"Bad Columns"

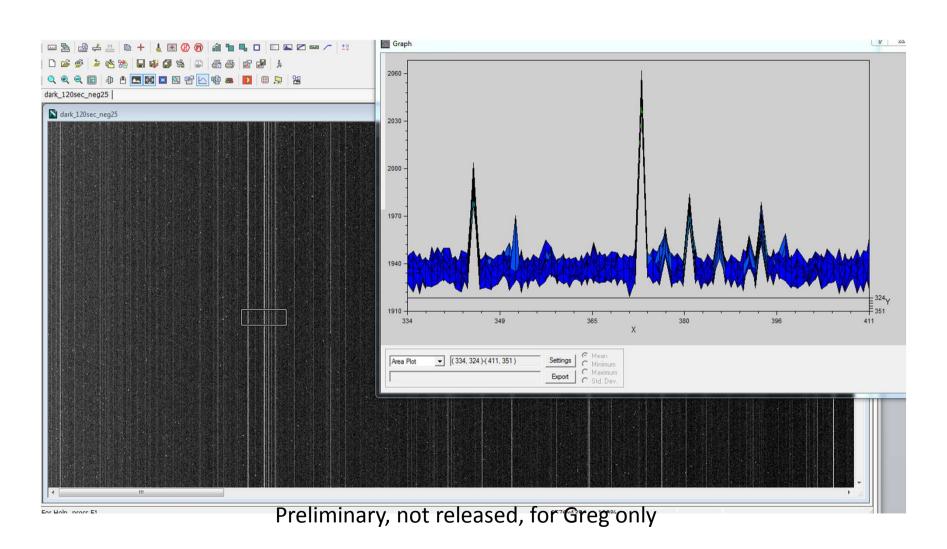
Richard Crisp
27 January 2014
rdcrisp@earthlink.net

Preliminary, not released, for Greg only

Bad Columns

 Have a very specific definition in the terminology of Truesense

DEFECT DEFINITIONS FOR TESTING AT 40 °C


Description	Definition	Grade 1	Grade 2 Mono	Grade 2 Color	Notes
Major dark field defective bright pixel	PD_Tint = Mode A → Defect ≥ 565 mV	270	540	540	
Major bright field defective dark pixel	Defect ≥ 12%	270 540		540	'
Minor dark field defective bright pixel	PD_Tint = Mode A → Defect ≥ 282 mV	2700	5400	5400	
Cluster Defect	A group of 2 to 19 contiguous major defective pixels, but no more than 4 adjacent defects horizontally.	20	n/a	n/a	2
Cluster Defect	A group of 2 to 38 contiguous major defective pixels, but no more than 5 adjacent defects horizontally.	n/a	50	50	2
Column defect	A group of more than 10 contiguous major defective pixels along a single column	0	7	27	2

Notes:

1. For the color devices (KAI-29050-CXA and KAI-29050-PXA), a bright field defective pixel deviates by 12% with respect to pixels of the same color. Preliminary, not released, for Greg only
2. Column and cluster defects are separated by no less than two (2) good pixels in any direction (excluding single pixel

defects).

Why is this not a Bad Column?

Read and Interpret the Specs

KAI-29050 Image Sensor

Summary Specification

KAI-29050 Image Sensor

DESCRIPTION

The KAI-29050 Image Sensor is a 29-megapixel CCD in a 35 mm optical format. Based on the TRUESENSE 5.5 micron Interline Transfer CCD Platform, the sensor features broad dynamic range, excellent imaging performance, and a flexible readout architecture that enables use of 1, 2, or 4 outputs for full resolution readout up to 4 frames per second. A vertical overflow drain structure suppresses image blooming and enables electronic shuttering for precise exposure control.

The sensor is available with the TRUESENSE Sparse Color Filter Pattern, a technology which provides a 2x improvement in light sensitivity compared to a standard color Bayer part.

The sensor shares common PGA pin-out and electrical configurations with other devices based on the TRUESENSE 5.5 micron Interline Transfer CCD Platform, allowing a single camera design to be leveraged to support multiple members of this sensor family.

FEATURES

- Bayer Color Pattern, TRUESENSE Sparse Color Filter Pattern, and Monochrome configurations
- · Progressive scan readout
- · Flexible readout architecture
- High frame rate
- High sensitivity
- Low noise architecture
- Excellent smear performance
- · Package pin reserved for device identification

