

BOOL GetVal(int row, int col, int *val);

BOOL GetVal(int row, int col, double *val);

BOOL GetVal(int row, int col, CString *val);

where:

row and col are the zero-based coordinates of the cell to be accessed.

GetVal() returns TRUE if no errors occur, otherwise FALSE is returned. Errors can include:
specifed cell is invalid; Excel returns an error.

Example
See Example.

7.7.14.4 AddArray()
See Excel Related Functions and Excel Value Set/Get Functions.

Description
The AddArray() function can be used to set (not add-to) the value of a range of cells in the
active Excel worksheet (see AddWorkSheet()).

See GetArray().

Usage
void AddArray(array, int row, int col);

where:

array is the array of values. array must be created using the MAKE_2D_ARRAY() macro
(see below).

row and col identify the upper left corner of the range of cells to be filled. The number of
cells to be filled is determined by the size of array. Values are zero based.

MAKE_2D_ARRAY() is a Nextest macro used to create a 2D array of int, double, or
CString (only) values. MAKE_2D_ARRAY() does not initialize the array.
 2/27/09 Pg-2667

Excel Related Functions
MAKE_2D_ARRAY(type,
array,
num_rows,
num cols)

where:

type specifies the data type to be stored in the array. Only int, double, and CString are
supported.

array is the array variable being created. Must be a legal C identifier.

num_rows and num_cols specify the size of the array.

Example
See Example.

7.7.14.5 GetArray()
See Excel Related Functions and Excel Value Set/Get Functions.

Description
The GetArray() function can be used to get multiple values from a range of cells in the
active Excel worksheet (see AddWorkSheet()).

See AddArray().

Usage
BOOL GetArray(int row, int col, array);

where:

row and col identify the upper left corner of the range of cells to be read. The number of
cells read is determined by the size of array. Row/col values are zero based.

array is the array used to return the specified values. array must be created using the
MAKE_2D_ARRAY() macro (see below).

MAKE_2D_ARRAY() is a Nextest macro used to create a 2D array of int, double, or
CString (only) values. MAKE_2D_ARRAY() does not initialize the array.
 2/27/09 Pg-2668

Excel Related Functions
MAKE_2D_ARRAY(type,
array,
num_rows,
num cols)

where:

type specifies the data type to be stored in the array. Only int, double, and CString are
supported.

array is the array variable being created. Must be a legal C identifier.

num_rows and num_cols specify the size of the array.

GetArray() returns TRUE if no errors occur, otherwise FALSE is returned. Errors can
include: not enouth memory for array; specifed range is invalid; Excel returns an error.

Example
See Example.

7.7.15 Excel Event Detection
See Excel Related Functions.

When the user clicks in an Excel worksheet an event can now be received by UI, which will
execute a user-written call-back function to act on that event.

There are 2 parts to this facility:

• Enable the ui_ExcelAppEvent call-back function using
EnableExcelAppEvents().

• Write the callback code. See ui_ExcelAppEvent.

7.7.15.1 EnableExcelAppEvents()
See Excel Event Detection, Excel Related Functions.
 2/27/09 Pg-2669

Debug Hook and Pin Status Hook
Description
The EnableExcelAppEvents() function is used to enable or disable the
ui_ExcelAppEvent call-back function. Note the following:

• When ui_ExcelAppEvent is enabled, if the user clicks in an Excel spreadsheet,
an event is generated and sent to UI, at which time the ui_ExcelAppEvent user-
written body code is executed.

• UI will invoke ui_ExcelAppEvent in Host and/or Site and/or User Tools
processes.

• If ui_ExcelAppEvent is not enabled the Excel event has no effect.
• The value assigned to ui_ExcelAppEvent at the time it is executed will reflect

the nature of the event. See ui_ExcelAppEvent.

Usage
BOOL EnableExcelAppEvents(BOOL enable);

where:

enable specifies whether the ui_ExcelAppEvent call-back function is enabled (TRUE)
or disabled (FALSE).

EnableExcelAppEvents() returns TRUE if successful, otherwise FALSE is returned.

Example
if(EnableExcelAppEvents(TRUE) == FALSE)

output(" ERROR: EnableExcelAppEvents() returned FALSE");

7.8 Debug Hook and Pin Status Hook
This section documents functions which support using user-written C-code to:

• Generate debug messages. See install_debug_hook().
• Log failing pin information. See install_pinstatus_hook()

Both methods provide a mechanism which executes code which is separate from Test
Blocks but executes during Sequence & Binning Table execution.
 2/27/09 Pg-2670

Debug Hook and Pin Status Hook
7.8.1 install_debug_hook()

Description
The install_debug_hook() function is used to register a user-written call-back function.

If a debug hook call-back is registered, during Sequence & Binning Table execution (only)
the call-back will automatically be executed both before and after:

• Any of the Nextest test functions execute i.e. funtest(), partest(),
ac_partest(), test_supply(), ac_test_supply(), hv_test_supply(),
hv_ac_test_supply(), ptu_partest(). These are referred to as test
functions below. In this case, the current_test() function will return the name
of the test function, current_setup() returns NULL, and
current_test_block() will return the name of the Test Block being executed

• Any Nextest function which increments the setup number executes i.e. all Nextest
functions except the test functions noted previously. These are referred to as
setup functions below. In this case, the current_setup() function will return the
name of the setup function, current_test() returns NULL, and
current_test_block() will return the name of the Test Block being executed.

• Each Test Block executes. In this case, the current_test_block() function will
return the name of the Test Block being executed.

• Each Test Bin executes. The current_test_block() will return the name of the
Test Bin being executed

The debug hook call-back is targeted at several applications:

• Enable user-written C-code, written in a function separate from Test Block code, to
generate execution trace messages.

• Enable [conditional] execution and/or loops of individual code statements, with
controlling code in a function separate from Test Block code.

At each execution, the call-back function receives two parameters:

• *after = a pointer to an existing BOOL variable intialized to indicate whether the
call-back is being invoked before (*after = FALSE) or after (*after = TRUE) the
[test function, setup function, Test Block, or Test Bin] executes. As noted below,
the call-back code can modify *after to control subsequent execution options.

• *result = a pointer to an int value which ultimately determines the result
returned from the test function, or a Test Block. The call-back code can
conditionally execute code based on *result and can also modify *result. If
 2/27/09 Pg-2671

Debug Hook and Pin Status Hook
*result is modified during the 2nd call-back execution (*after == TRUE), it
determines the value returned by the test function, or a Test Block. The value in
*result has no direct effect on execution sequence.

If a debug hook call-back is registered, execution follows the model below. Remember, if a
call-back is registered, it will automatically be executed both before and after every test
function, every setup function, every Test Block and every Test Bin:

Several functions are available which are useful within the call-back function. See
test_number(), setup_number(), and current_test_block(). Also see
current_setup(), and current_test(), which are only useful when executed within
the debug call-back function.

To un-register the call-back invoke the install_debug_hook() function and pass NULL
as the argument.

Call-back Executes with
*after = FALSE
*result = TRUE

*after = TRUE
?

No

No

Yes

Yes

Execute...
Test function or

Setup function or
Test Block or

Test Bin

*after = TRUE
?

Call-back Executes with
*after = TRUE

*result = test result

*result becomes the result returned
from a Test function or Test Block

User code in 2nd call-back execution

User code in 1st call-back execution
may set *after = TRUE to cause
execution to branch to 2nd
call-back execution,
skipping the normal
operation.

can set *after = FALSE to branch back
to 1st call-back execution, changing
normal operation.

1st Callback Execution

2nd Callback Execution
 2/27/09 Pg-2672

Debug Hook and Pin Status Hook
Usage
The following function is used to register the user-written call-back function:

debug_hook_type install_debug_hook(debug_hook_type hook);

where:

hook is a pointer to a user-written function with the following prototype:

void func (BOOL &after, int &result){}

Note: after and result are created by the system software and used as noted in
Description.

install_debug_hook() returns a pointer to the previous call-back function, if one was
registered, otherwise NULL is returned.

Example
The example has the following three parts:

• Call-back Registration Code
• Call-back Function Code
• Test Block Code
• Example Output

The example includes usage of: current_setup() and current_test().

Call-back Registration Code
Use install_debug_hook() to register the call-back function. This must be done in a
site process i.e. SITE_CONFIGURATION(), SITE_BEGIN_BLOCK(),
INITIALIZATION_HOOK(), test block code, or the body code of a User-defined User
Variables executed on a Site.

install_debug_hook(myDebugFunc);

Call-back Function Code
The call-back function is named by the user, but the prototype must conform to the
declaration noted in Usage.

void myDebugFunc (BOOL &after, int &result) {
output("myDebugFunc (after = %s, result = %d)",

after ? "TRUE":"FALSE",
result);
 2/27/09 Pg-2673

Debug Hook and Pin Status Hook
output(" current_setup => %s", current_setup());
output(" current_test => %s", current_test());
output(" current_test_block => %s", current_test_block());

}

Test Block Code
The following test block was executed to generate the Example Output. Note that no
references to the call-back exist in the test block:

TEST_BLOCK(TB1) {
vil(0.00 V);
vz(0.00 V, PL_ALL);
vpar_high(0 V);
test_result = partest(pass_vg, PL_1_DPS);
test_result |= partest(pass_nicl, PL_ALL);
return test_result;

}

Example Output
myDebugFunc (after = FALSE, result = 1)
 setup number => 0
 test number => 0
 current_setup =>
 current_test =>
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 1
 test number => 0
 current_setup => vil
 current_test =>
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 1
 test number => 0
 current_setup => vil
 current_test =>
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 2
 test number => 0
 2/27/09 Pg-2674

Debug Hook and Pin Status Hook
 current_setup => vz
 current_test =>
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 2
 test number => 0
 current_setup => vz
 current_test =>
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 4
 test number => 0
 current_setup => vpar_high
 current_test =>
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 4
 test number => 0
 current_setup => vpar_high
 current_test =>
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 0
 test number => 1
 current_setup =>
 current_test => partest
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 0
 test number => 1
 current_setup =>
 current_test => partest
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 0
 test number => 2
 current_setup =>
 current_test => partest
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 0
 2/27/09 Pg-2675

Debug Hook and Pin Status Hook
 test number => 2
 current_setup =>
 current_test => partest
 current_test_block => TB1
myDebugFunc (after = TRUE, result = 1)
 setup number => 0
 test number => 2
 current_setup =>
 current_test =>
 current_test_block => TB1
myDebugFunc (after = FALSE, result = 1)
 setup number => 0
 test number => 0
 current_setup =>
 current_test =>
 current_test_block => builtin_Pass
myDebugFunc (after = TRUE, result = 1)
 setup number => 0
 test number => 0
 current_setup =>
 current_test =>
 current_test_block => builtin_Pass
TestDone...bin = builtin_Pass

7.8.1.1 current_setup()

Description
If a call-back function is registered using install_debug_hook(), when the call-back
executes before or after a setup function the name of that function can be obtained using the
current_setup(). This can be useful for tracing program execution using the debug hook
call-back.

A setup function is any Nextest function which increments the setup number i.e. all Nextest
functions except the test functions (i.e. except funtest(), partest(), ac_partest(),
test_supply(), ac_test_supply(), hv_test_supply(), hv_ac_test_supply(),
ptu_partest()).
 2/27/09 Pg-2676

Debug Hook and Pin Status Hook
current_setup() returns NULL when the call-back is executing before/after a test
function, a Test Block, or a Test Bin. See install_debug_hook().

The current_test() function serves a similar for test function.

Note: current_setup() is only useful within the scope of the call-back function
registered using install_debug_hook().

Usage
LPCTSTR current_setup();

See Description.

Example
See Example.

7.8.1.2 current_test()

Description
If a call-back function is registered using install_debug_hook(), when the call-back
executes before or after a test function the name of that function (not the test name passed
to the function) can be obtained using the current_test(). This can be useful for tracing
program execution using the debug hook call-back.

A test function is one of the Nextest functions which increment the test number i.e.
funtest(), partest(), ac_partest(), test_supply(), ac_test_supply(),
hv_test_supply(), hv_ac_test_supply(), ptu_partest().

current_test() returns NULL when the call-back is executing before/after a setup
function, a Test Block, or a Test Bin. See install_debug_hook().

The current_setup() function serves a similar for setup functions.

Note: current_test() is only useful within the scope of the call-back function
registered using install_debug_hook().
 2/27/09 Pg-2677

Debug Hook and Pin Status Hook
Usage
LPCTSTR current_test();

See Description.

Example
See Example.

7.8.2 install_pinstatus_hook()

Description
The install_pinstatus_hook() function is used to register a user-written call-back
function.

If a pin status hook call-back is registered, during Sequence & Binning Table execution
(only) the call-back function will automatically be executed after any test function executes
i.e. funtest(), partest(), ac_partest(), test_supply(), ac_test_supply(),
hv_test_supply(), hv_ac_test_supply(), ptu_partest().

Each time it executes, the call-back function receives the following parameters. In simple
terms, the information displayed in the FrontPanelTool is made available via arguments to
the call-back function:

• The PASS/FAIL result of the test just executed.
• An array of pin status information about each pin tested.
• The size of the array (number of array elements).
• A flag indicating whether all pins in the array are DPS pins.

To un-register the call-back invoke the install_pinstatus_hook() function and pass
NULL as the argument.

Usage
The following function is used to register the user-written call-back function:

pinstatus_hook_type
install_pinstatus_hook(pinstatus_hook_type hook);

where:
 2/27/09 Pg-2678

Debug Hook and Pin Status Hook
hook is a pointer to a user-written function with the following prototype:

void func (BOOL result, PinStatus *data, int size, int flags);

where:

func is the user-defined name of the call-back function.

result is the result of the test just executed. The system software passes it to the call-
back.

data is a pointer to an array of PinStatus information. The system software creates the
array, and passes a pointer to the call-back. The pointer points to the first element in the
array and size indicates the number of elements in the array. The contents of the array are
in pin number order i.e. t_1, t_2, etc. regardless of the nature of the test performed. Each
element of the data array will contain a value from the PinStatus enumerated type:

enum PinStatus { ps_untested = 0, ps_passed, ps_failed };

When the test function just executed was a functional test, only ps_untested and
ps_failed are used. For DC tests all three values are used.

flags currently only indicates whether all pins in the array are DPS pins (0x1) or not (0x0).
Future software enhancements may use additional flag bits as necessary. The flags field is
only valid after performing PMU or DPS tests. The system software passes it to the call-
back.

install_pinstatus_hook() returns a pointer to the previous call-back if one was
registered, otherwise NULL is returned.

Example
The example has three parts:

Call-back Registration Code

Call-back Function Code

Test Block Code

Example Output

Call-back Registration Code
Use install_pinstatus_hook() to register the call-back function. This must be done in
a site process i.e. SITE_CONFIGURATION(), SITE_BEGIN_BLOCK(),
INITIALIZATION_HOOK(), test block code, or the body code of a User-defined User
Variables executed on a Site.
 2/27/09 Pg-2679

Debug Hook and Pin Status Hook
install_pinstatus_hook(myPinStatusFunc);

Call-back Function Code
For proper operation, the code below requires that the PinList* tested in the previous
PMU or DPS test be accessible to the call-back code. In this example, the PinList*
named testedPins is used in the call-back code below but is used and declared in the
Test Block Code:

void myPinStatusFunc(BOOL result,
PinStatus *data,
int size,
int flags) {

if (result == PASS) return; // Nothing to do

output(" myPinStatusFunc()");
output(" result => %s", result ? "TRUE" : "FALSE");
output(" size => %d", size);
output(" flags => 0x%x", flags);
output(" FAILED on the following pins");
if(flags & 0x1) output(" All pins tested were DPS pins");
HDTesterPin tpin;
int ignore, pnum;
LPCTSTR pname;
for (int p = 0; // For each pin tested...

pin_info(testedPins, p, &ignore, &pnum, &pname);
p++) {

if (p > size) {
output("ERROR: contents of testedPins exceeds\n");
output(" PinStatus array size. Exiting.\n");
return;

}
if(data[p] == ps_failed) {

output(" %s (pin => %d)", pname, pnum);
}

}
}

Test Block Code
The following test block executes partest() 3 times, thus the call-back will be executed 3
times:
 2/27/09 Pg-2680

Debug Hook and Pin Status Hook
// Make "testedPins" global. It is referenced in both partest()
// below and in the Call-back Function Code.
PinList* testedPins;
BOOL test_result;

TEST_BLOCK(TB_continuity) {
back_voltage_enable (TRUE);
back_voltage(0 V);
ipar_force (-100 UA);
vpar_high(-100 MV);
vpar_low(-2 V);
vclamp(1 V, -3 V);
partime(0 MS);

testedPins = PL_PE3;
test_result = partest(pass_nivl, testedPins);

testedPins = PL_13;
test_result &= partest(pass_nivl, testedPins);

testedPins = PL_Vcc_13;
test_result &= partest(pass_vg, testedPins);

return test_result;
}

Example Output
The myPinStatusFunc() call-back function was executed 3 times:

myPinStatusFunc()
 result => FALSE
 size => 48
 flags => 0x0
 FAILED on the following pins

myPinStatusFunc()
 result => FALSE
 size => 48
 flags => 0x0
 FAILED on the following pins
 P3 (pin => 3)
 P4 (pin => 4)
 P5 (pin => 5)
 P6 (pin => 6)
 P10 (pin => 10)
 2/27/09 Pg-2681

MonitorApp
 P14 (pin => 14)
 P15 (pin => 15)
 P16 (pin => 16)
 P34 (pin => 34)
 P35 (pin => 35)
 P36 (pin => 36)
 P37 (pin => 37)

myPinStatusFunc()
 result => FALSE
 size => 3
 flags => 0x1
 FAILED on the following pins
 All pins tested were DPS pins
 Vcc_1 (pin => 1)
TestDone...bin = builtin_Pass

7.9 MonitorApp

Description
• Unless Debugging With Developer Studio, MonitorApp is the program which loads

test programs on Site controllers (UI - User Interface loads the program on Host
computers). See the Overview in Binning.

• MonitorApp must be running before UI - User Interface will start.
• MonitorApp is started automatically when UseRel executes (normally when the

user logs-in if the Nextest software is installed).
• MonitorApp is automatically terminated and restarted when UseRel or UseDLLs is

executed.
• It may be necessary to manually terminate and restart the MonitorApp process

when manipulating Environmental Variables. See Terminating & Restarting
MonitorApp.
 2/27/09 Pg-2682

Environmental Variables
7.9.1 Terminating & Restarting MonitorApp
The following methods can be used to manually terminate MonitorApp:

• From a command line:
monitorapp kill
monitorapp

• Using the Windows Task Manager, locate and select the MonitorApp.exe
process then click on the End Process button.

The following methods can be used to manually restart MonitorApp:

• From a command line:
monitorapp

• Double click the MonitorApp icon from the Bin directory of the current software
release

• Execute UseRel or UseDLLs from the Utils directory of the desired software
release.

7.10 Environmental Variables
This section contains the following:

• Nextest Environment Variables
• Environmental Variable Scope
• Setting Environment Variables
 2/27/09 Pg-2683

Environmental Variables
7.10.1 Nextest Environment Variables
In the context of Nextest software Environment Variables are used as noted:

Table 7.10.1.0-1 Nextest Environment Variables

Variable Value Purpose

DEFERRED_TOOL_PATH
Set to one or more locations (disk folder names) which are
checked by UI software to identify User Tools which are to be
automatically loaded. See ToolLauncher.

PATH

UseRel pre-pendeds the location of the Nextest software
release in use to the PATH environment variable, which also
contains other values set by other means. Both UI and
Developer Studio depend on these Nextest settings.

PATTERN_PATH
Set to one or more locations (disk folder names) which are
checked when loading logic and/or scan patterns. See Pattern
Load PATH.

SIMULATED_APG

1
To simulate using Maverick-I APG features. Use
only when SIMULATED_PTI = 1. Ignored when
SIMULATED_HD = 1 and SIMULATED_HD = 2.

2
To simulate using Maverick-II APG features. Use
only when SIMULATED_PTI = 1. Ignored when
SIMULATED_HD = 1 and SIMULATED_HD = 2.

SIMULATED_HD

3
Enable Magnum 2x simulation. Over-rides
SIMULATED_PTI. See Magnum 1/2/2x Simulation
Setup. Also enables ECR Simulation.

2
Enable Magnum 2 simulation. Over-rides
SIMULATED_PTI. See Magnum 1/2/2x Simulation
Setup. Also enables ECR Simulation.

1
Enable Magnum 1 simulation. Over-rides
SIMULATED_PTI. See Magnum 1/2/2x Simulation
Setup. Also enables ECR Simulation.

0 Disable Magnum 1/2/2x Simulation.
 2/27/09 Pg-2684

Environmental Variables
7.10.2 Environmental Variable Scope
For environment variables to be useful the application which needs to access a given
environment variable must execute within the scope of that variable. Similarly, before a
change made to an environment variable value can be seen, any executing applications
which are to use the new value must be terminated and restarted after the variable is set.

In the context of a Magnum 1/2/2x test program, the following hierarchy must be considered
when the scope of environment variables is considered. These are listed in the order each
process normally starts (test programs vs. User Tools don’t matter):

• System Environment
• MonitorApp
• UI - User Interface
• Any test program which uses the environment variable
• Any User Tools which use the environment variable

SIMULATED_LVM
1 Magnum 1/2/2x only. Enables use of LVMTool and

vecdata()in simulation mode.

0 Disable use of LVMTool and and vecdata() in
simulation mode.

SIMULATED_PE

1
To simulate using Maverick-I Pin Electronics
features. Ignored when SIMULATED_HD = 1 and
SIMULATED_HD = 2.

2
To simulate using Maverick-II Pin Electronics
features. Ignored when SIMULATED_HD = 1 and
SIMULATED_HD = 2.

SIMULATED_PTI 1
Must be set = 1 to simulate Maverick-I/-II. Ignored
SIMULATED_HD = 1 and when SIMULATED_HD =
2.

SIMULATED_SITES 1 to 40
Magnum 1/2/2x only. Specifies the number of sites
to be simulated. See Magnum 1/2/2x Simulation
Setup.

Table 7.10.1.0-1 Nextest Environment Variables (Continued)

Variable Value Purpose
 2/27/09 Pg-2685

Environmental Variables
• Developer Studio (Site and/or Host debug only)
The important dependencies can be stated as follows:

• The System Environment sets the initial values for defined environment variables.
These can be reviewed using the Windows Control Panel: Start: Settings:
Control Panel, locate and double-click on the System icon and select the
Environment tab (NT). Using Windows 2000, or XP look harder.. its there
somewhere.

• Except as noted below, MonitorApp loads test programs on Site (not Host)
computer(s). MonitorApp inherits the value of environment variables from the
environment in which it is invoked. Normally, MonitorApp is started automatically,
when the user logs-in to the computer, thus all environment variables are normally
obtained from the System Environment.

• It is possible to manually terminate and restart MonitorApp, using several methods
(see Terminating & Restarting MonitorApp). Any changes made to environment
variable(s) will be inherited by MonitorApp when it is started in the same scope in
which the environment variable(s) were modified. For example, using the same
command shell to both modify the variable(s) and restart MonitorApp will ensure
proper inheritance. An example which won’t ensure proper inheritance is to set the
environment variable(s) from a command shell and restart MonitorApp from
Explorer.

• UI - User Interface obtains the value of environment variables from the
environment in which it is invoked. Normally, UI is started from the Start Menu and
thus inherits environment variables from the System Environment. Since UI will
not start unless MonitorApp is running any changes to environment variables can
be properly inherited if both MonitorApp and UI are restarted within the same
scope.

• Except as noted below, the Host copy of a test program is loaded by UI - User
Interface, and thus inherits environment variables from UI.

• When Debugging With Developer Studio the Host and/or Site processes being
debugged inherit environment variables from Developer Studio, which inherits from
the System Environment if started from the Start Menu.

• User Tools inherit environment variables from the scope in which they are invoked,
which can be from a shell, from User Menus in UI, or from a batch file. User Tools
are an advanced feature in the Nextest software, and it is assumed that issues of
environment variable scope are well known to the developer.
 2/27/09 Pg-2686

Environmental Variables
7.10.3 Setting Environment Variables
Environment variables can be set, or modified, using the following methods:

1. Control Panel Method. This is persistent, and affects all applications started, from the
System Environment, after the variable is set. Applications already executing, including
existing shells, MonitorApp, etc. will not see changes made.

2. Command Line Method. Persistent only to the command shell in which the variable is
set. Any applications started from this shell inherit the variable. Applications already
executing when the variable is set do not see the change.

3. Batch File Method. Persistent only for the duration of the batch file. Any applications
started from the batch file inherit the variable. Applications already executing when the
variable is set do not see the change.

4. C-code Method i.e. from test program code or User Tools code. Persistent for the
duration of the program.

Control Panel Method

Note: the exact steps vary depending on which Windows operating system is in use.
The description below applies to Windows NT.

The following method uses the System Control Panel to view, create, modify, or eliminate an
environment variable. See Environmental Variable Scope.

1. Invoke the Windows Control Panel: Start: Settings: Control Panel

2. Locate and double-click on the System icon

3. Select the Environment tab

4. In the dialog, to modify an existing environment variable select it in the “User
Variables for ...” window. To create a new variable type its name in the
Variable text window.

5. In the Value window enter the desired value.

6. Click Set to create or modify the environment variable.

7. Repeat for additional variables. Click OK when done.
 2/27/09 Pg-2687

Environmental Variables
The example below creates, or modifies, the environment variable named
ENV_VAR_NAME_1 and sets its value = 1:

Command Line Method
Type the following commands to set (or modify) the two environmental variables from a
command line. See Environmental Variable Scope.

monitorapp kill

set ENV_VAR_NAME_1=1

set ENV_VAR_NAME_2=0

monitorapp
 2/27/09 Pg-2688

Environmental Variables
This example also terminates and restarts MonitorApp to ensure the next invocation of
UI - User Interface will inherit the new environment variable values.

To completely eliminate an environment variable from the command line type:

set ENV_VAR_NAME_1=

Note there is no value after the equals sign.

Batch File Method
This example batch file sets two environment variables, and also terminates and restarts
MonitorApp to ensure the next invocation of UI - User Interface will inherit the new
environment variable values (see Environmental Variable Scope). The methods used to
invoke a batch file are not documented here.

File: some_batch_file.bat

monitorapp kill

set ENV_VAR_NAME_1=1

set ENV_VAR_NAME_2=0

monitorapp

To completely eliminate an environment variable from a batch file:

set ENV_VAR_NAME_1=

Note there is no value after the equals sign.

C-code Method
The following code creates, or modifies, the environment variable named
ENV_VAR_NAME_1, from C code. This could be test program code and/or User Tools code:

// Set or modify ENV_VAR_NAME_1

int putenvOK = putenv("ENV_VAR_NAME_1=1");

if (putenvOK == -1)

output ("ERROR: putenvOK(ENV_VAR_NAME_1=1)");

The following code gets the current value of the environment variable named
ENV_VAR_NAME_1, from C code. This could be test program code and/or User Tools code:

// Get ENV_VAR_NAME_1 value

char *env_val;

env_val = getenv("ENV_VAR_NAME_1");
 2/27/09 Pg-2689

Invoking a File Browser
if(env_val != NULL)

output(" ENV_VAR_NAME_1 => %s", env_val);

To completely eliminate an environment variable from C code:

envOK = putenv("ENV_VAR_NAME_1=");

Note there is no value after the equals sign.

7.11 Invoking a File Browser

Description
The get_open_file_name() function is used to invoke a standard Windows file browser
dialog suitable for selecting a file to be opened, allowing subsequent user-code to read from
the file. The function checks that the specified path and file name exist and display an error
if not. A CString value is returned containing the full path/file name selected. If Cancel is
invoked from the dialog a NULL string is returned.

The get_save_file_name() function is used to invoke a standard Windows file browser
dialog suitable for selecting a file to be saved, allowing subsequent user-code to write to the
file. The function checks if the specified file exists and prompts for over-write confirmation if
it does. A CString value is returned containing the full path/file name selected. If over-write
is denied or if Cancel is invoked a NULL string is returned.

Usage
CString get_open_file_name();

CString get_save_file_name();

where both functions return the path/filename of the file selected in the browser or NULL.
See Description.

Example
CString infile = get_open_file_name();
CString outfile = get_save_file_name();
 2/27/09 Pg-2690

Invoking a File Browser
7.11.1 Obsolete: current_dialog()
In very early test programs the function current_dialog() was commonly used as an
argument to the following functions:

update_value()

update_control()

get_HWND()

immediate()

hex_display()

This argument was required to allow these functions to identify to which user dialog a given
user variable was linked. This method is no longer required since each user variable now
knows to which dialog it is linked.

This change allows these functions to be simplified. Below are examples of both the old
methods (obsolete) and new methods (recommended):

old: update_value(current_dialog(), variable);

new: update_value(variable);

old: update_control(current_dialog(), variable);

new: update_control(variable);

old: HWND h = get_HWND(current_dialog(), variable);

new: HWND h = get_HWND(variable);

old: immediate(current_dialog(), variable, TRUE);

new: immediate(variable, TRUE);

old: hex_display(current_dialog(), variable, TRUE);

new: hex_display(variable, TRUE);

In the situation where a pointer to a user dialog is needed (for some other application) the
following can be used:
 2/27/09 Pg-2691

DUT Board TDR Functions
old: Dialog *d = current_dialog();

new: Dialog *d = current_dialog(variable);

It is recommended that return values from these functions are checked. For example:

old:

if (! update_value(current_dialog(), variable))

warning("couldn't update variable %s in dialog %s",

 resource_name(variable),

 resource_name(current_dialog()));

new:

if (! update_value(variable))

warning("couldn't update variable %s in dialog %s",

 resource_name(variable),

 resource_name(current_dialog(variable)));

Or, more succinctly:

old: VERIFY(update_value(current_dialog(), variable));

new: VERIFY(update_value(variable));

7.12 DUT Board TDR Functions

Overview
Time Domain Reflectometry (TDR) is a technique used to measure the electrical path length
of a transmission line.

TDR is used in Nextest software to measure the electrical path length of DUT board signal
pin interconnects. The DutBoardTDR.exe program is included in each Nextest software
release for this purpose. The resulting TDR values (deskew values) are stored in an
EEPROM located on the standard DUT boards. Any time a test program is loaded, the
system software automatically reads the DUT board EEPROM and uses the TDR values to
 2/27/09 Pg-2692

DUT Board TDR Functions
adjust user programmed timing values to compensate for DUT board signal path delays. By
doing so, drive and strobe signals appear at the DUT at the programmed time. This concept
is often called deskewing the DUT board.

The DutBoardTDR program is designed to TDR a passive 50-ohm transmission line which
is open-circuit at the DUT socket. If a given pin connection contains relays in the signal path,
or other passive or active circuitry in the signal path, TDR will not operate as desired, and
using the resulting TDR value will result in inaccurate timing. To handle this situation, a user-
written test program must be executed to modify the values stored in the DUT board
EEPROM for pins which do not meet the TDR requirements noted above. This can be a
special test program executed solely for this purpose, or the necessary code can be put into
all test programs. In either case, the functions and macros documented in this section are
used.

The following functions and macros are documented in detail later in this section:

• TDR_BLOCK(): all TDR operations must occur within a TDR_BLOCK().
• db_tdr(): invoke TDR on a specified list of pins.
• db_read_tdr(): read the DUT board EEPROM into a TDRarray, a software

structure local to the TDR_BLOCK().
• db_write_tdr(): write the contents of the TDRarray to the DUT board

EEPROM. Only the EEPROM contents affect user timing values. Note that the
db_write_tdr() function can only be executed ONE TIME in the program.

• db_set_tdr(), db_get_tdr(): explicitly set or get the TDR value for one
specified pin. This accesses the software TDRarray only.

• db_get_pins(): read the DUT board EEPROM and get the number of pins for
which TDR data is currently stored in the EEPROM.

• db_get_date(): read the DUT board EEPROM and get the date on which the
EEPROM was last written.

Using these functions, the user’s test program can properly configure any DUT board relays,
perform TDR on all or some pins, use user-written deskew methods to compensate for any
active circuitry on the DUT board, set special deskew values for special pins, etc.

Performing TDR from the test program can also be used as a DUT board diagnostic. User
code can read and store values from the DUT board EEPROM, perform a new TDR, and
compare EEPROM values with the new values to detect when signal connections have
changed significantly. A shorted pin or resistive load will show up as an unexpectedly large
TDR measurement. A broken connection may show up as a smaller than expected TDR
measurement (smaller than a good connection) but this depends upon where the defect
exists relative to the DUT socket.
 2/27/09 Pg-2693

DUT Board TDR Functions
Note: except as noted, the functions noted above MUST only be executed within the
TDR_BLOCK(). Executing these functions elsewhere in a test program may
overwrite user specified timing and voltage settings or have other undesirable
side effects. The system software does not check this rule.

7.12.1 TDR_BLOCK()
See DUT Board TDR Functions.

The TDR_BLOCK() macro was created to allow user-written code to execute the TDR
related functions at the proper time during the test program load and initialization sequence.

Note: except as noted, all TDR related functions MUST be executed within the
TDR_BLOCK. User-defined timing will be corrupted if this rule is violated, with
unpredictable (undesirable) test results. The system software does not check
this rule.

Usage
The functionality of the TDR_BLOCK is outlined below:

1. During the program load process the optional TDR_BLOCK executes after
CONFIGURATION(), and SITE_CONFIGURATION(), and before
SITE_BEGIN_BLOCK(). The TDR_BLOCK macro only executes in Site processes.

2. In the TDR_BLOCK, before any user code executes, the system software creates a
software structure, called TDRarray, and initializes it to contain 0nS deskew values for all
pins. The 0nS values are only set once, on entry to the TDR_BLOCK. The db_tdr(),
db_read_tdr(), and db_set_tdr() functions can subsequently change the contents
of TDRarray.

3. The TDRarray is temporary storage whose scope is limited to the TDR_BLOCK itself. It is
not accessible except using the functions documented in this section.

4. The code in the TDR_BLOCK code is then executed. This is the opportunity for user code
to configure the DUT board, execute TDR functions as needed to define a complete set
of TDR data for the target DUT board, put explicit values in the TDRarray, etc.
 2/27/09 Pg-2694

DUT Board TDR Functions
Note: within the TDR_BLOCK, user code must NOT modify any pin voltages or timing
values. The quality of Nextest TDR operations depends upon voltage/timing
values set up by Nextest software.

Note: withing the TDR_BLOCK, user code must NOT configure the ECR (i.e. must not
use ecr_config_set()) or modify the APG branch-on-error source (don’t
execute mar_error_choice_set()).

5. Last, user code optionally executes db_write_tdr() to cause TDR data to be written
to the DUT board EEPROM. Remember, only the contents of the DUT board EEPROM is
used to establish final user timing values.

Note: user code is responsible for ensuring that the TDRarray contains valid deskew
timing values for all used signal pins BEFORE db_write_tdr() is executed.
The system software does not check and db_write_tdr() can only be
executed once without unloading and reloading the test program.

Note: valid TDR values are between -10nS and +10nS. Values outside these limits
MUST NOT be used. Violating this rule can cause timing edges to occur at
incorrect times. The system software does not check this rule.

Note: the db_write_tdr() function must only be executed once within the
TDR_BLOCK. Violation of this rule can result in inaccurate user timing values.
The system software does not check this rule.

6. After the TDR_BLOCK execution ends the system software reads the TDR data from the
DUT board EEPROM and initializes the system timing tables using these TDR values.

The test program can define multiple TDR blocks, for example, to account for different DUT
board designs (rarely necessary). When this is done, one TDR block must be selected,
using the USE_TDR_BLOCK() macro, in a CONFIGURATION() or
SITE_CONFIGURATION() block. If this is not done, the system software will present a
dialog, requiring the user to make the selection. This can be quite obnoxious since a dialog
is presented for each site in the system.
 2/27/09 Pg-2695

DUT Board TDR Functions
Example
This example uses most of the functions documented in this section and serves as the
example for those functions. Note the following:

• The example includes a TDR_BLOCK, a user variable, and a local C-function. The
latter two are not required, but are included to show how errors might be handled.

• The TDR_BLOCK code invokes TDR on a pin list named all_pins.
• When the user code in the TDR_BLOCK detects an error two things happen:

- A message is output in the appropriate UI Controller window
- A message dialog is displayed in the Host process.
If many errors occur this error dialog could become quite annoying.

• Errors reported include:
• A TDR measurement fails given the min/max search range values specified for
db_tdr().

• A measured TDR value is outside a separate set of user-defined limits.
• An error occurred when writing the final TDR values to the EEPROM on the DUT

board.
• Some of the code below is architected to make this documentation more readable.
#define HOST 0 // For code readability only

// UserVariable which displays an error dialog on Host using
// message sent from Site code
CSTRING_VARIABLE(HostMessage, "", "") {

AfxMessageBox(HostMessage);
}

// RemoteDialog() is a local function used to send an error
// message from Site to Host for display in an error dialog
void RemoteDialog(LPCTSTR message) {

HostMessage = message;
remote_send(HostMessage, HOST, TRUE, INFINITE);

}

TDR_BLOCK(tdr) {

CString msg; // For readability in this documentation

 // TDR search range min/max limits (reused later)
double min_limit = -10.0 NS;
double max_limit = -1.0 NS;
 2/27/09 Pg-2696

DUT Board TDR Functions
// db_tdr() performs TDR on the pin list = all_pins
output ("Executing db_tdr()...");
BOOL tdr_OK = db_tdr(all_pins, min_limit, max_limit);

HDTesterPin tpin;
if(! tdr_OK) {

output("Bad TDR measurement(s) on Site- %d", site_num());
for(int index = 0;pin_info(all_pins, index, &tpin); // See

pin_info()
++index) {

double result = db_get_tdr(tpin); // db_get_tdr()
if(result == 0)

output(" Bad pin => %s", testerpin_name(tpin));
}
msg = "db_tdr() returned FALSE on Site-";
msg += vFormat("%d\n", site_num());
msg += "See messages in Site window";
HostMessage = msg;
remote_send(HostMessage, HOST, TRUE, INFINITE);

}
else{ // db_tdr() returned TRUE

// Check measured TDR values against user limits
BOOL ok = TRUE;
min_limit = -3.4 NS;
max_limit = -2.5 NS;
for(int index = 0;

pin_info(all_pins, index, &tpin); // See pin_info()
++index) {

double result = db_get_tdr(tpin); // db_get_tdr()

if((result < min_limit) ||
(result > max_limit)) {

ok = FALSE;
msg = vFormat("Bad TDR value on Site- %d", site_num());
msg += vFormat(", tester pin: %s.",

testerpin_name(tpin));
HostMessage = msg;
remote_send(HostMessage, HOST, TRUE, INFINITE);

}
}
if(ok){ // Program DUT board EEPROM

BOOL EE_write_OK = db_write_tdr();
 2/27/09 Pg-2697

DUT Board TDR Functions
if(! EE_write_OK) { // The EEPROM write had an error...
msg = "TDR write to DUT board EEPROM failed on Site-";
msg += vFormat("%d\n", site_num());
output("%s", msg);
HostMessage = msg;
remote_send(HostMessage, HOST, TRUE, INFINITE);

}
}

}
}

7.12.2 db_tdr()
See DUT Board TDR Functions.

Description
The db_tdr() function is used to invoke TDR on a user specified pin list. Note the
following:

• db_tdr() is only usable in the scope of a TDR_BLOCK, as described in
TDR_BLOCK().

• The specified pin list can be any subset of tester PE channels, including all pins.
• The TDR results are stored in the TDRarray, as described in TDR_BLOCK(). The

TDR result is a time value relative to a default of zero, which represents the
reference established by the Nextest timing calibration (TCAL) program
(TimingCal.exe) using the Nextest TCAL DUT Board. Smaller numbers (more
negative) indicate shorter path lengths. Larger numbers (more positive) indicate
longer path lengths.

• The db_tdr() function can be executed any number of times within the
TDR_BLOCK(), as needed to collect the necessary deskew data for the necessary
pins. If a given pin is TDR’ed more than once any previous value in the TDRarray
for that pin are overwritten by the new value.

Note: it is the responsibility of user code to ensure that all appropriate pins have valid
deskew data stored in the TDRarray before writing the data to the DUT board
EEPROM using db_write_tdr(). The system software does not check this
rule.
 2/27/09 Pg-2698

DUT Board TDR Functions
Note: valid TDR values are between -10nS and +10nS. Values outside these limits
MUST NOT be used. Violating this rule can cause timing edges to occur at
incorrect times. The system software does not check this rule.

• The db_tdr() function requires that two limit values be specified. These
represent the user-defined minimum and maximum TDR value expected for the
pins being deskewed. The db_tdr() function returns TRUE if the TDR
measurement(s) for all specified pins are between these limits, otherwise FALSE is
returned and an error message is output in the appropriate UI Controller window.
A separate error message is output for each pin failing these limits.

Note: even though a given TDR value is outside the specified limits it is stored in the
TDRarray and will be written to the DUT board EEPROM if db_write_tdr()
is executed.

• db_tdr() takes approximately 30 seconds to complete on a single-site system.
Up to several minutes are required for multi-site systems.

Usage
BOOL db_tdr(PinList* pPinList, double min_val, double max_val);

where:

pPinList specifies the pins to be TDR’ed.

min_val and max_val specify the user-defined minimum and maximum TDR limits. These
determine whether db_tdr() returns TRUE, i.e. the TDR measurement(s) for all pins in
pPinList are between these limits, or FALSE. An error message is output in the
appropriate UI Controller window for each pin failing these limits.

Example
See Example.

7.12.3 db_read_tdr()
See DUT Board TDR Functions.
 2/27/09 Pg-2699

DUT Board TDR Functions
Description
The db_read_tdr() function reads the DUT board EEPROM to retrieve the embedded
date and generate a checksum of the TDR data. Note the following:

• db_read_tdr() is only usable in the scope of a TDR_BLOCK, as described in
TDR_BLOCK().

• db_read_tdr() checks that the date stored with the TDR data is valid.
• Using a checksum, db_read_tdr() checks that the EEPROM data is valid.
• If the EEPROM data is valid, it is stored in the TDRarray noted in TDR_BLOCK(),

and db_read_tdr() returns TRUE. If the data is invalid, the TDRarray is not
modified.

• The scope of the TDRarray is limited to the TDR_BLOCK.
After the db_read_tdr() function has successfully read the EEPROM into the TDRarray
the db_get_pins() function may be used to determine how many pins have TDR data in
the TDRarray, and db_get_tdr() may be used to get the TDR value for one pin. To save a
copy of the entire TDRarray requires that user code define an appropriate data structure and
use db_get_tdr() in a loop to get data for the desired pins.

Usage
BOOL db_read_tdr();

where:

db_read_tdr() returns TRUE or FALSE as noted in Description.

Example
The following example will operate correctly only within the scope of a TDR_BLOCK, as
described in TDR_BLOCK():

// Read EEPROM into TDRarray
BOOL EE_read_OK = db_read_tdr();

if (! EE_read_OK)
output("ERROR: db_read_tdr() returned FALSE");

else {
double val;
HDTesterPin tpin;
for (int index = 0;

pin_info(all_pins, index, &tpin);
++index) {
 2/27/09 Pg-2700

DUT Board TDR Functions
// See db_get_tdr()
val = db_get_tdr(tpin);
output(" TDR measurement for pin => %s = %5.3f",

testerpin_name(tpin), val);
}

}

7.12.4 db_write_tdr()
See DUT Board TDR Functions.

Description
The db_write_tdr() function writes the contents of the TDRarray to the DUT board
EEPROM. The current date/time and a checksum are also written. Note the following:

• db_write_tdr() is only usable in the scope of a TDR_BLOCK, as described in
TDR_BLOCK().

• Writes the contents of the TDRarray to the DUT board EEPROM. The current
date/time and a checksum are also written.

• The TDR data is read back from the EEPROM and compared it with the contents
of the TDRarray. If everything matches db_write_tdr() returns TRUE, otherwise
FALSE is returned.

• For the contents of the TDRarray to have any effect on the user’s test program the
TDR data must be written to the EEPROM, using db_write_tdr(). The
TDRarray is temporary storage whose scope is limited to the TDR_BLOCK() itself.

• User code is responsible for ensuring that the TDRarray contains valid deskew
timing values for all used signal pins BEFORE db_write_tdr() is executed. The
system software does not check.

Note: valid TDR values are between -10nS and +10nS. Values outside these limits
MUST NOT be used. Violating this rule can cause timing edges to occur at
incorrect times. The system software does not check this rule.
 2/27/09 Pg-2701

DUT Board TDR Functions
Note: the db_write_tdr() function must only be executed once within the
TDR_BLOCK. Violation of this rule can result in inaccurate user timing values.
The system software does not check this rule.

Usage
BOOL db_write_tdr();

where:

db_write_tdr() returns TRUE or FALSE as noted in Description.

Example
See Example

7.12.5 db_set_tdr(), db_get_tdr()
See DUT Board TDR Functions.

Description

The db_set_tdr() function sets a value in the TDRarray for the specified pin. This can be
used to place a user-defined deskew value in the TDRarray before it is written to the
EEPROM using db_write_tdr().

Note: valid TDR values are between -10nS and +10nS. Values outside these limits
MUST NOT be used. Violating this rule can cause timing edges to occur at
incorrect times. The system software does not check this rule.

The db_get_tdr() function gets and returns a value from the TDRarray. This can be used
when making a copy of a TDRarray, for performing comparisons between values, etc.

Note the following:

• These functions are only usable in the scope of a TDR_BLOCK, as described in
TDR_BLOCK().
 2/27/09 Pg-2702

DUT Board TDR Functions
• The values in the TDRarray are set to 0nS at the start of the TDR_BLOCK
execution, and can subsequently be modified using db_tdr(),
db_read_tdr(), and db_set_tdr().

• The TDRarray is temporary storage whose scope is limited to the TDR_BLOCK()
itself.

Usage
void db_set_tdr(HDTesterPin Pin, double Value);

double db_get_tdr(HDTesterPin Pin);

where:

Pin specifies one tester pin and must be one of the HDTesterPin enumerated types in
the range of . Values must be signal pins (not DPS, etc.)

Value is the desired deskew value to be set in the TDRarray. Units may be used (see
Specifying Units).

db_get_tdr() returns the deskew value from the TDRarray for the specified pin.

Example
See Example

7.12.6 db_get_pins()
See DUT Board TDR Functions.

Description
The db_get_pins() function reads the TDRarray (see TDR_BLOCK()) and returns a
count of the number of pins of TDR data stored in the EEPROM.

The number of pins returned will be 128 pins * the value set by
sites_per_controller().

Usage
int db_get_pins();

where:
 2/27/09 Pg-2703

DUT Board TDR Functions
db_get_pins() returns a value as noted in the Description.

Example
int count = db_get_pins();
output("DUT board EEPROM contains %d TDR values", count);

7.12.7 db_get_date()
See DUT Board TDR Functions.

Description
The db_get_date() function returns the date/time the DUT board EEPROM was last
programmed with data from the TDRarray (see TDR_BLOCK()).

Usage
CString db_get_date();

where:

db_get_date() returns the date as a CString, in the form of "mm/dd/yyyy/ hh:mm".
An empty string is returned if the EEPROM date is not valid or otherwise not readable. See
db_read_tdr().

Example
CString date_time = db_get_date();
output(" EEPROM was last programmed => %s", date_time);
 2/27/09 Pg-2704

Miscellaneous
7.13 Miscellaneous

7.13.1 WhatRelease

Definition
The command “WhatRelease” is added to the Windows Start menu when the Nextest
software is installed using UseRel or by executing the self extracting archive which installs
the software.

Executing “WhatRelease” executes the .../Utils/WhatRelease.bat script, which
displays a window showing the version of the software active on that computer.

The example below shows that software revision v1.26.21 is currently active.

7.13.2 UseRel

Description
The UseRel batch file (...release\Utils\UseRel.exe) is used to select a Nextest software
release and start the various processes needed to use that release.

Executing UseRel from a given software release enables that release for use. To switch to
a different software release requires executing UseRel again, from the desired release’s
Utils directory.
 2/27/09 Pg-2705

Miscellaneous
Before executing UseRel it is necessary to terminate any instances of UI - User Interface
and Developer Studio.

Executing UseRel.bat from the target release’s Utils folder does the following:

1. Updates the PATH environment variable to point to the target release. This also removes
any PATH components pointing to a previously used software release.

2. Updates the Developer Studio registry keys, to point to the target release’s include files
and libraries.

3. Updates the Windows Start menu to execute the target release’s version of UI and point
to the target release’s version of the Programmer’s Manual.

4. Kills MonitorApp if it is running, and starts the target release’s version.

Note: UseRel does not update any shortcuts created by the user, whether on the
desktop or elsewhere.

In software release h2.2.xx/h1.2.xx UseRel was updated to prompt the user to execute
StartServer. This occurs when UseRel is executed on a Host connected to a test system.

7.13.3 UseDLLs

Description
The UseDLLs batch file can be executed to start UI - User Interface using a different
software release than is currently set up i.e. without running UseRel (and rebooting on multi-
site systems).

UseDLLs only affects the current UI - User Interface session that it starts i.e. it affects
program loading and execution only, not compiling programs. When a test program is
loaded using this instance of UI the DLLs from the new release will be used. Terminating UI
completes the operation of UseDLLs.bat, leaving none of the changes behind.

Note: since the Windows Start menu is not modified, invoking UI from the start menu
will continue to use the software release set up the last time UseRel was
executed. To use the alternate (new) release again, execute UseDLLs.bat
again.
 2/27/09 Pg-2706

Miscellaneous
To execute UseDLLs use the Windows Explorer, and locate the desired (target) software
release. UseDLLs.bat is located in the release Utils folder, i.e. in the same location as
UseRel.bat. Double-click on UseDLLs.bat to execute it and start UI using the target
software release.

To use UseDLLs.bat with a software release which didn’t originally contain it,
UseDLLs.bat can be executed from a command line, with a command-line argument that
should be the full path to the desired release.

Executing UseDLLs.bat from the target release’s Utils folder (or command line) does the
following:

1. Restarts the target release’s version of MonitorApp.

2. On a VT and GT, restarts MonitorApp on each Site controller using the PATH to the
target release.

3. Starts the target release’s version of UI - User Interface. Any test programs loaded using
this instance of UI will use the DLLs from the target release. Terminating this instance of
UI completes the operation of UseDLLs.bat, leaving no changes behind.

7.13.4 Automatic Stack Trace Generator

Note: new in software release v.2.4.4.

The MFC ASSERT() function is used in software to detect error conditions. It can be used in
any code. Nextest uses the ASSERT() function to make sure certain error conditions cannot
be ignored. Users can use the ASSERT() function as desired.

During program execution, when an ASSERT() is triggered two things occur:

• A warning dialog is displayed, showing which source file contained the triggered
ASSERT(). This allows the user to determine whether the ASSERT() came from
user-written code or Nextest (or Microsoft) written code.

• A stack trace is automatically generated and stored on the clipboard. This stack
trace shows the hierarchy of function calls which occurred up to the ASSERT().
 2/27/09 Pg-2707

Miscellaneous
A typical ASSERT() warning dialog is shown below:

In this example, note that the source code file which contained the ASSERT() function was
user-written, i.e.

E:\TestPrograms\R6.0\BMT_1msram\site_begin.cpp

Below is the first line of the stack trace from the ASSERT() noted above:

1 static ____sbb_1msram_SiteBeginBlock_callback()
[E:\Test Programs\R6.0\BMT_1msram\site_begin.cpp:34 + 30]

This also shows the source file which contained the ASSERT(), which was located on line
34 of that file.

When an ASSERT() is triggered, if it is NOT triggered from user-written code, the
information in the stack trace should be forwarded to Nextest, typically by email to user’s
Applications Support engineer. This helps Nextest to evaluate the nature of the error, and
determine whether any software changes are required.

Note: if the ASSERT() is triggered from user-written code, Nextest cannot assist in
evaluating the problem.

When an ASSERT() occurs, to capture the stack trace do the following:

• Do NOT terminate the ASSERT() dialog. The stack trace is captured to the
clipboard, and is cleared when the dialog is terminated.

• In a text editor of your choice, perform Edit->Paste into a blank page. The
editor can be Notepad, Wordpad, Word, etc. If the ASSERT() dialog appeared in a
site window on a multi-site system (ST, SST, VT, GT) many of the standard editor
applications are not available - use Developer Studio.
 2/27/09 Pg-2708

Miscellaneous
• Save the file to disk.
• Email the file to your Nextest applications engineer. Be sure to include details

about how the problem can be reproduced, which software release was in use,
etc.
 2/27/09 Pg-2709

 2/27/09 Pg-2710

 2/27/09 Pg-2711

 2/27/09 Pg-2712

 2/27/09 Pg-2713

 2/27/09 Pg-2714

 2/27/09 Pg-2715

 2/27/09 Pg-2716

 2/27/09 Pg-2717

Index

Symbols
#define in Test Patterns... 1259
#include in Test Patterns ... 1257
%%VECDEF Pattern Directive 1582
.aif ... 967
.au .. 967
.nwav ...967–968
.nwav Grammar Description, MSWT 968
.wav ... 967
/BATCH User Variable Command Line Token 2305
/BRC User Variable Command Line Token 2321
/BRK User Variable Command Line Token............... 2331
/C User Variable Command Line Token 2340
/CP User Variable Command Line Token 2333
/CS User Variable Command Line Token 2334
/E User Variable Command Line Token..................... 2346
/ER User Variable Command Line Token.................. 2349
/H User Variable Command Line Token 2275
/HC User Variable Command Line Token 2354
/HD User Variable Command Line Token 2351
/HOF User Variable Command Line Token 2367
/HR User Variable Command Line Token 2275
/HT User Variable Command Line Token.................. 2356
/LT User Variable Command Line Token 2358
/MP User Variable Command Line Token 2360
/MT User Variable Command Line Token 2362
/NOLOGO User Variable Command Line Token2363
/S User Variable Command Line Token..................... 2274
/SC User Variable Command Line Token 2412
/SD User Variable Command Line Token.................. 2404
/SM User Variable Command Line Token 2409
/SOF User Variable Command Line Token................ 2368
/SR User Variable Command Line Token 2274
/TC User Variable Command Line Token.................. 2432
/TD User Variable Command Line Token.................. 2422
/TOOL User Variable Command Line Token 2417
/TP User Variable Command Line Token 2424
@{ ... 1254
@} ... 1254
_SEL_RT_D0.. 1651

Numerics
3-bits per Pin ... 1578
50-ohm Termination Voltage, VTT 560

A
a_1... 238
a_640... 238
a_dps1a ... 238
a_dps1b ... 238
a_dps40a ... 238
a_dps40b ... 238
a_hv1... 238
a_hv80... 238
AANDBBAR .. 1343
ABASE Set/Get Functions, APG.................................. 738
abase() ... 738
ac_partest_results_store() ... 484
ac_test_supply() .. 401
Active DUTs Set (ADS) ... 179
Active DUTs Set Iterators... 194
active_dut_get() .. 191
active_duts_disable() .. 188
active_duts_enable() ... 186
active_duts_get()... 191
ActiveDutIterator .. 194
actualdata().. 768
ADD..1343, 1433
add() function,Pattern Sets.. 1233
ADD_PATTERN() macro .. 1232
add_segment()... 1927
AddArray().. 2667
Address Cross-over Bit Functions 740
Address Generator Hardware, APG.............................. 141
Address Generator Overview, APG............................ 1330
Address Index Register, APG User RAM 155
Address Mask Functions, APG................................... 1277
Address Masks, DBM... 843
Address Pins, setting... 719
Address TOPO RAM.. 144
Address Topo RAM Load Functions, APG................ 1320
address_topo.cpp... 221
addrs() ...776, 785
AddVal() ... 2666
AddWorkBook() ... 2656
AddWorkSheet() ... 2657
ADHIZ .. 1452
adhiz() ... 1286
ADS Save/Modify/Restore Example 185
ADS, Active DUT Set... 179
AFIELD Set/Get Functions, APG................................. 738
 2/27/09 Pg-2718

afield() ... 738
AFTER_TESTING_BLOCK() macro 334
After-testing Block..334
AfterTestingBlock_find().. 2474
Algorithmic Pattern Generator...................................... 123
all_dps() .. 281
all_hv() .. 283
all_pe() .. 284
all_results_match()..213
ALL1S... 1343
ALLOC_POINT_FAILURE() macro 855
ALLOCA_POINT_FAILURE() macro 855
Always On Top, MSWT View Control 2050
AMAIN Set/Get Functions, APG 738
amain() .. 738
amax() ... 1280
ANANDBBAR ... 1343
AND ..1343, 1433
ANORBBAR .. 1344
any_results_match() .. 214
AOFF ..1353, 1623
AON ..1353, 1623
AORBBAR ... 1344
APFP

Automated Pattern File Processing...................... 1211
Migrating from Older Versions 1223
Overview.. 1212

APFP Dialog ... 1213
APFP, Automated Pattern File Processing 1211
APG

ABASE Set/Get Functions..................................... 738
Address Generator Hardware................................. 141
Address Generator Overview............................... 1330
Address Mask Functions...................................... 1277
Address Topo RAM Load Functions................... 1320
AFIELD Set/Get Functions 738
AMAIN Set/Get Functions 738
Background Data Inversion Function 1304
Background Voltage .. 104
Bit-2 Data Inversion Function 1307
Branch-on-error Logic ... 135
Checkerboard APG data pattern 1304
Chip Select Drive/Strobe Polarity Functions....... 1284
Chip Select Hardware .. 151
Chip Select Polarity Control Functions 1282
Configuration Functions 1275
Controller Engine Hardware 126
Counter Functions.. 723

Data Buffer Memory.. 156
Data Buffer Memory Configuration 1300
Data Generator Hardware 146
Data Generator I/O Control 1286
Data Generator I/O Control Function 1286
Data Inversion Bank Select Functions................. 1302
Data Inversion Enable Functions......................... 1300
Data Inversion Functions, Background Bank-A, Bank-

B ... 1308
Data Register Functions... 734
Data Register Width Function 1290
Data Strobe Control ... 727
Data Topological Inversion Function 1312
Data-topo RAM Load Functions 1314
Drive Data Latency.. 1286
Expect Data Latency.. 1286
Fast Address Axis .. 1281
Instruction Execution... 1328
Interrupt Timer Functions.................................... 1322
Interrupt Timer Hardware...................................... 151
JAM Logic Configuration Functions................... 1292
Jam Register Functions.. 735
Memory-pattern Related Functions 722
Pattern Instruction Format 1326
Pipelines, Clearing... 778
Reload Register Functions..................................... 724
Reload Register Mode Functions........................... 725
set_adhiz(), get_adhiz() ... 747
set_chip_select(), get_chip_select()....................... 745
Strobe Data Latency .. 1286
Timer Functions... 1322
Timer Interrupt Address Functions........................ 742
User RAM Functions... 1296
User RAM Hardware ... 153
XBASE Register Functions 736
XFIELD Register Functions 737
XMAIN Register Functions................................... 735
YBASE Register Functions 736
YFIELD Register Functions 737
Y-Index Register Functions 744
YMAIN Register Functions................................... 735

APG Chip Select Drive Format Selection 606
apg_datainv_A_enable_get() 1300
apg_datainv_A_enable_set()....................................... 1300
apg_datainv_A_func_set() .. 1308
apg_datainv_AB_select_get()..................................... 1303
apg_datainv_AB_select_set() 1303
apg_datainv_B_enable_get() 1300
 2/27/09 Pg-2719

apg_datainv_B_enable_set() 1300
apg_datainv_B_func_set() .. 1308
apg_jam_mode_get() .. 1292
apg_jam_mode_set() ... 1292
apg_jam_ram_address_get() 1295
apg_jam_ram_address_set().. 1295
apg_jam_ram_get() ... 1293
apg_jam_ram_set()..1293
apg_reload_register_mode_get() 725
apg_reload_register_mode_set() 725
apg_user_ram_address_set() 1299
apg_userram_value_get().. 1297
apg_userram_value_set() .. 1297
ApgJamMode

t_jam_mode_ram ... 1277
t_jam_mode_reg .. 1277

ApgReloadRegMode... 714
APGStaticErrorModes .. 1277
append() .. 1939
ASSIGN_1DUT() macro .. 261
ASSIGN_32DUT() macro .. 261
ASSIGN_64DUT Work-around 264
ATCBoardList_find().. 2474
atopo_xvr().. 740
ATR, STDF Record Type ... 2603
Automated Pattern File Processing (APFP)................ 1211
Automatic Stack Trace Generator............................... 2707
AutoSynchronize, MSWT View Control.................... 2050
AVSPinList_find() ..2474

B
B*6, STDF Data Type Code 2605
B*n, STDF Data Type Code 2606
b_640... 238
b_dps1a ... 238
b_dps1b ... 238
b_dps40a ... 238
b_dps40b ... 238
b_hv1... 238
b_hv80... 238
back_voltage()... 462
back_voltage_enable() .. 462
Background Bank-A, Bank-B Inversion Functions, APG ..