APPLICATIONS

- Industrial Imaging and Inspection
- Medical Imaging
- Security

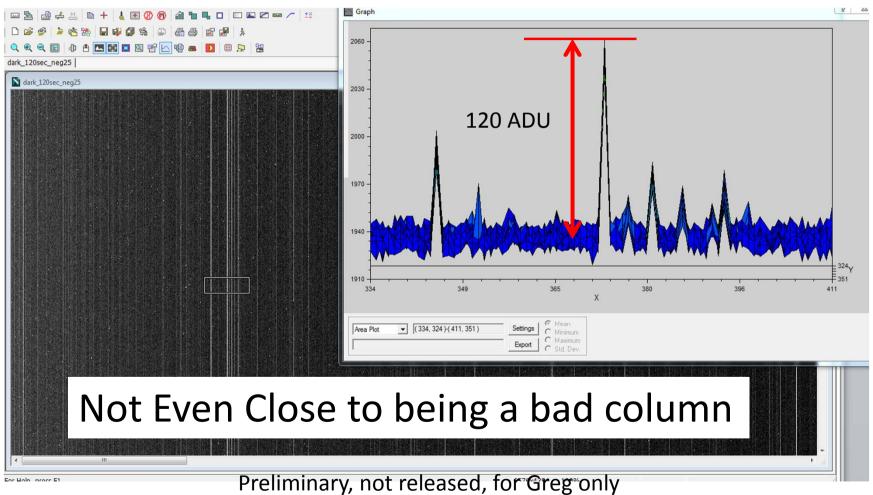
Parameter	Typical Value
Architecture	Interline CCD; Progressive Scan
Total Number of Pixels	6644 (H) x 4452 (V)
Number of Effective Pixels	6600 (H) x 4408 (V)
Number of Active Pixels	6576 (H) x 4384 (V)
Pixel Size	5.5 µm (H) x 5.5 µm (V)
Active Image Size	36.17 mm (H) x 24.11 mm (V) 43.47 mm (diag) 35 mm optical format
Aspect Ratio	3:2
Number of Outputs	1,2,or4
Charge Capacity	20,000 electrons
Output Sensitivity	34 µV/e°
KAI-29050-AXA KAI-29050-CXA	46% (500 nm) 31%, 43%, 42% (620, 540, and 470 nm)
Read Noise (f= 32MHz)	12 electrons rms
Dark Current Photodiode VCCD	7 electrons/s 140 electrons/s
Dark Current Doubling Temp Photodiode VCCD	7°C 9°C
Dynamic Range	64 dB
Charge Transfer Efficiency	0.999999
Blooming Suppression	> 300 X
Smear	Estimated -100 dB
Image Lag	< 10 electrons
Maximum Pixel Clock Speed	40 MHz
Maximum Frame Rates Quad Output Dual of Output Single Output	imary, not released
Package	72 pin PGA
Cover Glass	AR Coated, 2 Sides

To be a Saturated Column by Kodak Definition: Column must be 282mV above adjacent columns with a 0.25second exposure at +40C

34 microvolts/electron (output node sensitivity)

Saturated Column definition (dark, 0.25sec @ +40C)

282millivolts / (34 microvolts/e-) ~= 7235 e-


The camera gain for this camera is 0.5e-/ADU

The definition of a saturated column (not illuminated) at 120second dark exposure at -25C therefore is:

5564 e- / (0.5 e-/ADU) =11129 ADU (above adjacent pixels when not illuminated with a 0.25 second illumination at -25C

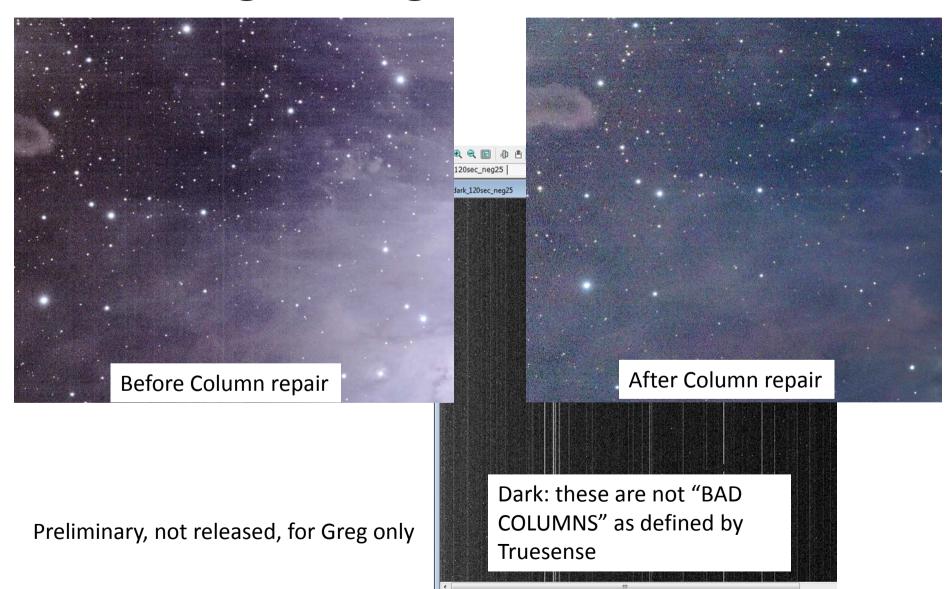
+40C:					
246000	mv (for saturated pixel)				
34	microvolts/e-				
7235.294	e- in 0.25seconds at +40C for a saturated pixel)				
14470.59	DN				
9.285714	doublings: -25 to +40C @ 7C/doubling				
7235.294	e- in 0.25 sec at +40C				
0.5	e-/adu (camera gain)				
-25C:					
0.001602	current multiplication factor: slewing from +40C to -25C (9.25 doublings)				
11.59251	e- in 0.25 sec at -25C				
5 \$64 ,497	Sin 29e Gin i C ADU delta needed to qualify as a Saturated Column				
11128.81	ADU delta needed to qualify as a Saturated Column				

What about this Sensor?

120 ADU above neighbors: 120 seconds @ -25C

Calculations

- Must transform the data from the dark to the Kodak specified condition:
- From Spec: dark doubling temperature: 7C


+40C to -25C is a 65C deviation

50C/(7C/doubling): 9.29 doublings: means the current is 624.1 times larger at +40C vs -25C for same exposure interval

120 seconds contains 480 quarter second intervals

Preliminary, not released, for Greg only

Image using the dark shown