1308
Background Data Inversion Function, APG 1304
Background Voltage Functions..................................... 461
Background Voltage, APG ... 104

Bad Segment List, Redundancy Analysis 1685
BAD_WAVE .. 973
BadWave... 970
BASEBASE .. 1444
BASEBUF... 1444
BASEDAT .. 1444
BASEJAM .. 1444
BASEMAIN.. 1444
BBEQMAX... 1340
BBEQMIN .. 1341
BBNEMAX... 1341
BBNEMIN .. 1342
BCK_A_BIT1_INV_EN... 1277
BCK_A_BIT2_INV_EN... 1277
BCK_A_INV_EN ... 1277
BCK_B_BIT1_INV_EN... 1277
BCK_B_BIT2_INV_EN... 1277
BCK_B_INV_EN ... 1277
BCKDTOPO ... 1442
BCKFDIS.. 1442
BCKFEN... 1442
bckfen() ... 1304
BCKFN_INV_EN... 1277
BckOperation

and.. 1276
bit_1 ... 1276
force ... 1276
or .. 1276
xeven.. 1276
xeven_yodd.. 1276
xodd ... 1276
xodd_yeven.. 1276
xor .. 1276
xyeven.. 1276
xyodd ... 1276
yeven.. 1276
yodd ... 1276

Before Starting UI... 1832
BEFORE_TESTING_BLOCK() macro 334
Before-testing Block ... 334
BeforeTestingBlock_find() ... 2474
BFEQMAX ... 1340
BFEQMIN... 1341
BFNEMAX ... 1341
BFNEMIN... 1342
BIN() macro .. 308
BINL() macro.. 308
BINS1() macro.. 353
 2/27/09 Pg-2720

BINS8() macro .. 353
Bit-2 Data Inversion Function, APG........................... 1307
BIT2_INV_EN.. 1277
bit2fen()... 1307
Bitmap Overlay Colors ... 1953
Bitmap Overlay Penstyles ... 1955
Bitmap Overlays ... 1950
Bitmap Overlays, creating... 1951
Bitmap Scheme Data Types .. 1924
Bitmap Scheme Functions .. 1924
Bitmap Schemes.. 1913
Bitmap Segment Positioning....................................... 1922
Bitmap Usage, User Dialogs 2543
BITMAP_MOVETO() macro..................................... 2318
bitmap_overlay_add() ... 1960
bitmap_overlay_delete() ... 1969
bitmap_overlay_draw() ... 1973
bitmap_overlay_enable() .. 1973
bitmap_overlay_lookup().. 1970
bitmap_overlay_names()... 1959
bitmap_overlay_setup() .. 1971
bitmap_scheme Data Type................................1925–1926
bitmap_scheme_lookup().. 1949
bitmap_scheme_translate() ... 1947
BitmapTool ... 1891
BitmapTool Callback Macros 1907
BitmapTool Control Dialog .. 1896
BitmapTool Display Mode.. 1899
BitmapTool Separate Window Option........................ 1904
BitmapTool UI Variables.. 1912
BitmapTool Visible Fail Count Display 1906
Bitwise/Logical Calculator Twiddle Dialogs.............. 2086
BMEQMAX.. 1340
BMEQMIN ... 1341
BMNEMAX.. 1341
BMNEMIN ... 1342
Board Functions .. 792
board_type() .. 793
BoardPresent() .. 792
BOFF... 1340
BON .. 1340
BOOL_VARIABLE() macro 2271
BPS, STDF Record Type .. 2603
Branch on Error Flag... 345
Branch-on-error

DUT-pin to Tester-pin Connection Requirements1418
MAR BOE Type Operands.................................. 1385
MAR Error-choice Operands............................... 1388

Static Error Choice Functions.............................. 1416
Branch-on-error Logic, APG .. 135
Breakpoint actions .. 1979
Breakpoint attributes ... 1978
Breakpoint Definition File .. 1980
Breakpoint Macros.. 1987
Breakpoint Monitor... 1976
Breakpoint Removal ... 1980
Breakpoint Usage.. 1984
Breakpoints on C Functions.. 1985
Breakpoints on Test Functions.................................... 1984
BUFBASE... 1444
BUFBUF... 1444
BUFDAT... 1444
BUFJAM... 1445
BUFMAIN .. 1444
Build (Compile) Operation, Test Patterns 1218
Built-in DPS Settling Time... 373
Built-in HV Settling Time .. 374
Built-in PMU Settling Time.. 373
Built-in PTU Settling Time... 374
Built-in RA Call-back Function

ra_col_first_sparse ... 1810
ra_col_pref_sparse ... 1810
ra_linear_eval .. 1813
ra_row_first_sparse.. 1810
ra_row_pref_sparse.. 1810
ra_shortest_col_use.. 1815
ra_shortest_row_use .. 1815
ra_single_spare_col_per_address 1818
ra_single_spare_row_per_address 1818

Built-in Settling time... 372
builtin_after_testing_block ... 334
builtin_batch_file, UI User Variable........................... 2277
builtin_before_testing_block .. 334
builtin_col_data...1918, 1956
builtin_col_rdata ... 1919
builtin_data_col... 1919
builtin_data_row ... 1920
builtin_dynload, UI User Variable.............................. 2288
builtin_Fail .. 350
builtin_message_box... 2169
builtin_output .. 2169
builtin_Pass ... 350
builtin_putenv ... 2169
builtin_rdata_col ... 1919
builtin_rdata_row.. 1920
builtin_remote_signal ... 2170
 2/27/09 Pg-2721

builtin_resource_deallocate .. 2170
builtin_resource_initialize... 2170
builtin_row_data ... 1921
builtin_row_rdata .. 1921
builtin_unload ... 2170
builtin_UsedDPS... 275
builtin_UsedHVPins ... 275
builtin_UsedPins ... 275
builtin_warning ... 2170
builtin_what_exe, UI User Variable 2286
Bus Functions, I2C..794
ByteArray.. 240

C
C Preprocessor Support in Test Patterns..................... 1257
C*12, STDF Data Type Code 2605
C*f, STDF Data Type Code.. 2605
C*n, STDF Data Type Code 2605
Calculator Compare Menu, MSWT 2073
Calculator Controls, MSWT 2064
Calculator Convert Menu, MSWT.............................. 2071
Calculator Dialogs/RPN Option, MSWT.................... 2088
Calculator DSP Menu, MSWT 2068
Calculator Encode Menu, MSWT............................... 2082
Calculator Math Menu, MSWT 2065
Calculator Overview, MSWT 2062
Calculator Stack Menu, MSWT.................................. 2074
Calculator Stack Pick, MSWT Dialog 2075
Calculator Stack PushDoubleVariable, MSWT Dialog

2077
Calculator Stack PushIntVariable, MSWT Dialog 2078
Calculator Stack PushResource, MSWT Dialog......... 2079
Calculator Stack PushWaveform, MSWT Dialog2079
Calculator Stack Roll, MSWT Dialog 2080
Calculator Twiddle Menu, MSWT 2083
Calculator, MSWT View Control 2049
CALL() macro... 308
CALL_SERIALIZE() macro 2452
CALLL() macro .. 308
CBEQMAX... 1340
CBEQMIN .. 1341
CBNEMAX... 1341
CBNEMIN .. 1342
CFEQMAX ... 1340
CFEQMIN... 1341
CFNEMAX ... 1341
CFNEMIN... 1342

changes_voltages().. 1669
ChanType.. 1276

BIDIR .. 1276
DRIVE ... 1276
RECEIVE .. 1276

checkerboard data ... 1441
Checkerboard data pattern, APG 1304
checkerboard-data patterns ... 148
Chip Select Drive Format Selection 606
Chip Select Drive/Strobe Polarity Functions.............. 1284
Chip Select Hardware, APG ... 151
Chip Select Pin State, setting .. 721
Chip Select Polarity Control Functions, APG 1282
CHIPS Chip-select-controls Operands 1421
CHIPS Instruction... 1420
CHIPS Misc Operands.. 1424
ChipSelectMode.. 715
CJMPA..1364, 1601
CJMPE ..1365, 1602
CJMPE_ALL ..1374, 1610
CJMPE_ANOTB ..1374, 1611
CJMPE_BNOTA ..1375, 1611
CJMPE_DUT1..1376, 1612
CJMPE_DUT8..1376, 1612
CJMPNA...1365, 1602
CJMPNE ...1366, 1603
CJMPNE_ALL ...1374, 1611
CJMPNE_ANOTB ...1375, 1611
CJMPNE_BNOTA ...1376, 1612
CJMPNE_DUT1 ...1376, 1612
CJMPNE_DUT8 ...1376, 1612
CJMPNT ...1366, 1603
CJMPNZ ...1366, 1603
CJMPT ..1366, 1603
CJMPZ ..1366, 1603
CLEARERR..1385, 1615
CMEQMAX.. 1340
CMEQMIN ... 1341
CMNEMAX.. 1341
CMNEMIN ... 1342
CMPLDR .. 1433
CNTDNDR ... 1433
CNTDNYN ... 1436
CNTUPDR.. 1433
CNTUPYN.. 1436
COFF... 1340
COLORREF, User Dialogs2593–2594, 2596, 2598–2599
Columns-Used-Together(CUT) 1700
 2/27/09 Pg-2722

Comments in Test Patterns ... 1252
COMP ... 1344
Comparator Voltages, VOH/VOL 548
Compare Controls, MSWT View Control 2049
CompCond .. 369
Compensation Capacitors

DPS .. 416
PMU... 500

Compiling Test Patterns.. 1228
CON .. 1340
Configuration Functions, APG 1275
Configuration_find() ... 2474
Configuration_use() .. 2482
Conflict List .. 337
Conflict List Macros ... 337
CONFLICT_LIST() macro ... 337
CONFLICT1() macro ... 340
CONFLICT32() macro ... 340
Connect/Disconnect Functions

DPS .. 384
HV.. 423
PE... 563

Constant Waveform Generation, MSWT.................... 2035
CONTROL() macro, User Dialogs 2531
Controller Engine Hardware, APG 126
Controlling Levels from the Test Pattern, Magnum 1 1649
Controlling PE Levels from the Test Pattern 1648
COUNT... 1347
COUNT autoreload Operand 1352
COUNT Counter Operands... 1349
COUNT Function Operands 1351
COUNT Instruction... 1347
COUNT#...1351, 1621
count() ... 723
Counter Functions, APG ... 723
Counter Functions, VAR engine 780
COUNTUDATA... 1352
COUNTVUDATA ..1622
Creating Bitmap Dialog Components, User Dialogs ..2540
CRECT_WAVE.. 973
CRectWave ... 970
CRETE ..1367, 1604
CRETE_ALL ..1372, 1608
CRETE_ANOTB ..1372, 1609
CRETE_BNOTA ..1373, 1609
CRETE_DUT1..1373, 1610
CRETE_DUT8..1373, 1610
CRETNE ...1367, 1604

CRETNE_ALL ...1372, 1609
CRETNE_ANOTB ...1373, 1609
CRETNE_BNOTA ...1373, 1610
CRETNE_DUT1...1374, 1610
CRETNE_DUT8...1374, 1610
CRETNT...1367, 1604
CRETNZ...1368, 1605
CRETT..1367, 1604
CRETZ..1367, 1604
cs_active_high() .. 1284
cs_polarity_get() ... 1283
cs_polarity_set().. 1283
cs_read_high()... 1284
CSmHIZ.. 1423
CSmRDF... 1423
CSmRDT... 1423
CSmRDV .. 1424
CSmRDZ... 1424
CSnF ... 1423
CSnPF ... 1423
CSnPT... 1423
CSnT ... 1423
CSTRING_VARIABLE() macro................................ 2271
CStringArray... 240
CSUBE..1368, 1605
CSUBE_ALL..1370, 1606
CSUBE_ANOTB..1370, 1607
CSUBE_BNOTA..1371, 1607
CSUBE_DUT1 ...1371, 1608
CSUBE_DUT8 ...1371, 1608
CSUBNE...1368, 1605
CSUBNE_ALL ...1370, 1607
CSUBNE_ANOTB ...1371, 1607
CSUBNE_BNOTA ...1371, 1608
CSUBNE_DUT1...1372, 1608
CSUBNE_DUT8...1372, 1608
CSUBNT...1369, 1606
CSUBNZ...1369, 1606
CSUBT..1368, 1605
CSUBZ..1369, 1606
Current Force Functions

PMU... 445
PTU.. 506

Current Test Limit Functions
DPS .. 394
HV.. 426
PMU... 449
PTU.. 509
 2/27/09 Pg-2723

current_dialog()... 2691
current_release().. 227
current_setup() .. 2676
CURRENT_SHARE() macro 411
current_test() ... 2677
current_test_block() .. 331
CurrentShare_find() .. 2474
CurrentShare_use() ... 2482
Cursor Controls, MSWT View Control 2049
CUT, RA Columns_Used_Together 1700
CWinApp .. 2491
Cycle Periods, DDR.. 650
Cycle Time Functions ... 599
cycle().. 599

D
D*n, STDF Data Type Code....................................... 2606
Data Buffer Memory, see DBM
Data File Format, DBM .. 839
Data Generator Hardware, APG 146
Data Generator I/O Control Function, APG 1286
Data Generator I/O Control, APG............................... 1286
Data Inversion Bank Select Functions, APG 1302
Data Inversion Enable Functions, APG 1300
Data Register Functions, APG 734
Data Register Width Function, APG........................... 1290
Data Strobe Control, APG .. 727
Data Topological Inversion Function, APG 1312
Data Widths, DBM ... 813
data_reg_width() ... 1291
data_strobe().. 727

Mask Method ... 729
Pin Scramble Method... 730

data_topo.cpp .. 221
DataInvControls .. 1277
Data-topo RAM Load Functions, APG.......................1314
DATBASE .. 1445
DATBUF... 1445
datbuf().. 846
DATDAT .. 1445
Date, Waveform Attribute... 960
DATGEN Background Function Operands 1440
DATGEN Dataout Operand.. 1443
DATGEN Dbmwr Operand .. 1447
DATGEN Drfunc Operand1431–1432
DATGEN Equality Function Operands 1436
DATGEN Instruction.. 1425

DATGEN Invert Sense Operand 1442
DATGEN Source Operands.. 1430
DATGEN Udatajam Operands 1446
DATGEN Yindex Operands 1435
DATJAM .. 1445
datreg() .. 734
db_data() ... 803
db_get_date() .. 2704
db_get_pins() .. 2703
db_get_tdr()... 2702
db_id()... 803
db_pwa() ... 803
db_pwa_rev() .. 803
db_pwb() ... 803
db_pwb_rev() .. 803
db_read_tdr()... 2699
db_set_tdr() ... 2702
db_tdr() ... 2698
db_write_tdr() ... 2701
DBASE ... 1432
dbase()... 726
DBM

Address Masks... 843
Architecture ... 157
Configuration... 1300
Configuration Tables (none).................................. 817
Data File Format .. 839
Data Widths ... 813
DBMTool... 1993
DRAM Interleaving ... 808
Hardware.. 156
Masked vs. Un-masked Operations 814
Memory Size Options .. 157
Multiple Sites-per-controller 815
Segment Selection ... 822
Sequential Mode .. 809
Software ... 805
Usage Rules ... 811

dbm_config_get().. 821
dbm_config_set() .. 818
dbm_file_image_read()... 838
dbm_file_image_write() ... 836
dbm_fill() .. 825
dbm_masks_get() .. 843
dbm_masks_set() .. 843
dbm_num_segments_get() .. 824
dbm_pattern_use() .. 845
dbm_read() .. 831
 2/27/09 Pg-2724

dbm_segment_set() ... 822
dbm_write()... 827
DbmAccessType ... 818
DbmFastDirection... 818
DbmPatternRate .. 818
DBMTool .. 1993
DBMTool Controls ... 1996
DBMWR ... 1448
DC A/D Converter ..109
DC Comparators and Error Logic 108
DC Error Flag.. 106
DC Functions .. 364
DClk Mode, PE Driver.. 77
DCLKNEG.. 602
DCLKPOS .. 602
DC-only Pins... 91
DDR

Cycle Periods ... 650
DDR_DRIVE Timing Format Option 650
DDR_IODRIVE Timing Format Option 655
DDR_IODRIVETiming Format Option 650
DDR_IOSTROBE Timing Format Option 655
DDR_IOSTROBETiming Format Option 650
DDR_STROBE Timing Format Option 650
Drive Timing & Formats 651
Fail Signal MUX.. 659
I/O Timing ... 655
LEC Operation ... 939
Logic Error Catch .. 663
Logic Vectors... 645
Memory Error Catch .. 665
Memory Patterns.. 647
Pattern Rules .. 645
Pin Scramble .. 643
Scan Vectors .. 647
Strobe Timing & Formats 653
Test Patterns... 644
Timing.. 649

DDR_DRIVE Timing Format Option........................... 650
DDR_IODRIVE Timing Format Option 655
DDR_IODRIVETiming Format Option 650
DDR_IOSTROBE Timing Format Option 655
DDR_IOSTROBETiming Format Option 650
DDR_STROBE Timing Format Option 650
Debug Hook .. 2670
Debug Mode Setup..1878
Debugging With Developer Studio............................. 1878
DEC2...1352, 1622

DECR..1352, 1622
DECREMENT .. 1344
decrement(), Test Bin Function 356
DEFAULT ..1385, 1618
Default Memory Pattern Instruction 1328
Default Pin Scramble Map.. 579
DEFERRED_TOOL_PATH Environment Variable .. 2684
Delay() .. 344
Dialog Functions, User ... 2559
DIALOG() macro, User Dialogs................................. 2531
Dialog_find()... 2474
Dialogs, see User Dialogs
dialogs.cpp .. 221
disconnect()... 564
DLL Loading .. 2288
DMAIN ... 1432
dmain() .. 726
DONE ...1362, 1600
DOUBLE .. 1344
Double Clock Negative... 602
Double Clock Positive .. 602
Double Data Rate (DDR), see DDR
double, Pattern Rate Attribute..................................... 1249
DOUBLE_VARIABLE() macro 2271
DoubleArray ... 240
DPS ... 94

Compensation Capacitors 416
Connect/Disconnect Functions 384
Current Measurment Ranges and Resolutions....... 397
Current Sharing.. 411
Current Test Limit Functions................................. 394
Dynamic Current Test Functions........................... 401
Functions.. 382
Output Mode.. 392
Static Current Test Functions 398
Voltage Programming Functions 386
Vpulse Enable Functions 407

dps() .. 386
dps_comp_cap() .. 416
dps_connect() .. 385
dps_connected() .. 385
dps_current_high() .. 395
dps_current_low() ... 395
dps_disconnect() ... 385
dps_ilimit_get()... 419
dps_ilimit_set() ... 419
Dps_meas() ... 377
dps_output_mode_get() .. 392
 2/27/09 Pg-2725

dps_output_mode_set() ... 392
Dps_pf() .. 377
dps_vpulse() .. 386
dps_vpulse_enable().. 408
dps_vpulse_enabled().. 408
DpsILimit .. 384
DpsOutputMode.. 384
Drive Data Latency, APG ... 1286
Drive Timing & Formats, DDR 651
Drive Voltages, VIH/VIL ... 543
drive_hi VectorState ... 715
drive_lo VectorState ... 715
drive_only()... 1289
DTOPO ...1312, 1442
DTOPO Logical Operation Options 1313
dtopo() ... 1312
DTOPO_INV_EN... 1277
DTopoFunc

xd_and_yd.. 1277
xd_or_yd .. 1277
xd_xor_yd .. 1277
xdtopo .. 1277
ydtopo .. 1277

DTR, STDF Record Type ... 2603
dump() BitmapScheme ... 1929
DUT Address Pins, setting.. 719
DUT Board I/O Port Functions 793
DUT Board I/O Ports .. 168
DUT Board ID .. 803
DUT Board Status Check.. 224
DUT Board TDR Functions .. 2692
DUT Board User Data Area.. 803
DUT Chip Select Pin State, setting 721
DUT Data Pins States ... 720
DUT Manager ... 2002
DUT Pin State, setting .. 715
DUT Power Supply... 94
DUT_PIN() macro ..254
dutadr().. 767
dutdata() .. 767
dutmar()... 767
DutNum... 179
DutNumArray ... 179
DutPin ... 254
DUT-pin to Tester-pin Connection Requirements, Branch-

on-error .. 1418
dutpin_info() ... 255
dutsar() .. 789

DUT-specific Pin Lists ... 277
dutxadr().. 767
dutyadr().. 767
DWORD_VARIABLE() macro.................................. 2271
DWordArray ... 240
DXBASE... 1345
DXFIELD ... 1345
DXMAIN .. 1345
DYBASE... 1345
DYFIELD ... 1345
DYMAIN .. 1345
Dynamic Current Test Functions

DPS .. 401
Dynamic DC Tests .. 366
Dynamic Test Functions

HV.. 434
PMU... 472
PTU.. 525

E
ECR... 161
ecr Data Type.. 853
ECR Error Counters .. 165
ECR Functions .. 850
ECR Mini-RAM.. 166
ecr_all_clear() ... 856
ecr_all_ioc_get() ... 906
ecr_all_tecs_get() .. 906
ecr_any_overflow_get() .. 857
ecr_area_clear()... 897
ecr_cache_enable() ... 886
ecr_col_ram_read() ... 900
ecr_col_ram_write().. 901
ecr_column_ram_scan().. 858
ecr_compare_reg_get() ... 860
ecr_compare_reg_set().. 860
ecr_config_get() .. 868
ecr_config_set() .. 862
ecr_configured_get()... 870
ecr_counters_clear().. 903
ecr_counters_config_get() .. 873
ecr_counters_config_set()... 873
ecr_ddr_mode_get() .. 925
ecr_ddr_mode_set() .. 925
ecr_dut_number_get()... 875
ecr_dut_number_set() ... 875
ecr_error_add() ... 904
 2/27/09 Pg-2726

ecr_error_counter_get() .. 907
ecr_error_counter_set() ... 907
ecr_error_delete().. 908
ecr_error_get() .. 910
ecr_error_set() ... 911
ecr_fast_image_read()... 877
ecr_fast_image_write() ... 877
ecr_file_image_read() ... 879
ecr_file_image_write().. 879
ecr_interleave_get() .. 871
ecr_main_ram_scan().. 880
ecr_miniram_config_get() .. 887
ecr_miniram_config_set() ... 887
ecr_miniram_read()... 912
ecr_miniram_scan() .. 892
ecr_miniram_write() ... 914
ecr_overflow_get()..894
ecr_rams_clear().. 916
ecr_rams_update()... 917
ecr_row_ram_read().. 919
ecr_row_ram_scan().. 895
ecr_row_ram_write() .. 920
ecr_scramble_bank_get() .. 922
ecr_scramble_bank_set() .. 922
ecr_scramble_ram_read().. 923
ecr_scramble_ram_write() .. 923
ecr_write_mode_get() ... 897
ecr_write_mode_set().. 897
ecr_x_y_data_set() ..924
EcrCountingModes ... 853
EcrErrorCounters .. 852
EcrFastDirection ... 852
EcrRamTypes.. 852
EcrScrambleRamTypes... 852
ECRTool ... 2006
EcrWriteMode... 852
Edge Strobe Mode... 604
edge_strobe()... 604
EdgeTypes... 598
Electrical Address ... 1318
EnableExcelAppEvents() .. 2669
ENDLOOP Pattern Instruction 1594
Engineering Mode... 1846
ENOB.. 1149
Entire Mode, BitmapTool Update Option................... 1899
Entire XL Mode, BitmapTool Update Option 1899
Environment Variable

DEFERRED_TOOL_PATH................................ 2684

PATH... 2684
PATTERN_PATH... 2684
SIMULATED_APG .. 2684
SIMULATED_HD .. 2684
SIMULATED_LVM ... 2685
SIMULATED_PE.. 2685
SIMULATED_PTI .. 2685
SIMULATED_SITES.. 2685

Environmental Variable Scope 2685
Environmental Variables .. 2683
EPS, STDF Record Type .. 2603
EQFDIS... 1437
EQFN_INV_EN.. 1277
ERR_ABORT ... 1386
ERR_ALL ... 1386
ERR_ANOTB ... 1386
ERR_BNOTA ... 1386
ERR_DUT1... 1387
ERR_DUT8... 1387
erradr() .. 767
errmar() ... 771
error... 238
Error Catch RAM.. 161
Error Catch RAM Software .. 848
Error Flag .. 88
Error Flag vs. Error Latch... 88
Error Latch .. 88
Error Line Reset from CPU .. 344
Error List, Redundancy Analysis 1684
Error Logic.. 135
Error Pipeline Requirements....................................... 1269
error_flag_enable() ... 345
errsar()... 789
ERRSRC1 ... 1389
ERRSRC2 ... 1389
ERRSRC3 ... 1389
ERRSRC4 ... 1389
errvar() .. 781
errxadr() .. 767
erryadr() .. 767
Excel Event Detection... 2669
Excel Related Functions ... 2651
Excel Value Set/Get Functions 2665
ExcelAppEventsType ... 2347
Executing Functional Tests... 701
Executing Shmoos and Searches Interactively 2141
Executing Shmoos and Searches Programmatically... 2146
Execution Context Functions.. 290
 2/27/09 Pg-2727

Execution Order .. 222
Expect Data Latency, APG ... 1286
expect_delay() ... 1286
expectdata() ... 770
EXTERN_BOOL_VARIABLE() macro 2271
EXTERN_CONFLICT_LIST() macro340
EXTERN_CSTRING_VARIABLE() macro.............. 2271
EXTERN_DOUBLE_VARIABLE() macro............... 2271
EXTERN_DWORD_VARIABLE() macro 2271
EXTERN_FLOAT_VARIABLE() macro 2271
EXTERN_INT_VARIABLE() macro 2271
EXTERN_INT64_VARIABLE() macro 2271
EXTERN_ONEOF_VARIABLE() macro.................. 2271
EXTERN_PATTERN_SET() macro 1233
EXTERN_PIN_ASSIGNMENTS() macro................... 261
EXTERN_PIN_SCRAMBLE....................................... 572
EXTERN_PIN_SCRAMBLE() macro569
EXTERN_PINLIST() macro .. 274
EXTERN_SEQUENCE_TABLE() macro 307
EXTERN_SNAPSHOT() macro................................. 2450
EXTERN_TEST_BIN .. 351
EXTERN_TEST_BIN_GROUP() macro 353
EXTERN_TEST_BLOCK() macro 329
EXTERN_UINT64_VARIABLE() macro 2271
EXTERN_VIHH_MAP() macro................................... 586
EXTERN_VOID_VARIABLE() macro 2271
EXTERN_WAVEFORM() macro 980

F
Fail Signal MUX

Logic Error Catch .. 663
Memory Error Catch .. 665

Fail Signal MUX, DDR .. 659
fail_signal_mux() .. 677
FailMuxSelectOpt ... 940
FAR, STDF Record Type ... 2604
Fast Address Axis, APG ... 1281
fatal() ... 241
fatal(), Text Format Options ... 243
FFT Aliasing ... 1163
File Menu, MSWT ..2032
File->Close, MSWT Control....................................... 2033
File->Compare Waveforms, MSWT Dialog............... 2047
File->Compare, MSWT Control 2032
File->Exit, MSWT Control ... 2033
File->Generate Menu, MSWT 2033
File->Generate, MSWT Control 2032

File->Generate->Constant, MSWT Control 2034
File->Generate->Gaussian Noise, MSWT Control 2034
File->Generate->Multitone Sine, MSWT Control...... 2034
File->Generate->Periodic Pink Noise, MSWT Control

2034
File->Generate->Periodic White Noise, MSWT Control ...

2034
File->Generate->Ramp, MSWT Control 2034
File->Generate->Sine, MSWT Control 2035
File->Generate->Square, MSWT Control 2035
File->Generate->Triangle, MSWT Control 2035
File->Generate->White Noise, MSWT Control 2035
File->Open, MSWT Control....................................... 2032
File->Print, MSWT Control.. 2033
File->Save As, MSWT Control 2033
File->Save, MSWT Control.. 2033
filter() .. 1944
find_by_mar() ... 774
find_by_var() .. 774
find_label().. 742
find_mar() ... 772
find_sar()... 790
find_var() .. 781
finish ... 238
FLOAT_VARIABLE() macro.................................... 2271
FloatArray ... 240
focus() ... 2537
for_each() ..1943, 2561
Forced I/O State, PE Channel 1289
FORCEI .. 445
FORCEV... 445
Frequency Measurement, Pin, see Pin Frequency Measure-

ment
FrontPanelTool ... 2012
FTR, STDF Record Type.. 2604
FTRBlock STDF Structure ... 2615
fullec ... 238
fumble()...247, 2284
Functional Pin-pairs .. 215
funtest() ... 701

G
Gaussian Noise Waveform Generation, MSWT......... 2036
GDR, STDF Record Type... 2604
Generating Constant Waveforms, MSWT.................. 2035
Generating Gaussian Noise Waveforms, MSWT 2036
Generating Multi-tone Waveforms, MSWT 2037
 2/27/09 Pg-2728

Generating Pink/White Noise Waveforms, MSWT.... 2039
Generating Ramp/Triangle Waveform, MSWT.......... 2040
Generating Sine Waveform, MSWT........................... 2042
Generating Square Waveform, MSWT.......................2044
Generic Data Record (GDR) Functions, STDF 2616
get() ... 1946
get(), Test Bin Function .. 355
GET, USERRAM Operand... 1458
get_adhiz() .. 747
get_all_tools() ... 2500
get_bin(), Test Bin Function ... 358
get_chip_select() ... 745
get_invsns() ... 749
get_jca() ..751–752
get_mar() ... 752
get_open_file_name() ... 2690
get_ps().. 758
get_save_file_name() .. 2690
get_scanpatterns() ... 791
get_tset().. 760
get_udata() .. 762
get_vihh() .. 764
GetActiveCell() ... 2660
GetActiveSheet()... 2659
GetArray() ... 2668
getedge().. 617
getedge1().. 625
getedge2().. 625
getedge3().. 625
getedge4().. 625
getformat() .. 629
GetSelectionRange() ... 2660
GetSysColor2593, 2596, 2598–2599
GetSysColor() ... 2594
Getter Functions, Parallel Test...................................... 178
GetVal() .. 2666
GOSUB ...1362, 1600
GPIO Port.. 169
gpio_direction_set() .. 798
gpio_mode_set().. 797
gpio_value_get() ... 799
gpio_value_set().. 799
GPIOMode .. 794
Graph Controls, MSWT View Control2049
GRAPHIC() macro, User Dialog 2532
Grid Call-back Function

GridBackgndColorCallback() 2596
GridCellClickedCallback() 2595

GridCellFormatCallback() 2591
GridCellTextCallback() 2589
GridFocusBackgndColorCallback() 2598
GridSelectedBackgndColorCallback() 2597
GridSelectedTextColorCallback() 2593
GridTextColorCallback()..................................... 2592

Grid Call-back Functions, User Dialogs..................... 2589
grid_column_pixel_width_set() 2583
GRID_CONTROL() Macro, User Dialogs................. 2573
grid_create() .. 2579
grid_fixed_col_width_set()... 2581
grid_fixed_row_height_set()....................................... 2582
grid_focus_cell_get() .. 2588
grid_initialize() ... 2585
grid_reset() .. 2588
grid_row_pixel_height_set()....................................... 2584
grid_setup() ... 2580
grid_update()... 2586
GridBackgndColorCallback() 2596
GridCellClickedCallback() ... 2595
GridCellFormatCallback() .. 2591
GridCellTextCallback() .. 2589
GridFocusBackgndColorCallback() 2598
GridSelectedBackgndColorCallback() 2597
GridSelectedTextColorCallback() 2593
GridTextColorCallback() .. 2592
group_bin(), Test Bin Group Function 362
group_reset(), Test Bin Group Function....................... 360
group_total(), Test Bin Group Function 362

H
HBR, STDF Record Type... 2604
HDTesterPin ... 237
HEX_CONTROL() macro, User Dialogs................... 2531
hex_display()... 2532
High Voltage Source/Measure Unit (HV) 98
High Voltage Source/Measure Unit Functions 422
History RAM, WaveTool.. 2209
HOLD ... 1344
hold_pattern_state() .. 713
HOLDDR.. 1433
Holding State Between Patterns.................................... 712
HOLDYN.. 1436
Host / Site / Tool Communication 2437
Host Begin Block.. 297
Host Debug Mode ...1846, 1878
Host End Block ... 299
 2/27/09 Pg-2729

Host Waiting for Site to Load 298
host_begin.cpp .. 221
HOST_BEGIN_BLOCK() macro................................. 298
HOST_CONFIGURATION() macro............................ 293
HOST_END_BLOCK() macro..................................... 299
HOST_SYNCHRONIZATION_BLOCK() macro....... 324
HostBeginBlock_find() ... 2474
HostBeginBlock_use() .. 2482
HostConfiguration_find().. 2474
HostConfiguration_use()... 2482
HostEndBlock_find() .. 2474
HostEndBlock_use() ... 2482
HostSynchronizationBlock ... 324
hours.. 976
HSBBoard ... 238
HV

Connect/Disconnect Functions 423
Current Test Limit Functions................................. 426
Dynamic Test Functions .. 434
Static Test Functions.. 430
Voltage Programming Functions 424
Voltage Test Limit Functions 428

hv_ac_test_supply() .. 434
hv_connect().. 423
hv_disconnect() ... 423
hv_ipar_high()... 426
hv_ipar_low().. 426
Hv_meas() ... 377
Hv_pf().. 378
hv_test_supply().. 430
hv_voltage_get() ... 424
hv_voltage_set().. 424
hv_vpar_high().. 428
hv_vpar_low() ... 428

I
I*1, STDF Data Type Code .. 2605
I*2, STDF Data Type Code .. 2605
I*4, STDF Data Type Code .. 2605
I/O Port Functions, DUT Board.................................... 793
I/O Ports, DUT Board ... 168
I/O Timing and Control... 606
I/O Timing, DDR .. 655
I2C Bus ... 168
I2C Bus Functions... 794
I2C_control ... 794
I2C_operation() ... 794

iacc .. 370
iacc_count_get().. 376
iacc_count_set() .. 375
Ignored DUTs Set (IDS) ... 200
ignored_duts_enable()... 201
IMMEDIATE_CONTROL() macro, User Dialogs 2531
INC..1362, 1600
INCLUDE_PATTERN_SET() macro 1232
INCLUDE_PIN_ASSIGNMENTS() macro................. 261
INCLUDE_PIN_SCRAMBLE..................................... 572
INCLUDE_PIN_SCRAMBLE() macro 569
INCLUDE_PINLIST() macro 274
INCLUDE_SCRAMBLE_MAP................................... 572
INCLUDE_SEQUENCE_TABLE() macro.................. 306
INCLUDE_SNAPSHOT() macro............................... 2450
INCLUDE_TEST_BIN_GROUP() macro 353
INCLUDE_VIHH_MAP() macro................................. 586
INCLUDE_WAVEFORM() macro 981
INCR ...1352, 1622
INCREMENT ... 1344
increment(), Test Bin Function 356
Initialization Hook .. 303
INITIALIZATION_HOOK() macro 303
InitializationHook_find() .. 2474
INL & DNL Functions.. 1189
insert() ... 1941
install_debug_hook() .. 2671
install_pinstatus_hook() .. 2678
Instruction Execution, APG .. 1328
INT_VARIABLE() macro .. 2271
INT64_VARIABLE() macro 2271
Int64Array... 240
INTADR ... 1380
intadr()... 742
IntArray... 240
INTEN... 1380
INTENADR .. 1380
intercept() ..247, 2283
Intercepting User Variables .. 2283
Interleaving, DBM DRAM ... 808
Interrupt Timer Functions, APG 1322
Interrupt Timer Hardware, APG 151
invoke() Resource ... 2484
invoke(), Test Bin Function .. 359
InvokeExcelEx() ... 2653
Invoking a File Browser.. 2690
Invoking and Using BitmapTool 1895
Invoking User Variable Body Code............................ 2273
 2/27/09 Pg-2730

INVSNS .. 1443
io_enable() .. 1289
IODRIVE .. 603
IOSTROBE ... 603
ipar_force().. 446
ipar_high()... 449
ipar_low().. 449
is_magnum() ... 240
Iterators, Active DUTs Set.. 194

J
JAM Logic .. 149
JAM Logic Configuration Functions, APG 1292
Jam Register Functions, APG 735
JAMBASE .. 1445
JAMBUF... 1445
JAMDAT .. 1445
JAMJAM... 1446
JAMMAIN .. 1445
JAMRAMDECR... 1446
JAMRAMHOLD .. 1446
JAMRAMINCR .. 1446
jamreg() ... 735
JUMP ..1363, 1600
jxTYPE, STDF Data Type Code................................. 2606

K
kxTYPE, STDF Data Type Code................................ 2606

L
label_offset() ... 776
Labels in Test Patterns .. 1255
LATCH ..1383, 1591, 1615, 1626
Latency

APG Drive Data... 1286
APG Expect Data... 1286
APG Strobe .. 1286

LBDATA .. 1425
lbdata() .. 801
LEC Capture Data ... 949
LEC Capture Options.. 938
LEC Counters.. 931
LEC Mode... 937
LEC Operation, DDR.. 939
LEC Software Compatibility, Magnum 1/2/2x vs. Maver-

ick-I/-II... 955
LEC Tool... 2014

LEC_after_error ..238, 939
LEC_before_error ...238, 939
LEC_center_error ...238, 939
lec_config_get() .. 942
lec_config_set()... 941
lec_configured_get() ... 944
LEC_first_vectors ...238, 939
LEC_last_vectors ..238, 939
lec_mode_get() ... 945
lec_mode_set() .. 945
LEC_only_error .. 238
LEC_only_errors... 939
lec_scan() .. 947
LecCounter.. 940
LecEntry.. 941
LecEntryArray .. 941
LecMode ... 940
level_set_value_change().. 1670
Levels, Controlling from the Test Pattern, Magnum 11649
LEVELSET Option

SET, ... 1662
TWEAK... 1662

LEVELSET Options
RANGE.. 1662

LEVELSET Pattern Instruction 1662
Line Continuation Character, Test Pattern.................. 1261
LineFitMethod .. 970
Load Reference Voltage, VZ .. 551
load() function, Pattern Sets.. 1233
load_scan_from_file()... 791
Loadboard Data Bits ... 801
Loadboard ID .. 803
Loadboard User Data Area ... 803
Loading DLLs... 2288
LOCAL ... 445
Logic Error Catch (LEC) .. 930
Logic Error Catch, DDR ... 663
Logic Pattern Execution Start Vector, Stop Vector 705
Logic Pattern Related Functions................................... 779
Logic Pattern Rules, Magnum 1/1/2x 1579
Logic Test Patterns ... 1571
Logic Vector Bit Codes .. 1576
Logic Vector Instructions, Magnum 1/2/2x................ 1208
Logic Vector Memory... 157
Logic Vector Syntax ... 1573
Logic Vectors, DDR ... 645
logic, Pattern Type Attribute....................................... 1250
Logical Address .. 1318
 2/27/09 Pg-2731

Logical vs. Physical, vs. Electrical Addresses 1317
LogicVector_find() ... 2474
LongArray... 240
Look & Feel, MSWT .. 2031
Looping and Single Stepping...................................... 1990
LS_DPS... 1650
LS_DPS_CURRENT_HIGH 1650
LS_DPS_CURRENT_LOW....................................... 1650
LS_DPS_VPULSE..1650
LS_HV_IPAR_HIGH ... 1651
LS_HV_IPAR_LOW .. 1651
LS_HV_VOLTAGE ... 1651
LS_HV_VPAR_HIGH.. 1651
LS_HV_VPAR_LOW .. 1651
LS_PMU_IPAR_FORCE ... 1650
LS_PMU_IPAR_HIGH .. 1650
LS_PMU_IPAR_LOW ... 1650
LS_PMU_VCLAMP_NEG .. 1650
LS_PMU_VCLAMP_POS ... 1650
LS_PMU_VPAR_FORCE.. 1650
LS_PMU_VPAR_HIGH... 1650
LS_PMU_VPAR_LOW.. 1650
LS_PTU_IPAR_FORCE .. 1651
LS_PTU_IPAR_HIGH ... 1651
LS_PTU_IPAR_LOW .. 1651
LS_PTU_VCLAMP_NEG.. 1651
LS_PTU_VCLAMP_POS .. 1651
LS_PTU_VPAR_FORCE... 1651
LS_PTU_VPAR_HIGH.. 1651
LS_PTU_VPAR_LOW... 1651
LS_VIH... 1650
LS_VIHH .. 1650
LS_VIL ... 1650
LS_VOH ... 1650
LS_VOL.. 1650
LS_VTT .. 1650
LS_VZ... 1650
LSENABLE Pattern Instruction.................................. 1658
LVM.. 157
LVM Branch/Label Limitations.................................. 1580
lvm_error_mode() ... 771
LVMTool .. 2017

Copy/Paste LVM Pattern Data 2024
DDR ... 2027
Limitations ... 2028
PINFUNC Field Display & Edit 2023
Simulation .. 2028
Starting... 2018

Use ... 2019

M
Macros, System... 227
Magnum 1/2/2x Logic Pattern Rules 1579
Magnum 1/2/2x Simulation Setup 1836
Magnum 1/2/2x vs. Maverick-I/-II LEC Software Compat-

ibility.. 955
Magnum Configurations ... 69
Magnum System Type Get Function, is_magnum()..... 240
main() .. 221
MAINBASE.. 1445
MAINBUF .. 1445
MAINJAM.. 1445
MAINMAIN ... 1445
MAKE_2D_ARRAY()2667–2668
make_bitmap_scheme() .. 1926
make_permutation() .. 1932
MAR address Operand.. 1377
MAR BOE Type Operands... 1385
MAR Branch Condition Operands.............................. 1360
MAR Default Pattern Instruction................................ 1359
MAR DONE ... 1261
MAR Engine ... 129
MAR Error Control Operands 1382
MAR Error-choice Operands...................................... 1388
MAR Instruction ... 1354
MAR Interrupt Operands .. 1379
MAR Strobe Control Operands 1377
MAR Timer Operands .. 1381
MAR/VAR Engine Block Diagram 129
mar_error_choice_get()... 1417
mar_error_choice_set() ... 1416
Master Clock... 592
mav1, Pattern System Attribute 1248
mav2, Pattern System Attribute 1248
Maverick-II VUDATA Instruction 1628
max_dut() .. 193
MCTR ... 1616
measure()... 374
Measurement Average Count Functions....................... 375
Memory Error Catch, DDR... 665
Memory Pattern Instruction, Default 1328
Memory Pattern Instructions, Magnum 1/2/2x........... 1206
Memory Patterns, DDR .. 647
Memory Size Options, DBM .. 157
Memory Test Patterns ... 1324
 2/27/09 Pg-2732

memory, Pattern Type Attribute 1250
Memory-pattern Related Functions, APG 722
menu_add() ... 1870
menu_delete().. 1870
menu_enable()... 1870
minutes .. 976
MIR, STDF Record Type.. 2604
MIRBlock STDF Structure ... 2620
Mixed Memory/Logic Patterns 1639
mixed, Pattern Type Attribute..................................... 1250
MixedSync Pattern Rules.. 1645
mixedsync, Pattern Type Attribute 1250
MKS Units .. 232

Background.. 232
Conditional Definition of the Legacy Units Macros ...

234
Enabling ... 234
Legacy Units .. 232
MKSAmps ... 233
MKSFrequency.. 233
MKSPeriod .. 233
MKSTime .. 233
MKSVolts .. 233
Usage Issues... 235

MKSAmps .. 233
MKSFrequency ... 233
MKSPeriod.. 233
MKSVolts ... 233
Modifying ONEOF Variables 2282
MonitorApp... 2682
mono_bitmap .. 2256
MPR, STDF Record Type... 2604
MRR, STDF Record Type .. 2604
MSWT

.nwav Grammar Description.................................. 968
Calculator Compare Menu................................... 2073
Calculator Controls .. 2064
Calculator Convert Menu..................................... 2071
Calculator Dialogs/RPN Option 2088
Calculator DSP Menu .. 2068
Calculator Encode Menu 2082
Calculator Math Menu ... 2065
Calculator Overview .. 2062
Calculator Stack Menu... 2074
Calculator Twiddle Menu 2083
File->Generate Menu... 2033
Look & Feel ... 2031
Programming Functions....................................... 2089

Properties, View Control 2049
Tester->Read Waveform Dialog.......................... 2058
Tester->Set Waveform Dialog............................. 2060
Toolbar File Menu ... 2032
Toolbar Tester Menu ... 2057
Toolbar View Menu... 2049
Toolbar Window Menu.. 2061
Usage Model .. 2030
View->Angles as Degrees 2050
Waveform File Formats ... 967

MSWT, Mixed Signal Wave Tool 2029
mswt_always_on_top() ... 2093
mswt_angles_as_degrees() ... 2101
mswt_auto_synchronize() ... 2096
mswt_bar... 2090
mswt_close_windows()... 2094
mswt_db_absolute... 2090
mswt_db_auto ... 2090
mswt_display_file() .. 2094
mswt_display_grid() ... 2104
mswt_display_waveform() ... 2095
mswt_double ... 2090
mswt_fixed_left .. 2090
mswt_fixed_right .. 2090
mswt_hex .. 2090
mswt_integer... 2090
mswt_line.. 2090
mswt_line_mark.. 2090
mswt_magnitude ... 2090
mswt_minimize() .. 2092
mswt_present().. 2091
mswt_reset_graph_controls()...................................... 2100
mswt_restore() .. 2092
mswt_sample... 2090
mswt_samples ... 2090
mswt_set_axis_units()... 2105
mswt_set_plot_mode().. 2103
mswt_set_timeout()... 2097
mswt_set_trace_width() .. 2104
mswt_set_x_axis_mode() ... 2101
mswt_set_y_axis_mode() ... 2101
mswt_set_y_axis_reference() 2102
mswt_set_y_range... 2106
mswt_staircase .. 2090
mswt_start() .. 2091
mswt_synchronize() .. 2096
mswt_view_calculator_controls()............................... 2098
mswt_view_compare_controls()................................. 2099
 2/27/09 Pg-2733

mswt_view_cursor_controls()..................................... 2100
mswt_view_graph_controls()...................................... 2098
mswt_x_native .. 2090
mswt_y_auto ... 2090
mswt_y_native .. 2090
MSWTAxisUnits .. 2090
MSWTPlotMode... 2090
MSWTXAxisMode... 2090
MSWTYAxisMode... 2090
MSWTYRangeMode .. 2090
MULTI_DUT.. 238
MULTI_DUT_CALL_BLOCK() macro 329
multi_dut_features().. 194
MULTI_DUT_TEST_BLOCK() macro 329
MULTI_DUT_TEST_BLOCK_SEQUENTIAL() macro ..

329
Multi-DUT Test Programs .. 173
Multiple Pin Assignment Tables................................... 257
Multiple User Variables, Transferring 2449
Multi-Site System Architecture 70
Must-repair.. 1690
Mutually Prime ... 1074
MUX Mode ... 668
MUX, Super-MUX and DDR 632
mux_mode() .. 674
mux_mode_disable()... 674
mux_mode_get() ... 672
mux_mode_set().. 672
MuxModes .. 672

N
N*1, STDF Data Type Code....................................... 2606
NAND ... 1344
negative_clamp()... 459
Newline in Test Pattern Macros.................................. 1260
NewWorkbook .. 2347
NEXT .. 310
Nextest Software Version, Retrieving 227
NEXTEST_PI ... 970
NEXTEST_TWO_PI .. 970
no_dps() .. 282
no_hv() .. 284
no_iacc .. 370
no_pe() .. 285
no_vcomp.. 369
NOCLKS... 1423
NOCOUNT1351–1352, 1621–1622

NODEST... 1345
NOINT .. 1380
NOLATCH1383, 1592, 1615, 1627
Non-return-to-zero .. 602
NOR .. 1344
norange.. 369
NOREAD.. 1379
NOTINV ... 1443
NRZ... 602
numx()... 1278
numy()... 1278

O
oldval... 2268
ONEOF_VARIABLE() macro 2271
OnHost() ... 290
ONINITDIALOG() macro, User Dialogs................... 2531
OnSite()... 290
OnTool() ... 290
OpenWorkBookEx() ... 2656
OR ...1344, 1433
output().. 241
output(), Text Format Options 243
OVER...1384, 1592, 1617, 1627
over_inhibit() .. 347
Over-programming Control Stimulus Selection 347
OXBASE... 1346
OXFIELD ... 1346
OXMAIN .. 1346
OYBASE... 1346
OYFIELD ... 1346
OYMAIN .. 1346

P
parallel... 370
Parallel Test .. 171

Active DUTs Set (ADS) .. 179
Active DUTs Set Iterators 194
active_dut_get() ... 191
active_duts_disable() ... 188
active_duts_enable() .. 186
active_duts_get().. 191
ActiveDutIterator ... 194
ADS Save/Modify/Restore Example 185
all_results_match() .. 213
any_results_match()... 214
DutNum ... 179
 2/27/09 Pg-2734

Getter Functions... 178
Ignored DUTs Set (IDS) .. 200
ignored_duts_disable()... 204
ignored_duts_enable() ... 201
ignored_duts_get() ... 205
max_dut()... 193
multi_dut_features()... 194
Multi-DUT Test Program 173
result_get() ... 210
result_set() ... 210
results_get() ... 211
results_set() .. 211
SoftwareOnlyActiveDutIterator............................. 194

parallel_pmu.. 370
Parametric Background Voltage 104
Parametric Settling Time .. 370
parametric_mode() ..493
Parking Blocks .. 321
PARKING_BLOCK() macro.. 321
partest() ...465, 472
PartestOpt..369–370
partime().. 370
pass_ncl ... 369
pass_nicl.. 369
pass_nivl.. 369
pass_pcl ... 369
pass_vg.. 369
pass_vl... 369
PassCond... 369
PAT_INV_EN... 1277
Patcom, Pattern Compiler ... 1228
PATCOM_CUSTOM_PREPROCESSOR 1258
PATCOM_PREPROCESS ... 1258
PATH Environment Variable...................................... 2684
PatStopCond.. 238

error.. 238
finish .. 238
fullec .. 238
LEC_after_error... 238
LEC_before_error .. 238
LEC_center_error .. 238
LEC_first_vectors .. 238
LEC_last_vectors... 238
LEC_only_error ... 238

Pattern #define .. 1259
Pattern #Include Files.. 1257
Pattern and Timing System ... 111
Pattern Attribute Defaults, Setting 1251

Pattern Attributes .. 1243
Pattern Attributes, Setting Directly............................. 1251
Pattern Build (Compile) Operation............................. 1218
Pattern C Preprocessor Support 1257
Pattern Comments... 1252
Pattern Compiler, Patcom ... 1228
Pattern Directives

VECDEF.. 1582
Pattern Execution Start Vector, Stop Vector 705
Pattern Execution State, Checking................................ 709
Pattern Execution, Stopping.. 710
Pattern Files and Directories 1227
Pattern Initial Conditions .. 1253
Pattern Instruction Format, APG 1326
Pattern Instruction Format, Memory........................... 1326
Pattern Instruction Identifier(%) 1252
Pattern Labels.. 1255
Pattern Line Continuation Character 1261
Pattern Load PATH... 1230
Pattern Loading... 1229
Pattern Rate Attribute

double .. 1249
single.. 1249

Pattern Rate Attributes .. 1248
Pattern Rules, DDR... 645
Pattern Sets

add() function... 1233
ADD_PATTERN() macro 1232
Description... 1231
EXTERN_PATTERN_SET() macro................... 1233
INCLUDE_PATTERN_SET() macro 1232
load() function ... 1233
PATTERN_SET() macro..................................... 1232

Pattern Subroutines ... 1265
Pattern System Attribute

mav .. 1248
mav2 .. 1248

Pattern System Attributes ... 1247
Pattern Type Attribute

logic ... 1250
memory .. 1250
mixed ... 1250
mixedsync .. 1250

Pattern Type Attributes ... 1250
PATTERN() statement.. 1242
PATTERN_DONE ... 239
Pattern_find() .. 2474
PATTERN_PATH Environment Variable1230, 2684
 2/27/09 Pg-2735

PATTERN_PATH, Environment Variable................. 1230
PATTERN_PAUSED ... 239
pattern_paused().. 712
PATTERN_RUNNING .. 239
PATTERN_SET() macro .. 1232
pattern_state().. 709
PATTERN_STOPPED ... 239
PatternDebugTool ... 2107
Patterns That Loop Forever... 707
PatternSet_find() ... 2474
PatternState ... 239
PAUSE ..1363, 1600
PCR, STDF Record Type.. 2604
PE

50-ohm Termination Voltage, VTT....................... 560
Comparator Voltages, VOH/VOL548
Connect/Disconnect Functions 563
Drive Voltages, VIH/VIL 543
Load Reference Voltage, VZ 551
VIHH Voltage..546

PE Channel Forced I/O State 1289
PE Comparators .. 80
PE Driver... 76
PE Driver DClk Mode... 77
PE Driver Vtt Mode .. 77
PE Driver Vz Mode... 77
PE Driver, Vihh Mode .. 77
PE Levels

Drive, Compare, Load ... 541
PE Levels, Controlling from the Test Pattern 1648
PE Sub-site Architecture ... 72
pe_driver_mode_get() ... 561
pe_driver_mode_set() ... 561
PEBoardList_find() ... 2474
PEDriverMode .. 543
PEDriverState.. 714
Per I/O Spares, RA Software 1693
Per Pin Error Status... 704
Per-edge Functions

Drive/Strobe... 622
permutation Data Type......................................1930–1931
Permutation Memory Management 1932
Per-pin Parametric Test Unit (PTU) 83
PFState .. 238
PGR, STDF Record Type ... 2604
Physical Address ... 1318
Pin Assignment Table ...256, 292
Pin DC Static State Functions....................................... 717

Pin Electronics (PE).. 73
Pin Electronics Voltages/Currents 541
Pin Frequency Measurement... 683

Operation ... 684
Overview.. 683
pin_frequency_meas() ... 693
pin_frequency_meas_get() 695

Pin Lists .. 273
Pin Lists, DUT-specific .. 277
Pin Scramble ... 114
Pin Scramble Functions & Macros 567
Pin Scramble Macros .. 568
Pin Scramble Map... 567
Pin Scramble Maps ... 292
Pin Scramble Table ... 567
Pin Scramble, DDR... 643
Pin State, setting.. 715
Pin Status Hook... 2670
PIN_ASSIGNMENTS() macro 260
pin_assignments.cpp ... 221
pin_connect() .. 564
pin_dc_state_get()... 717
pin_dc_state_set() ... 717
pin_frequency_meas()... 693
pin_frequency_meas_get().. 695
pin_info() .. 279
pin_list.cpp.. 222
Pin_meas() .. 377
Pin_pf() ... 377
PIN_SCRAMBLE... 572
PIN_SCRAMBLE() macro... 568
pin_scramble.cpp .. 222
PinAssignments_find() ... 2474
PinAssignments_use()... 2482
PinFreqMeasMode.. 693
PINFUNC Pattern Instruction..................................... 1451
Pink Noise Waveform Generation, MSWT 2039
PINLIST() macro .. 274
PinList* ... 274
pinlist_create() .. 278
pinlist_destroy() .. 278
PinList_find() .. 2475
Pin-pairs, Functional ... 215
PINS_OF_1DUT() macro... 278
PINS_OF_32DUT() macro... 278
PINS1() macro .. 275
PINS8() macro .. 276
PinScramble_find() ... 2475
 2/27/09 Pg-2736

PinScramble_use() ..2482
PinStatus.. 2679
pipe_clear() ... 778
pipelined.. 1630
Pipelines, APG, Clearing .. 778
PIR, STDF Record Type... 2604
PLR, STDF Record Type.. 2604
PMR, STDF Record Type... 2604
PMU .. 100

As Voltage/Current Source 494
Compensation Capacitors 500
Current Test Limit Functions................................. 449
Dynamic Test Functions .. 472
Force Current Functions .. 445
Force Voltage Functions .. 452
Static Test Functions.. 465
Testing DPS Pins ... 485
Testing HV Pins... 489
Voltage Clamp Functions 459
Voltage Test Limit Functions 455

PMU Functions ... 442
pmu_comp_cap() .. 500
pmu_connect() .. 494
pmu_connect_at().. 496
pmu_disconnect().. 494
PMUMode... 445
PMUSense... 445
PointFailure... 854
PointFailure Structure ... 853
PointFailureArray.. 1704
POLAR_WAVE.. 973
PolarWave... 970
positive_clamp().. 459
prevadr().. 767
prevdata() .. 767
prevmar()... 767
prevsar() .. 789
prevxadr().. 767
prevyadr().. 767
Program Execution Control .. 287
Program Loading... 222
Program Un-Loading .. 226
Program Working Directory ... 226
Programming Functions, MSWT................................ 2089
Programming Timing & Formats.................................. 612
Progress Resource, User Dialogs 2548
Properties, MSWT View Control................................ 2049
PRR, STDF Record Type.. 2604

PRRBlock STDF Structure ... 2631
PS# ... 1452, 1590, 1624
PS_DASH ... 2263
PS_DASHDOT ... 2263
PS_DASHDOTDOT... 2263
PS_DOT.. 2263
ps_failed.. 2679
PS_na .. 239
ps_passed .. 2679
PS_SOLID .. 2263
ps_untested.. 2679
PS1 .. 239
PS64 .. 239
PSNumber ... 239
PTR, STDF Record Type.. 2604
PTRBlock STDF Structure ... 2633
PTU ... 83

As Voltage/Current Source.................................... 535
Connect/Disconnect Functions 506
Current Test Limit Functions................................. 509
Dynamic Test Functions .. 525
Force-current Functions... 506
Force-voltage Functions .. 512
Functions.. 503
Static Test Functions.. 519
Voltage Clamp Functions 516

ptu_ac_partest()... 525
ptu_clamp_enabled()... 517
ptu_connect() .. 536
ptu_disconnect().. 536
ptu_ipar_force_get() ... 506
ptu_ipar_force_set() .. 506
ptu_ipar_high_get()... 509
ptu_ipar_high_set() ... 509
ptu_ipar_low_get().. 509
ptu_ipar_low_set() .. 509
ptu_negative_vclamp_get()... 517
ptu_partest() .. 520
ptu_positive_vclamp_get() ... 517
ptu_vclamp_enable()... 517
ptu_vclamp_set()... 516
ptu_vpar_force_get()... 512
ptu_vpar_force_set() ... 512
ptu_vpar_high_get().. 514
ptu_vpar_high_set() .. 514
ptu_vpar_low_get()... 514
ptu_vpar_low_set() ... 514
PWA Number Get Function.. 803
 2/27/09 Pg-2737

PWA Revision Get Function... 803
PWB Number Get Function .. 803
PWB Revision Get Function... 803

Q
QuitExcel().. 2663

R
R*4, STDF Data Type Code 2605
R*8, STDF Data Type Code 2605
RA ... 1674
RA Built-in Call-back Function

ra_col_first_sparse ... 1810
ra_col_pref_sparse ... 1810
ra_exclusive ... 1818
ra_linear_eval... 1813
ra_must_repair ... 1763
ra_row_first_sparse.. 1810
ra_row_pref_sparse.. 1810
ra_shortest_col_use.. 1815
ra_shortest_row_use .. 1815

RA Call-back Function
RaColAvailableFunc.. 1807
RaColUseOK ... 1817
RaEvalFunc.. 1813
RaMustRepairFunc .. 1819
RaRepairFunc ..1815
RaRowAvailableFunc .. 1807
RaRowUseOK ... 1817
RaScanAreaCallbackFunc 1821
RaScanRCFunc .. 1820
RaSparseFunc ..1809

RA Software
Columns-Used-Together (CUT) 1700
Linked Segments.. 1711
Magnum vs. Maverick RA Functions.................. 1824
Must-repair... 1690
Per I/O Spares ..1693
Per-I/O Spare Mask ... 1697
RA Configuration .. 1706
RA Data and Lists.. 1683
RA Execution And Results 1748
RA Repair List Functions 1797
RA Segment ... 1710
RA Spares .. 1723
RA vs. Magnum Parallel Test.............................. 1688
RaErrorPosition ... 1685

Redundancy Call-back Functions 1806
Rows-Used-Together (RUT) 1700
Spare Rows, Spare Columns................................ 1691
Spare Segments.. 1702
Sparse-repair .. 1690

ra_bad_segment_get()... 1770
ra_bad_segments_count_get() 1770
ra_best_col_wipeout()... 1779
ra_best_row_wipeout() ... 1779
ra_col_first_sparse Built-in RA Call-back Function .. 1810
ra_col_pref_sparse Built-in RA Call-back Function .. 1810
ra_col_wipeout() ... 1793
ra_config_get().. 1709
ra_config_set() .. 1706
ra_dump().. 1756
ra_error_add() ... 1772
ra_error_count_get() ... 1755
ra_exclusive Built-in RA Call-back Function............. 1818
ra_execute()... 1749
ra_failed_cols_count_get() ... 1785
ra_failed_cols_get() .. 1787
ra_failed_rows_count_get() .. 1785
ra_failed_rows_get() ... 1787
ra_linear_eval RA Built-in Call-back Function.......... 1813
ra_linear_eval() ... 1813
ra_max_bad_segments_get() 1721
ra_max_bad_segments_set()....................................... 1721
ra_must_repair Built-in RA Call-back Function......... 1763
ra_must_repair().. 1763
ra_must_repair_needed() .. 1764
ra_repair_done().. 1767
ra_repaired_col_count_get() 1798
ra_repaired_col_get() .. 1799
ra_repaired_cols_get() .. 1801
ra_repaired_row_count_get()...................................... 1798
ra_repaired_row_get()... 1799
ra_repaired_rows_get() ... 1801
ra_reset() ... 1765
ra_result_get() ... 1754
ra_row_first_sparse Built-in RA Call-back Function . 1810
ra_row_pref_sparse Built-in RA Call-back Function . 1810
ra_row_wipeout().. 1793
ra_scan_area_callback().. 1773
ra_scan_area_callback_func_get().............................. 1774
ra_scan_area_callback_func_set() 1774
ra_scan_rc_func_get()... 1775
ra_scan_rc_func_set() ... 1775
ra_segment_config_get() .. 1715
 2/27/09 Pg-2738

ra_segment_count_get().. 1717
ra_segment_dump() .. 1760
ra_segment_get()... 1718
ra_segment_id_get().. 1719
ra_segment_linkage_count_get() 1722
ra_segment_lookup() .. 1720
ra_segment_make() ... 1713
ra_segment_repair_done() .. 1771
ra_segment_reset() ..1766
ra_shortest_col_use Built-in RA Call-back Function .1815
ra_shortest_row_use Built-in RA Call-back Function 1815
ra_shortest_spare_col_get() .. 1747
ra_shortest_spare_row_get() 1747
ra_single_spare_col_per_address RA Built-in Call-back

Function ... 1818
ra_single_spare_row_per_address RA Built-in Call-back

Function ... 1818
ra_spare_add()... 1729
ra_spare_col_count_get().. 1734
ra_spare_col_get()... 1736
ra_spare_col_lookup() .. 1738
ra_spare_col_make() ... 1724
ra_spare_colnum_get().. 1740
ra_spare_colnum_set() .. 1740
ra_spare_cols_get() ... 1739
ra_spare_cols_required()... 1783
ra_spare_config_get() ... 1730
ra_spare_current_mask_get()...................................... 1745
ra_spare_current_mask_set() 1745
ra_spare_dump() ... 1762
ra_spare_id_get() .. 1737
ra_spare_mask_count_get() .. 1743
ra_spare_mask_get() ... 1744
ra_spare_position_get()... 1742
ra_spare_position_set() ... 1742
ra_spare_repaired_errors_get() 1805
ra_spare_row_count_get() .. 1734
ra_spare_row_get() ... 1736
ra_spare_row_lookup() ... 1738
ra_spare_row_make().. 1724
ra_spare_rownum_get() .. 1740
ra_spare_rownum_set()... 1740
ra_spare_rows_get().. 1739
ra_spare_rows_required() ... 1783
ra_spare_use() ... 1768
ra_unusable_set() .. 1733
ra_usable_set() .. 1732
ra_what_repaired_col_get() .. 1803

ra_what_repaired_row_get()....................................... 1803
ra_wipeout_get() ... 1782
ra_worst_col_get() .. 1777
ra_worst_cols_get()... 1792
ra_worst_row_get()... 1777
ra_worst_rows_get() ... 1792
RaAvailableFunc RA Call-back Function 1807
RaColAvailableFunc RA Call-back Function 1807
RaColUseOK RA Call-back Function 1817
RaErrorPosArray... 1705
RaErrorPosition... 1705
RaEvalFunc RA Call-back Function 1813
Ramp Waveform Generation, MSWT 2040
RaMustRepairFunc RA Call-back Function............... 1819
Range .. 369
RANGE LEVELSET Options 1662
range1.. 369
range7.. 369
range8.. 369
RaRepairFunc RA Call-back Function 1815
RaResult .. 1706
RaRowUseOK RA Call-back Function 1817
RaScanAreaCallbackFunc RA Call-back Function 1821
RaScanRCFunc Call-back Function 1820
RaSegment .. 1704
RaSpareCol ... 1704
RaSpareColArray.. 1705
RaSpareColPosArray .. 1706
RaSpareRow ... 1704
RaSpareRowArray .. 1704
RaSpareRowPosArray .. 1706
RaSparseFunc RA Call-back Function 1809
RBoot Client File .. 2289
RDR, STDF Record Type... 2604
READ.. 1378
Read Waveform, MSWT Tester Control 2058
READUDATA.. 1378
READV... 1379
READZ ... 1379
reciprocal() .. 1010
Record Types, STDF .. 2603
RectArray.. 2660
Redundancy Analysis.. 1674
Redundancy Analysis Function

ra_bad_segment_get().. 1770
ra_bad_segments_count_get() 1770
ra_best_col_wipeout() ... 1779
ra_best_row_wipeout() .. 1779
 2/27/09 Pg-2739

ra_col_wipeout() .. 1793
ra_config_get()... 1709
ra_config_set() ... 1706
ra_dump()... 1756
ra_error_add() ..1772
ra_error_count_get() .. 1755
ra_execute() ... 1749
ra_failed_cols_count_get() 1785
ra_failed_cols_get() ... 1787
ra_failed_rows_count_get() 1785
ra_failed_rows_get() .. 1787
ra_max_bad_segments_get() 1721
ra_max_bad_segments_set()................................ 1721
ra_must_repair()... 1763
ra_must_repair_needed() 1764
ra_repair_done()... 1767
ra_repaired_col_count_get() 1798
ra_repaired_col_get()... 1799
ra_repaired_cols_get() ... 1801
ra_repaired_row_count_get()............................... 1798
ra_repaired_row_get() ... 1799
ra_repaired_rows_get() .. 1801
ra_reset() .. 1765
ra_result_get() ..1754
ra_row_wipeout()... 1793
ra_scan_area_callback_func_get().......................1774
ra_scan_area_callback_func_set()1774
ra_scan_rc_func_get() ... 1775
ra_scan_rc_func_set() .. 1775
ra_segment_config_get() 1715
ra_segment_count_get()....................................... 1717
ra_segment_dump() ... 1760
ra_segment_get() ... 1718
ra_segment_id_get() .. 1719
ra_segment_linkage_count_get()......................... 1722
ra_segment_lookup() ... 1720
ra_segment_make().. 1713
ra_segment_repair_done() 1771
ra_segment_reset()... 1766
ra_shortest_spare_col_get() 1747
ra_shortest_spare_row_get()................................ 1747
ra_spare_add() ... 1729
ra_spare_col_count_get()..................................... 1734
ra_spare_col_get() ... 1736
ra_spare_col_lookup() ... 1738
ra_spare_col_make().. 1724
ra_spare_colnum_get() .. 1740
ra_spare_colnum_set()... 1740

ra_spare_cols_get().. 1739
ra_spare_cols_required() 1783
ra_spare_config_get() .. 1730
ra_spare_current_mask_get() 1745
ra_spare_current_mask_set() 1745
ra_spare_dump() .. 1762
ra_spare_id_get() ... 1737
ra_spare_mask_count_get() 1743
ra_spare_mask_get().. 1744
ra_spare_position_get() 1742
ra_spare_position_set().. 1742
ra_spare_repaired_errors_get()............................ 1805
ra_spare_row_count_get() 1734
ra_spare_row_get() .. 1736
ra_spare_row_lookup().. 1738
ra_spare_row_make() .. 1724
ra_spare_rownum_get() 1740
ra_spare_rownum_set() 1740
ra_spare_rows_get() .. 1739
ra_spare_rows_required() 1783
ra_spare_use().. 1768
ra_unusable_set() ... 1733
ra_usable_set() ... 1732
ra_what_repaired_col_get() 1803
ra_what_repaired_row_get()................................ 1803
ra_wipeout_get().. 1782
ra_worst_col_get() ... 1777
ra_worst_cols_get() ... 1792
ra_worst_row_get().. 1777
ra_worst_rows_get() .. 1792

register_bitmap_scheme()... 1928
ReleaseExcel() .. 2663
Reload Register Functions, APG 724
Reload Register Mode Functions.................................. 725
Reload Register Mode Functions, APG........................ 725
RELOAD# .. 1351
reload() .. 724
REM.. 445
remote_fetch()... 2443
remote_get() .. 2446
remote_send() ... 2440
remote_set() .. 2446
remote_signal() ... 2437
remote_synchronize() ... 323
remote_wait() .. 2437
REMOVE_VARIABLE() macro................................ 2450
Repair List, Redundancy Analysis.............................. 1684
RESET1383, 1425, 1591, 1614, 1625
 2/27/09 Pg-2740

reset_all_bins(), Test Bin Function 357
reset_error()... 344
Resource Control Functions.. 2476
Resource Find Functions... 2474
Resource Name Functions .. 2471
Resource Use Functions.. 2481
resource_all_names() .. 2471
resource_deallocate() .. 2478
Resource_find()... 2475
resource_ignore() .. 2480
resource_initialize() .. 2479
resource_name().. 2471
resource_select() ... 2483
Resources .. 2466
Resources, User Dialog, Transferring Values to/from 2559
restart() .. 711
restart_and_wait() ... 711
Restarting Paused Patterns .. 710
result_get() .. 210
result_set()... 210
results_get()... 211
results_set() ... 211
Retrieving DC Test Results... 377
Retrieving the Nextest Software Version...................... 227
RETURN...1363, 1600
Return-to-complement .. 602
Return-to-one .. 602
Return-to-zero ... 602
reverse() .. 1936
RL Values ... 552
rl_bitmask_get() .. 557
rl_get()... 556
rl_ohms_get() .. 559
rl_set() ... 556
RLONG_WAVE... 973
RLongWave .. 970
rotate() ... 1938
Rotate/Shift Calculator->Twiddle Dialogs2086–2087
ROTLDR... 1433
ROTRDR .. 1433
RoundingMethod .. 970
Rows-Used-Together(RUT).. 1700
RPT Pattern Instruction... 1588
RRECT_WAVE.. 973
RRectWave ... 970
RSTTMR... 1381
RTC... 602
RTO... 602

RTZ... 602
Run to Fail... 1983
RunMacro()... 2662
RUT, RA Rows_Used_Together 1700

S
S_AfterTestingBlock .. 2469
S_ATCBoardList .. 2469
S_AVSPinList... 2469
S_BeforeTestingBlock.. 2469
S_Configuration.. 2469
S_CurrentShare ... 2469
S_Dialog ... 2469
S_DutPin ... 2469
S_HostBeginBlock.. 2469
S_HostConfiguration .. 2469
S_HostEndBlock... 2469
S_InitializationHook ... 2469
S_Pattern ... 2469
S_PinAssignments .. 2469
S_PinList... 2469
S_PinScramble.. 2469
S_Resource ... 2469
S_ScanPattern ... 2469
S_SequenceTable.. 2470
S_SiteBeginBlock ... 2470
S_SiteConfiguration.. 2470
S_SiteEndBlock .. 2470
S_Snapshot.. 2470
S_TestBin.. 2470
S_TestBinGroup ... 2470
S_TestBlock.. 2470
S_ToolBegin ... 2470
S_ToolConfiguration .. 2470
S_ToolEnd .. 2470
S_Variable... 2470
S_Variable_BOOL.. 2470
S_Variable_CString .. 2470
S_Variable_double.. 2470
S_Variable_DWORD ... 2470
S_Variable_float ... 2470
S_Variable_int .. 2470
S_Variable_int64 .. 2470
S_Variable_OneOf.. 2470
S_Variable_void ... 2470
S_VihhMap ... 2470
SAR Description ... 934
 2/27/09 Pg-2741

SaveAs().. 2662
SBR, STDF Record Type.. 2604
SCALE_AMPERES.. 976
SCALE_BOOLEAN... 976
SCALE_CODES... 976
SCALE_COUNTS ..976
SCALE_DECIBELS... 976
SCALE_HERTZ ... 976
SCALE_MICROVOLTS .. 976
SCALE_NANOAMPERES .. 976
SCALE_NOXUNITS.. 976
SCALE_NOYUNITS.. 976
SCALE_OFFSET.. 976
SCALE_PICOSECONDS... 976
SCALE_RADIANS .. 976
SCALE_SAMPLES .. 976
SCALE_SECONDS.. 976
SCALE_VOLTS ... 976
Scan Pattern Related Functions..................................... 789
Scan Testing.. 1630
Scan Vector Memory .. 160
Scan Vectors, DDR ... 647
scandata() .. 791
SCANDEF Compiler Directive 1634
ScanPattern_find() ..2475
ScanTool ... 2109
SCRAMBLE ... 573
SCRAMBLE() Macro ... 573
SCRAMBLE_2DUT() Macro....................................... 573
SCRAMBLE_32DUT Work-around 577
SCRAMBLE_32DUT() Macro..................................... 573
SCRAMBLE_MAP .. 572
SCRAMBLE_MAP() macro... 568
SCRAMBLE2() Macro ... 573
SCRAMBLE2_1DUT() Macro..................................... 574
SCRAMBLE2_xxxDUT macros 644
SDBASE ... 1431
SDMAIN... 1431
SDR, STDF Record Type ... 2604
SDRBlock STDF Structure ... 2637
sdutadr() .. 767
sdutxadr() .. 767
sdutyadr() .. 767
search_results_get() .. 2133
SearchResultArray ..2125
SearchResultStruct ..2125
SearchTool .. 2110
seconds .. 976

Segment Selection, DBM.. 822
SelectWorkSheet() .. 2658
sender .. 2268
SendMessage() .. 2557
seq_and_bin.cpp.. 222
Sequence and Binning Table224, 292
SEQUENCE_TABLE() macro 306
SEQUENCE_TABLE_INIT() macro 306
SequenceTable_find() ... 2475
SequenceTable_use() .. 2482
sequential .. 370
Sequential Mode, DBM .. 809
Sequential Test Block ... 332
Serialization .. 2452
SerialNumber() ... 793
serradr()... 767
serrxadr()... 767
serryadr()... 767
Set Waveform, MSWT Tester Control 2058
set() ... 1942
set(), Test Bin Function... 355
SET, LEVELSET Option.. 1662
SET, USERRAM Operand ... 1458
set_address() ... 719
set_adhiz()... 747
set_bin(), Test Bin Function ... 358
set_chip_select() ... 745
set_chips_on() ... 721
set_choices() ... 2282
set_data()... 720
set_invsns() ... 749
set_jca()...751–752
set_mar() ... 752
set_ps() .. 758
set_tset() .. 760
set_udata()... 762
set_values_from_file() .. 2277
set_vihh() .. 764
SetColumnWidth() .. 2665
setedge() .. 617
setedge1() .. 622
setedge2() .. 623
setedge3() .. 623
setedge4() .. 623
setpin() .. 715
SetScrollRange() ... 2557
settime() .. 612
settime(), DDR mode .. 649
 2/27/09 Pg-2742

Setting Environment Variables 2687
Settling Time, DPS, Built-in ... 373
Settling Time, HV, Built-in... 374
Settling Time, Parametric ... 370
Settling Time, PTU, Built-in... 374
Setup Numbers .. 342
SETUP_BREAKPOINT() .. 1987
SETUP_BREAKPOINT() macro 1987
setup_menus() ... 2510
setup_number() ... 342
setup_toolbars()... 2511
SHARE() macro .. 411
SheetActivate .. 2347
SheetBeforeDoubleClick .. 2347
SheetBeforeRightClick ... 2347
SheetCalculate... 2347
SheetChange.. 2347
SheetDeactivate... 2347
SheetSelectionChange... 2347
SHLDR.. 1434
Shmoo Definition File... 2153
Shmoo/Search Execution .. 2141
shmoo_axis_params_get() .. 2128
shmoo_direction_get() .. 2127
shmoo_duts_int_callback_set()................................... 2135
shmoo_duts_PF_callback_set() 2135
shmoo_duts_string_callback_set().............................. 2136
shmoo_duts_subtitle_get() .. 2132
shmoo_duts_subtitle_set() .. 2132
shmoo_dutsPF_callback() Shmoo Call-back Function2135
shmoo_param_get() .. 2129
shmoo_param_pointval_get() 2130
shmoo_title_get() .. 2125
shmoo_type_get().. 2126
ShmooAxis.. 2124
ShmooAxisOrder .. 2125
ShmooTool.. 2110

Search Controls.. 2117
Shmoo Controls ... 2118

ShmooType ... 2124
ShortArray... 240
SHRDR ... 1434
SIMULATED_APG Environment Variable 2684
SIMULATED_HD Environment Variable 2684
SIMULATED_LVM Environment Variable 2685
SIMULATED_PE Environment Variable 2685
SIMULATED_PTI Environment Variable 2685
SIMULATED_SITES Environment Variable 2685

Simulation Setup, Magnum 1/2/2x 1836
SimulationMode() ... 1844
Sine Waveform Generation, MSWT........................... 2042
Single Resource Runtime Selection.............................. 295
Single Stepping ... 1982
single, Pattern Rate Attribute...................................... 1249
Site Assembly Board... 71
Site Begin Block ... 299
Site Debug Mode ..1847, 1878
Site End Block .. 301
site_begin.cpp ...222, 293
SITE_BEGIN_BLOCK() macro................................... 300
SITE_CONFIGURATION() macro.............................. 293
SITE_END_BLOCK() macro....................................... 301
site_loaded().. 2513
site_num() ... 290
SITE_SYNCHRONIZATION_BLOCK() macro......... 324
SiteBeginBlock_find() .. 2475
SiteBeginBlock_use() ... 2482
SiteConfiguration_find()... 2475
SiteConfiguration_use() .. 2482
SiteEndBlock_find() ... 2475
SiteEndBlock_use() .. 2482
SiteMask() Support ... 2461
sites_per_controller() .. 267
SITES_PER_CONTROLLER() macro 266
Sites-per-Controller... 266
Sites-per-controller, DBM .. 815
SiteSynchronizationBlock... 324
size().. 1946
Size, Waveform Attribute ... 959
SKIP.. 310
SNAPSHOT() macro .. 2450
Snapshot_find()... 2475
Software .. 217
Software Release, get version in use........................... 2287
SoftwareOnlyActiveDutIterator.................................... 194
Spares List, Redundancy Analysis.............................. 1684
Sparse-repair ... 1690
SPI Port ... 169
spi_cmd() .. 800
sprevadr() .. 767
sprevxadr() .. 767
sprevyadr() .. 767
Square Waveform Generation, MSWT....................... 2044
Standard Test Data Format (STDF), see STDF
Start Testing ..224, 328
Start/Stop Vector in Logic Pattern Execution............... 705
 2/27/09 Pg-2743

start_ac_partest() ... 481
start_pattern() .. 707
Starting Ui ... 1835
Starting/Terminating User Tools 2495
STARTLOOP Pattern Instruction............................... 1594
Static Current Test Functions

DPS .. 398
Static DC Tests.. 365
Static Error Choice Functions, Branch-on-error 1416
Static Test Functions

HV.. 430
PMU... 465
PTU.. 519

STDF
Code Example..2643
Generic Data Record (GDR) Functions............... 2616
Overview.. 2601
Record Heap .. 2602
Record Types ... 2603
Software ... 2600

STDF Data Type Codes
B*6... 2605
B*n... 2606
C*12... 2605
C*f ... 2605
C*n... 2605
D*n... 2606
I*1 .. 2605
I*2 .. 2605
I*4 .. 2605
jxTYPE .. 2606
kxTYPE ... 2606
N*1... 2606
R*4... 2605
R*8... 2605
U*1... 2605
U*2... 2605
U*4... 2605
V*n... 2606

STDF Record Type
ATR ... 2603
BPS .. 2603
DTR ... 2603
EPS... 2603
FAR.. 2604
FTR .. 2604
GDR ... 2604
HBR ... 2604

MIR.. 2604
MPR... 2604
MRR .. 2604
PCR.. 2604
PGR.. 2604
PIR ... 2604
PLR .. 2604
PMR... 2604
PRR.. 2604
PTR .. 2604
RDR ... 2604
SBR.. 2604
SDR.. 2604
TSR .. 2604
WCR .. 2604
WIR.. 2604
WRR .. 2604

stdf_ATR_add() .. 2611
stdf_BPS_add() ... 2612
stdf_DTR_add() .. 2613
stdf_EPS_add() ... 2614
stdf_file_close() .. 2609
stdf_file_open()... 2607
stdf_file_write() .. 2608
stdf_FTR_add()... 2614
stdf_GDR_binary_add() ... 2617
stdf_GDR_bit_encoded_add() 2617
stdf_GDR_char_add()... 2617
stdf_GDR_double_add()... 2617
stdf_GDR_floating_point_add() 2617
stdf_GDR_nybble_add()... 2617
stdf_GDR_signed_byte_add() 2617
stdf_GDR_unsigned_byte_add() 2617
stdf_GDR_write_record() ... 2617
stdf_HBR_add() .. 2618
stdf_MIR_add()... 2619
stdf_MPR_add().. 2621
stdf_MRR_add() ... 2623
stdf_PCR_add()... 2624
stdf_PGR_add() .. 2626
stdf_PIR_add() .. 2627
stdf_PLR_add()... 2628
stdf_PMR_add().. 2629
stdf_PRR_add()... 2631
stdf_PTR_add()... 2632
stdf_RDR_add() .. 2634
stdf_SBR_add()... 2635
stdf_SDR_add() .. 2636
 2/27/09 Pg-2744

stdf_TSR_add() ... 2637
stdf_WCR_add() ... 2639
stdf_WIR_add() .. 2640
stdf_WRR_add() ... 2642
step().. 779
STOP... 310
STOP() macro ... 308
stop_ac_partest() ... 481
stop_pattern() .. 710
STOPL() macro... 308
Stopped/Paused Patterns, Testing for............................ 712
Stopping Pattern Execution... 710
STROBE ... 603
Strobe Latency, APG .. 1286
Strobe Mode

edge .. 604
window... 604

Strobe Timing & Formats, DDR................................... 653
strobe_hi VectorState .. 715
strobe_lo VectorState .. 715
strobe_mid VectorState... 715
strobe_valid VectorState ... 715
SUBTRACT..1344, 1434
SUDATA .. 1431
SummaryTool.. 2155
Super-MUX Mode ..671
SVEC Pattern Instruction.. 1637
SVM .. 160
swap().. 1939
Sync Loops, Test Pattern .. 1629
Synchronization, see Test Flow Synchronization
Synchronize, MSWT Tester Control 2058
System Clock .. 123
System Overview .. 67

T
t_1.. 238
t_accum_1 ... 852
t_actual .. 598
t_address_duplicates ... 853
t_address_no_dups ..853
t_adjusted_fit... 970
t_all_ecr_counters ... 853
t_all_ecr_rams... 852
t_all_ioc... 853
t_auto_fast ... 852
t_axis_na ... 2124

t_binarysearch ... 2125
t_bit_duplicates ... 853
t_bit_no_dups.. 853
t_cec .. 852
t_col_catch .. 852
t_cs_false... 715
t_cs_na .. 715
t_cs_pulse_false .. 715
t_cs_pulse_true ... 715
t_cs_true.. 715
t_cs1 .. 239
t_d0 ... 239
t_d35 ... 239
t_dbm_auto_fast.. 818
t_dbm_full_speed.. 818
t_dbm_sequential .. 818
t_dbm_slow_speed.. 818
t_dbm_x_fast... 818
t_dbm_y_fast... 818
t_double... 940
t_dps_default_ilimit .. 384
t_dps_high_ilimit .. 384
t_dps_independent .. 384
t_dps_vpulse ... 384
t_drive_edges .. 598
t_drive_high .. 239
t_drive_low ... 239
t_dut_na... 179
t_dut1 .. 179
t_dut128 .. 179
t_endpoint_fit .. 970
t_errmode1 .. 1277
t_errmode2 .. 1277
t_errmode3 .. 1277
t_errmode4 .. 1277
t_hsb1.. 238
t_hsb40.. 238
t_IO_drive_edges.. 598
t_IO_strobe_edges .. 598
t_ioc1... 852
t_ioc36... 853
t_jam_mode_ram .. 1277
t_jam_mode_reg ... 1277
t_least_squares_fit... 970
t_lec_mode_1.. 940
t_lec_mode_na .. 940
t_lec_vcount1.. 940
t_linearsearch .. 2125
 2/27/09 Pg-2745

t_lvm ... 239
t_main_array ... 852
t_masked_access ... 818
t_mini .. 852
t_mux_mode.. 672
t_parallel_io_mode..794
t_pe_dclkmode .. 543
t_pe_nomode... 543
t_pe_vihhmode.. 543
t_pe_vttmode... 543
t_pe_vzmode ... 543
t_pin_freq_meas_32.. 693
t_pin_freq_meas_5000.. 693
t_pin_freq_meas_80.. 693
t_programmed ... 598
t_ra_good .. 1706
t_ra_not_analyzed ... 1706
t_ra_repairable .. 1706
t_ra_unrepairable .. 1706
t_rcm_ram ... 852
t_rec... 852
t_reload_mode1... 715
t_reload_mode2... 715
t_round_down ... 970
t_round_to_even.. 971
t_round_to_nearest..970
t_round_to_odd ... 971
t_round_up .. 970
t_row_catch... 852
t_scan .. 239
t_shmoo... 2125
t_shmoo_search_na... 2125
t_shmoo_XY ... 2125
t_shmoo_YX ... 2125
t_single .. 940
t_spi_mode .. 794
t_std_mode .. 672
t_strobe_edges... 598
t_strobe_high... 239
t_strobe_low.. 239
t_strobe_mid.. 239
t_strobe_valid.. 239
t_super_mux_mode... 672
t_tec ... 852
t_tf_na ... 239
t_tri_state... 239
t_tristate... 714
t_truncate... 971

t_unmasked_access ... 818
t_vih .. 714
t_vihh .. 714
t_vil ... 714
t_x_fast.. 852
t_x_scramble ... 852
t_x0 ... 239
t_x15 ... 239
t_x17 ... 239
t_xaxis ... 2124
t_y_fast.. 852
t_y_scramble ... 852
t_y0 ... 239
t_y15 ... 239
t_yaxis ... 2124
Tab Order, setting in User Dialogs 2538
TDR Functions, DUT Board....................................... 2692
TDR_BLOCK() macro ... 2694
Terminating & Restarting monitorapp........................ 2683
Test Bin Function

decrement() .. 356
get().. 355
get_bin()... 358
increment()... 356
invoke().. 359
reset_all_bins() .. 357
set() .. 355
set_bin() ... 358
total_all_bins() ... 357

Test Bin Functions .. 354
Test Bin Group Function

group_bin() .. 362
group_reset().. 360
group_total() .. 362

Test Bin Group Functions... 360
Test Block

after-testing .. 334
before-testing ... 334

Test Block Execution Order.. 308
Test Block Integer Return Values................................. 333
Test Block Macros .. 329
Test Blocks.. 328
Test Flow Synchronization ... 323

HOST_SYNCHRONIZATION_BLOCK() 324
HostSynchronizationBlock 324
remote_synchronize() .. 323
SITE_SYNCHRONIZATION_BLOCK() 324
SiteSynchronizationBlock 324
 2/27/09 Pg-2746

Test Numbers .. 341
Test Pattern

Setting PE Levels From 1648
Test Patterns

#define in Test Patterns.. 1259
#include in Test Patterns...................................... 1257
Adding a New Pattern File to the Project 1210
Automated Pattern File Processing...................... 1211
C Preprocessor Support 1257
Comments .. 1252
Compiling Test Patterns....................................... 1228
Controlling Levels From, Magnum 1 1649
Double Data Rate (DDR)....................................... 644
Introduction.. 697
Line Continuation Character................................ 1261
Logic Vector Instructions, Magnum 1/2/2x......... 1208
Memory Instructions, Magnum 1/2/2x 1206
MixedSync Pattern Rules..................................... 1645
Newline in Test Pattern Macros........................... 1260
Pattern Attributes ... 1243
Pattern Build Settings .. 1210
Pattern Compiler, Patcom 1228
Pattern Files and Directories................................ 1227
Pattern Instruction Identifier(%) 1252
Pattern Labels ..1255
Pattern Load PATH ... 1230
Pattern Loading.. 1229
Pattern Sets, Description...................................... 1231
Pattern System Attributes 1247
Pattern Type Attributes .. 1250
PATTERN() statement .. 1242
PATTERN_PATH Environment Variable 1230

Test Program Wizard .. 219
Test Program Wizard Files ... 219
Test Program, get name of .. 2287
Test System Macros .. 227
TEST() macro ... 309
TEST_BIN() macro... 351
TEST_BIN_GROUP() macro 352
TEST_BLOCK() macro .. 329
TEST_BLOCK_SEQUENTIAL................................... 329
test_blocks.cpp.. 222
TEST_BREAKPOINT() macro 1987
test_pin() ... 704
test_pin_first_error() ... 704
test_supply().. 398
TEST0() macro ... 309
TEST0P() macro ... 309

TEST8() macro ... 309
TEST8P() macro ... 309
TestBin_find()... 2475
TestBinGroup_find()... 2475
TestBlock_find() ... 2475
tester.cpp ... 222
Tester->Read Waveform Dialog, MSWT................... 2058
Tester->Set Waveform Dialog, MSWT...................... 2060
TesterBGFunc

35 values not shown here..................................... 1276
TesterFunc... 239
testerpin_name() ... 269
testerpin_offset() ... 271
testerpin_value() ... 270
Testing for Stopped/Paused Patterns 712
TESTL() macro... 309
TESTL1() macro... 309
TESTL1P() macro... 309
TESTL8() macro... 309
TESTL8P() macro... 309
TESTLP() macro... 309
TESTP() macro ... 309
testprogexit() ... 2496
Text Format Options, UI Output Windows 243
TG Mode... 598
TGFormat.. 598
tgmode() .. 598
TIMEN.. 1381
TimeOption ... 598
Timer Functions, APG .. 1322
Timer Interrupt Address Functions, APG..................... 742
timer() ... 1322
Time-sets... 596
Timing and Formatting Functions 588
Timing Examples .. 631
Timing Formats... 601
Timing Generator Modes .. 598
Timing Rules... 591
Timing, DDR .. 649
TimingTool ... 2158
Tool Begin Block.. 302
Tool End Block ... 302
TOOL_BEGIN_BLOCK() macro 302
TOOL_CONFIGURATION() macro 293
TOOL_END_BLOCK() macro 303
toolbar ... 1874
Toolbar Tester Menu, MSWT..................................... 2057
Toolbar View Menu, MSWT...................................... 2049
 2/27/09 Pg-2747

Toolbar Window Menu, MSWT................................. 2061
Toolbar, MSWT View Control 2049
toolbar_add() ... 1874
toolbar_delete() ... 1874
toolbar_enable() .. 1874
ToolBegin_find() .. 2475
ToolConfiguration_find().. 2475
ToolEnd_find().. 2475
ToolLauncher .. 2508
ToolLauncher Operation ... 2509
ToolLauncher Registration Requirements 2508
ToolLauncher Required Functions.............................. 2509
top_most() ... 2562
TOPMOST() macro, User Dialogs 2531
total_all_bins(), Test Bin Function 357
Transferring Multiple User Variables 2449
TRANSLATE_BITMAP_INFO() macro 1907
TRANSLATE_BITMAP_INFO_5() macro 1907
TRANSLATE_BITMAP_INFO_7() macro 1907
tri_state() ... 1289
Triangle Waveform Generation, MSWT 2040
tristate VectorState ..715
TSET ... 596
TSET# ...1452, 1624
TSETNumber .. 597
TSR, STDF Record Type.. 2604
TSRBlock STDF Structure ... 2638
TWEAK, LEVELSET Option 1662
Type, Waveform Attribute .. 959

U
U*1, STDF Data Type Code....................................... 2605
U*2, STDF Data Type Code....................................... 2605
U*4, STDF Data Type Code....................................... 2605
UDATA Pattern Instruction .. 1448
UDATADR ... 1434
UDATAJAM... 1446
UDATAYN... 1436
UI .. 1831
UI Advanced Option Controls 1846
UI Display ... 1845
UI Output Window Text Format Options 243
UI Overview.. 1832
UI User Variable

..2335, 2422–2423, 2425
builtin_dynload .. 2288
builtin_what_exe.. 2286

ui_BatchFile... 2305
ui_BitmapCrossHair .. 2306
ui_BitmapDialogDecMode.................................. 2307
ui_BitmapDisplay .. 2308
ui_BitmapDisplayMode....................................... 2309
ui_BitmapDisplaySeparateZoomWindow........... 2310
ui_BitmapDisplayTotalCount.............................. 2311
ui_BitmapDisplayVisibleCount........................... 2312
ui_BitmapdutNo ..2313–2314
ui_BitmapLineHScroll... 2319
ui_BitmapLineVScroll... 2319
ui_BitmapMainSize ... 2315
ui_BitmapMaxErrors ... 2316
ui_BitmapMoveTo... 2317
ui_BitmapPageHScroll .. 2319
ui_BitmapPageVScroll .. 2319
ui_BitmapPan .. 2320
ui_BitmapPassColor .. 2314
ui_BitmapRowsChunk... 2321
ui_BitmapRulers .. 2322
ui_BitmapTotalFailBitCount 2323
ui_BitmapTotalFailBitString 2326
ui_BitmapTotalVisibleFailBitString.................... 2324
ui_BitmapVisibleFailBitString 2327
ui_BitmapVisibleSize .. 2329
ui_BitmapZoom2... 2330
ui_BreakPointFile .. 2331
ui_BreakPointRemoveAll.................................... 2332
ui_ClearAtProgramLoad...................................... 2332
ui_ClearAtTestStart ... 2334
ui_CloseAfterRun .. 2336
ui_Controller.. 2337
ui_CurrentBitmapScheme.................................... 2341
ui_DbmDialogDecMode...................................... 2342
ui_DutBoardStatusCheckDisable 2343
ui_ECRDialogDecMode...................................... 2344
ui_EngineeringMode ... 2345
ui_ExcelAppEvent ... 2347
ui_Exit.. 2348
ui_ExitAfterRun .. 2349
ui_HideTool ... 2350
ui_HostDebug .. 2350
ui_HostModeCommandLine 2352
ui_HostTimeOut .. 2355
ui_LoadedMask ... 2358
ui_LoadTimeOut.. 2356
ui_MonitorPort .. 2359
ui_MonitorTimeOut... 2361
 2/27/09 Pg-2748

ui_NoLogo ... 2362
ui_Open.. 2363
ui_OutputAutoOpen... 2364
ui_OutputFile ...2297, 2366
ui_OutputFormat.. 2369
ui_OutputOpen... 2372
ui_ProgLoaded... 2373
ui_ProgUnloaded ... 2388
ui_ResourceInitialized ... 2389
ui_RunTestProgram ... 2391
ui_ShmooDone .. 2393
ui_ShmooInput... 2394
ui_ShmooOutputFile.. 2395
ui_Show ... 2399
ui_ShowOutputTab.. 2398
ui_ShowTool.. 2400
ui_ShutDown ... 2402
ui_SiteDebug ... 2403
ui_SiteDone ... 2405
ui_SiteLoaded ..2406
ui_SiteMask ... 2407
ui_SiteModeCommandLine................................. 2410
ui_SiteUnloaded... 2413
ui_StartTest .. 2414
ui_StartTool ... 2416
ui_StopTest .. 2417
ui_TestDone... 2418
ui_TestProgConfiguration 2420
ui_TimingToolPinLists .. 2427
ui_ToolLoaded... 2429
ui_ToolModeCommandLine 2430
ui_ToolUnloaded ... 2433
ui_UserVariableTimeout 2436
ui_UserVarSiteMode ... 2434

UI User Variables.. 2290
ui_BatchFile, UI User Variable 2305
ui_BitmapCrossHair, UI User Variable 2306
ui_BitmapDialogDecMode, UI User Variable............ 2307
ui_BitmapDisplay, UI User Variable.......................... 2308
ui_BitmapDisplayMode, UI User Variable 2309
ui_BitmapDisplaySeparateZoomWindow, UI User Vari-

able... 2310
ui_BitmapDisplayTotalCount, UI User Variable........ 2311
ui_BitmapDisplayVisibleCount, UI User Variable 2312
ui_BitmapdutNo, UI User Variable 2313
ui_BitmapFailColor, UI User Variable2314
ui_BitmapLineHScroll, UI User Variable 2319
ui_BitmapLineVScroll, UI User Variable 2319

ui_BitmapMainSize, UI User Variable....................... 2315
ui_BitmapMaxErrors, UI User Variable..................... 2316
ui_BitmapMoveTo, UI User Variable 2317
ui_BitmapPageHScroll, UI User Variable 2319
ui_BitmapPageVScroll, UI User Variable 2319
ui_BitmapPan, UI User Variable 2320
ui_BitmapPassColor, UI User Variable 2314
ui_BitmapRowsChunk, UI User Variable 2321
ui_BitmapRulers, UI User Variable............................ 2322
ui_BitmapTotalFailBitCount, UI User Variable......... 2323
ui_BitmapTotalFailBitString, UI User Variable......... 2326
ui_BitmapTotalVisibleFailBitString, UI User Variable

2324
ui_BitmapVisibleFailBitString, UI User Variable...... 2327
ui_BitmapVisibleSize, UI User Variable.................... 2329
ui_BitmapZoom2, UI User Variable........................... 2330
ui_BreakPointFile, UI User Variable.......................... 2331
ui_BreakPointRemoveAll, UI User Variable 2332
ui_ClearAtProgramLoad, UI User Variable 2332
ui_ClearAtTestStart, UI User Variable....................... 2334
ui_Close, UI User Variable... 2335
ui_CloseAfterRun, UI User Variable.......................... 2336
ui_Controller, UI User Variable 2337
ui_CurrentBitmapScheme, UI User Variable 2341
ui_DbmDialogDecMode, UI User Variable 2342
ui_DutBoardStatusCheckDisable, UI User Variable .. 2343
ui_ECRDialogDecMode, UI User Variable 2344
ui_EngineeringMode, UI User Variable 2345
ui_ExcelAppEvent, UI User Variable......................... 2347
ui_Exit, UI User Variable ... 2348
ui_ExitAfterRun, UI User Variable 2349
ui_HideTool, UI User Variable................................... 2350
ui_HostDebug, UI User Variable................................ 2350
ui_HostModeCommandLine, UI User Variable 2352
ui_HostTimeOut, UI User Variable 2355
ui_LoadedMask, UI User Variable 2358
ui_LoadTimeOut, UI User Variable 2356
ui_MonitorPort, UI User Variable 2359
ui_MonitorTimeOut, UI User Variable 2361
ui_NoLogo, UI User Variable..................................... 2362
ui_Open, UI User Variable ... 2363
ui_OutputAutoOpen, UI User Variable 2364
ui_OutputFile, UI User Variable.......................2297, 2366
ui_OutputFormat, UI User Variable 2369
ui_OutputOpen, UI User Variable 2372
ui_ProgLoaded, UI User Variable 2373
ui_ProgUnloaded, UI User Variable........................... 2388
ui_ResourceInitialized, UI User Variable................... 2389
 2/27/09 Pg-2749

ui_RunTestProgram, UI User Variable.......................2391
ui_ShmooDone, UI User Variable 2393
ui_ShmooInput, UI User Variable 2394
ui_ShmooOutputFile, UI User Variable 2395
ui_Show, UI User Variable ... 2399
ui_ShowOutputTab, UI User Variable........................ 2398
ui_ShowTool, UI User Variable 2400
ui_ShutDown, UI User Variable 2402
ui_SiteDebug, UI User Variable 2403
ui_SiteDone, UI User Variable 2405
ui_SiteLoaded, UI User Variable................................ 2406
ui_SiteMask, UI User Variable 2407
ui_SiteModeCommandLine, UI User Variable 2410
ui_SiteUnloaded, UI User Variable 2413
ui_StartTest, UI User Variable.................................... 2414
ui_StartTool, UI User Variable 2416
ui_StopTest, UI User Variable.................................... 2417
ui_TestDone, UI User Variable 2418
ui_TestProgConfiguration, UI User Variable 2420
ui_TestProgDirPath, UI User Variable2422
ui_TestProgName, UI User Variable 2423
ui_TestStarted, UI User Variable................................ 2425
ui_TimingToolPinLists, UI User Variable.................. 2427
ui_ToolLoaded, UI User Variable 2429
ui_ToolModeCommandLine, UI User Variable 2430
ui_ToolUnloaded, UI User Variable 2433
ui_UserVariableTimeout, UI User Variable 2436
ui_UserVarSiteMode, UI User Variable 2434
UINT64_VARIABLE() macro 2271
Unit Prefixes ... 976
Units .. 228
Units Applications... 977
Unusable List, Redundancy Analysis 1684
update_control() .. 2560
update_controls() .. 2560
update_variable() .. 2560
update_variables() ... 2560
UpdateScreen().. 2661
URAM1, USERRAM SourceA Operand..........1459–1460
URAMDECR, USERRAM SourceA Operand........... 1459
URAMINCR, USERRAM SourceA Operand 1459
Usage Model, MSWT ... 2030
USE_CURRENT_SHARE()... 411
USE_PIN_ASSIGNMENTS() macro 261
USE_PIN_SCRAMBLE ... 572
USE_PIN_SCRAMBLE() macro 568
USE_SEQUENCE_TABLE() macro............................ 307
USE_TDR_BLOCK() macro 2695

USE_VIHH_MAP() macro... 586
UseDLLs ... 2706
User Defined User Variables 2270
User Dialogs.. 2527

Bitmap Usage... 2543
COLORREF2593–2594, 2596, 2598–2599
CONTROL() macro... 2531
Creating Bitmap Dialog Components.................. 2540
Dialog Resources, Transferring Values to/from.. 2559
DIALOG() macro .. 2531
focus() .. 2537
for_each()... 2561
Functions.. 2559
GRAPHIC() macro .. 2532
Grid Call-back Functions..................................... 2589
Grid, Adding .. 2570
Grid, GridCell struct .. 2579
Grid, ONINITDIALOG, Defining the Grid 2575
Grid, Overview .. 2564
GRID_CONTROL() Macro................................. 2573
HEX_CONTROL() macro................................... 2531
hex_display() ... 2532
IMMEDIATE_CONTROL() macro 2531
ONINITDIALOG() macro................................... 2531
Progress Resource.. 2548
Tab Order in... 2538
top_most().. 2562
TOPMOST() macro ... 2531
update_control()... 2560
update_controls() ... 2560
update_variable() ... 2560
update_variables().. 2560

User Menus in UI.. 1870
User RAM

Functions, APG.. 1296
User RAM Address Index Register 155
User RAM Hardware, APG .. 153
User RAM, APG... 153
User Tools ... 2488

Example ... 2501
Functions.. 2500
Initialization... 2499
Output Messages.. 2498

User Variable Command Line Token
/BATCH... 2305
/BRC .. 2321
/BRK .. 2331
/C.. 2340
 2/27/09 Pg-2750

/CP ... 2333
/CS ... 2334
/E .. 2346
/ER ... 2349
/H ... 2275
/HC... 2354
/HD... 2351
/HOF .. 2367
/HR... 2275
/HT ... 2356
/LT ... 2358
/MP...2360, 2362
/NOLOGO ... 2363
/S .. 2274
/SC ... 2412
/SD ... 2404
/SM... 2409
/SOF ... 2368
/SR ... 2274
/TC ... 2432
/TD ... 2422
/TOOL.. 2417
/TP.. 2424

User Variables
Initializing from Text File.................................... 2277
Intercepting .. 2283
UI ... 2290
User Defined .. 2270

User Variables Tool .. 2160
UseRel ... 2705
USERRAM

GET Operand... 1458
Memory Pattern Instruction 1455
Operation Operands ... 1457
SET Operand.. 1458
SourceA Operands ... 1458
SourceB Operands ... 1459
URAM1 SourceA Operand........................1459–1460
URAMDECR SourceA Operand 1459
URAMINCR SourceA Operand 1459
XBASE SourceA Operand................................... 1460
XFIELD SourceA Operand 1460
XMAIN SourceA Operand 1460
YBASE SourceA Operand................................... 1460
YFIELD SourceA Operand 1460
YMAIN SourceA Operand 1460

V
V*n, STDF Data Type Code....................................... 2606
VAR Address Operand ... 1612
VAR Branch Condition Operands 1599
VAR Counter Functions ... 780
VAR DONE .. 1261
VAR Engine.. 129
VAR Error_control Operands 1613
VAR Instruction.. 1596
VAR Interrupt Operands... 1613
VAR/SAR Description.. 934
var_pinfunc()... 787
VARIABLE() macro... 2450
Variable_BOOL_find()... 2475
Variable_CString_find() ... 2475
Variable_double_find()... 2475
Variable_DWORD_find()... 2475
Variable_find().. 2475
Variable_float_find() .. 2475
Variable_int_find() ... 2475
Variable_int64_find() ... 2475
Variable_OneOf_find()... 2475
Variable_void_find()... 2475
VARIABLES() macro .. 2450
V-bump ... 409
vclamp() .. 459
VCNTR ... 1384
VCOMP1384, 1590, 1617, 1625
vcomp.. 369
VCOUNT Autoreload Operand 1622
VCOUNT Counter Operands...................................... 1621
VCOUNT Function Operands 1621
VCOUNT Instruction.. 1618
vcount() ... 780
VEC Instruction .. 1587
VEC/RPT Instruction Optional Parameters 1589
vecdata().. 783
VECDEF Pattern Directive... 1582
VECDEF per Pin Assignment Table 1586
vecmem_modify()... 1147
VectorState

drive_hi .. 715
drive_lo .. 715
strobe_hi .. 715
strobe_lo .. 715
strobe_mid ... 715
 2/27/09 Pg-2751

strobe_valid.. 715
tristate... 715
VectorState_na... 715

VectorState_na VectorState .. 715
vFormat() .. 241
View->Angles as Degrees, MSWT............................. 2050
View->Cursor Controls, MSWT Controls 2052
View->Graph, MSWT Controls.................................. 2053
View->Properties, MSWT Dialog 2055
vih() ... 543
VIH/VIL.. 543
VIHH... 1590
VIHH Maps...292, 582
Vihh Mode PE Driver ... 77
VIHH Voltage ... 546
VIHH#...1452, 1624
vihh() ... 546
VIHH_ACTIVE() macro .. 586
VIHH_MAP() macro .. 585
vihh_maps.cpp .. 222
VIHH1... 585
VIHH64... 585
VihhMap_find() .. 2475
VihhMap_use() ... 2482
VihhNumber.. 585
vil().. 543
Visible Mode, BitmapTool Update Option................. 1899
VLATCHRESET .. 1453
VLEVELSET .. 1455
voh() .. 548
VOH/VOL... 548
VOID_VARIABLE() macro....................................... 2271
vol() ... 548
Voltage Clamp Functions

PMU... 459
PTU.. 516

Voltage Force Functions
PMU... 452
PTU.. 512

Voltage Programming Functions
DPS .. 386
HV.. 424

Voltage Test Limit Functions
HV.. 428
PMU... 455
PTU.. 514

VoltageTool .. 2171
VOVER... 1454

vpar_force()... 452
vpar_high().. 455
vpar_low()... 455
VPINFUNC Instruction .. 1623
VPS ... 1454
VPULSE1453, 1593, 1618, 1628
Vpulse Enable Functions, DPS 407
vpulse() ... 409
VTSET .. 1454
VTT... 560
Vtt Mode, PE Driver ... 77
vtt().. 560
VUDATA Instruction, Maverick-II 1628
VVCOMP ... 1453
VVIHH.. 1455
VVPULSE... 1455
VZ ... 551
Vz Mode, PE Driver ... 77
vz() .. 551
VZRS1 .. 542
VZRS2 .. 542
VZRS8 .. 543

W
WafermapTool .. 2211
WafermapTool File Access Rules 2246
warning()... 241
warning(), Text Format Options 243
WavefileEncoding_FLOAT................................972, 1001
WavefileEncoding_PCM972, 1001
Waveform Analysis Functions.................................... 1163
Waveform Boolean Functions 1106
Waveform Convolution/Corrleation Functions 1138
Waveform Date ... 1004
Waveform Date Attribute ... 960
Waveform Equality Functions 1080
Waveform FFT Functions... 1158
Waveform File Format (.nwav) 968
Waveform File Formats, MSWT 967
Waveform File Write/Read Functions 1001
Waveform Functions... 956
Waveform Generate Functions 984
Waveform Logical Functions 1106
Waveform Logrithmic Functions................................ 1129
Waveform Macros .. 979
Waveform Mathematical View..................................... 962
Waveform Name... 1004
 2/27/09 Pg-2752

Waveform Overview... 958
Waveform Sample Programming................................ 1011
Waveform Sample Value Notations 972
Waveform Set/Get X/Y Units Functions 1009
Waveform Size Attribute .. 959
Waveform Synchronization .. 2061
Waveform Type .. 1004
Waveform Type Attribute ... 959
Waveform Types, Enums, etc. 969
Waveform Units .. 975
Waveform Units Applications 979
Waveform Version ..1004
Waveform Window Functions 1133
Waveform Windowing Coefficient Functions 1136
Waveform X_increment Attribute 959
Waveform X_start Attribute ... 959
Waveform X_units Attribute .. 959
Waveform Y_units Attribute .. 959
WAVEFORM() macro.. 980
Waveform*.. 980
waveform_a_law_decode() ... 1156
waveform_a_law_encode() ... 1155
waveform_absolute_value().. 1037
waveform_adc_ramp_inl_dnl()................................... 1192
waveform_adc_sine_inl_dnl() 1194
waveform_add() .. 1038
waveform_apply_window() .. 1135
waveform_arithmetic_mean() 1165
waveform_autocorrelate_circular()............................. 1144
waveform_average() ... 1164
waveform_bcd_to_binary()... 1096
waveform_binary_to_bcd()... 1094
waveform_binary_to_gray_code().............................. 1092
waveform_binary_to_ones_complement() 1096
waveform_binary_to_sign_and_magnitude() 1103
waveform_binary_to_twos_complement() 1099
waveform_bitwise_and() .. 1117
waveform_bitwise_or() ... 1116
waveform_bitwise_reorder()....................................... 1127
waveform_bitwise_reverse()....................................... 1125
waveform_bitwise_rotate_left().................................. 1122
waveform_bitwise_rotate_right()................................ 1124
waveform_bitwise_shift_left().................................... 1120
waveform_bitwise_shift_right().................................. 1121
waveform_bitwise_xor() ... 1119
waveform_blackman_harris_window_coefficients().. 1137
waveform_blackman_window_coefficients()............. 1137
waveform_clamp() ..1041

waveform_clip_lower()... 1166
waveform_clip_upper()... 1166
waveform_complex_fft() .. 1158
waveform_complex_ifft() ... 1158
waveform_concat() ... 1042
waveform_constant_fill().. 999
waveform_convolve_circular()................................... 1141
waveform_convolve_linear() 1139
waveform_convolve_partial()..................................... 1140
waveform_copy() .. 1043
waveform_correlate_circular() 1143
waveform_correlate_linear()....................................... 1142
waveform_covariance() .. 1145
waveform_create() .. 982
waveform_dac_ramp_inl_dnl()................................... 1196
waveform_decimate() ... 1044
waveform_deinterleave() .. 1167
waveform_destroy() .. 982
waveform_differencing() .. 1046
waveform_divide().. 1047
waveform_dolph_chebyshev_window_coefficients() 1137
waveform_double_strided_copy() 1050
waveform_dump()... 1005
waveform_enob() .. 1149
waveform_eq() ..1086, 1168
waveform_exp() .. 1131
waveform_exp10() .. 1131
waveform_fetch().. 1003
waveform_ge() .. 1083
waveform_generate_DC()... 998
waveform_generate_gaussian_noise() 992
waveform_generate_periodic_pink_noise() 996
waveform_generate_periodic_white_noise()................ 995
waveform_generate_ramp() .. 988
waveform_generate_sine_wave() 986
waveform_generate_square_wave() 990
waveform_generate_triangle_wave() 984
waveform_generate_white_noise()............................... 993
waveform_geometric_mean() 1169
waveform_get_crect() ... 1024
waveform_get_date() .. 1005
waveform_get_name() .. 1006
waveform_get_odd_flag()... 1162
waveform_get_polar()... 1028
waveform_get_rlong() .. 1020
waveform_get_rrect() ... 1015
waveform_get_signal_spread()................................... 1034
waveform_get_size()... 1032
 2/27/09 Pg-2753

waveform_get_typename() ... 1007
waveform_get_version() ... 1008
waveform_get_x_increment() 1030
waveform_get_x_start() .. 1029
waveform_get_x_units() ... 1009
waveform_get_y_units() ... 1009
waveform_gray_code_to_binary().............................. 1093
waveform_gt()... 1080
waveform_hamming_window_coefficients() 1137
waveform_hanning_window_coefficients() 1137
waveform_histogram().. 1170
waveform_index_to_time()... 1150
waveform_integerize() .. 1053
waveform_interleave() .. 1172
waveform_invalidate() .. 983
waveform_join_complex().. 1054
waveform_join_polar() ... 1055
waveform_le() ... 1085
waveform_linear_regression() 1173
waveform_log()... 1129
waveform_log10()... 1129
waveform_logical_and() ... 1106
waveform_logical_not().. 1107
waveform_logical_or().. 1107
waveform_logical_xor().. 1107
waveform_lookup()... 1055
waveform_lt().. 1082
waveform_magnitudes() ... 1174
waveform_make_complex() 1056
waveform_median() .. 1175
waveform_min_max()... 1176
waveform_mu_law_decode()...................................... 1154
waveform_mu_law_encode()...................................... 1153
waveform_multiply() .. 1057
waveform_negate() ... 1060
waveform_offset_binary_to_binary() 1103
waveform_ones_complement_to_binary() 1098
waveform_polar_to_rectangular() 1061
waveform_power()..1132
waveform_quantize() .. 1177
waveform_randomize() ... 1000
waveform_read_file().. 1001
waveform_real_fft() .. 1159
waveform_real_ifft() ... 1159
waveform_real_ifft_even() ... 1161
waveform_real_ifft_odd() ... 1161
waveform_reciprocal().. 1062
waveform_rectangular_to_polar() 1063

waveform_reorder() .. 1114
waveform_replace_subset() .. 1064
waveform_resample() ... 1065
waveform_rescale()... 1066
waveform_reset_random_seed()................................. 1000
waveform_reverse() .. 1068
waveform_rms().. 1179
waveform_rotate_left() ... 1068
waveform_rotate_right() ... 1068
waveform_select_elements() 1110
waveform_select_indices() ... 1108
waveform_selective_merge()...................................... 1112
waveform_send() .. 1003
waveform_set_crect() ... 1022
waveform_set_date()... 1005
waveform_set_element()... 1032
waveform_set_odd_flag() ... 1162
waveform_set_polar() ... 1026
waveform_set_rlong()... 1017
waveform_set_rrect() .. 1012
waveform_set_signal_spread() 1034
waveform_set_x_scale() ... 1030
waveform_set_y_units() ... 1009
waveform_settling_time()... 1151
waveform_sfdr() ... 1179
waveform_sign_and_magnitude_to_binary() 1105
waveform_signals_and_noise() 1181
waveform_sinad() ... 1182
waveform_snr()... 1184
waveform_sort().. 1070
waveform_split()... 1071
waveform_standard_deviation() 1185
waveform_strided_copy() ... 1072
waveform_subset().. 1075
waveform_subtract() ... 1076
waveform_sum() ... 1079
waveform_sum_of_squares()...................................... 1186
waveform_summing()... 1079
waveform_thd()... 1187
waveform_triangle_window_coefficients() 1137
waveform_twos_complement_to_binary() 1100
waveform_variance() .. 1188
waveform_within_bounds() .. 1089
waveform_write_file() .. 1001
waveform_zero_pad() ... 1035
WaveformTool (MSWT) .. 2029
WaveTool.. 2173

Color Schemes ... 2205
 2/27/09 Pg-2754

Creating Trace Files... 2208
Example Display.. 2173
History RAM ... 2209
Mouse Track Controls ... 2208
Overview.. 2174
Run Controls .. 2196
Setup Acquire Dialog... 2187
Setup Acquire Execute Controls.......................... 2191
Setup Acquire Input Controls 2189
Setup Acquire LEC Controls 2194
Setup Controls..2181
Setup Files.. 2181
Setup Headers Dialog .. 2184
Setup Signals Dialog.. 2182
Starting... 2175
Timing Format Symbols 2199
Tool-bar Controls... 2176
Zoom Controls ... 2206

WCR, STDF Record Type .. 2604
White Noise Waveform Generation, MSWT....2039, 2044
Window Strobe Mode ... 604
WindowActivate ... 2347
WindowDeactivate..2347
WindowResize .. 2347
WIR, STDF Record Type ... 2604
wmap_all_clear ... 2242
wmap_bin_clear .. 2242
wmap_bitmap_clear .. 2242
wmap_bitmap_color_create() 2258
wmap_bitmap_color_delete() 2258
wmap_bitmap_color_getcolor().................................. 2258
wmap_bitmap_color_setcolor() 2258
wmap_bitmap_mono_clear() 2256
wmap_bitmap_mono_clear_all() 2256
wmap_bitmap_mono_create() 2256
wmap_bitmap_mono_delete() 2256
wmap_bitmap_mono_get() ... 2256
wmap_bitmap_mono_set().. 2256
wmap_cmd_end().. 2250
wmap_cmd_start() ..2250
wmap_config_load..2242
wmap_config_save..2242
wmap_data_load ... 2242
wmap_data_save ... 2242
wmap_die_bin... 2242
wmap_die_bitmap... 2242
wmap_die_cmd_end()... 2252
wmap_die_cmd_start().. 2252

wmap_die_field... 2242
wmap_die_field_clear... 2242
wmap_die_get() .. 2247
wmap_die_marked.. 2242
wmap_die_set()... 2247
wmap_die_set() Type/Value Descriptions.................. 2247
wmap_die_text .. 2242
wmap_die_type ... 2242
wmap_get() ... 2242
wmap_mark_clear... 2242
wmap_onclick_set() .. 2254
wmap_set().. 2242
wmap_set() Type/Value Descriptions......................... 2243
wmap_subtitle ... 2242
wmap_text_clear ... 2242
wmap_title... 2242
wmap_type.. 2242
WMapTool

Bin Code View .. 2236
Bin Color View.. 2235
Bin Color-Code View .. 2237
Bitmap View.. 2239
Communication Architecture............................... 2213
Configuration... 2217
Configuration File.. 2217
Die Attributes... 2233
Die Display Options .. 2233
Die Field Display... 2261
Die-Bitmap Support... 2255
Dynamically Defined Color Images 2257
Dynamically Defined Monochromatic Images.... 2255
Marked Die .. 2240
Software ... 2241
Starting... 2215
Statically Defined Images.................................... 2260
Text View .. 2238
UI BitmapTool Images .. 2260
User Interface & Controls.................................... 2225
wmap_bitmap_color_create() 2258
wmap_bitmap_color_delete() 2258
wmap_bitmap_color_getcolor() 2258
wmap_bitmap_color_setcolor() 2258
wmap_bitmap_mono_clear() 2256
wmap_bitmap_mono_clear_all() 2256
wmap_bitmap_mono_create() 2256
wmap_bitmap_mono_delete() 2256
wmap_bitmap_mono_get().................................. 2256
wmap_bitmap_mono_set() 2256
 2/27/09 Pg-2755

WordArray .. 240
WorkbookActivate ..2347
WorkbookAddinInstall.. 2347
WorkbookAddinUninstall ... 2347
WorkbookBeforeClose.. 2347
WorkbookBeforePrint ... 2347
WorkbookDeactivate .. 2347
WorkbookNewSheet ... 2347
WorkbookOpen... 2347
WRR, STDF Record Type .. 2604
WRRBlock STDF Structure.. 2642
WType... 970

X
x_dtopo() ... 1315
x_fast_axis().. 1281
X_increment, Waveform Attribute 959
X_start, Waveform Attribute .. 959
X_units, Waveform Attribute 959
XALU Instruction ... 1334
XBASE.. 1338
XBASE Register Functions, APG 736
xbase() ... 736
XBASE, USERRAM SourceA Operand 1460
XCARE ... 1337
X-clock.. 592
XEQB.. 1437
XEQBORF .. 1438
XEQYBPN.. 1440
XEQYPN .. 1440
XFIELD .. 1338
XFIELD Register Functions, APG 737
xfield()... 737
XFIELD, USERRAM SourceA Operand 1460
XLEB .. 1438
XLTB .. 1438
XMAIN ... 1338
XMAIN Register Functions, APG 735
xmain() .. 736
XMAIN, USERRAM SourceA Operand 1460
xmax() ... 1280
XNOR ... 1344
XOR ..1344, 1434
XORINV ... 1443

xtopo()... 1320
XUDATA.. 1338
xy_dtopo()... 1315
XYEQB... 1437
XYLEBXF .. 1440
XYLEBYF .. 1439
XYLTBXF .. 1439
XYLTBYF .. 1439
xytopo()... 1320

Y
y_dtopo()... 1315
Y_units, Waveform Attribute 959
YALU Instruction ... 1331
YALU/XALU Addressout Operands.......................... 1346
YALU/XALU Carry/Borrow Operands 1339
YALU/XALU Destination Operands 1344
YALU/XALU Function Operands.............................. 1343
YALU/XALU SourceA/SourceB Operands 1337
YBASE ... 1337
YBASE Register Functions, APG 736
ybase()... 737
YBASE, USERRAM SourceA Operand 1460
YEQB.. 1437
YEQBORF.. 1438
YFIELD .. 1337
YFIELD Register Functions, APG 737
yfield()... 737
YFIELD, USERRAM SourceA Operand 1460
Y-Index Register Functions, APG 744
yindex() ... 744
YLEB .. 1438
YLTB .. 1438
YMAIN ... 1337
YMAIN Register Functions, APG................................ 735
ymain() .. 736
YMAIN, USERRAM SourceA Operand.................... 1460
ymax() ... 1280
ytopo()... 1320
YUDATA.. 1337

Z
ZERO .. 1344
 2/27/09 Pg-2756

	Magnum 1 Programmer’s Manual
	Revision History
	Table of Contents
	List Of Illustrations
	Chapter 1 Magnum System Overview
	1.1 Magnum Configurations
	1.2 Multi-Site System Architecture
	1.3 Site Assembly Board
	1.4 PE Sub-site Architecture
	1.5 Pin Electronics (PE)
	1.5.1 PE Driver
	1.5.2 PE Comparators
	1.5.3 Per-pin Parametric Test Unit (PTU)
	1.5.4 Error Flag vs. Error Latch
	1.5.5 DC-only Pins

	1.6 DC Sub-System
	1.6.1 DUT Power Supply (DPS)
	1.6.2 High Voltage Source/Measure Unit (HV)
	1.6.3 Parametric Measurement Unit (PMU)
	1.6.4 Parametric Background Voltage
	1.6.5 DC Test and Measure System
	1.6.6 DC Source Select MUX
	1.6.6.1 DC Comparators and Error Logic
	1.6.6.2 DC A/D Converter

	1.7 Pattern and Timing System
	1.7.1 Overview
	1.7.2 Pin Scramble MUX
	1.7.3 Pin Scramble RAM
	1.7.4 Timing & Formatting
	1.7.5 System Clock

	1.8 Algorithmic Pattern Generator (APG)
	1.8.1 APG Controller Engine
	1.8.1.1 uRAM
	1.8.1.2 vRAM

	1.8.2 Branch-on-error Logic
	1.8.3 APG Address Generator
	1.8.3.1 Address TOPO RAM

	1.8.4 APG Data Generator
	1.8.4.1 Data Inversion Logic
	1.8.4.2 JAM Logic

	1.8.5 APG Chip Selects
	1.8.6 APG Interrupt Timer
	1.8.7 APG User RAM
	1.8.7.1 User RAM Address Index Register

	1.8.8 Data Buffer Memory (DBM)
	1.8.8.1 DBM Architecture

	1.9 Logic Vector Memory (LVM)
	1.10 Scan Vector Memory (SVM)
	1.11 Error Catch RAM (ECR)
	1.11.1 ECR Error Counters
	1.11.2 ECR Mini-RAM

	1.12 DUT Board I/O Ports
	1.12.1 I2C Bus
	1.12.2 SPI Port & GPIO Port

	Chapter 2 Magnum 1, 2 & 2x Parallel Test
	2.1 Overview
	2.1.1 Multi-DUT Test Program
	2.1.2 Parallel Test Operation
	2.1.3 Using Getter Functions

	2.2 Types, Enums, etc.
	2.3 Active DUTs Set (ADS)
	2.3.1 ADS Save/Modify/Restore Example
	2.3.2 active_duts_enable()
	2.3.3 active_duts_disable()
	2.3.4 active_dut_get()
	2.3.5 active_duts_get()
	2.3.6 max_dut()
	2.3.7 multi_dut_features()
	2.3.8 Active DUTs Set Iterators

	2.4 Ignored DUTs Set (IDS)
	2.4.1 ignored_duts_enable()
	2.4.2 ignored_duts_disable()
	2.4.3 ignored_duts_get()

	2.5 Multi-DUT Test Results
	2.5.1 result_set(), result_get()
	2.5.2 results_set(), results_get()
	2.5.3 all_results_match()
	2.5.4 any_results_match()

	2.6 Functional Test Pattern Execution
	2.7 Functional Pin-pairs

	Chapter 3 Software
	3.1 Software Architecture Overview
	3.1.1 Test Program Overview
	3.1.2 Test Program Wizards
	3.1.2.1 Test Program Wizard Files

	3.1.3 Program Loading and Execution Order
	3.1.4 DUT Board Status Check
	3.1.5 Program Un-Loading and Execution Order
	3.1.6 Program Working Directory
	3.1.7 Retrieving the Nextest Software Version

	3.2 Test System Macros
	3.2.1 Macro Syntax

	3.3 Specifying Units
	3.3.1 MKS Units

	3.4 Special Data Types
	3.4.1 __int64

	3.5 Types, Enums, etc.
	3.6 Magnum System Type Get Function
	3.7 output(), warning(), fatal(), vFormat()
	3.7.1 Output/Warning/Fatal Text Format Options
	3.7.2 Redirecting Output Messages

	3.8 Configuring the Tester to the DUT
	3.8.1 DUT Board Connection Considerations
	3.8.2 DUT Pins
	3.8.2.1 dutpin_info()

	3.8.3 Pin Assignment Table
	3.8.3.1 ASSIGN_64DUT Work-around
	3.8.3.2 Sites-per-Controller
	3.8.3.3 Shared Tester Pins
	3.8.3.4 testerpin_name()
	3.8.3.5 testerpin_value()
	3.8.3.6 testerpin_offset()
	3.8.3.7 Pin Iteration

	3.8.4 Pin Lists
	3.8.4.1 DUT-specific Pin Lists
	3.8.4.2 pinlist_create(), pinlist_destroy()
	3.8.4.3 pin_info()
	3.8.4.4 all_dps()
	3.8.4.5 no_dps()
	3.8.4.6 all_hv()
	3.8.4.7 no_hv()
	3.8.4.8 all_pe()
	3.8.4.9 no_pe()

	3.9 Program Execution Control
	3.9.1 Overview
	3.9.2 Execution Context Functions
	3.9.3 Configuration Macros
	3.9.3.1 Single Resource Types
	3.9.3.2 Single Resource Runtime Selection

	3.9.4 Host Begin Block
	3.9.4.1 Host Waiting for Site to Load

	3.9.5 Host End Block
	3.9.6 Site Begin Block
	3.9.7 Site End Block
	3.9.8 Tool Begin Block
	3.9.9 Tool End Block
	3.9.10 Initialization Hook
	3.9.11 Sequence & Binning Table
	3.9.11.1 Sequence & Binning Table Creation
	3.9.11.2 Sequence & Binning Test Flow
	3.9.11.3 Multiple Sequence & Binning Tables
	3.9.11.4 Modifying Sequence & Binning Tables

	3.9.12 Parking Blocks
	3.9.13 Test Flow Synchronization
	3.9.14 Test Blocks
	3.9.14.1 Overview
	3.9.14.2 Test Block Macros
	3.9.14.3 current_test_block()
	3.9.14.4 Sequential Test Block
	3.9.14.5 Test Block Integer Return Values
	3.9.14.6 Before-testing Block, After-testing Block
	3.9.14.7 Conflict List
	3.9.14.8 Conflict List Macros
	3.9.14.9 Test Numbers
	3.9.14.10 Setup Numbers

	3.9.15 Delay()
	3.9.16 Error Line Reset from CPU: reset_error()
	3.9.17 Control of Branch on Error Flag
	3.9.18 Over-programming Control Stimulus Selection
	3.9.19 Binning
	3.9.19.1 Test Bins
	3.9.19.2 Test Bin Groups
	3.9.19.3 Test Bin Functions
	3.9.19.4 Test Bin set()/get() Functions
	3.9.19.5 Test Bin increment()/decrement() Functions
	3.9.19.6 Test Bin reset_all_bins() Function
	3.9.19.7 Test Bin total_all_bins() Function
	3.9.19.8 Test Bin set_bin()/get_bin() Functions
	3.9.19.9 Test Bin invoke() Function
	3.9.19.10 Test Bin Group Functions
	3.9.19.11 Test Bin Group group_reset() Function
	3.9.19.12 Test Bin Group group_total() Function
	3.9.19.13 Test Bin Group group_bin() Function

	3.10 DC Functions
	3.10.1 Overview
	3.10.2 Static DC Tests
	3.10.3 Dynamic DC Tests
	3.10.4 Types, Enums, etc.
	3.10.5 Parametric Settling Time
	3.10.5.1 Built-in Settling Time

	3.10.6 measure()
	3.10.7 Measurement Average Count Functions
	3.10.8 Retrieving DC Test Results

	3.11 DPS Functions
	3.11.1 Overview
	3.11.2 Types, Enums, etc.
	3.11.3 DPS Connect/Disconnect Functions
	3.11.4 DPS Voltage Programming Functions
	3.11.5 DPS Output Mode
	3.11.6 DPS Current Test Limit Functions
	3.11.7 DPS Static Current Test Functions
	3.11.8 DPS Dynamic Current Test Functions
	3.11.9 DPS Vpulse Enable Functions
	3.11.10 VPulse Function
	3.11.11 DPS Current Sharing
	3.11.12 DPS Compensation Capacitors
	3.11.13 DPS 300mA/600mA DPS Option
	3.11.13.1 dps_ilimit_set(), dps_ilimit_get()

	3.12 High Voltage Source/Measure Unit (HV) Functions
	3.12.1 Overview
	3.12.2 HV Connect/Disconnect Functions
	3.12.3 HV Voltage Programming Functions
	3.12.4 HV Current Test Limit Functions
	3.12.5 HV Voltage PASS/FAIL Limit Functions
	3.12.6 HV Static Test Functions
	3.12.7 HV Dynamic Test Functions

	3.13 PMU Functions
	3.13.1 Overview
	3.13.2 Types, Enums, etc.
	3.13.3 PMU Connect/Disconnect Functions
	3.13.4 PMU Force Current Functions
	3.13.5 PMU Current Test Limit Functions
	3.13.6 PMU Force Voltage Functions
	3.13.7 PMU Voltage Test Limit Functions
	3.13.8 PMU Voltage Clamp Functions
	3.13.9 Background Voltage Functions
	3.13.10 PMU Static Test Functions
	3.13.11 PMU Dynamic Test Functions
	3.13.12 start_ac_partest(), stop_ac_partest()
	3.13.13 ac_partest_results_store()
	3.13.14 PMU: Testing DPS Pins
	3.13.15 PMU: Testing HV Pins
	3.13.16 parametric_mode()
	3.13.17 PMU as Voltage/Current Source
	3.13.18 PMU Compensation Capacitors

	3.14 PTU Functions
	3.14.1 Overview
	3.14.2 PTU Usage
	3.14.3 PTU Connect/Disconnect Functions
	3.14.4 PTU Force-current Functions
	3.14.5 PTU Current Test Limit Functions
	3.14.6 PTU Force-voltage Functions
	3.14.7 PTU Voltage Test Limit Functions
	3.14.8 PTU Voltage Clamp Functions
	3.14.9 PTU Static Test Functions
	3.14.10 PTU Dynamic Test Functions
	3.14.11 PTU as Voltage/Current Source

	3.15 Pin Electronics Voltages/Currents
	3.15.1 Pin Electronics Levels
	3.15.2 Types, Enums, etc.
	3.15.3 PE: Drive Voltages: VIH/VIL
	3.15.4 VIHH Voltage
	3.15.5 PE Comparator Voltages: VOH/VOL
	3.15.6 PE Load Reference Voltage: VZ
	3.15.7 rl_set(), rl_get()
	3.15.8 rl_bitmask_get()
	3.15.9 rl_ohms_get()
	3.15.10 50-ohm Termination Voltage: VTT
	3.15.11 pe_driver_mode_set(), pe_driver_mode_get()
	3.15.12 PE Connect/Disconnect Functions

	3.16 Pin Scramble Functions & Macros
	3.16.1 Overview
	3.16.2 Pin Scramble Macros
	3.16.2.1 SCRAMBLE_32DUT Work-around

	3.16.3 Default Pin Scramble Map

	3.17 VIHH Maps
	3.17.1 Types, Enums, etc.
	3.17.2 VIHH Map Macros

	3.18 Timing and Formatting Functions
	3.18.1 Overview
	3.18.2 Magnum Timing Rules
	3.18.3 Time-sets (TSET)
	3.18.4 Types, Enums, etc.
	3.18.5 Timing Generator Modes
	3.18.6 Cycle Time Functions
	3.18.7 Timing Formats
	3.18.7.1 Supported Timing Formats
	3.18.7.2 Window Strobe, Edge Strobe Modes
	3.18.7.3 Drive Format vs. Strobe Format Selection
	3.18.7.4 APG Chip Select Drive Format Selection
	3.18.7.5 I/O Timing and Control
	3.18.7.6 Double Clock Mode

	3.18.8 Programming Timing & Formats
	3.18.8.1 settime()
	3.18.8.2 setedge(), getedge()
	3.18.8.3 Per-edge Functions: Drive/Strobe
	3.18.8.4 Per-edge Functions: I/O Edges
	3.18.8.5 getformat()

	3.18.9 Timing Examples

	3.19 MUX, Super-MUX and DDR
	3.19.1 Overview
	3.19.2 Single Data Rate Mode (SDR)
	3.19.3 Double Data Rate (DDR) Mode
	3.19.3.1 DDR Overview
	3.19.3.2 DDR Hardware Details
	3.19.3.3 DDR Pin Scramble
	3.19.3.4 DDR Test Patterns
	3.19.3.5 DDR Logic Vectors
	3.19.3.6 DDR Scan Vectors
	3.19.3.7 DDR Memory Patterns
	3.19.3.8 DDR Timing
	3.19.3.9 DDR I/O Timing
	3.19.3.10 DDR Fail Signal MUX
	3.19.3.11 DDR Fail Signal MUX: Logic Error Catch
	3.19.3.12 DDR Fail Signal MUX: Memory Error Catch

	3.19.4 MUX Mode
	3.19.5 Super-MUX Mode
	3.19.6 ECR in DDR, MUX and Super-MUX Modes
	3.19.7 MUX, Super-MUX & DDR Software
	3.19.7.1 Types, Enums, etc.
	3.19.7.2 mux_mode_set(), mux_mode_get()
	3.19.7.3 mux_mode(), mux_mode_disable()
	3.19.7.4 fail_signal_mux()

	3.20 Pin Frequency Measurement (PFM)
	3.20.1 Overview
	3.20.2 Pin Frequency Measurement Operation
	3.20.3 Pin Frequency Measure Software
	3.20.3.1 Types, Enums, etc.
	3.20.3.2 pin_frequency_meas()
	3.20.3.3 pin_frequency_meas_get()

	3.21 Test Patterns
	3.22 Functional Tests
	3.22.1 Executing Functional Tests
	3.22.1.1 Per Pin Error Status
	3.22.1.2 Pattern Execution Start Vector, Stop Vector

	3.22.2 Patterns That Loop Forever
	3.22.3 Checking Pattern Execution State
	3.22.4 Stopping Pattern Execution
	3.22.5 Restarting Paused Patterns
	3.22.6 Testing for Stopped/Paused Patterns
	3.22.7 Holding State Between Patterns

	3.23 Manipulating Tester Hardware
	3.23.1 Types, Enums, etc.
	3.23.2 Setting DUT Pin State
	3.23.3 Pin DC Static State Functions
	3.23.4 Setting DUT Address Pins State
	3.23.5 Setting DUT Data Pins States
	3.23.6 Setting DUT Chip Select Pin States
	3.23.7 Memory-pattern Related Functions
	3.23.7.1 APG Counter Functions
	3.23.7.2 APG Reload Register Functions
	3.23.7.3 APG Reload Register Mode Functions
	3.23.7.4 dmain(), dbase()
	3.23.7.5 APG Data Strobe Control
	3.23.7.6 APG Data Register Functions
	3.23.7.7 APG Jam Register Functions
	3.23.7.8 APG XMAIN & YMAIN Register Functions
	3.23.7.9 APG XBASE & YBASE Register Functions
	3.23.7.10 APG XFIELD & YFIELD Register Functions
	3.23.7.11 APG AMAIN, ABASE, AFIELD Set/Get Functions
	3.23.7.12 Address Cross-over Bit Functions
	3.23.7.13 APG Timer Interrupt Address Functions
	3.23.7.14 find_label()
	3.23.7.15 APG Y-Index Register Functions
	3.23.7.16 set_chip_select(), get_chip_select()
	3.23.7.17 set_adhiz(), get_adhiz()
	3.23.7.18 set_invsns(), get_invsns()
	3.23.7.19 get_jca(), set_jca()
	3.23.7.20 set_ps(), get_ps()
	3.23.7.21 set_tset(), get_tset()
	3.23.7.22 set_udata(), get_udata()
	3.23.7.23 set_vihh(), get_vihh()
	3.23.7.24 Get APG Fail Information
	3.23.7.25 actualdata()
	3.23.7.26 expectdata()
	3.23.7.27 lvm_error_mode()
	3.23.7.28 errmar()
	3.23.7.29 find_mar()
	3.23.7.30 find_by_mar(), find_by_var()
	3.23.7.31 addrs()
	3.23.7.32 label_offset()
	3.23.7.33 Clearing APG Pipelines
	3.23.7.34 Single-stepping APG Patterns

	3.23.8 Logic Pattern Related Functions
	3.23.8.1 VAR Counter Functions
	3.23.8.2 errvar()
	3.23.8.3 find_var()
	3.23.8.4 vecdata()
	3.23.8.5 addrs()
	3.23.8.6 var_pinfunc()

	3.23.9 Scan Pattern Related Functions
	3.23.9.1 errsar(), prevsar(), dutsar()
	3.23.9.2 find_sar()
	3.23.9.3 scandata()
	3.23.9.4 get_scanpatterns()
	3.23.9.5 load_scan_from_file()

	3.23.10 Board Functions
	3.23.10.1 BoardPresent()
	3.23.10.2 board_type()
	3.23.10.3 SerialNumber()

	3.23.11 DUT Board I/O Port Functions
	3.23.11.1 Types, Enums, etc.
	3.23.11.2 I2C Bus Functions
	3.23.11.3 gpio_mode_set()
	3.23.11.4 gpio_direction_set()
	3.23.11.5 gpio_value_set(), gpio_value_get()
	3.23.11.6 spi_cmd()

	3.23.12 Loadboard Board Data Bits
	3.23.13 DUT Board ID and DUT Board User Data Area
	3.23.13.1 PWA/PWB Number and Revision Get Functions

	3.24 Data Buffer Memory Software (DBM)
	3.24.1 Overview
	3.24.2 DBM DRAM Interleaving
	3.24.3 DBM Sequential Mode
	3.24.4 DBM Usage Rules
	3.24.5 DBM Data Widths
	3.24.6 Masked vs. Un-masked DBM Operations
	3.24.7 DBM & Multiple Sites-per-controller
	3.24.8 DBM Configuration Tables
	3.24.9 Types, Enums, etc.
	3.24.10 dbm_config_set()
	3.24.11 dbm_config_get()
	3.24.12 DBM Segment Selection
	3.24.13 dbm_num_segments_get()
	3.24.14 dbm_fill()
	3.24.15 dbm_write()
	3.24.16 dbm_read()
	3.24.17 dbm_file_image_write()
	3.24.18 dbm_file_image_read()
	3.24.19 DBM Data File Format
	3.24.20 DBM Address Masks
	3.24.21 dbm_pattern_use()
	3.24.22 datbuf()

	3.25 Error Catch RAM Software
	3.25.1 Overview
	3.25.2 ECR Functions
	3.25.2.1 Types, Enums, etc.
	3.25.2.2 ecr Data Type
	3.25.2.3 PointFailure Structure
	3.25.2.4 PointFailure Memory Management
	3.25.2.5 ecr_all_clear()
	3.25.2.6 ecr_any_overflow_get()
	3.25.2.7 ecr_column_ram_scan()
	3.25.2.8 ecr_compare_reg_set(), ecr_compare_reg_get()
	3.25.2.9 ecr_config_set()
	3.25.2.10 ecr_config_get()
	3.25.2.11 ecr_configured_get()
	3.25.2.12 ecr_interleave_get()
	3.25.2.13 ECR Hardware Size Functions
	3.25.2.14 ecr_counters_config_set(), ecr_counters_config_get()
	3.25.2.15 ecr_dut_number_set(), ecr_dut_number_get()
	3.25.2.16 ecr_fast_image_write(), ecr_fast_image_read()
	3.25.2.17 ecr_file_image_write(), ecr_file_image_read()
	3.25.2.18 ecr_main_ram_scan()
	3.25.2.19 ecr_cache_enable()
	3.25.2.20 ecr_miniram_config_set(), ecr_miniram_config_get()
	3.25.2.21 ecr_miniram_scan()
	3.25.2.22 ecr_overflow_get()
	3.25.2.23 ecr_row_ram_scan()
	3.25.2.24 ecr_write_mode_set(), ecr_write_mode_get()
	3.25.2.25 ecr_area_clear()
	3.25.2.26 ecr_col_ram_read()
	3.25.2.27 ecr_col_ram_write()
	3.25.2.28 ecr_counters_clear()
	3.25.2.29 ecr_error_add()
	3.25.2.30 ecr_all_tecs_get(), ecr_all_ioc_get()
	3.25.2.31 ecr_error_counter_set(), ecr_error_counter_get()
	3.25.2.32 ecr_error_delete()
	3.25.2.33 ecr_error_get()
	3.25.2.34 ecr_error_set()
	3.25.2.35 ecr_miniram_read()
	3.25.2.36 ecr_miniram_write()
	3.25.2.37 ecr_rams_clear()
	3.25.2.38 ecr_rams_update()
	3.25.2.39 ecr_row_ram_read()
	3.25.2.40 ecr_row_ram_write()
	3.25.2.41 ecr_scramble_bank_set(), ecr_scramble_bank_get()
	3.25.2.42 ecr_scramble_ram_write(), ecr_scramble_ram_read()
	3.25.2.43 ecr_x_y_data_set()

	3.25.3 ECR DDR Functions
	3.25.3.1 ecr_ddr_mode_set(), ecr_ddr_mode_get()

	3.25.4 ECR Simulation
	3.25.4.1 Magnum 1 vs. Maverick ECR Functions

	3.26 Logic Error Catch (LEC)
	3.26.1 Overview
	3.26.2 LEC Counters
	3.26.3 VAR/SAR Description
	3.26.4 LEC Mode
	3.26.5 LEC Capture Options
	3.26.6 DDR LEC Operation
	3.26.7 Types, Enums, etc.
	3.26.8 lec_config_set()
	3.26.9 lec_config_get()
	3.26.10 lec_configured_get()
	3.26.11 lec_mode_set(), lec_mode_get()
	3.26.12 lec_scan()
	3.26.13 LEC Capture Data
	3.26.14 Magnum 1/2/2x vs. Maverick-I/-II LEC Software Compatibility

	3.27 Waveform Functions
	3.27.1 Waveform Overview
	3.27.2 Waveform* Attributes
	3.27.3 Waveform Terminology
	3.27.4 Waveform Mathematical View
	3.27.5 Decibel (dB)
	3.27.6 Waveform File Formats
	3.27.6.1 Nextest Waveform File Format (.nwav)
	3.27.6.2 .nwav Grammar Description

	3.27.7 Types, Enums, etc.
	3.27.8 Waveform Sample Value Notations
	3.27.9 Waveform Units
	3.27.9.1 Units Applications

	3.27.10 Waveform Macros
	3.27.11 waveform_create(), waveform_destroy()
	3.27.12 waveform_invalidate()
	3.27.13 Waveform Generate Functions
	3.27.13.1 waveform_generate_triangle_wave()
	3.27.13.2 waveform_generate_sine_wave()
	3.27.13.3 waveform_generate_ramp()
	3.27.13.4 waveform_generate_square_wave()
	3.27.13.5 waveform_generate_gaussian_noise()
	3.27.13.6 waveform_generate_white_noise()
	3.27.13.7 waveform_generate_periodic_white_noise()
	3.27.13.8 waveform_generate_periodic_pink_noise()
	3.27.13.9 waveform_generate_DC()
	3.27.13.10 waveform_constant_fill()
	3.27.13.11 waveform_randomize(), waveform_reset_random_seed()

	3.27.14 Waveform File Write/Read Functions
	3.27.15 waveform_fetch(), waveform_send()
	3.27.16 Waveform Name, Date, Type and Version Information
	3.27.16.1 waveform_dump()
	3.27.16.2 waveform_get_date(), waveform_set_date()
	3.27.16.3 waveform_get_name()
	3.27.16.4 waveform_get_typename()
	3.27.16.5 waveform_get_version()
	3.27.16.6 Waveform Set/Get X/Y Units Functions
	3.27.16.7 reciprocal()

	3.27.17 Waveform Sample Programming
	3.27.17.1 waveform_set_rrect()
	3.27.17.2 waveform_get_rrect()
	3.27.17.3 waveform_set_rlong()
	3.27.17.4 waveform_get_rlong()
	3.27.17.5 waveform_set_crect()
	3.27.17.6 waveform_get_crect()
	3.27.17.7 waveform_set_polar()
	3.27.17.8 waveform_get_polar()
	3.27.17.9 waveform_get_x_start()
	3.27.17.10 waveform_get_x_increment()
	3.27.17.11 waveform_set_x_scale()
	3.27.17.12 waveform_get_size()
	3.27.17.13 waveform_get_element(), waveform_set_element()
	3.27.17.14 waveform_set_signal_spread(), waveform_get_signal_spread()
	3.27.17.15 waveform_zero_pad()

	3.27.18 Waveform Manipulation Functions
	3.27.18.1 waveform_absolute_value()
	3.27.18.2 waveform_add()
	3.27.18.3 waveform_clamp()
	3.27.18.4 waveform_concat()
	3.27.18.5 waveform_copy()
	3.27.18.6 waveform_decimate()
	3.27.18.7 waveform_differencing()
	3.27.18.8 waveform_divide()
	3.27.18.9 waveform_double_strided_copy()
	3.27.18.10 waveform_integerize()
	3.27.18.11 waveform_join_complex()
	3.27.18.12 waveform_join_polar()
	3.27.18.13 waveform_lookup()
	3.27.18.14 waveform_make_complex()
	3.27.18.15 waveform_multiply()
	3.27.18.16 waveform_negate()
	3.27.18.17 waveform_polar_to_rectangular()
	3.27.18.18 waveform_reciprocal()
	3.27.18.19 waveform_rectangular_to_polar()
	3.27.18.20 waveform_replace_subset()
	3.27.18.21 waveform_resample()
	3.27.18.22 waveform_rescale()
	3.27.18.23 waveform_reverse()
	3.27.18.24 waveform_rotate_left(), waveform_rotate_right()
	3.27.18.25 waveform_sort()
	3.27.18.26 waveform_split()
	3.27.18.27 waveform_strided_copy()
	3.27.18.28 waveform_subset()
	3.27.18.29 waveform_subtract()
	3.27.18.30 waveform_sum()
	3.27.18.31 waveform_summing()

	3.27.19 Waveform Equality Functions
	3.27.19.1 waveform_gt()
	3.27.19.2 waveform_lt()
	3.27.19.3 waveform_ge()
	3.27.19.4 waveform_le()
	3.27.19.5 waveform_eq()
	3.27.19.6 waveform_within_bounds()

	3.27.20 Waveform Conversion Functions
	3.27.20.1 waveform_binary_to_gray_code()
	3.27.20.2 waveform_gray_code_to_binary()
	3.27.20.3 waveform_binary_to_bcd()
	3.27.20.4 waveform_bcd_to_binary()
	3.27.20.5 waveform_binary_to_ones_complement()
	3.27.20.6 waveform_ones_complement_to_binary()
	3.27.20.7 waveform_binary_to_twos_complement()
	3.27.20.8 waveform_twos_complement_to_binary()
	3.27.20.9 waveform_binary_to_offset_binary()
	3.27.20.10 waveform_offset_binary_to_binary()
	3.27.20.11 waveform_binary_to_sign_and_magnitude()
	3.27.20.12 waveform_sign_and_magnitude_to_binary()

	3.27.21 Waveform Boolean Functions
	3.27.21.1 Waveform Logical Functions
	3.27.21.2 waveform_select_indices()
	3.27.21.3 waveform_select_elements()
	3.27.21.4 waveform_selective_merge()
	3.27.21.5 waveform_reorder()

	3.27.22 Waveform Bitwise Functions
	3.27.22.1 waveform_bitwise_or()
	3.27.22.2 waveform_bitwise_and()
	3.27.22.3 waveform_bitwise_xor()
	3.27.22.4 waveform_bitwise_shift_left()
	3.27.22.5 waveform_bitwise_shift_right()
	3.27.22.6 waveform_bitwise_rotate_left()
	3.27.22.7 waveform_bitwise_rotate_right()
	3.27.22.8 waveform_bitwise_reverse()
	3.27.22.9 waveform_bitwise_reorder()

	3.27.23 Waveform Logrithmic Functions
	3.27.23.1 waveform_log(), waveform_log10()
	3.27.23.2 waveform_exp(), waveform_exp10()
	3.27.23.3 waveform_power()

	3.27.24 Waveform Window Functions
	3.27.24.1 waveform_apply_window()
	3.27.24.2 Waveform Windowing Coefficient Functions
	3.27.24.3 waveform_dolph_chebyshev_window_coefficients()

	3.27.25 Waveform Convolution/Corrleation Functions
	3.27.25.1 waveform_convolve_linear()
	3.27.25.2 waveform_convolve_partial()
	3.27.25.3 waveform_convolve_circular()
	3.27.25.4 waveform_correlate_linear()
	3.27.25.5 waveform_correlate_circular()
	3.27.25.6 waveform_autocorrelate_circular()
	3.27.25.7 waveform_covariance()

	3.27.26 Waveform Wierd Functions
	3.27.26.1 vecmem_modify()
	3.27.26.2 waveform_enob()
	3.27.26.3 waveform_index_to_time()
	3.27.26.4 waveform_settling_time()

	3.27.27 Waveform Compression Functions
	3.27.27.1 waveform_mu_law_encode()
	3.27.27.2 waveform_mu_law_decode()
	3.27.27.3 waveform_a_law_encode()
	3.27.27.4 waveform_a_law_decode()

	3.27.28 Waveform FFT Functions
	3.27.28.1 waveform_complex_fft(), waveform_complex_ifft()
	3.27.28.2 waveform_real_fft(), waveform_real_ifft()
	3.27.28.3 waveform_real_ifft_even(), waveform_real_ifft_odd()
	3.27.28.4 waveform_set_odd_flag(), waveform_get_odd_flag()
	3.27.28.5 FFT Aliasing

	3.27.29 Waveform Analysis Functions
	3.27.29.1 waveform_average()
	3.27.29.2 waveform_arithmetic_mean()
	3.27.29.3 waveform_clip_upper(), waveform_clip_lower()
	3.27.29.4 waveform_deinterleave()
	3.27.29.5 waveform_eq()
	3.27.29.6 waveform_geometric_mean()
	3.27.29.7 waveform_histogram()
	3.27.29.8 waveform_interleave()
	3.27.29.9 waveform_linear_regression()
	3.27.29.10 waveform_magnitudes()
	3.27.29.11 waveform_median()
	3.27.29.12 waveform_min_max()
	3.27.29.13 waveform_quantize()
	3.27.29.14 waveform_rms()
	3.27.29.15 waveform_sfdr()
	3.27.29.16 waveform_signals_and_noise()
	3.27.29.17 waveform_sinad()
	3.27.29.18 waveform_snr()
	3.27.29.19 waveform_standard_deviation()
	3.27.29.20 waveform_sum_of_squares()
	3.27.29.21 waveform_thd()
	3.27.29.22 waveform_variance()

	3.27.30 INL & DNL Functions
	3.27.30.1 waveform_adc_ramp_inl_dnl()
	3.27.30.2 waveform_adc_sine_inl_dnl()
	3.27.30.3 waveform_dac_ramp_inl_dnl()

	Chapter 4 Test Pattern Programming
	4.1 Overview
	4.2 Magnum 1/2/2x Pattern Features
	4.2.1 Magnum 1/2/2x Memory Pattern Instructions
	4.2.2 Magnum 1/2/2x Logic Vector Instructions

	4.3 Adding a New Pattern File to the Project
	4.3.1 Automated Pattern File Processing (APFP)
	4.3.1.1 Overview
	4.3.1.2 APFP Dialog
	4.3.1.3 Build (Compile) Operation
	4.3.1.4 APFP Migrating from Older Versions

	4.4 Use of #include pattern.h file(s)
	4.5 Pattern Files and Folders/Directories
	4.5.1 Pattern Sub-directory Contents

	4.6 Compiling Test Patterns
	4.7 Pattern Loading
	4.7.1 Pattern Load PATH
	4.7.2 Pattern Sets

	4.8 Pattern Overview and Naming
	4.8.1 Pattern Attributes
	4.8.1.1 Pattern System Attributes
	4.8.1.2 Pattern Rate Attributes
	4.8.1.3 Pattern Type Attributes
	4.8.1.4 Setting Attributes Directly
	4.8.1.5 Setting Attribute Defaults

	4.8.2 Pattern Instruction Identifier (%)
	4.8.3 Comments in Test Patterns
	4.8.4 Pattern Initial Conditions
	4.8.5 Pattern Labels
	4.8.6 Pattern #Include Files
	4.8.7 C Preprocessor Support
	4.8.7.1 #define
	4.8.7.2 Newline in Test Pattern Macros

	4.8.8 Test Pattern Line Continuation Character

	4.9 MAR DONE and/or VAR DONE
	4.10 Pattern Subroutines
	4.11 Error Pipeline Requirements
	4.12 Algorithmic Pattern Generator (APG) Configuration
	4.12.1 Types, Enums, etc.
	4.12.2 APG Address Mask Functions
	4.12.3 YMAX, XMAX, and AMAX
	4.12.4 Fast Address Axis
	4.12.5 APG Chip Select Polarity Control Function
	4.12.6 APG Chip Select Drive/Strobe Polarity Functions
	4.12.7 APG Data Generator I/O Control Function
	4.12.8 APG Drive/Expect Data Latency Functions
	4.12.9 PE Channel Forced I/O State
	4.12.10 APG Data Register Width Selection Function
	4.12.11 APG JAM Logic Configuration Functions
	4.12.11.1 apg_jam_mode_set(), apg_jam_mode_get()
	4.12.11.2 apg_jam_ram_set(), apg_jam_ram_get()
	4.12.11.3 apg_jam_ram_address_set(), apg_jam_ram_address_get()

	4.12.12 APG User RAM Functions
	4.12.12.1 apg_userram_value_set(), apg_userram_value_get()
	4.12.12.2 apg_user_ram_address_set(), apg_user_ram_address_get()

	4.12.13 APG Data Buffer Memory Configuration
	4.12.14 APG Data Inversion Enable Functions
	4.12.15 APG Data Inversion Bank Select Functions
	4.12.16 APG Background Data Inversion Function
	4.12.17 APG Bit-2 Data Inversion Function
	4.12.18 APG Background Bank-A, Bank-B Inversion
	4.12.19 APG Data Topological Inversion (DTOPO) Function
	4.12.20 APG Data TOPO RAM Load Functions
	4.12.21 Logical vs. Physical, vs. Electrical Addresses
	4.12.22 APG Address Topo RAM Load Functions
	4.12.23 APG Timer Functions

	4.13 Memory Test Patterns
	4.13.1 Overview
	4.13.2 Memory Pattern Instruction Format
	4.13.3 Default Memory Pattern Instruction
	4.13.4 APG Instruction Execution
	4.13.5 APG Address Generator Overview
	4.13.6 YALU Instruction
	4.13.7 XALU Instruction
	4.13.7.1 YALU/XALU SourceA/SourceB Operands
	4.13.7.2 YALU/XALU Carry/Borrow Operands
	4.13.7.3 YALU/XALU Function Operands
	4.13.7.4 YALU/XALU Destination Operands
	4.13.7.5 YALU/XALU Addressout Operands

	4.13.8 COUNT Instruction
	4.13.8.1 COUNT Counter Operands
	4.13.8.2 COUNT Function Operands
	4.13.8.3 COUNT Autoreload Operands

	4.13.9 MAR Instruction
	4.13.9.1 MAR Default Pattern Instruction
	4.13.9.2 MAR Branch Condition Operands
	4.13.9.3 MAR Address Operand
	4.13.9.4 MAR Strobe Control Operands
	4.13.9.5 MAR Interrupt Operands
	4.13.9.6 MAR Timer Operands
	4.13.9.7 MAR Misc Operands
	4.13.9.8 MAR BOE Type Operands
	4.13.9.9 MAR Error-choice Operands
	4.13.9.10 Static Error Choice Functions, Branch-on-error
	4.13.9.11 DUT-pin to Tester-pin Connection Requirements

	4.13.10 CHIPS Instruction
	4.13.10.1 CHIPS Chip-select-control Operands
	4.13.10.2 CHIPS Misc Operands

	4.13.11 DATGEN Instruction
	4.13.11.1 DATGEN Source Operands
	4.13.11.2 DATGEN Dest Operand
	4.13.11.3 DATGEN Drfunc Operand
	4.13.11.4 DATGEN Yindex Operands
	4.13.11.5 DATGEN Equality Function Operands
	4.13.11.6 DATGEN Background Function Operands
	4.13.11.7 DATGEN Invert Sense Operand
	4.13.11.8 DATGEN Dataout Operand
	4.13.11.9 DATGEN Udatajam Operands
	4.13.11.10 DATGEN Dbmwr Operand

	4.13.12 UDATA Instruction
	4.13.13 PINFUNC Instruction
	4.13.14 USERRAM Instruction
	4.13.14.1 USERRAM Operation Operands
	4.13.14.2 USERRAM SourceA Operands
	4.13.14.3 USERRAM SourceB Operands

	4.13.15 Minmax Pattern Example
	4.13.16 Adaptive Programming Pattern Example
	4.13.17 Over-programming Controls and Parallel Test

	4.14 Logic Test Patterns
	4.14.1 Overview
	4.14.2 Logic Vector Syntax
	4.14.2.1 Logic Vector Bit Codes
	4.14.2.2 3-bits per Pin

	4.14.3 Magnum 1/2/2x Logic Pattern Rules
	4.14.3.1 LVM Branch/Label Limitations

	4.14.4 VECDEF Compiler Directive
	4.14.4.1 VECDEF per Pin Assignment Table

	4.14.5 VEC Pattern Instruction
	4.14.6 RPT Pattern Instruction
	4.14.7 Optional VEC/RPT Instruction Parameters
	4.14.8 STARTLOOP / ENDLOOP Logic Vector Instructions
	4.14.9 VAR Instruction
	4.14.9.1 VAR Branch-condition Operands
	4.14.9.2 VAR Address Operand
	4.14.9.3 VAR Interrupt Operands
	4.14.9.4 VAR Error-control Operands
	4.14.9.5 VAR Misc Operands

	4.14.10 VCOUNT Instruction
	4.14.10.1 VCOUNT Counter Operands
	4.14.10.2 VCOUNT Function Operands
	4.14.10.3 VCOUNT Autoreload Operands

	4.14.11 VPINFUNC Instruction
	4.14.12 VUDATA Instruction
	4.14.13 Sync Loops

	4.15 Scan Test Patterns
	4.15.1 Overview
	4.15.2 SCANDEF Compiler Directive
	4.15.3 SVEC Pattern Instruction
	4.15.4 Datalogging Scan Failures

	4.16 Mixed Memory/Logic Patterns
	4.17 Controlling PE Levels from the Test Pattern
	4.17.1 Controlling Magnum 1 Levels from the Test Pattern
	4.17.1.1 LSENABLE Pattern Instruction
	4.17.1.2 LEVELSET Pattern Instruction
	4.17.1.3 Setting a Static Pin-state using Level Sets
	4.17.1.4 changes_voltages()
	4.17.1.5 level_set_value_change()

	Chapter 5 Redundancy Analysis (RA)
	5.1 Overview and Concepts
	5.1.1 RA Pseudo-Code Example
	5.1.2 RA Data and Lists
	5.1.3 RaErrorPosition
	5.1.4 RA vs. Magnum 1/2 Parallel Test
	5.1.5 Must-repair vs. Sparse-repair

	5.2 Spares For Repair
	5.2.1 Spare Rows, Spare Columns
	5.2.2 Per I/O Spares
	5.2.3 Per-I/O Spare Mask
	5.2.4 Rows-Used-Together(RUT), Columns-Used-Together(CUT)
	5.2.5 Spare Segments

	5.3 RA Software
	5.3.1 Types, Enums, etc.
	5.3.2 RA Configuration
	5.3.2.1 ra_config_set()
	5.3.2.2 ra_config_get()

	5.3.3 RA Segment
	5.3.3.1 Linked Segments
	5.3.3.2 ra_segment_make()
	5.3.3.3 ra_segment_config_get()
	5.3.3.4 ra_segment_count_get()
	5.3.3.5 ra_segment_get()
	5.3.3.6 ra_segment_id_get()
	5.3.3.7 ra_segment_lookup()
	5.3.3.8 ra_max_bad_segments_set(), ra_max_bad_segments_get()
	5.3.3.9 ra_segment_linkage_count_get()

	5.3.4 RA Spares
	5.3.4.1 ra_spare_row_make(), ra_spare_col_make()
	5.3.4.2 ra_spare_add()
	5.3.4.3 ra_spare_config_get()
	5.3.4.4 ra_usable_set()
	5.3.4.5 ra_unusable_set()
	5.3.4.6 ra_spare_row_count_get(), ra_spare_col_count_get()
	5.3.4.7 ra_spare_row_get(), ra_spare_col_get()
	5.3.4.8 ra_spare_id_get()
	5.3.4.9 ra_spare_row_lookup(), ra_spare_col_lookup()
	5.3.4.10 ra_spare_rows_get(), ra_spare_cols_get()
	5.3.4.11 ra_spare_colnum_set(), ra_spare_colnum_get()
	5.3.4.12 ra_spare_rownum_set(), ra_spare_rownum_get()
	5.3.4.13 ra_spare_position_set(), ra_spare_position_get()
	5.3.4.14 ra_spare_mask_count_get()
	5.3.4.15 ra_spare_mask_get()
	5.3.4.16 ra_spare_current_mask_set(), ra_spare_current_mask_get()
	5.3.4.17 ra_shortest_spare_row_get(), ra_shortest_spare_col_get()

	5.3.5 RA Execution And Results
	5.3.5.1 ra_execute()
	5.3.5.2 ra_result_get()
	5.3.5.3 ra_error_count_get()
	5.3.5.4 ra_dump()
	5.3.5.5 ra_segment_dump()
	5.3.5.6 ra_spare_dump()
	5.3.5.7 ra_must_repair()
	5.3.5.8 ra_must_repair_needed()
	5.3.5.9 ra_reset()
	5.3.5.10 ra_segment_reset()
	5.3.5.11 ra_repair_done()
	5.3.5.12 ra_spare_use()
	5.3.5.13 ra_bad_segments_count_get()
	5.3.5.14 ra_bad_segment_get()
	5.3.5.15 ra_segment_repair_done()
	5.3.5.16 ra_error_add()
	5.3.5.17 ra_scan_area_callback()
	5.3.5.18 ra_scan_area_callback_func_set() , ra_scan_area_callback_func_get()
	5.3.5.19 ra_scan_rc_func_set(), ra_scan_rc_func_get()
	5.3.5.20 ra_worst_row_get(), ra_worst_col_get()
	5.3.5.21 ra_best_row_wipeout(), ra_best_col_wipeout()
	5.3.5.22 ra_wipeout_get()
	5.3.5.23 ra_spare_rows_required(), ra_spare_cols_required()
	5.3.5.24 ra_failed_rows_count_get(), ra_failed_cols_count_get()
	5.3.5.25 ra_failed_rows_get(), ra_failed_cols_get()
	5.3.5.26 ra_worst_rows_get(), ra_worst_cols_get()
	5.3.5.27 ra_row_wipeout(), ra_col_wipeout()

	5.3.6 Repair List Functions
	5.3.6.1 ra_repaired_row_count_get(), ra_repaired_col_count_get()
	5.3.6.2 ra_repaired_row_get(), ra_repaired_col_get()
	5.3.6.3 ra_repaired_rows_get(), ra_repaired_cols_get()
	5.3.6.4 ra_what_repaired_row_get(), ra_what_repaired_col_get()
	5.3.6.5 ra_spare_repaired_errors_get()

	5.3.7 Redundancy Call-back Functions
	5.3.7.1 RaRowAvailableFunc & RaColAvailableFunc Call-back Function
	5.3.7.2 RaSparseFunc Call-back Function
	5.3.7.3 RaEvalFunc Call-back Function
	5.3.7.4 RaRepairFunc Call-back Function
	5.3.7.5 RaRowUseOK & RaColUseOK Call-back Functions
	5.3.7.6 RaMustRepairFunc Call-back Function
	5.3.7.7 RaScanRCFunc Call-back Function
	5.3.7.8 RaScanAreaCallbackFunc Call-back Function

	5.4 Magnum RA vs. Maverick-I/-II RA
	5.4.0.1 Magnum vs. Maverick RA Functions

	Chapter 6 Interactive Tools
	6.1 UI - User Interface
	6.1.1 UI Overview
	6.1.2 Before Starting UI
	6.1.2.1 ui.ini File

	6.1.3 Starting UI from Windows
	6.1.4 Starting UI from a Command Line
	6.1.5 Magnum 1/2/2x Simulation Setup
	6.1.5.1 SimulationMode()

	6.1.6 UI Initial Display
	6.1.7 UI Advanced Option Controls
	6.1.8 UI Main Display
	6.1.8.1 UI File Menu
	6.1.8.2 UI Window Hide and Dock

	6.1.9 UI Sequence and Binning sub-window
	6.1.9.1 Modifying the Sequence and Binning Table
	6.1.9.2 Save/Load Sequence/Binning Table Modifications
	6.1.9.3 Executing the Sequence and Binning Table
	6.1.9.4 Starting the Breakpoint Monitor

	6.1.10 Ui View Menu
	6.1.10.1 UI Output Window

	6.1.11 Ui Tools Menu
	6.1.12 User Menus in UI
	6.1.13 User Icons in UI Tool Bar
	6.1.14 Host/Site/Tool Debug Mode(s)
	6.1.14.1 User Tool Debug

	6.2 UI Tool Persistence
	6.3 BitmapTool
	6.3.1 ECR Setup
	6.3.2 Invoking BitmapTool
	6.3.3 BitmapTool Control Dialog
	6.3.3.1 BitmapTool Display Mode

	6.3.4 BitmapTool Zoom Controls
	6.3.5 BitmapTool Separate Window Option
	6.3.6 BitmapTool Visible Fail Count Display
	6.3.7 Fail Count Enable Controls
	6.3.8 BitmapTool Callback Macros
	6.3.9 BitmapTool UI Variables
	6.3.10 Bitmap Schemes
	6.3.10.1 Overview
	6.3.10.2 Built-in Bitmap Schemes
	6.3.10.3 Bitmap Segment Positioning
	6.3.10.4 Bitmap Scheme Functions and Data Types
	6.3.10.5 bitmap_scheme Data Type
	6.3.10.6 make_bitmap_scheme()
	6.3.10.7 add_segment()
	6.3.10.8 register_bitmap_scheme()
	6.3.10.9 dump()
	6.3.10.10 permutation Data Type
	6.3.10.11 Permutation Memory Management
	6.3.10.12 make_permutation()
	6.3.10.13 reverse()
	6.3.10.14 rotate()
	6.3.10.15 swap()
	6.3.10.16 append()
	6.3.10.17 insert()
	6.3.10.18 set()
	6.3.10.19 for_each()
	6.3.10.20 filter()
	6.3.10.21 get()
	6.3.10.22 size()
	6.3.10.23 bitmap_scheme_translate()
	6.3.10.24 bitmap_scheme_lookup()

	6.3.11 Bitmap Overlays
	6.3.11.1 Overview
	6.3.11.2 Creating Bitmap Overlays
	6.3.11.3 Bitmap Overlay Colors
	6.3.11.4 Bitmap Overlay Penstyles
	6.3.11.5 Using Overlays to Locate Information in BitmapTool
	6.3.11.6 Bitmap Overlay Example Device
	6.3.11.7 bitmap_overlay_names()
	6.3.11.8 bitmap_overlay_add()
	6.3.11.9 bitmap_overlay_delete()
	6.3.11.10 bitmap_overlay_lookup()
	6.3.11.11 bitmap_overlay_setup()
	6.3.11.12 bitmap_overlay_enable()
	6.3.11.13 bitmap_overlay_draw()

	6.4 Breakpoint Monitor
	6.4.1 Overview
	6.4.2 Starting the Breakpoint Monitor
	6.4.3 Breakpoint Attributes
	6.4.4 Breakpoint Actions
	6.4.5 Breakpoint Removal
	6.4.6 Breakpoint Definition File
	6.4.7 Single-stepping
	6.4.8 Run to Fail
	6.4.9 Breakpoint Usage
	6.4.9.1 Breakpoints on Test Functions
	6.4.9.2 Breakpoints on C Functions
	6.4.9.3 Breakpoint Macros
	6.4.9.4 Looping and Single-stepping

	6.4.10 Run Buttons

	6.5 DBMTool
	6.5.1 Overview
	6.5.2 Starting DBMTool
	6.5.3 DBMTool Controls
	6.5.4 DBM Data Modification
	6.5.5 DBM File Read/Write

	6.6 DUT Manager
	6.7 ECRTool
	6.7.1 ECRTool Next Error Search

	6.8 FrontPanelTool
	6.9 LEC Tool
	6.10 LVMTool
	6.10.1 Starting LVMTool
	6.10.2 LVMTool Tool-bar
	6.10.3 LVMTool Use
	6.10.4 PINFUNC Field Display & Edit
	6.10.5 Copy/Paste LVM Pattern Data
	6.10.6 DDR LVMTool
	6.10.7 LVMTool in Simulation Mode
	6.10.8 LVMTool Limitations

	6.11 WaveformTool (MSWT)
	6.11.1 Overview
	6.11.2 MSWT Usage Model
	6.11.3 MSWT Look & Feel
	6.11.4 MSWT Toolbar File Menu
	6.11.4.1 File->Generate Menu
	6.11.4.2 File Generate Constant Dialog
	6.11.4.3 File Generate Gaussian Noise Dialog
	6.11.4.4 Generating Multi-tone Waveforms
	6.11.4.5 File Generate Pink/White Noise Dialog
	6.11.4.6 File Generate Ramp/Triangle Dialog
	6.11.4.7 File Generate Sine Waveform Dialog
	6.11.4.8 File Generate Square Waveform Dialog
	6.11.4.9 File->Compare Waveforms Dialog

	6.11.5 MSWT Toolbar View Menu
	6.11.5.1 View->Compare Controls
	6.11.5.2 View->Cursor Controls
	6.11.5.3 View->Graph Controls
	6.11.5.4 View->Properties Dialog

	6.11.6 MSWT Toolbar Tester Menu
	6.11.6.1 Tester->Read Waveform Dialog
	6.11.6.2 Tester->Set Waveform Dialog

	6.11.7 MSWT Toolbar Window Menu
	6.11.8 Waveform Synchronization
	6.11.9 Waveform Calculator
	6.11.9.1 Overview
	6.11.9.2 Calculator Controls
	6.11.9.3 Calculator Math Menu
	6.11.9.4 Calculator DSP Menu
	6.11.9.5 Calculator Convert Menu
	6.11.9.6 Calculator Compare Menu
	6.11.9.7 Calculator Stack Menu
	6.11.9.8 Calculator Stack Pick Dialog
	6.11.9.9 Calculator Stack PushDoubleVariable Dialog
	6.11.9.10 Calculator Stack PushIntVariable Dialog
	6.11.9.11 Calculator Stack PushResource Dialog
	6.11.9.12 Calculator Stack PushWaveform Dialog
	6.11.9.13 Calculator Stack Roll Dialog
	6.11.9.14 Calculator Encode Menu
	6.11.9.15 Calculator Twiddle Menu
	6.11.9.16 Calculator Twiddle Bitwise/Logical Dialogs
	6.11.9.17 Calculator Twiddle Rotate/Shift Dialogs
	6.11.9.18 Calculator Dialogs/RPN Option

	6.11.10 Response to UI User Variable Signals
	6.11.11 MSWT Programming Functions
	6.11.11.1 Types, Enums, etc.
	6.11.11.2 mswt_present()
	6.11.11.3 mswt_start()
	6.11.11.4 mswt_minimize()
	6.11.11.5 mswt_restore()
	6.11.11.6 mswt_always_on_top()
	6.11.11.7 mswt_close_windows()
	6.11.11.8 mswt_display_file()
	6.11.11.9 mswt_display_waveform()
	6.11.11.10 mswt_synchronize()
	6.11.11.11 mswt_auto_synchronize()
	6.11.11.12 mswt_set_timeout()
	6.11.11.13 mswt_view_graph_controls()
	6.11.11.14 mswt_view_calculator_controls()
	6.11.11.15 mswt_view_compare_controls()
	6.11.11.16 mswt_view_cursor_controls()
	6.11.11.17 mswt_reset_graph_controls()
	6.11.11.18 mswt_angles_as_degrees()
	6.11.11.19 mswt_set_x_axis_mode(), mswt_set_y_axis_mode()
	6.11.11.20 mswt_set_y_axis_reference()
	6.11.11.21 mswt_set_plot_mode()
	6.11.11.22 mswt_set_trace_width()
	6.11.11.23 mswt_display_grid()
	6.11.11.24 mswt_set_axis_units()
	6.11.11.25 mswt_set_y_range

	6.12 PatternDebugTool
	6.13 Resource Manager
	6.14 ScanTool
	6.15 ShmooTool / SearchTool
	6.15.1 Overview
	6.15.2 Starting ShmooTool
	6.15.3 Search Output
	6.15.4 Shmoo Output
	6.15.5 ShmooTool Help
	6.15.6 Defining Shmoos & Searches
	6.15.6.1 ShmooTool: Search Controls
	6.15.6.2 ShmooTool: Shmoo Controls

	6.15.7 Shmoo Functions
	6.15.7.1 Types, Enums, etc.
	6.15.7.2 shmoo_title_get()
	6.15.7.3 shmoo_type_get()
	6.15.7.4 shmoo_direction_get()
	6.15.7.5 shmoo_axis_params_get()
	6.15.7.6 shmoo_param_get()
	6.15.7.7 shmoo_param_pointval_get()
	6.15.7.8 shmoo_duts_subtitle_set(), shmoo_duts_subtitle_get()
	6.15.7.9 search_results_get()

	6.15.8 Multi-DUT Shmoos
	6.15.9 Shmoo/Search Execution
	6.15.9.1 Executing Shmoos and Searches Interactively
	6.15.9.2 Executing Shmoos and Searches Programmatically

	6.15.10 Shmoos and Searches using User Variables
	6.15.11 Shmoo Definition File

	6.16 SummaryTool
	6.17 TimingTool
	6.18 User Variables Tool
	6.18.1 Overview
	6.18.2 Starting User Variables Tool
	6.18.3 User Variable Prompt String
	6.18.4 User Variables Tool Controls
	6.18.5 Built-in User Variables

	6.19 Voltage and Current Tool
	6.20 WaveTool
	6.20.1 Example Display
	6.20.2 Overview
	6.20.3 Starting WaveTool
	6.20.4 WaveTool Tool-bar Controls
	6.20.5 WaveTool Setup Files
	6.20.6 WaveTool Setup Controls
	6.20.6.1 Setup Signals Dialog
	6.20.6.2 Setup Headers Dialog
	6.20.6.3 Setup Acquire Dialog
	6.20.6.4 Setup Acquire Input Controls
	6.20.6.5 Setup Acquire Execute Controls
	6.20.6.6 Setup Acquire LEC Controls

	6.20.7 WaveTool Run Controls
	6.20.8 WaveTool Timing Format Symbols
	6.20.9 WaveTool Color Schemes
	6.20.10 WaveTool Zoom Controls
	6.20.11 WaveTool Mouse Track Controls
	6.20.12 Creating WaveTool Trace Files
	6.20.13 History RAM

	6.21 WafermapTool
	6.21.1 Overview
	6.21.2 WafermapTool Communication Architecture
	6.21.3 Starting WaferMapTool
	6.21.4 WafermapTool Persistence
	6.21.5 WaferMapTool Configuration
	6.21.5.1 Configuration File

	6.21.6 User Interface & Controls
	6.21.7 Die Attributes
	6.21.7.1 Die Display Options
	6.21.7.2 Marked Die

	6.21.8 WaferMapTool Software
	6.21.8.1 Types, Enums, etc.
	6.21.8.2 wmap_set(), wmap_get()
	6.21.8.3 WafermapTool File Access Rules
	6.21.8.4 wmap_die_set(), wmap_die_get()
	6.21.8.5 wmap_cmd_start(), wmap_cmd_end()
	6.21.8.6 wmap_die_cmd_start(), wmap_die_cmd_end()
	6.21.8.7 wmap_onclick_set()

	6.21.9 WafermapTool Die-Bitmap Support
	6.21.9.1 Dynamically Defined Monochromatic Images
	6.21.9.2 Dynamically Defined Color Images
	6.21.9.3 Statically Defined Images
	6.21.9.4 UI BitmapTool Images

	6.21.10 Die Field Display

	Chapter 7 Advanced Topics
	7.1 User Variables
	7.1.1 Overview
	7.1.2 Usage
	7.1.3 User-defined User Variables
	7.1.4 Invoking User Variable Body Code
	7.1.5 User Variable Command Line Initialization
	7.1.6 User Variable Batch File Initialization
	7.1.7 User Variable Text File Initialization
	7.1.8 Modifying ONEOF Variables
	7.1.9 Intercepting User Variables
	7.1.10 Built-in User Variables
	7.1.10.1 builtin_what_exe
	7.1.10.2 Loading DLLs
	7.1.10.3 RBoot Client File

	7.1.11 UI User Variables
	7.1.11.1 UI User Variable Scope
	7.1.11.2 UI User Variables Categories
	7.1.11.3 Callback UI User Variable
	7.1.11.4 Reload
	7.1.11.5 Paths, File Names, Default Extensions, etc.
	7.1.11.6 ui_BatchFile
	7.1.11.7 ui_BitmapCrossHair
	7.1.11.8 ui_BitmapDialogDecMode
	7.1.11.9 ui_BitmapDisplay
	7.1.11.10 ui_BitmapDisplayMode
	7.1.11.11 ui_BitmapDisplaySeparateZoomWindow
	7.1.11.12 ui_BitmapDisplayTotalCount
	7.1.11.13 ui_BitmapDisplayVisibleCount
	7.1.11.14 ui_BitmapdutNo
	7.1.11.15 ui_BitmapFailColor, ui_BitmapPassColor
	7.1.11.16 ui_BitmapMainSize
	7.1.11.17 ui_BitmapMaxErrors
	7.1.11.18 ui_BitmapMoveTo
	7.1.11.19 ui_BitmapPageHScroll, ui_BitmapPageVScroll, ui_BitmapLineHScroll, ui_BitmapLineVScroll
	7.1.11.20 ui_BitmapPan
	7.1.11.21 ui_BitmapRowsChunk
	7.1.11.22 ui_BitmapRulers
	7.1.11.23 ui_BitmapTotalFailBitCount
	7.1.11.24 ui_BitmapTotalVisibleFailBitString
	7.1.11.25 ui_BitmapTotalFailBitString
	7.1.11.26 ui_BitmapVisibleFailBitString
	7.1.11.27 ui_BitmapVisibleSize
	7.1.11.28 ui_BitmapZoom2
	7.1.11.29 ui_BreakPointFile
	7.1.11.30 ui_BreakPointRemoveAll
	7.1.11.31 ui_ClearAtProgramLoad
	7.1.11.32 ui_ClearAtTestStart
	7.1.11.33 ui_Close
	7.1.11.34 ui_CloseAfterRun
	7.1.11.35 ui_Controller
	7.1.11.36 ui_CurrentBitmapScheme
	7.1.11.37 ui_DbmDialogDecMode
	7.1.11.38 ui_DutBoardStatusCheckDisable
	7.1.11.39 ui_ECRDialogDecMode
	7.1.11.40 ui_EngineeringMode
	7.1.11.41 ui_ExcelAppEvent
	7.1.11.42 ui_Exit
	7.1.11.43 ui_ExitAfterRun
	7.1.11.44 ui_HideTool
	7.1.11.45 ui_HostDebug
	7.1.11.46 ui_HostModeCommandLine
	7.1.11.47 ui_HostTimeOut
	7.1.11.48 ui_LoadTimeOut
	7.1.11.49 ui_LoadedMask
	7.1.11.50 ui_MonitorPort
	7.1.11.51 ui_MonitorTimeOut
	7.1.11.52 ui_NoLogo
	7.1.11.53 ui_Open
	7.1.11.54 ui_OutputAutoOpen
	7.1.11.55 ui_OutputFile
	7.1.11.56 ui_OutputFormat
	7.1.11.57 ui_OutputOpen
	7.1.11.58 ui_ProgLoaded
	7.1.11.59 ui_ProgUnloaded
	7.1.11.60 ui_ResourceInitialized
	7.1.11.61 ui_RunTestProgram
	7.1.11.62 ui_ShmooDone
	7.1.11.63 ui_ShmooInput
	7.1.11.64 ui_ShmooOutputFile
	7.1.11.65 ui_ShowOutputTab
	7.1.11.66 ui_Show
	7.1.11.67 ui_ShowTool
	7.1.11.68 ui_ShutDown
	7.1.11.69 ui_SiteDebug
	7.1.11.70 ui_SiteDone
	7.1.11.71 ui_SiteLoaded
	7.1.11.72 ui_SiteMask
	7.1.11.73 ui_SiteModeCommandLine
	7.1.11.74 ui_SiteUnloaded
	7.1.11.75 ui_StartTest
	7.1.11.76 ui_StartTool
	7.1.11.77 ui_StopTest
	7.1.11.78 ui_TestDone
	7.1.11.79 ui_TestProgConfiguration
	7.1.11.80 ui_TestProgDirPath
	7.1.11.81 ui_TestProgName
	7.1.11.82 ui_TestStarted
	7.1.11.83 ui_TimingToolPinLists
	7.1.11.84 ui_ToolLoaded
	7.1.11.85 ui_ToolModeCommandLine
	7.1.11.86 ui_ToolUnloaded
	7.1.11.87 ui_UserVarSiteMode
	7.1.11.88 ui_UserVariableTimeout

	7.2 Host / Site / Tool Communication
	7.2.1 remote_signal(), remote_wait()
	7.2.2 remote_send()
	7.2.3 remote_fetch()
	7.2.4 remote_set(), remote_get()
	7.2.5 Transferring Multiple User Variables
	7.2.6 Transferring User-defined Data Structures (Serialization)
	7.2.7 SiteMask() Support

	7.3 Resources
	7.3.1 Overview
	7.3.2 Resource Types
	7.3.3 Resource Name Functions
	7.3.4 Resource Find Functions
	7.3.5 Resource Control Functions
	7.3.5.1 resource_deallocate()
	7.3.5.2 resource_initialize()
	7.3.5.3 resource_ignore()

	7.3.6 Resource Use Functions
	7.3.7 resource_select()
	7.3.8 invoke()

	7.4 User Tools
	7.4.1 Overview
	7.4.2 Creating User Tools
	7.4.3 Starting/Terminating User Tools
	7.4.3.1 Single Instance Code Example

	7.4.4 User Tool Output Messages
	7.4.5 User Tool Initialization
	7.4.6 User Tool Functions
	7.4.6.1 get_all_tools()

	7.4.7 User Tool Example
	7.4.8 ToolLauncher
	7.4.8.1 Tool Registration Requirements
	7.4.8.2 Operation
	7.4.8.3 Required Functions
	7.4.8.4 setup_menus()
	7.4.8.5 setup_toolbars()
	7.4.8.6 site_loaded()
	7.4.8.7 ui_ShowTool / ui_HideTool Support
	7.4.8.8 MenuLayout.cpp
	7.4.8.9 ToolLauncher DLL Setup
	7.4.8.10 Example User Tool

	7.5 User Dialogs
	7.5.1 Overview
	7.5.2 Supported Dialog Components
	7.5.3 Creating a User Dialog
	7.5.3.1 Creating the Dialog C-code
	7.5.3.2 Creating the Dialog Graphic
	7.5.3.3 Adding Dialog Components to the Dialog
	7.5.3.4 IDCANCEL and IDOK

	7.5.4 Setting Tab Order
	7.5.4.1 Dialog Editor Tips

	7.5.5 Changing Dialog Button Text
	7.5.6 Creating Bitmap Dialog Components
	7.5.7 Bitmap Usage
	7.5.8 Dialog Progress Resource
	7.5.9 Radio Buttons and ONEOF User Variables
	7.5.10 Sliders & Scroll-bars
	7.5.11 User Dialog Functions
	7.5.11.1 Transferring Values to/from Dialog Resources
	7.5.11.2 for_each()
	7.5.11.3 top_most()

	7.5.12 Grid Usage
	7.5.12.1 Overview
	7.5.12.2 Adding a Grid to a Dialog
	7.5.12.3 GRID_CONTROL() Macro
	7.5.12.4 ONINITDIALOG: Defining the Grid
	7.5.12.5 Grid Functions
	7.5.12.6 Types, Enums, etc.
	7.5.12.7 grid_create()
	7.5.12.8 grid_setup()
	7.5.12.9 grid_fixed_col_width_set()
	7.5.12.10 grid_fixed_row_height_set()
	7.5.12.11 grid_column_pixel_width_set()
	7.5.12.12 grid_row_pixel_height_set()
	7.5.12.13 grid_initialize()
	7.5.12.14 grid_update()
	7.5.12.15 grid_focus_cell_get()
	7.5.12.16 grid_reset()
	7.5.12.17 Grid Call-back Functions
	7.5.12.18 GridCellTextCallback Call-back Function
	7.5.12.19 GridCellFormatCallback Call-back Function
	7.5.12.20 GridTextColorCallback Call-back Function
	7.5.12.21 GridSelectedTextColorCallback Call-back Function
	7.5.12.22 GridCellClickedCallback Call-back Function
	7.5.12.23 GridBackgndColorCallback Call-back Function
	7.5.12.24 GridSelectedBackgndColorCallback Call-back Function
	7.5.12.25 GridFocusBackgndColorCallback Call-back Function

	7.6 STDF Software
	7.6.1 Overview
	7.6.2 STDF Record Types
	7.6.3 Data Type Codes and Representation
	7.6.4 STDF File Functions
	7.6.4.1 stdf_file_open()
	7.6.4.2 stdf_file_write()
	7.6.4.3 stdf_file_close()

	7.6.5 STDF Record Add Functions
	7.6.5.1 stdf_ATR_add()
	7.6.5.2 stdf_BPS_add()
	7.6.5.3 stdf_DTR_add()
	7.6.5.4 stdf_EPS_add()
	7.6.5.5 stdf_FTR_add()
	7.6.5.6 Generic Data Record (GDR) Functions
	7.6.5.7 stdf_HBR_add()
	7.6.5.8 stdf_MIR_add()
	7.6.5.9 stdf_MPR_add()
	7.6.5.10 stdf_MRR_add()
	7.6.5.11 stdf_PCR_add()
	7.6.5.12 stdf_PGR_add()
	7.6.5.13 stdf_PIR_add()
	7.6.5.14 stdf_PLR_add()
	7.6.5.15 stdf_PMR_add()
	7.6.5.16 stdf_PRR_add()
	7.6.5.17 stdf_PTR_add()
	7.6.5.18 stdf_RDR_add()
	7.6.5.19 stdf_SBR_add()
	7.6.5.20 stdf_SDR_add()
	7.6.5.21 stdf_TSR_add()
	7.6.5.22 stdf_WCR_add()
	7.6.5.23 stdf_WIR_add()
	7.6.5.24 stdf_WRR_add()

	7.6.6 STDF Code Example

	7.7 Excel Related Functions
	7.7.1 Overview
	7.7.2 InvokeExcelEx()
	7.7.3 OpenWorkBookEx()
	7.7.4 AddWorkBook()
	7.7.5 AddWorkSheet()
	7.7.6 SelectWorkSheet()
	7.7.7 GetActiveSheet()
	7.7.8 GetActiveCell()
	7.7.9 GetSelectionRange()
	7.7.10 UpdateScreen()
	7.7.11 RunMacro()
	7.7.12 SaveAs()
	7.7.13 ReleaseExcel(), QuitExcel()
	7.7.14 Excel Value Set/Get Functions
	7.7.14.1 SetColumnWidth()
	7.7.14.2 AddVal()
	7.7.14.3 GetVal()
	7.7.14.4 AddArray()
	7.7.14.5 GetArray()

	7.7.15 Excel Event Detection
	7.7.15.1 EnableExcelAppEvents()

	7.8 Debug Hook and Pin Status Hook
	7.8.1 install_debug_hook()
	7.8.1.1 current_setup()
	7.8.1.2 current_test()

	7.8.2 install_pinstatus_hook()

	7.9 MonitorApp
	7.9.1 Terminating & Restarting MonitorApp

	7.10 Environmental Variables
	7.10.1 Nextest Environment Variables
	7.10.2 Environmental Variable Scope
	7.10.3 Setting Environment Variables

	7.11 Invoking a File Browser
	7.11.1 Obsolete: current_dialog()

	7.12 DUT Board TDR Functions
	7.12.1 TDR_BLOCK()
	7.12.2 db_tdr()
	7.12.3 db_read_tdr()
	7.12.4 db_write_tdr()
	7.12.5 db_set_tdr(), db_get_tdr()
	7.12.6 db_get_pins()
	7.12.7 db_get_date()

	7.13 Miscellaneous
	7.13.1 WhatRelease
	7.13.2 UseRel
	7.13.3 UseDLLs
	7.13.4 Automatic Stack Trace Generator

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

